
pisa 3.0.31

XHTML/HTML/CSS to PDF converter

(C)opyright by Dirk Holtwick, Germany

dirk.holtwick@gmail.com

http://www.xhtml2pdf.com

mailto:dirk.holtwick@gmail.com
http://www.xhtml2pdf.com

pisa HTML/CSS to PDF. Page 2

Table of Contents

Introduction 4

Installation 5

Windows precompiled version 5

Command line 6

Converting HTML data 6

Using special properties 6

Python module 7

Create PDF 7

Link callback 8

Web applications 8

Defaults 9

Cascading Style Sheets 10

Layout Definition 11

Pages and Frames 11

Page size and orientation 12

PDF watermark/ background 12

Static frames 13

Fonts 14

Outlines/ Bookmarks 16

Table of Contents 17

Tables 18

Long cells 18

Cell widths 18

Headers 18

Borders 18

Images 19

Size 19

Position/ floating 19

Barcodes 20

Custom Tags 21

Tag-Definitions 21

pdf:barcode 21

pdf:pagenumber 21

pisa HTML/CSS to PDF. Page 3

pdf:nexttemplate 21

pdf:nextpage 21

pdf:nextframe 21

pdf:spacer 21

pdf:toc 21

License 22

pisa HTML/CSS to PDF. Page 4

Introduction

pisa is a HTML/XHTML/CSS to PDF converter written in Python and based on Reportlab

Toolkit, pyPDF, TechGame Networks CSS Library and HTML5lib. The primary focus is not on

generating perfect printable webpages but to use HTML and CSS as commonly known tools to

generate PDF files within Applications. For example generating documentations (like this one),

generating invoices or other office documents etc.

pisa HTML/CSS to PDF. Page 5

Installation

As pisa is a Python pakage an installed version of Python <http://www.python.org> is needed.

For the moment Python 2.3 to 2.5 is supported. For Python 3000 a special version will be

needed, because it is not compatible with the 2.x series. A proper version will be made

available as soon as Python 3000 becomes stable.

The easiest way to install pisa is to use easy_install:

$ easy_install pisa

But you may also download the source code of pisa, then enter the main directory and execute

this command (on Linux and MacOS you may prepend a sudo command):

$ python setup.py install

pisa needs also some additional Python packages to be installed to work. Please follow the

setup instruction for each package:

• ReportlabToolkit 2.2+ (required)

http://www.reportlab.org/downloads.html

Provides the Python to PDF conversion functionality

• html5lib 0.11.1+ (required)

http://code.google.com/p/html5lib/

The parser for HTML and XHTML

• pyPdf 1.11+ (optional)

http://pybrary.net/pyPdf/

Will be used if you like to place another PDF as a watermark in the background of PDF

pages

• PIL 1.1.6+ (optional)

http://www.pythonware.com/products/pil/

The Python Imaging Library (PIL) is requred by ReportLab for handling of different image

formats like GIF and PNG.

Windows precompiled version

For Windows a precompiled version exists that includes Python and all needed libraries. The

package contains the file xhtml2pdf.exe. Please add the directory where xhtml2pdf.exe is

placed to the Windows PATH variable.

The Windows version is distributed via the Website <http://www.xhtml2pdf.com> in the

"Download" section.

http://www.python.org
http://www.reportlab.org/downloads.html
http://code.google.com/p/html5lib/
http://pybrary.net/pyPdf/
http://www.pythonware.com/products/pil/
http://www.xhtml2pdf.com

pisa HTML/CSS to PDF. Page 6

Command line

If you do not want to integrate pisa in your own application, you may use the command line tool

that gives you a simple interface to the features of pisa. Just call xhtml2pdf --help to get the

following help informations:

Converting HTML data

To generate a PDF from an HTML file called test.html call:

$ xhtml2pdf -s test.html

The resulting PDF will be called test.pdf (if this file is locked e.g. by the Adobe Reader it will

be called test-0.pdf and so on). The -s option takes care that the PDF will be opened directly

in the Operating Systems default viewer.

To convert more than one file you may use wildcard patterns like * and ?:

$ xhtml2pdf "test/test-*.html"

You may also directly access pages from the internet:

$ xhtml2pdf -s http://www.xhtml2pdf.com/

Using special properties

If the conversion doesn't work as expected some more informations may be usefull. You may

turn on the output of warnings adding -w or even the debugging output by using -d.

Another reason could be, that the parsing failed. Consider trying the -xhtml and -html options.

pisa uses the HTMLT5lib parser that offers two internal parsing modes: one for HTML and one

for XHTML.

When generating the HTML output pisa uses an internal default CSS definition (otherwise all

tags would appear with no diffences). To get an impression of how this one looks like start pisa

like this:

$ xhtml2pdf --css-dump > xhtml2pdf-default.css

The CSS will be dumped into the file pisa-default.css. You may modify this or even take a

totaly self defined one and hand it in by using the -css option, e.g.:

$ xhtml2pdf --css=xhtml2pdf-default.css test.html

pisa HTML/CSS to PDF. Page 7

Python module

XXX TO BE COMPLETED

The integration into a Python program is quite easy. We will start with a simple "Hello World"

example:

import ho.pisa as pisa (1)

def helloWorld():

 filename = __file__ + ".pdf" (2)

 pdf = pisa.CreatePDF((3)

 "Hello World",

 file(filename, "wb"))

 if not pdf.err: (4)

 pisa.startViewer(filename) (5)

if __name__=="__main__":

 pisa.showLogging() (6)

 helloWorld()

Comments:

(1) Import the pisa Python module

(2) Calculate a sample filename. If your demo is saved under test.py the filename will be

test.py.pdf.

(3) The function CreatePDF is called with the source and the destination. In this case the source

is a string and the destination is a fileobject. Other values will be discussed later (XXX to do!).

An object will be returned as result and saved in pdf.

(4) The property pdf.err is checked to find out if errors occured

(5) If no errors occured a helper function will open a PDF Reader with the resulting file

(6) Errors and warnings are written as log entries by using the Python standard module

logging. This helper enables printing warnings on the console.

Create PDF

The main function of pisa is called CreatePDF(). It offers the following arguments in this order:

• src: The source to be parsed. This can be a file handle or a String - or even better - a

Unicode object.

• dest: The destination for the resulting PDF. This has to be a file object wich will not be

closed by CreatePDF. (XXX allow file name?)

• path: The original file path or URL. This is needed to calculate relative paths of images and

style sheets. (XXX calculate automatically from src?)

• link_callback: Handler for special file paths (see below).

• debug: ** DEPRECATED **

• show_error_as_pdf: Boolean that indicates that the errors will be dumped into a PDF. This

is usefull if that is the only way to show the errors like in simple web applications.

pisa HTML/CSS to PDF. Page 8

• default_css: Here you can pass a default CSS definition in as a String. If set to None the

predefined CSS of pisa is used.

• xhtml: Boolean to force parsing the source as XHTML. By default the HTML5 parser tries to

guess this.

• encoding: The encoding name of the source. By default this is guessed by the HTML5

parser. But HTML with no meta information this may not work an then this argument is

helpfull.

Link callback

Images, backgrounds and stylesheets are loaded form an HTML document. Normaly pisa

expects these files to be found on the local drive. They may also be referenced relative to the

original document. But the programmer might want to load form different kind of sources like

the Internet via HTTP requests or from a database or anything else. Therefore you may define

a link_callback that handles these reuests.

XXX

Web applications

XXX

pisa HTML/CSS to PDF. Page 9

Defaults

Some notes on some default values:

• Usually the position (0, 0) in PDF files is found in the lower left corner. For pisa it is the

upper left corner like it is for HTML.

• The default page size is the German DIN A4 with portrait orientation.

• The name of the first layout template is body, but you better leave the name empty for

defining the default template (XXX May be changed in the future!)

pisa HTML/CSS to PDF. Page 10

Cascading Style Sheets

pisa supports a lot of Cascading Style Sheet (CSS). The following styles are supported:

background-color

border-bottom-color

border-bottom-style

border-bottom-width

border-left-color

border-left-style

border-left-width

border-right-color

border-right-style

border-right-width

border-top-color

border-top-style

border-top-width

color

display

font-family

font-size

font-style

font-weight

height

line-height

list-style-type

margin-bottom

margin-left

margin-right

margin-top

padding-bottom

padding-left

padding-right

padding-top

page-break-after

page-break-before

size

text-align

text-decoration

text-indent

vertical-align

white-space

width

zoom

And it adds some vendor specific styles:

-pdf-frame-border

-pdf-frame-break

-pdf-frame-content

-pdf-keep-with-next

-pdf-next-page

-pdf-outline

-pdf-outline-level

-pdf-outline-open

-pdf-page-break

pisa HTML/CSS to PDF. Page 11

Layout Definition

Pages and Frames

Pages can be layouted by using some special CSS at-keywords and properties. All special

properties start with -pdf- to mark them as vendor specific as defined by CSS 2.1. Layouts

may be defined by page using the @page keyword. Then text flows in one or more frames which

can be defined within the @page block by using @frame. Example:

@page {

 @frame {

 margin: 1cm;

 }

}

In the example we define an unnamed page template - though it will be used as the default

template - having one frame with 1cm margin to the page borders. The first frame of the page

may also be defined within the @page block itself. See the equivalent example:

@page {

 margin: 1cm;

}

To define more frames just add some more @frame blocks. You may use the following

properties to define the dimensions of the frame:

• marign

• margin-top

• margin-left

• margin-right

• margin-bottom

• top

• left

• right

• bottom

• width

• height

Here is a more complex example:

@page lastPage {

 top: 1cm;

 left: 2cm;

 right: 2cm;

 height: 2cm;

 @frame middle {

 margin: 3cm;

 }

 @frame footer {

pisa HTML/CSS to PDF. Page 12

 bottom: 2cm;

 margin-left: 1cm;

 margin-right: 1cm;

 height: 1cm;

 }

}

Layout scheme:

 top

 +--------------------------+ ---

 | margin-top | /|\

 | +---------------+ | |

 | | | |

 | | | | height

 | | | |

By default the Frame uses the whole page and is defined to begin in the upper left corner and

end in the lower right corner. Now you can add the position of the frame using top, left, bottom

and right. If you now add height and you have a value other than zero in top the bottom will

be modified. (XXX If you had not defined top but bottom the height will be ...)

Page size and orientation

A page layout may also define the page size and the orientation of the paper using the size

property as defined in CSS 3. Here is an example defining page size "DIN A5" with "landscape"

orientation (default orientation is "portrait"):

@page {

 size: a5 landscape;

 margin: 1cm;

}

Here is the complete list of valid page size identifiers:

• a0 ... a6

• b0 ... b6

• letter

• legal

• elevenseventeen

PDF watermark/ background

For the use of PDF backgrounds specify the source file in the background-image property, like

this:

@page {

 background-image: url(bg.pdf);

}

pisa HTML/CSS to PDF. Page 13

Static frames

Some frames should be static like headers and footers that means they are on every page but

do not change content. The only information that may change is the page number. Here is a

simple example that show how to make an element named by ID the content of a static frame.

In this case it is the ID footer.

<html>

<style>

@page {

 margin: 1cm;

 margin-bottom: 2.5cm;

 @frame footer {

 -pdf-frame-content: footerContent;

 bottom: 2cm;

 margin-left: 1cm;

 margin-right: 1cm;

 height: 1cm;

 }

}

</style>

<body>

 Some text

 <div id="footerContent">

 This is a footer on page #<pdf:pagenumber>

 </div>

</body>

</html>

For better debugging you may want to add this property for each frame definition:

-pdf-frame-border: 1. It will paint a border around the frame.

pisa HTML/CSS to PDF. Page 14

Fonts

By default there is just a certain set of fonts available for PDF. Here is the complete list - and

their repective alias names - pisa knows by default (the names are not case sensitive):

• Times-Roman: Times New Roman, Times, Georgia, serif

• Helvetica: Arial, Verdana, Geneva, sansserif, sans

• Courier: Courier New, monospace, monospaced, mono

• ZapfDingbats

• Symbol

But you may also embed new font faces by using the @font-face keyword in CSS like this:

@font-face {

 font-family: Example, "Example Font";

 src: url(example.ttf);

}

The font-family property defines the names under which the embedded font will be known.

src defines the place of the fonts source file. This can be a TrueType font or a Postscript font.

The file name of the first has to end with .ttf the latter with one of .pfb or .afm. For Postscript

font pass just one filename like <name>.afm or <name>.pfb, the missing one will be calculated

automatically.

To define other shapes you may do like this:

/* Normal */

@font-face {

 font-family: DejaMono;

 src: url(font/DejaVuSansMono.ttf);

}

/* Bold */

@font-face {

 font-family: DejaMono;

 src: url(font/DejaVuSansMono-Bold.ttf);

 font-weight: bold;

}

/* Italic */

@font-face {

 font-family: DejaMono;

 src: url(font/DejaVuSansMono-Oblique.ttf);

 font-style: italic;

}

/* Bold and italic */

@font-face {

 font-family: DejaMono;

 src: url(font/DejaVuSansMono-BoldOblique.ttf);

 font-weight: bold;

 font-style: italic;

pisa HTML/CSS to PDF. Page 15

}

pisa HTML/CSS to PDF. Page 16

Outlines/ Bookmarks

PDF supports outlines (Adobe calls them "bookmarks"). By default pisa defines the <h1> to

<h6> tags to be shown in the outline. But you can specify exactly for every tag which outline

behaviour it should have. Therefore you may want to use the following vendor specific styles:

• -pdf-outline

set it to "true" if the block element should appear in the outline

• -pdf-outline-level

set the value starting with "0" for the level on which the outline should appear. Missing

predecessors are inserted automatically with the same name as the current outline

• -pdf-outline-open

set to "true" if the outline should be shown uncollapsed

Example:

h1 {

 -pdf-outline: true;

 -pdf-level: 0;

 -pdf-open: false;

}

pisa HTML/CSS to PDF. Page 17

Table of Contents

It is possible to automatically generate a Table of Contents (TOC) with pisa. By default all

headings from <h1> to <h6> will be inserted into that TOC. But you may change that behaviour

by setting the CSS property -pdf-outline to true or false. To generate the TOC simply insert

<pdf:toc /> into your document. You then may modify the look of it by defining styles for the

pdf:toc tag and the classes pdftoc.pdftoclevel0 to pdftoc.pdftoclevel5. Here is a simple

example for a nice looking CSS:

pdftoc {

 color: #666;

}

pdftoc.pdftoclevel0 {

 font-weight: bold;

 margin-top: 0.5em;

}

pdftoc.pdftoclevel1 {

 margin-left: 1em;

}

pdftoc.pdftoclevel2 {

 margin-left: 2em;

 font-style: italic;

}

pisa HTML/CSS to PDF. Page 18

Tables

Tables are supported but may behave a little different to the way you might expect them to do.

These restriction are due to the underlying table mechanism of ReportLab.

• The main restriction is that table cells that are longer than one page lead to an error

• Tables can not float left or right and can not be inlined

Long cells

Pisa is not able to split table cells that are larger than the available space. To work around it

you may define what should happen in this case. The -pdf-keep-in-frame-mode can be one of:

"error", "overflow", "shrink", "truncate", where "shrink" is the default value.

table {

 -pdf-keep-in-frame-mode: shrink;

}

Cell widths

The table renderer is not able to adjust the width of the table automatically. Therefore you

should explicitly set the width of the table and to the table rows or cells.

Headers

It is possible to repeat table rows if a page break occurs within a table. The number of repeated

rows is passed in the attribute repeat. Example:

<table repeat="1">

 <tr><th>Column 1</th><th>...</th></tr>

 ...

</table>

Borders

Borders are supported. Use corresponding CSS styles.

pisa HTML/CSS to PDF. Page 19

Images

Size

By default JPG images are supported. If the Python Imaging Library (PIL) is installed the file

types supported by it are available too. As mapping pixels to points is not trivial the images may

appear bigger in the PDF as in the browser. To adjust this you may want to use the zoom style.

Here is a small example:

img { zoom: 80%; }

Position/ floating

Since Reportlab Toolkit does not yet support the use of images within paragraphs, images are

always rendered in a seperate paragraph. Therefore floating is not available yet.

pisa HTML/CSS to PDF. Page 20

Barcodes

XXX TO BE WRITTEN

<pdf:barcode>

pisa HTML/CSS to PDF. Page 21

Custom Tags

pisa provides some custom tags. They are all prefixed by the namespace identifier pdf:. As the

HTML5 parser used by pisa does not know about these specific tags it may be confused if they

are without a block. To avoid problems you may condsider sourrounding them by <div> tags,

like this:

<div>

 <pdf:toc />

</div>

Tag-Definitions

pdf:barcode

Creates a barcode.

pdf:pagenumber

Prints current page number. The argument "example" defines the space the page number will

require e.g. "00".

pdf:nexttemplate

Defines the template to be used on the next page.

pdf:nextpage

Create a new page after this position.

pdf:nextframe

Jump to next unused frame on the same page or to the first on a new page. You may not jump

to a named frame.

pdf:spacer

Creates an object of a specific size.

pdf:toc

Creates a Table of Contents.

pisa HTML/CSS to PDF. Page 22

License

pisa is copyrighted by Dirk Holtwick, Germany.

pisa is distributed by Dirk Holtwick, Schreiberstraï¿½e 2, 47058 Duisburg, Germany.

pisa is licensed under the GNU Gerneral Public License version 2.

For commercial usage of pisa a developer license can be purchased!

	Introduction
	Installation
	Windows precompiled version

	Command line
	Converting HTML data
	Using special properties

	Python module
	Create PDF
	Link callback
	Web applications

	Defaults
	Cascading Style Sheets
	Layout Definition
	Pages and Frames
	Page size and orientation
	PDF watermark/ background
	Static frames

	Fonts
	Outlines/ Bookmarks
	Table of Contents
	Tables
	Long cells
	Cell widths
	Headers
	Borders

	Images
	Size
	Position/ floating

	Barcodes
	Custom Tags
	Tag-Definitions
	pdf:barcode
	pdf:pagenumber
	pdf:nexttemplate
	pdf:nextpage
	pdf:nextframe
	pdf:spacer
	pdf:toc

	License

