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Periodic lattices offer enhanced mechanical and dynamic properties per unit mass, and the ability to

engineer the material response by optimizing the unit cell. Characterizing the effective properties

of these lattice materials through experiments can be a time consuming and costly process, so

analytical and numerical methods are crucial. Specifically, the Bloch-wave homogenization

approach allows one to characterize the effective static properties of the lattice while simultaneously

analyzing wave propagation properties such as band gaps, propagating modes, and wave directional-

ity. While this analysis has been used for some time, a thorough study of this approach on three-

dimensional (3D) lattice materials with different symmetries and geometries is presented here.

Bloch-wave homogenization is applied to extract the effective stiffness tensor of 3D periodic lattices

and confirmed with elastostatic homogenization, both within a finite element framework. Multiple

periodic lattices with cubic, transversely isotropic, and tetragonal symmetry, including an auxetic

geometry, over a wide range of relative densities are analyzed. Further, this approach is used to

analyze 3D periodic composite structures, and a way to tailor their overall anisotropy is demon-

strated. This work can serve as the basis for nondestructive evaluation of metamaterials properties

using ultrasonic velocity measurements. VC 2019 Acoustical Society of America.
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I. INTRODUCTION

Periodic lattice materials contain spatial repetitions of a

unit cell comprised of trusses connected in a specific geome-

try or configuration. These lattice materials possess better

mechanical properties per unit mass compared to their parent

bulk material1 and the geometric periodicity of these struc-

tures often regulates their static, dynamic, and wave propa-

gation properties.2 Due to their unusual properties, lattice

materials have potential applications as structural compo-

nents (high strength-to-weight ratios),3 for enhanced energy

absorption (impact mitigation ability),4–6 and biomaterials.7

The performance of lattice materials strongly depends on

their effective properties, thus evaluating these properties is

essential but at the same time not quite straightforward, spe-

cifically when the structure includes complexity in the form

of symmetry and geometry. Further, for these lattice materi-

als to be adopted in structural components and applications,

methods of nondestructively evaluating their properties and

degradation over operation are critical.

There have been many efforts in past years to develop

methodologies to evaluate lattice effective properties. For

example, the effective mechanical properties of two-

dimensional (2D) honeycomb and foam structures have been

evaluated analytically by Gibson and Ashby1 and of a three-

dimensional (3D) octet lattice by Deshpande et al.8 In initial

analytical evaluations, lattice trusses were modeled as slen-

der bars to study axial deformation, or as Euler-Bernoulli

and Timoshenko beams to study bending deformation.1,8

These assumptions limit the application of the theory to

small relative densities. Later work by Chen9 incorporated

bending as well as twisting deformation of 2D honeycomb

cells using the generalized variational principle to accurately

model flexural rigidity. To study the effects of height of the

2D honeycomb, Hohe and Becker10 used a strain energy

based analytical method to evaluate the stiffness tensor.

Even though there has been a significant improvement in

analytical methods for lattice effective property evaluation,

their use remains limited as it becomes difficult to apply

them on complex 3D geometries over a wide range of

densities.

To overcome the limitations and narrow feasibility band

of analytical methods, finite element (FE) modeling has been

explored. Scarpa et al.11 considered 2D auxetic honeycomb

structure with negative in-plane Poisson’s ratio. They evalu-

ated uniaxial Young’s modulus and Poisson’s ratio through

static FE by considering two-node beam elements for each

truss. Wallach and Gibson12 also used the static FE approach

to evaluate the moduli of 3D structures of various aspect

ratios, by modeling them as spring and truss elements while

incorporating periodic boundary conditions. They considered

an orthotropic lattice with nine independent constants that

needed six independent simulations for the stiffness tensor

evaluation. This same process has been extended by Dalaq

et al.,13 to evaluate the effective properties of triply periodica)Electronic mail: kmatlack@illinois.edu
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minimal surfaces (TPMS) but without beam modeling. The

limitation with the use of static FE simulation is its demand

for the higher number of simulations for anisotropic

structures.

Wave propagation methods can simultaneously extract

static effective properties and wave propagation properties of

a material, condensing the computation time. Elsayed and

Pasini14,15 used the Bloch-wave method in conjunction with

the Cauchy-Born hypothesis (collectively called “Bloch-

wave homogenization” hereafer) to obtain the stiffness of 2D

lattices with a pin and rigid jointed architectures. Phani et al.2

also used the Bloch-wave homogenization method for 2D

isotropic lattices such as triangular, hexagonal, and kagome,

by modeling the trusses as Timoshenko beams. Their work

was extended to anisotropic topologies by Chopra16 and Lie

et al.17 but was restricted to planar structures. Krodel et al.18

applied this same method to a 3D anisotropic auxetic lattice

using one-dimensional (1D) Timoshenko beam elements con-

nected by rigid joints. Even though the wave propagation

method has been around for some time, its use for effective

property evaluation has not yet been fully applied and stud-

ied, specifically for 3D lattices. Modeling 3D lattices in an

FE framework with 3D truss elements and without rigid joint

assumptions is of prime importance in order to simulate more

realistic deformations of lattice materials. For the efficient

use of this approach in the design process, the wave propaga-

tion method needs to be validated on different geometries

having higher anisotropy. There also exists few other meth-

ods for evaluation of effective properties such as asymptotic

homogenization19 (specifically for heterogeneous structures),

homogenization based on the equation of motion,19 and

dynamic equivalent continuum model20 (incorporating

microinertial effect of low density lattices) that have their

own advantages and limitations but are beyond the discussion

of this article. Further, researchers working in the field of

nondestructive evaluation have explored wave propagation in

anisotropic materials to predict quality (or condition) of the

material through experimentally evaluated wave veloci-

ties.21–23 However, applying this method to instead obtain the

material properties of 3D periodic lattice materials from

wave velocities has not yet been fully explored.

In this article, we outline in detail the Bloch-wave

homogenization method for effective stiffness tensor evalua-

tion of 3D periodic lattices with different geometries, aniso-

tropies, and densities. The lattices of interest are cubic,24

foam, octet,25 and Kelvin24,25 of cubic symmetry; hexago-

nal2 of transversely isotropic symmetry; and a modified octet

(termed “octet-A”) and bowtie26 of tetragonal symmetry.

We present an in-depth analysis of the bowtie lattice, and the

way its wave velocities and effective properties evolve over

a range of internal cell angle, a, [Fig. 1(e)] that cause the lat-

tice to vary from negative to positive Poisson’s ratio. We

extend this method to analyze periodic lattices embedded in

a second solid material, referred to as “composite

structures.” We manipulate these composite structures in

terms of their geometry, truss thickness, and bulk material

properties to obtain variations in their elastic properties and

anisotropy. The organization of this paper is as follows: Sec.

II briefly explains the different lattices under consideration.

Sections III and IV review the elastostatic and Bloch-wave

homogenization theories, respectively, and their correspond-

ing FE simulation setups. Section V presents results of the

prototypical cubically symmetric lattices as test cases to vali-

date the methods. Section VI presents results of effective

stiffness tensors of the tetragonally symmetric and trans-

versely isotropic test lattices, and we compare them in terms

of their universal anisotropy index. In Sec. VII, we evaluate

effective stiffness tensors of composite structures using the

Bloch-wave homogenization method.

II. DESCRIPTION OF LATTICE GEOMETRIES

The unit cells of lattice geometries studied are shown in

Fig. 1. The parent material of the lattices is modeled as poly-

carbonate with E¼ 1 GPa, �¼ 0.35, q¼ 1097 kg/m3, and is

considered isotropic. The lattice constant, L, is 8, 7, and 4 mm

for foam, bowtie, and all other remaining lattices, respec-

tively, and is kept constant throughout the geometric parame-

terization. The geometric parameterization includes internal

cell angle, a, for the bowtie lattice and truss thickness, t, for

all other lattices [Figs. 1(d), 1(e)]. The internal cell angle is

varied from 55� to 90� with an interval of 2.5�, and truss

thickness is varied from 0.1 to 1 mm at an interval of 0.1 mm.

The internal cell angle of the bowtie lattice is studied in order

to evaluate the lattice properties that span a negative to posi-

tive Poisson’s ratio. As truss thickness increases the relative

density of lattices also increases, whereas increase in the inter-

nal cell angle results in a decrease in relative density of the

bowtie lattice. From the unit cell geometry of the bowtie lat-

tice [Fig. 1(b)], it can be seen that it has 45� symmetry only in

the XY plane, making it a tetragonal structure. We design

another tetragonal unit cell by modifying the cubically sym-

metric octet lattice in such a way that it will have 45� symme-

try only in the XY plane. To do so, we remove four internal

FIG. 1. (Color online) Unit cells of (a) cubic symmetry lattices and (b)

lower symmetry lattices. (c) Transformation of cubically symmetric octet

lattice into a tetragonal “octet-A” lattice by removing four trusses

(highlighted in black). The coordinate system shown is used for all unit cell

configurations. The effect of lattice geometry parameterization is shown for

(d) truss thickness, t, of octet lattice and (e) internal cell angle, a, of bowtie

lattice.
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horizontal trusses [Fig. 1(c)], and we refer to this unit cell as

the “octet-A” lattice. The hexagonal unit cell has infinite num-

ber of elastic symmetries in the XY plane, thus it is trans-

versely isotropic with Z-direction being the out-of-plane axis.

These unit cells are repeated spatially in 3D space to form an

infinite array of lattice materials.

III. ELASTOSTATIC HOMOGENIZATION

We first calculate the effective properties of the lattice

materials using appropriate static boundary conditions within

a finite element method framework. To do this, we analyze a

single unit cell and apply both periodic boundary conditions

on all unit cell boundaries and classical boundary conditions

of uniform displacement along the direction of interest. The

apparent properties of the unit cell obtained under classical

boundary conditions (displacement, traction or mixed) repre-

sent effective properties when the periodicity of the structure

is incorporated.13,27 We define the periodic boundary condi-

tion as

uþn̂
i � u�n̂

i ¼ �ijðxþn̂
j � x�n̂

j Þ; (1)

where u is the average displacement of the faces defined by

unit normal vector, n̂. Positive and negative signs indicate

that the normal vectors representing a pair of periodic faces

are opposite to each other, one being a source and other

being a destination of the periodicity. � and x are the macro-

scopic strain and nodal coordinates, respectively, in given i
and j directions. For the abovementioned elastostatics

boundary value problem, the constitutive equation for small

strain deformation is rij¼Cijkl�kl, where r and � are the mac-

roscopic stress and strain tensor, respectively, C is a fourth

order stiffness tensor, and indices i, j, k, l take on values 1, 2,

or 3. Our aim is to solve for this stiffness tensor and thereby

evaluate the effective properties.

To evaluate the stiffness tensor constants of an effective

continuum associated with uniaxial loading, we apply uniax-

ial displacement on opposing faces and then evaluate macro-

scopic stresses as

r� ¼

ð
A�

dRð
A�

dA�
; (2)

where r* is the effective stress acting on the effective surface

area, A*, on which the displacement, u, is applied, and R is

the reaction force on that surface.13 Effective strain, �*, is

evaluated as the ratio of applied displacement, u, to the origi-

nal length in that direction. We then use these macroscopic

(or effective) stress-strain values in the constitutive equation

(stiffness tensor, C, is now reduced to three non-zero inde-

pendent constants due to uniaxial loading and periodic BCs)

to evaluate the corresponding stiffness tensor constant.

For example, when the displacement is applied along the

X-direction with 3D periodicity then the stiffness tensor

constants C�11; C�12, and C�13 are evaluated. We replicate this

same procedure in the other two directions, independently,

to evaluate remaining stiffness tensor constants (C�22; C�23,

and C�33). We then simulate pure shear loading (displacement

based) in all planes, independently, to evaluate the stiffness

tensor constants corresponding to shear moduli (C�44; C�55,

and C�66). To simulate pure shear, we apply equal and oppo-

site displacement on a pair of two opposite faces of the unit

cell with planar boundary conditions on the third pair. We

evaluate corresponding effective shear stress using Eq. (2)

and effective shear strain based on the angle of deformation.

We performed elastostatic homogenization using com-

mercial COMSOL MULTIPHYSICS (4.3b) software with standard

physics controlled fine mesh. We used symmetric meshing

on periodic faces for computational efficiency. We applied

continuity periodic boundary conditions in three directions

to simulate geometric periodicity of the lattices. The dis-

placement and planar boundary conditions were applied

using prescribed displacement. For cubic symmetry lattices,

two static simulations were needed to obtain the stiffness

tensor with three independent constants, whereas for trans-

verse isotropy and tetragonal symmetric lattice, four static

simulations, two with uniaxial loadings and two with shear

loading, were required to obtain six and five independent

stiffness tensor constants, respectively. We use these results

as the reference for comparison with results from Bloch-

wave homogenization method.

IV. BLOCH-WAVE HOMOGENIZATION

In this section, we apply the Bloch theorem to the elas-

tostatics, where the structure of interest is periodic in nature,

and its unit cell, when tessellated, will form an infinitely

periodic structure. Bloch generalized Floquet’s 1D mathe-

matical result on to a 3D system to obtain the wave function

that relates a simple plane wave with the periodicity of the

structure.28 We apply this concept to analyze the unit cell of

an infinite lattice that eventually tells us the behavior of the

entire structure.

We consider a lattice structure with two points, P and Q,

with position vectors, ~rP and ~rQ, respectively, at a distance

from each other such that

~rQ ¼~rP þ~r: (3)

Here, we write position vector,~r , in terms of the lattice con-

stant as~r ¼ niêi, where ni is unit cell number in the direction

of unit vectors, êi. Assuming plane wave propagation,

Bloch’s theorem relates the displacement of any other point,

Q, in any cell as

~uQð~rQ; tÞ ¼ ~uPe�i ~kð~rQ�~rPÞ½ �; (4)

where ~k is a wave vector. Since~rQ �~rP is simply a function

of the periodicity constant, we can identify the displacement

of any other point within the lattice structure based on the

analysis of a single unit cell for a known wave vector. We

assume ~k is real, i.e., we neglect the attenuation in this analy-

sis. One can further reduce the computational problem by

restricting wave vectors to the edges of the irreducible

Brillouin zone (IBZ)29 for band gap analysis of periodic
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structures.2 However, in this paper, we analyze the long-

wavelength wave propagation only along certain directions

that we decide based on the number of independent stiffness

tensor constants governed by the symmetry of the unit cell

geometry. We then use the equations of motion to solve the

eigenvalue problem of the propagating wave for the fre-

quency, x, at each combination of wave vectors. We obtain

the dispersion curves (x-k space) in the long wavelength

limit, where the phase and group velocities are equal

(denoted “V” hereafter) and are independent of frequency.

We use this wave velocity information to analyze the lattice

structures.

We determine the stiffness tensor constants, C�ijkl, of an

effective continuum from the obtained wave velocities, V,

through the Christoffel’s equation30

Cik ¼ C�ijklnjnl; (5)

ðCik � dikq
�V2ÞPm ¼ 0; (6)

where C is the acoustic tensor, q* is the effective density, ni

is the direction cosine, Pm is the component of the unit vec-

tor in the displacement direction, and dik is the Kronecker

delta function. As each stiffness tensor constant is related to

a particular type of propagating wave, identifying the wave

polarization is essential (i.e., ni and Pm must be known). In

an effective elastic continuum, there exist three propagating

waves within any structure: one longitudinal and two trans-

verse. Generally, longitudinal velocities are higher than the

transverse for an isotropic structure2 and are independent of

propagation direction. This is not always the case and it is

non-trivial to identify the wave polarization within aniso-

tropic structures. We also observe the existence of “quasi”

waves when the wave propagates along any direction other

than the principal axes in an anisotropic plane, and that the

particle displacement is neither parallel nor perpendicular to

the wave propagation direction.31 Thus, we evaluate the

propagating modal displacements to differentiate between

the longitudinal and transverse waves. Further, for aniso-

tropic structures, the two transverse velocities may not be

equal, hence we use the wave propagation characteristics

corresponding to a crystal symmetry in conjunction with the

modal displacements and dispersion curves to identify the

wave polarization.

This Bloch-wave homogenization method for effective

material property evaluation is summarized in Fig. 2. We

developed our wave propagation model within COMSOL

MULTIPHYSICS (4.3b) using Floquet-Bloch periodic boundary

conditions. We used physics controlled symmetric fine

meshing for all our simulations with a very small range of

wave vector [<1% of the lattice constant (1/m)] to ensure

the applicability of effective continuum theory in long

wavelength limit. We extracted the first three modes that

correspond to the lowest longitudinal and two transverse

waves of the lattice structure and calculated a best fit using

least-squares regression to extract the wave velocities. We

used volume averaged modal displacement along principal

directions to identify the mode shapes and wave

polarization.

V. EFFECTIVE PROPERTIES OF CUBIC SYMMETRY
LATTICES

In this section, we present the Bloch-wave homogeniza-

tion results of cubic symmetry lattices, using the octet lattice

as an example case. By virtue of its geometry, the octet

lattice has cubic symmetry and therefore three independent

effective stiffness tensor constants: C11, C12, and C66. The

asterisk sign, which represents effective property has been

dropped hereafter for convenience. These constants are

related to corresponding wave velocities through the follow-

ing reduced form of Christoffel’s equation:

Vxx ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C11=q

p
; (7)

Vxy ¼ Vxz ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C66=q

p
; (8)

2qV2
45 ¼ ðC11 þ C66Þ6ðC12 þ C66Þ; (9)

where for Vij, i indicates the direction of wave propagation,

and j indicates the direction of particle displacement. For V/,

/ indicates the wave propagation angle with respect to prin-

cipal axis. We evaluate the effective density,1 q (asterisk

dropped for convenience) based on the relative volume of

the lattice and actual density of the parent bulk material. We

use wave velocities along principal directions, i.e., longitudi-

nal and transverse velocities, to identify the stiffness tensor

diagonal elements, C11 and C66, using Eqs. (7) and (8),

respectively. The off-diagonal stiffness tensor constant can

be calculated from waves propagating within any plane

within the range of 0�</< 90�.30 For simplicity of alge-

braic calculation, we select wave propagation at 45� in the

XY plane (or 1–2 plane). We evaluate the off-diagonal con-

stant using Eq. (9) based on either longitudinal or in-plane

transverse velocity, where the sign is selected according to

the type of polarization: positive for longitudinal wave and

negative for in-plane transverse wave.30

The wave velocities and stiffness tensor constants of the

octet lattice derived from Bloch-wave homogenization are

shown in Fig. 3 with respect to relative density (lattice den-

sity normalized by bulk density). The evaluated stiffness ten-

sor constants agree well with the static homogenization

results. From the wave velocity results, one can observe that

the transverse velocities are identical (Vxy¼Vxz) when waves

FIG. 2. (Color online) Schematic of Bloch-wave homogenization method.
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propagate along the principal direction but different

(V45Ti 6¼V45To, where Ti and To stands for in-plane and out-

of-plane transverse polarization, respectively) when waves

propagate at an angle to the principal axes. This information

is also useful in identifying the lattice symmetry. The rela-

tion between the in-plane transverse wave velocities along

different directions (Vxy>V45Ti) indicates that the octet

lattice is stronger in shear along the principal direction. On

the other hand, the relation between the longitudinal wave

velocities along different directions (V45L>Vxx, where L
indicates longitudinal polarization) indicates that the octet

lattice is stronger in compression along the 45� axis.

We apply Bloch-wave homogenization to the cubic,

foam, and Kelvin lattices, and their effective properties

along with octet lattice are shown normalized with respect to

properties of the bulk material (Fig. 4). Results of the Kelvin

lattices are presented only up to truss thickness of 0.8 mm

since the geometry changes at higher values. We show the

relationship between the logarithm of the relative modulus

and relative density of these lattices for low relative densities

in Figs. 4(d), 4(e). We then calculate the polynomial best fit

of initial five data points through least-squares regression

and obtain the power law relationship between the actual

quantities as E=Es / ðq=qsÞm and G=Gs / ðq=qsÞn. The

exponents, m and n, of the power laws correspond to the

slopes of the lines in log plots. An exponent of m, n¼ 1

signifies that the geometry is stretch-dominant, while an

exponent of m, n¼ 2 indicates that the geometry is bending-

dominant.32 We see that for the lower values of relative den-

sities, E=Es / q=qs and G=Gs / q=qs for the octet lattice as

also shown theoretically by Deshpande et al.,8 whereas for

the Kelvin lattice, E=Es / ðq=qsÞ2 and G=Gs / ðq=qsÞ2 as

shown experimentally by Zheng et al.25 The foam lattice

effective properties also scales with (q/qs)
2, whereas cubic

lattice shows combined behavior with E=Es / q=qs under

uniaxial compression but G=Gs / ðq=qsÞ2 under shear load-

ing. Consistent with much prior work, at lower relative den-

sities, the octet lattice is stretch dominant,25,32 the foam and

Kelvin lattices are bending dominant,25 and the cubic lattice

is stretch dominant in compression but bending dominant in

shear. As the relative density increases, the linear relation

between relative modulus and relative density of the octet

lattice becomes non-linear [Fig. 4(a), 4(b)] signifying the

truss bending effect during deformation. Overall, the Kelvin

lattice is much weaker in uniaxial loading compared to cubic

lattice as observed by Hedayati et al.33 However, in contrast

to their shear modulus predictions, we find that the Kelvin

lattice has a higher shear modulus compared to the cubic

lattice (truss beam modeling and rigid vertices are possibly

making the cubic lattice more shear resistant in Hedayati

FIG. 3. (Color online) Octet lattice (a) wave velocities (note:

Vxy¼Vxz¼V45To) and (b) independent stiffness tensor constants evaluated

from static (red markers) and Bloch-wave (blue lines) homogenization method.

FIG. 4. (Color online) Normalized effective mechanical properties (a) uniaxial modulus, (b) shear modulus, and (c) Poisson’s ratio of cubic symmetry lattices.

Magnified logarithmic plots of shaded area of (a) and (b) are shown in (d) and (e) for better visualization of low relative density results with numerical values

indicating slopes. (f) Zener anisotropy index of cubic symmetry lattices.
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et al.33). The truss joints in the Kelvin geometry are thus

stronger than in the foam and cubic geometry.

We also see that the octet lattice almost maintains a con-

stant Poisson’s ratio [Fig. 4(c)] at low relative densities and

deviates slightly at higher relative densities. The absolute

value of the octet lattice Poisson’s ratio is also almost same

as that of the parent bulk material, which indicates that the

macroscopic deformation in octet lattice is analogous to bulk

material deformation. For both cubic and foam lattices, there

is a steep increase in Poisson’s ratio initially, possibly due to

negligible bending resistance contributing to lateral defor-

mation. For the cubic lattice, the increase in lateral deforma-

tion is always higher than the uniaxial deformation (due to

stretch dominant behavior) and thus Poisson’s ratio increases

throughout. Kelvin and foam lattice, due to their bend

dominant characteristic, offers significant bending stiffness

and thus as relative density increases, their Poisson’s ratio

decreases.

We compare these cubic symmetry lattices by evaluat-

ing their Zener anisotropy index,34 ar¼ 2C44/(C11 – C12),

shown in Fig. 4(f). While the Zener anisotropy index is lim-

ited to cubic symmetry lattices, it gives important insights

on the variation in Young’s modulus with direction, which is

not possible with other anisotropy indices such as the univer-

sal anisotropy index (UAI) discussed later in Sec. VI. All the

lattices have non-unity anisotropy index, and as relative den-

sity increases they tend to become more isotropic. The cubic

and foam lattices have an index less than unity, indicating

their maximum Young’s modulus is along the h100i direc-

tion and minimum along the h111i direction. For Kelvin and

octet lattice, the case is reversed: the maximum Young’s

modulus is along the h111i direction and minimum along the

h100i direction, as they have an index greater than unity. In

other words, the cubic and foam lattices are stronger in com-

pression along principal axes but weaker along the space

diagonal (the opposite case is true for Kelvin and octet), as

shown through normalized Young’s modulus representa-

tional surface (of cubic and Kelvin) by Luxner et al.24 It

should be noted that the anisotropy index of the octet lattice

shown here is consistent with Berger et al.,35 where they

have evaluated reciprocal of Zener anisotropy index.

VI. EFFECTIVE PROPERTIES OF LOWER SYMMETRY
LATTICES

Here, we apply the Bloch-wave homogenization to eval-

uate effective properties of higher anisotropy structures. We

consider the tetragonal and transversely isotropic symmetry

structures, which have six and five independent stiffness ten-

sor constants, respectively.

A. Tetragonal symmetry lattices

We analyze two tetragonal symmetry lattices: a new

form of octet lattice, termed “octet-A,” as discussed in Sec. II

[refer Fig. 1(c)], and a bowtie lattice of tetragonal symmetry

that can behave auxetically (negative Poisson’s ratio) by vir-

tue of its re-entrant truss structure. The Poisson’s ratios of

these two lattices obtained from static simulations are shown

in Fig. 5. The octet-A lattice has positive Poisson’s ratio in

all planes whereas the bowtie lattice has negative Poisson’s

ratio that changes to positive as the internal cell angle, a [Fig.

1(e)] increases. There are also instances (87.5� � a� 80�) for

the bowtie lattice, where Poisson’s ratio is negative in two

planes (XZ and YZ) but positive in the other (XY). At

a¼ 90�, the bowtie lattice has positive Poisson’s ratio

throughout and thus loses its auxetic behavior. At 88� the

Poisson’s ratio in the XZ plane is independent of the loading

direction as �xz¼ �zx.

To calculate the effective stiffness tensor diagonal ele-

ments, we first calculate the wave velocities along the princi-

pal directions. To distinguish between longitudinal and

transverse waves, we exploit the symmetries of the tetrago-

nal structure, where one of the transverse X-direction waves

has the same velocity as that of the transverse Z-direction

wave. Once the principal wave velocities are known, we use

Christoffel’s equation to evaluate the diagonal stiffness ten-

sor constants. The diagonal constants C11, C33, C44, and C66

are directly related to the following wave velocities through

the reduced form of Christoffel’s equation:

Vxx ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C11=q

p
; (10a)

Vzz ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C33=q

p
; (10b)

Vxy ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C66=q

p
; (10c)

Vzx ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C44=q

p
: (10d)

Note that Vxx¼Vyy, Vxy¼Vyx, and Vzx¼Vxz¼Vzy¼Vyz by

virtue of the tetragonal symmetry. The obtained wave veloc-

ities and corresponding stiffness tensor constants are shown

in Figs. 6(a), 6(b) and Figs. 6(c)–6(f), respectively. We see

that the diagonal stiffness tensor constants calculated from

Bloch-wave homogenization agree with that of static

homogenization method for both the lattices.

To evaluate the off-diagonal stiffness tensor constants,

we calculate velocities of waves propagating at 45� to the

principal axes. The angle 45� is again selected to mathe-

matically simplify the expressions, but any other angle

(0�</< 90�) would work.30,36 For waves propagating in

the XY plane, there exist pure waves as properties are sym-

metric about 45� axes. In the case of anisotropic plane XZ,

we observe one quasi-longitudinal (QL) and two quasi-

transverse (QT) waves. To identify the polarization of

waves propagating at an angle to the principal axis, we use

FIG. 5. (Color online) Poisson’s ratio of (a) octet-A and (b) bowtie lattice.

Dashed red line is zero reference line.
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global modal displacement corresponding to each mode

shape. We differentiate between longitudinal, in-plane

transverse, and out-of-plane transverse waves based on the

dominant modal displacement corresponding to each

mode. The calculated wave velocities at 45� in XY (V45XY)

and XZ (V45XZ) planes are shown in Figs. 7(a)–7(d).

The generalized form of Christoffel’s equation to evalu-

ate C12 of an orthotropic structure30 for wave propagation at

any angle, /, in XY plane is given as

C12 ¼ �C666

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qV2

/XY � v1 � C2
1

4n2
1n2

2

s
; (11)

where v1 ¼ C11n2
1 þ C66n2

2 þ C22n2
2 þ C66n2

1 and C1 ¼ C11n2
1

þC66n2
2 � C22n2

2 � C66n2
1. The wave direction vectors are

defined as n1 ¼ cos / and n2 ¼ sin /. The term V/ij indicates

the waves (1 longitudinal, 1 in-plane transverse and 1 out-of-

plane transverse) propagating in i-j plane at /� to i-axis. It is

important to note that either the longitudinal or in-plane

transverse wave velocity can be used to identify the corre-

sponding stiffness tensor constants;30 the sign in front of the

square root depends on the type of wave velocity used. For

the case of C12, the sign of the square root is positive when

using the longitudinal wave and negative when using the

transverse wave; both lead to the same solution of C12. Since

the tetragonal structures have same properties along X and Y

direction, we further simplify Eq. (11) for /¼ 45� as

C12 ¼ 2qV2
45XYL � C11 � 2C66; (12a)

C12 ¼ �2qV2
45XYTi þ C11: (12b)

The generalized form of Christoffel’s equation to evaluate

C13 of an orthotropic structure for wave propagation at angle

/ in the XZ plane is given as

C13 ¼ �C446

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qV2

/XZ � v2 � C2
2

4n2
1n2

3

s
; (13)

where v2 ¼ C11n2
1 þ C44n2

3 þ C33n2
3 þ C44n2

1 and C2 ¼ C11n2
1

þC44n2
3 � C33n2

3 � C44n2
1. The wave direction vectors are

defined as n1 ¼ cos / and n3 ¼ sin /. In the case of C13, we

determine the sign of the square root purely based on the

FIG. 6. (Color online) Principal direction wave velocities of (a) octet-A and

(b) bowtie lattice. Evaluated diagonal stiffness tensor constants from static

(red markers) and Bloch-wave (blue lines) homogenization of octet-A [(c)

and (e)] and bowtie [(d) and (f)] lattices. Bowtie lattice plots follow the

same legend scheme as that of octet-A plots.

FIG. 7. (Color online) Non-principal directional wave velocities of octet-A

lattice in (a) XY plane and (c) XZ plane; and of bowtie lattice in (b) XY

plane and (d) XZ plane. L, Ti, To, and Q stand for longitudinal, in-plane

transverse, out-of-plane transverse, and quasi waves, respectively. Resulting

off-diagonal stiffness tensor constants of (e) octet-A and (f) bowtie lattice

evaluated from static (red markers) and Bloch-wave (blue lines) homogeni-

zation. Bowtie lattice plots follow the same legend scheme as that of octet-

A plots.
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sign of XZ plane Poisson’s ratio (�zx) of the structure, and

either of the QL or in-plane QT velocities can be used.

When the lattice has a negative Poisson’s ratio, the off-

diagonal stiffness tensor constant must be negative, and vice

versa. So, we use a positive root for octet-A lattice but for

bowtie, we use a negative sign up to a< 87.5�. For the last

two angles studied, the Poisson’s ratio is either zero or posi-

tive, and taking positive root is essential. The calculated off-

diagonal stiffness tensor constants are shown in Figs. 7(e),

7(f). For both the octet-A and bowtie lattices, the results

agree with static homogenization results. For the bowtie lat-

tice, the off-diagonal stiffness tensor constants change signs

from negative to positive signifying the change in the sign of

Poisson’s ratio.

The bowtie lattice exhibits an unusual wave polarization

transition. Specifically, we observe a shift in faster wave

polarization in both planes for the bowtie lattice [Figs. 7(b)

and 7(d)]. For smaller values of a, transverse velocity is

higher, whereas for larger angles, the longitudinal velocity is

higher. This shift occurs at a¼ 70� for V45XY, and at

a¼ 86.25� for V45XZ. To illustrate this polarization shift, we

show the wave velocity field of the bowtie lattice in the XY

plane through an iso-frequency contour (Fig. 8). For the

bowtie lattice geometry at a¼ 55�, the in-plane transverse

wave has a higher velocity than the longitudinal wave

around 45� propagation direction. However, for a¼ 90, the

longitudinal wave propagates faster than the transverse wave

at all propagation angles. This wave polarization transition is

not present in the octet-A lattice within the parameters stud-

ied: the longitudinal wave always remains faster than the

transverse waves [Figs. 7(a) and 7(c)].

This anomalous behavior has been discussed by Helbig

and Schoenberg37 in a transversely isotropic structure

through the analysis of slowness surfaces. In general, for

anisotropic materials with � > 0, the longitudinal wave prop-

agates with a faster velocity because C12þC66> 0 and

C13þC44> 0.37,38 If C12 or C13 are negative (a case of aux-

etic structure) and greater than C66 and C44, respectively,

then the respective transverse wave is faster than the longitu-

dinal wave. In our bowtie lattice, C12þC66< 0 when

a< 70� and C13þC44< 0 when a< 86.25�, thus the respec-

tive transverse waves travel faster at angles less than these

values, which our results clearly show [Fig. 6(f) and Figs.

7(b) and 7(d), 7(f)]. The transverse and longitudinal wave

velocities are equal at the acoustic axes or singularities,39

when C12¼ –C66 (a¼ 70�) and C13¼ –C44 (a¼ 86.25�).
This anomalous polarization behavior has been observed in

few natural materials such as calcium formate,40 and can be

utilized in potential metamaterials applications such as mode

conversion.40

B. Transversely isotropic symmetry lattice

The lattices discussed thus far have periodicity in three

orthogonal directions. In this section, we evaluate effective

properties of a hexagonal lattice that has periodicity in three

directions: e1, e2, and e3, of which one pair is not mutually

perpendicular, e1 and e2, as shown in Fig. 9(a). This hexago-

nal lattice has five independent stiffness tensor constants.

We obtain identical wave propagation results in the XY

plane irrespective of the direction of wave propagation, since

the hexagonal lattice has one isotropic plane (XY in this

case). The obtained effective properties are shown in Fig.

9(b). The stiffness tensor constant C12 calculated from the

wave velocities, V45XY, using Eq. (12a) or (12b) matches with

the one calculated using characteristics of transversely isotro-

pic structure, i.e., based on C11 and C66 (C12¼C11 – 2C66).

C. Anisotropy index of lower symmetry lattices

In order to compare the lower symmetry lattices dis-

cussed in this section as well as the cubic lattices discussed

in Sec. V, we evaluate Universal Anisotropy Index (UAI)41

that quantifies the extent of anisotropy of any symmetry

material. The UAI is defined as

FIG. 8. (Color online) Iso-frequency

contour of bowtie lattice wave veloci-

ties in XY plane, showing change in

faster wave polarization around

/¼ 45� for a¼ 55�. Theta in polar

plot is wave propagation angle, / (in

degrees), in XY plane and radius is the

wave velocity, V (in km/s).

FIG. 9. (Color online) (a) Hexagonal unit cell with periodicity direction vec-

tors and (b) effective stiffness tensor constants evaluated through static (red

markers) and Bloch-wave (blue lines) homogenization method.
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AU ¼ 5
GV

GR
þ KV

KR
� 6: (14)

Here, superscript V corresponds to Voigt estimates and R

corresponds to Reuss estimates of bulk, K, and shear, G,

modulus. Specifically,

GV ¼ 1

15
Cijij �

1

3
Ciijj

� �
; (15a)

1

GR
¼ 2

5
Sijij �

1

3
Siijj

� �
; (15b)

KV ¼ 1

9
Ciijj; (15c)

1

KR
¼ Siijj; (15d)

which we calculate from the effective stiffness tensor, C,

and compliance tensor, S, where S¼C–1.

The dependence of UAI on geometric parameters for all

lattices is shown in Fig. 10. The bowtie lattice has a higher

anisotropy than both octet-A and hexagonal, whereas hexag-

onal is much closer to the UAI value of 0 (zero UAI

indicates isotropic behavior as opposed to unity for Zener

anisotropy index) indicating more isotropic behavior than

others. There is a sudden shift in the extent of anisotropy for

hexagonal lattice (also for cubic lattice) as truss thickness

increases from very small thicknesses. This is due to the fact

that at very low truss thickness the bending resistance from

lattice trusses is negligible, which becomes more prominent

as thickness increases.

VII. EFFECTIVE PROPERTIES OF COMPOSITE
STRUCTURES

As a final demonstration of the Bloch-wave homogeniza-

tion method, we design 3D periodic composite structures

with lattice reinforcements and evaluate their effective prop-

erties. We design these composite structures by filling the

volume surrounding to the lattice (within the unit cell) with a

second material. These composite structures enable us to

obtain properties that are a mixture of two bulk materials and

the lattice geometry. They are potential multifunctional meta-

materials, as such structures have already shown enhanced

macroscopic strength and energy absorption properties.42

Such composite structures can be readily fabricated by com-

mercial multi-material 3D printers. Once the lattice geometry

is modeled, we form the complementary part of this lattice

within the unit cell using Boolean operations and then com-

bine these two designs to form a composite structure (Fig.

11). We assume a complete bonded contact (no slip) between

the lattice and filler material surface. This ensures the dis-

placement continuity at the interface and satisfies mechanical

compatibility during quasi-static and Bloch-wave analysis.

Here, we study composites formed from cubic, octet, and

bowtie lattices. We manipulate the properties and anisotropy of

these composites by changing the modulus of the filler material.

We keep the same lattice bulk material properties as before, and

consider three cases of the filler material with moduli ratio (MR:

ratio of filler bulk Young’s modulus to lattice bulk Young’s

modulus): 50% (Efiller¼ 0.5 GPa), 5% (Efiller¼ 0.05 GPa), and

0.5% (Efiller¼ 0.005 GPa). To isolate the effect of modulus

change, we model the density and Poisson’s ratio of the filler

material the same as that of the lattice bulk material.

A. Effective properties of bowtie composite structures

As an example, we present the effective properties of

the bowtie composite, with filler moduli ratio of 0.5% [Fig.

12(a)] evaluated through Bloch-wave homogenization. This

bowtie composite structure is auxetic up until internal cell

angle, aaux¼ 80� [Fig. 12(a)] as opposed to pure bowtie lat-

tice where aaux � 87.5� [Fig. 7(f)]. For the higher moduli

ratios (5% and 50%), the bowtie composite is no longer aux-

etic (within studied range of internal cell angles), as the filler

material counteracts the deformation pattern of the re-entrant

trusses (results not shown). In the case of 0.5% MR, the

change in faster wave polarization is not observed even

though the composite structure is auxetic, since the magni-

tude of the diagonal stiffness tensor constants corresponding

to shear are always higher than the off-diagonal negative

FIG. 10. (Color online) Universal anisotropy index of 3D lattices. Cubic lat-

tice UAI values for truss thickness 0.1, 0.2, and 0.3 mm are 426, 95, and 38,

respectively.

FIG. 11. (Color online) Composite structure solid modeling (complementary

part is designed by subtracting lattice geometry from bulk unit cell volume).
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stiffness tensor constants [Fig. 12(a)]. The change in the sign

of Poisson’s ratio is also observed at a different lattice geom-

etry [Fig. 12(b)]: in the XY plane, aaux � 65� (aaux¼ 80� in

the pure lattice), whereas in the XZ plane aaux � 80� (aaux

� 87.5� in the pure lattice). The overall stiffness of the com-

posite structure is also higher than the pure bowtie lattice

stiffness [Figs. 12(a) and Fig. 6(f)]. These results show that

in addition to changing the geometric parameters, changing

the modulus of filler materials in composite structures can

tune the overall macroscopic elastic performance of the

structure.

B. Anisotropy index of composite structures

The cubic and octet composite structures are cubic in

symmetry since both lattice and filler are cubically symmet-

ric. To observe the effect of filler material on pure lattices,

we evaluate Zener anisotropy index [Fig. 13(a)] for moduli

ratio of 5% and 50%. We observe that both cubic and octet

composite structures with 50% moduli ratio are nearly iso-

tropic, specifically at lower truss thicknesses. This is because

the contribution of cubic and octet lattices in the overall

structural properties is comparatively negligible. As lattice

truss thickness increases, the composite structure deviates

slightly from this isotropic behavior. When the moduli ratio

is 5%, the lattice plays a more prominent role in the overall

strength; the anisotropy of the composite structure is domi-

nated by the lattice. The maximum anisotropy of these com-

posites occurs at truss thickness, t, of 0.7 mm as opposed to

0.1 mm for the pure lattices.

We compare the elastic behavior of the bowtie compo-

sites with the pure lattice based on UAI evaluated through

Eq. (14). For 50% and 5% moduli ratio, the composite

behaves almost isotropically [UAI¼ 0, Fig. 13(b)]. Again,

here the stiffness is dominated by the filler material rather

than the lattice. For much softer filler material (0.5% moduli

ratio), the bowtie lattice maintains some anisotropy. These

results show that we can decrease the anisotropy of the com-

posite structure by increasing the modulus of the filler

material.

VIII. CONCLUSION

In this article, we reviewed the displacement-based elas-

tostatic and Bloch-wave homogenization methods within a

finite element method framework for effective property eval-

uation of 3D periodic lattices. We applied these methods to

evaluate effective elastic properties of anisotropic lattices

with cubic, tetragonal, and transversely isotropic symmetry,

including an auxetic geometry. Results obtained from Bloch-

wave homogenization agree well with static homogenization

results for different symmetries, relative densities, truss ori-

entations, and non-principal periodicities. We compared var-

ious lattices based on their anisotropic behavior through

Zener and Universal anisotropy index. We extended this

approach to analyze composite structures with lattice rein-

forcements, and our results show that the anisotropy and

elastic performance of these structures can be manipulated

without modifying the lattice geometry, but instead by modi-

fying relative bulk material properties of the lattice and sur-

rounding material.

The Bloch-wave homogenization approach studied in

this article will open new directions to study the effect of

geometry and bulk material properties on the static as well

as dynamic properties of the structure simultaneously, and

can accelerate the process of analyzing periodic structures

to achieve certain vibration characteristics such as band

gaps, mode shapes, and energy propagation, in addition to

their static effective properties. By changing the anisotropy

of the structure, we show it is possible to control the wave

propagation in a certain direction with or without minimal

change in other directions. Future work in this process will

include experimental verification of evaluated effective

properties of lattices. This method can be extended to

develop multifunctional structural materials, where tailored

vibration mitigation, high impact absorption, and optimum

static properties are required. The bridge between wave

velocities and mechanical properties of lattice structures is

also useful in nondestructive evaluation (NDE) of metama-

terials through wave velocity measurements. This analysis

lays the groundwork to explore NDE of lattice metamateri-

als in terms of quantifying mechanical property degradation

through ultrasonic velocity measurements.

FIG. 12. (Color online) Effective stiffness tensor constants of the bowtie

composite structure with 0.5% moduli ratio: (a) C12, C66, C13, C44 (dashed

red line is a zero-reference line), and (b) Poisson’s ratio of bowtie lattice

(red) compared to bowtie composite structure (black) (�xy, �xz, �zx are shown

in circle, square, and diamond markers, respectively).

FIG. 13. (Color online) (a) Zener anisotropy index of cubic symmetry lattices

and composites. Cubic and octet results are shown in black solid and blue dashed

linestyle, respectively, and lattice, 5% and 50% MR composites are shown in

cross, square, and circle markers, respectively. (b) Universal anisotropy index of

bowtie lattice and composites. Lattice, 0.5%, 5%, and 50% MR composites are

shown in cross, diamond, square, and circle markers, respectively. 5% and 50%

MR composites UAI values are overlapping and close to zero.
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39V. Vavryčuk, “Calculation of the slowness vector from the ray vector in

anisotropic media,” Proc. R. Soc. A: Math. Phys. Eng. Sci. 462(2067),

883–896 (2006).
40H. J. Lee, J. R. Lee, S. H. Moon, T. J. Je, E. C. Jeon, K. Kim, and Y. Y.

Kim, “Off-centered double-slit metamaterial for elastic wave polarization

anomaly,” Sci. Rep. 7(1), 15378 (2017).
41S. I. Ranganathan and M. Ostoja-Starzewski, “Universal elastic anisotropy

index,” Phys. Rev. Lett. 101(5), 055504 (2008).
42L. Wang, J. Lau, E. L. Thomas, and M. C. Boyce, “Co-continuous com-

posite materials for stiffness, strength, and energy dissipation,” Adv.

Mater. 23(13), 1524–1529 (2011).

J. Acoust. Soc. Am. 145 (3), March 2019 Ganesh U. Patil and Kathryn H. Matlack 1269

https://doi.org/10.1121/1.2179748
https://doi.org/10.1016/j.eml.2016.05.009
https://doi.org/10.1073/pnas.1600171113
https://doi.org/10.1016/j.ijsolstr.2005.06.079
https://doi.org/10.1016/j.ijsolstr.2005.06.079
https://doi.org/10.1126/science.1211649
https://doi.org/10.3390/jmmp1020013
https://doi.org/10.1016/S0022-5096(01)00010-2
https://doi.org/10.1016/j.compstruct.2010.08.006
https://doi.org/10.1016/S0020-7683(00)00246-8
https://doi.org/10.1243/0309324001514152
https://doi.org/10.1243/0309324001514152
https://doi.org/10.1016/S0020-7683(00)00400-5
https://doi.org/10.1016/j.ijsolstr.2016.01.011
https://doi.org/10.1016/j.ijsolstr.2016.01.011
https://doi.org/10.1016/j.mechmat.2010.05.003
https://doi.org/10.1038/nmat3043
https://doi.org/10.1038/nmat3043
https://doi.org/10.1002/adem.201300264
https://doi.org/10.1016/j.ijsolstr.2015.07.023
https://doi.org/10.1016/j.ijsolstr.2015.07.023
https://doi.org/10.1155/2016/1548215
https://doi.org/10.1063/1.372254
https://doi.org/10.1016/j.ijsolstr.2006.08.039
https://doi.org/10.1126/science.1252291
https://doi.org/10.1039/C6RA27333E
https://doi.org/10.1016/S0020-7683(01)00145-7
https://doi.org/10.1007/BF01339455
https://doi.org/10.1098/rspa.2016.0738
https://doi.org/10.1098/rspa.2010.0215
https://doi.org/10.1002/jbm.b.33854
https://doi.org/10.1002/jbm.b.33854
https://doi.org/10.1021/j150474a017
https://doi.org/10.1021/j150474a017
https://doi.org/10.1038/nature21075
https://doi.org/10.1190/geo2014-0023.1
https://doi.org/10.1121/1.394527
https://doi.org/10.1111/1365-2478.12626
https://doi.org/10.1111/1365-2478.12626
https://doi.org/10.1098/rspa.2005.1605
https://doi.org/10.1038/s41598-017-15746-2
https://doi.org/10.1103/PhysRevLett.101.055504
https://doi.org/10.1002/adma.201003956
https://doi.org/10.1002/adma.201003956

	s1
	l
	n1
	s2
	f1
	s3
	d1
	d2
	s4
	d3
	d4
	d5
	d6
	s5
	d7
	d8
	d9
	f2
	f3
	f4
	s6
	s6A
	d10a
	d10b
	d10c
	d10d
	f5
	d11
	d12a
	d12b
	d13
	f6
	f7
	s6B
	s6C
	d14
	f8
	f9
	d15a
	d15b
	d15c
	d15d
	s7
	s7A
	f10
	f11
	s7B
	s8
	f12
	f13
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42

