Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

 

# -*- coding: utf-8 -*- 

 

u'''Named tuples. 

 

Tuples returned by C{pygeodesy} functions and class methods 

are all instances of some C{Named...Tuple} class, all sub-classes 

of C{_NamedTuple} defined in C{pygeodesy.named}. 

''' 

 

from pygeodesy.basics import map1, _xinstanceof 

from pygeodesy.errors import _xkwds_not # _xkwds 

from pygeodesy.interns import INT0, NN, _a_, _A_, _angle_, _B_, _band_, \ 

_C_, _convergence_, _datum_, _distance_, \ 

_E_, _easting_, _end_, _epoch_, _fi_, _j_, \ 

_h_, _height_, _hemipole_, _lam_, _lat_, \ 

_lon_, _n_, _northing_, _number_, _outside_, \ 

_phi_, _point_, _points_, _precision_, \ 

_radius_, _reframe_, _scale_, _start_, _x_, \ 

_y_, _z_, _zone_, _1_, _2_ 

from pygeodesy.lazily import _ALL_LAZY, _ALL_MODS as _MODS 

from pygeodesy.named import _NamedTuple, _Pass 

# from pygeodesy.props import property_RO # from .units 

from pygeodesy.units import Band, Bearing, Degrees, Degrees2, Easting, \ 

FIx, Height, Int, Lam, Lat, Lon, Meter, \ 

Meter2, Northing, Number_, Phi, Precision_, \ 

property_RO, Radians, Radius, Scalar, Str 

 

__all__ = _ALL_LAZY.namedTuples 

__version__ = '22.04.22' 

 

# __DUNDER gets mangled in class 

_closest_ = 'closest' 

_elel_ = 'll' 

_final_ = 'final' 

_fraction_ = 'fraction' 

_initial_ = 'initial' 

 

 

class Bearing2Tuple(_NamedTuple): 

'''2-Tuple C{(initial, final)} bearings, both in compass C{degrees360}. 

''' 

_Names_ = (_initial_, _final_) 

_Units_ = ( Bearing, Bearing) 

 

 

class Bounds2Tuple(_NamedTuple): # .geohash.py, .latlonBase.py, .points.py 

'''2-Tuple C{(latlonSW, latlonNE)} with the bounds' lower-left and 

upper-right corner as C{LatLon} instance. 

''' 

_Names_ = ('latlonSW', 'latlonNE') 

_Units_ = (_Pass, _Pass) 

 

 

class Bounds4Tuple(_NamedTuple): # .geohash.py, .points.py 

'''4-Tuple C{(latS, lonW, latN, lonE)} with the bounds' lower-left 

C{(LatS, LowW)} and upper-right C{(latN, lonE)} corner lat- and 

longitudes. 

''' 

_Names_ = ('latS', 'lonW', 'latN', 'lonE') 

_Units_ = ( Lat, Lon, Lat, Lon) 

 

def enclosures(self, S_other, *W_N_E): 

'''Get the enclosures of this around an other L{Bounds4Tuple}. 

 

@arg S_other: Bottom C{latS} (C{scalar}) or an other 

L{Bounds4Tuple} instance. 

@arg W_N_E: Left C{lonW}, top C{latN} and right C{lonE}, 

each a (C{scalar}) for C{scalar B{S_other}}. 

 

@return: A L{Bounds4Tuple} with the I{margin} at each of 

the 4 sides, positive if this side I{encloses} 

(is on the I{outside} of) the other, negative 

if not or zero if abutting. 

''' 

s, w, n, e = self 

S, W, N, E = map1(float, S_other, *W_N_E) if W_N_E else S_other 

return Bounds4Tuple(map1(float, S - s, W - w, n - N, e - E)) # *map1 

 

def overlap(self, S_other, *W_N_E): 

'''Intersect this with an other L{Bounds4Tuple}. 

 

@arg S_other: Bottom C{latS} (C{scalar}) or an other 

L{Bounds4Tuple} instance. 

@arg W_N_E: Left C{lonW}, top C{latN} and right C{lonE}, 

each a (C{scalar}) for C{scalar B{S_other}}. 

 

@return: C{None} if the bounds do not overlap, otherwise 

the intersection of both as a L{Bounds4Tuple}. 

''' 

s, w, n, e = self 

S, W, N, E = map1(float, S_other, *W_N_E) if W_N_E else S_other 

return None if s > N or n < S or w > E or e < W else \ 

Bounds4Tuple(max(s, S), max(w, W), min(n, N), min(e, E)) 

 

 

class Destination2Tuple(_NamedTuple): # .ellipsoidalKarney.py, -Vincenty.py 

'''2-Tuple C{(destination, final)}, C{destination} in C{LatLon} 

and C{final} bearing in compass C{degrees360}. 

''' 

_Names_ = ('destination', _final_) 

_Units_ = (_Pass, Bearing) 

 

 

class Destination3Tuple(_NamedTuple): # .karney.py 

'''3-Tuple C{(lat, lon, final)}, destination C{lat}, C{lon} in 

C{degrees90} respectively C{degrees180} and C{final} bearing 

in compass C{degrees360}. 

''' 

_Names_ = (_lat_, _lon_, _final_) 

_Units_ = ( Lat, Lon, Bearing) 

 

 

class Distance2Tuple(_NamedTuple): # .datum.py, .ellipsoidalBase.py 

'''2-Tuple C{(distance, initial)}, C{distance} in C{meter} and 

C{initial} bearing in compass C{degrees360}. 

''' 

_Names_ = (_distance_, _initial_) 

_Units_ = ( Meter, Bearing) 

 

 

class Distance3Tuple(_NamedTuple): # .ellipsoidalKarney.py, -Vincenty.py 

'''3-Tuple C{(distance, initial, final)}, C{distance} in C{meter} 

and C{initial} and C{final} bearing, both in compass C{degrees360}. 

''' 

_Names_ = (_distance_, _initial_, _final_) 

_Units_ = ( Meter, Bearing, Bearing) 

 

 

class Distance4Tuple(_NamedTuple): # .formy.py, .points.py 

'''4-Tuple C{(distance2, delta_lat, delta_lon, unroll_lon2)} with 

the distance in C{degrees squared}, the latitudinal C{delta_lat 

= B{lat2} - B{lat1}}, the wrapped, unrolled and adjusted 

longitudinal C{delta_lon = B{lon2} - B{lon1}} and C{unroll_lon2}, 

the unrolled or original B{C{lon2}}. 

 

@note: Use Function L{pygeodesy.degrees2m} to convert C{degrees 

squared} to C{meter} as M{degrees2m(sqrt(distance2), ...)} 

or M{degrees2m(hypot(delta_lat, delta_lon), ...)}. 

''' 

_Names_ = ('distance2', 'delta_lat', 'delta_lon', 'unroll_lon2') 

_Units_ = ( Degrees2, Degrees, Degrees, Degrees) 

 

 

class EasNor2Tuple(_NamedTuple): # .css.py, .osgr.py, .ups.py, .utm.py, .utmupsBase.py 

'''2-Tuple C{(easting, northing)}, both in C{meter}, 

conventionally. 

''' 

_Names_ = (_easting_, _northing_) 

_Units_ = ( Easting, Northing) 

 

 

class EasNor3Tuple(_NamedTuple): # .css.py, .lcc.py 

'''3-Tuple C{(easting, northing, height)}, all in C{meter}, 

conventionally. 

''' 

_Names_ = (_easting_, _northing_, _height_) 

_Units_ = ( Easting, Northing, Height) 

 

 

class Intersection3Tuple(_NamedTuple): # .css.py, .lcc.py 

'''3-Tuple C{(point, outside1, outside2)} of an intersection 

C{point} and C{outside1}, the position of the C{point}, 

C{-1} if before the start, C{+1} if after the end and C{0} 

if on or between the start and end point of the first line. 

Similarly, C{outside2} is C{-2}, C{+2} or C{0} to indicate 

the position of C{point} on the second line or path. If a 

path was specified with an initial bearing instead of an 

end point, C{outside1} and/or C{outside2} will be C{0} if 

the intersection C{point} is on the start point or C{+1} 

respectively C{+2} if the intersection C{point} is after 

the start point, in the direction of the bearing. 

''' 

_Names_ = (_point_, _outside_ + _1_, _outside_ + _2_) 

_Units_ = (_Pass, Int, Int) 

 

 

class LatLon2Tuple(_NamedTuple): 

'''2-Tuple C{(lat, lon)} in C{degrees90} and C{degrees180}. 

''' 

_Names_ = (_lat_, _lon_) 

_Units_ = ( Lat, Lon) 

 

def to3Tuple(self, height): 

'''Extend this L{LatLon2Tuple} to a L{LatLon3Tuple}. 

 

@arg height: The height to add (C{scalar}). 

 

@return: A L{LatLon3Tuple}C{(lat, lon, height)}. 

 

@raise ValueError: Invalid B{C{height}}. 

''' 

return self._xtend(LatLon3Tuple, height) 

 

def to4Tuple(self, height, datum): 

'''Extend this L{LatLon2Tuple} to a L{LatLon4Tuple}. 

 

@arg height: The height to add (C{scalar}). 

@arg datum: The datum to add (C{Datum}). 

 

@return: A L{LatLon4Tuple}C{(lat, lon, height, datum)}. 

 

@raise TypeError: If B{C{datum}} not a C{Datum}. 

 

@raise ValueError: Invalid B{C{height}}. 

''' 

return self.to3Tuple(height).to4Tuple(datum) 

 

 

class LatLon3Tuple(_NamedTuple): 

'''3-Tuple C{(lat, lon, height)} in C{degrees90}, C{degrees180} 

and C{meter}, conventionally. 

''' 

_Names_ = (_lat_, _lon_, _height_) 

_Units_ = ( Lat, Lon, Height) 

 

def to4Tuple(self, datum): 

'''Extend this L{LatLon3Tuple} to a L{LatLon4Tuple}. 

 

@arg datum: The datum to add (C{Datum}). 

 

@return: A L{LatLon4Tuple}C{(lat, lon, height, datum)}. 

 

@raise TypeError: If B{C{datum}} not a C{Datum}. 

''' 

_xinstanceof(_MODS.datums.Datum, datum=datum) 

return self._xtend(LatLon4Tuple, datum) 

 

 

class LatLon4Tuple(_NamedTuple): # .cartesianBase.py, .css.py, .ecef.py, .lcc.py 

'''4-Tuple C{(lat, lon, height, datum)} in C{degrees90}, 

C{degrees180}, C{meter} and L{Datum}. 

''' 

_Names_ = (_lat_, _lon_, _height_, _datum_) 

_Units_ = ( Lat, Lon, Height, _Pass) 

 

 

def _LL4Tuple(lat, lon, height, datum, LatLon, LatLon_kwds, inst=None, 

iteration=None, name=NN): 

'''(INTERNAL) Return a L{LatLon4Tuple} or an B{C{LatLon}} instance. 

''' 

if LatLon is None: # ignore LatLon_kwds 

r = LatLon4Tuple(lat, lon, height, datum, name=name) 

else: 

kwds = {} if inst is None else _xkwds_not(None, 

# datum=getattr(inst, _datum_, None), 

epoch=getattr(inst, _epoch_, None), 

reframe=getattr(inst, _reframe_, None)) # PYCHOK indent 

kwds.update(datum=datum, height=height, name=name) 

if LatLon_kwds: 

kwds.update(LatLon_kwds) 

r = LatLon(lat, lon, **kwds) 

if iteration is not None: # like .named._namedTuple.__new__ 

r._iteration = iteration 

return r 

 

 

class LatLonDatum3Tuple(_NamedTuple): # .lcc.py, .osgr.py 

'''3-Tuple C{(lat, lon, datum)} in C{degrees90}, C{degrees180} 

and L{Datum}. 

''' 

_Names_ = (_lat_, _lon_, _datum_) 

_Units_ = ( Lat, Lon, _Pass) 

 

 

class LatLonDatum5Tuple(_NamedTuple): # .ups.py, .utm.py, .utmupsBase.py 

'''5-Tuple C{(lat, lon, datum, convergence, scale)} in 

C{degrees90}, C{degrees180}, L{Datum}, C{degrees} 

and C{float}. 

''' 

_Names_ = (_lat_, _lon_, _datum_, _convergence_, _scale_) 

_Units_ = ( Lat, Lon, _Pass, Degrees, Scalar) 

 

 

class LatLonPrec3Tuple(_NamedTuple): # .gars.py, .wgrs.py 

'''3-Tuple C{(lat, lon, precision)} in C{degrees}, C{degrees} 

and C{int}. 

''' 

_Names_ = (_lat_, _lon_, _precision_) 

_Units_ = ( Lat, Lon, Precision_) 

 

def to5Tuple(self, height, radius): 

'''Extend this L{LatLonPrec3Tuple} to a L{LatLonPrec5Tuple}. 

 

@arg height: The height to add (C{float} or C{None}). 

@arg radius: The radius to add (C{float} or C{None}). 

 

@return: A L{LatLonPrec5Tuple}C{(lat, lon, precision, 

height, radius)}. 

''' 

return self._xtend(LatLonPrec5Tuple, height, radius) 

 

 

class LatLonPrec5Tuple(_NamedTuple): # .wgrs.py 

'''5-Tuple C{(lat, lon, precision, height, radius)} in C{degrees}, 

C{degrees}, C{int} and C{height} or C{radius} in C{meter} (or 

C{None} if missing). 

''' 

_Names_ = (_lat_, _lon_, _precision_, _height_, _radius_) 

_Units_ = ( Lat, Lon, Precision_, Height, Radius) 

 

 

class NearestOn2Tuple(_NamedTuple): # .ellipsoidalBaseDI.py 

'''2-Tuple C{(closest, fraction)} of the C{closest} point 

on and C{fraction} along a line (segment) between two 

points. The C{fraction} is C{0} if the closest point 

is the first or C{1} the second of the two points. 

Negative C{fraction}s indicate the closest point is 

C{before} the first point. For C{fraction > 1.0} 

the closest point is after the second point. 

''' 

_Names_ = (_closest_, _fraction_) 

_Units_ = (_Pass, _Pass) 

 

 

class NearestOn3Tuple(_NamedTuple): # .points.py, .sphericalTrigonometry.py 

'''3-Tuple C{(closest, distance, angle)} of the C{closest} 

point on the polygon, either a C{LatLon} instance or a 

L{LatLon3Tuple}C{(lat, lon, height)} and the C{distance} 

and C{angle} to the C{closest} point are in C{meter} 

respectively compass C{degrees360}. 

''' 

_Names_ = (_closest_, _distance_, _angle_) 

_Units_ = (_Pass, Meter, Degrees) 

 

 

class NearestOn5Tuple(_NamedTuple): 

'''5-Tuple C{(lat, lon, distance, angle, height)} all in C{degrees}, 

except C{height}. The C{distance} is the L{pygeodesy.equirectangular} 

distance between the closest and the reference B{C{point}} in C{degrees}. 

The C{angle} from the reference B{C{point}} to the closest point is in 

compass C{degrees360}, see function L{pygeodesy.compassAngle}. The 

C{height} is the (interpolated) height at the closest point in C{meter} 

or C{0}. 

''' 

_Names_ = (_lat_, _lon_, _distance_, _angle_, _height_) 

_Units_ = ( Lat, Lon, Degrees, Degrees, Meter) 

 

 

class NearestOn6Tuple(_NamedTuple): # .latlonBase.py, .vector3d.py 

'''6-Tuple C{(closest, distance, fi, j, start, end)} with the C{closest} 

point, the C{distance} in C{meter}, conventionally and the C{start} 

and C{end} point of the path or polygon edge. Fractional index C{fi} 

(an L{FIx} instance) and index C{j} indicate the path or polygon edge 

and the fraction along that edge with the C{closest} point. The 

C{start} and C{end} points may differ from the given path or polygon 

points at indices C{fi} respectively C{j}, when unrolled (C{wrap} is 

C{True}). Also, the C{start} and/or C{end} point may be the same 

instance as the C{closest} point, for example when the very first 

path or polygon point is the nearest. 

''' 

_Names_ = (_closest_, _distance_, _fi_, _j_, _start_, _end_) 

_Units_ = (_Pass, Meter, FIx, Number_, _Pass , _Pass) 

 

 

class NearestOn8Tuple(_NamedTuple): # .ellipsoidalBaseDI.py 

'''8-Tuple C{(closest, distance, fi, j, start, end, initial, final)}, 

like L{NearestOn6Tuple} but extended with the C{initial} and the 

C{final} bearing at the reference respectively the C{closest} 

point, both in compass C{degrees}. 

''' 

_Names_ = NearestOn6Tuple._Names_ + Distance3Tuple._Names_[-2:] 

_Units_ = NearestOn6Tuple._Units_ + Distance3Tuple._Units_[-2:] 

 

 

class PhiLam2Tuple(_NamedTuple): # .frechet.py, .hausdorff.py, .latlonBase.py, .points.py, .vector3d.py 

'''2-Tuple C{(phi, lam)} with latitude C{phi} in C{radians[PI_2]} 

and longitude C{lam} in C{radians[PI]}. 

 

@note: Using C{phi/lambda} for lat-/longitude in C{radians} 

follows Chris Veness' U{convention 

<https://www.Movable-Type.co.UK/scripts/latlong.html>}. 

''' 

_Names_ = (_phi_, _lam_) 

_Units_ = ( Phi, Lam) 

 

def to3Tuple(self, height): 

'''Extend this L{PhiLam2Tuple} to a L{PhiLam3Tuple}. 

 

@arg height: The height to add (C{scalar}). 

 

@return: A L{PhiLam3Tuple}C{(phi, lam, height)}. 

 

@raise ValueError: Invalid B{C{height}}. 

''' 

return self._xtend(PhiLam3Tuple, height) 

 

def to4Tuple(self, height, datum): 

'''Extend this L{PhiLam2Tuple} to a L{PhiLam4Tuple}. 

 

@arg height: The height to add (C{scalar}). 

@arg datum: The datum to add (C{Datum}). 

 

@return: A L{PhiLam4Tuple}C{(phi, lam, height, datum)}. 

 

@raise TypeError: If B{C{datum}} not a C{Datum}. 

 

@raise ValueError: Invalid B{C{height}}. 

''' 

return self.to3Tuple(height).to4Tuple(datum) 

 

 

class PhiLam3Tuple(_NamedTuple): # .nvector.py, extends -2Tuple 

'''3-Tuple C{(phi, lam, height)} with latitude C{phi} in 

C{radians[PI_2]}, longitude C{lam} in C{radians[PI]} and 

C{height} in C{meter}. 

 

@note: Using C{phi/lambda} for lat-/longitude in C{radians} 

follows Chris Veness' U{convention 

<https://www.Movable-Type.co.UK/scripts/latlong.html>}. 

''' 

_Names_ = (_phi_, _lam_, _height_) 

_Units_ = ( Phi, Lam, Height) 

 

def to4Tuple(self, datum): 

'''Extend this L{PhiLam3Tuple} to a L{PhiLam4Tuple}. 

 

@arg datum: The datum to add (C{Datum}). 

 

@return: A L{PhiLam4Tuple}C{(phi, lam, height, datum)}. 

 

@raise TypeError: If B{C{datum}} not a C{Datum}. 

''' 

_xinstanceof(_MODS.datums.Datum, datum=datum) 

return self._xtend(PhiLam4Tuple, datum) 

 

 

class PhiLam4Tuple(_NamedTuple): # extends -3Tuple 

'''4-Tuple C{(phi, lam, height, datum)} with latitude C{phi} in 

C{radians[PI_2]}, longitude C{lam} in C{radians[PI]}, C{height} 

in C{meter} and L{Datum}. 

 

@note: Using C{phi/lambda} for lat-/longitude in C{radians} 

follows Chris Veness' U{convention 

<https://www.Movable-Type.co.UK/scripts/latlong.html>}. 

''' 

_Names_ = (_phi_, _lam_, _height_, _datum_) 

_Units_ = ( Phi, Lam, Height, _Pass) 

 

 

class Point3Tuple(_NamedTuple): 

'''3-Tuple C{(x, y, ll)} in C{meter}, C{meter} and C{LatLon}. 

''' 

_Names_ = (_x_, _y_, _elel_) 

_Units_ = ( Meter, Meter, _Pass) 

 

 

class Points2Tuple(_NamedTuple): # .formy.py, .latlonBase.py 

'''2-Tuple C{(number, points)} with the C{number} of points 

and -possible reduced- C{list} or C{tuple} of C{points}. 

''' 

_Names_ = (_number_, _points_) 

_Units_ = ( Number_, _Pass) 

 

 

class Triangle7Tuple(_NamedTuple): 

'''7-Tuple C{(A, a, B, b, C, c, area)} with interior angles C{A}, 

C{B} and C{C} in C{degrees}, spherical sides C{a}, C{b} and 

C{c} in C{meter} and the C{area} of a spherical triangle in 

I{square} C{meter}. 

''' 

_Names_ = (_A_, _a_, _B_, 'b', _C_, 'c', 'area') 

_Units_ = ( Degrees, Meter, Degrees, Meter, Degrees, Meter, Meter2) 

 

 

class Triangle8Tuple(_NamedTuple): 

'''8-Tuple C{(A, a, B, b, C, c, D, E)} with interior angles C{A}, 

C{B} and C{C}, spherical sides C{a}, C{b} and C{c}, I{spherical 

deficit} C{D} and I{spherical excess} C{E} of a spherical 

triangle, all in C{radians}. 

''' 

_Names_ = (_A_, _a_, _B_, 'b', _C_, 'c', 'D', _E_) 

_Units_ = ( Radians, Radians, Radians, Radians, Radians, Radians, Radians, Radians) 

 

 

class Trilaterate5Tuple(_NamedTuple): # .latlonBase.py, .nvector.py 

'''5-Tuple C{(min, minPoint, max, maxPoint, n)} with C{min} and C{max} 

in C{meter}, the corresponding trilaterated C{minPoint} and C{maxPoint} 

as C{LatLon} and the number C{n}. For area overlap, C{min} and C{max} 

are the smallest respectively largest overlap found. For perimeter 

intersection, C{min} and C{max} represent the closest respectively 

farthest intersection margin. Count C{n} is the total number of 

trilaterated overlaps or intersections found, C{0, 1, 2...6} with 

C{0} meaning concentric. 

 

@see: The C{ellipsoidalKarney-}, C{ellipsoidalVincenty-} and 

C{sphericalTrigonometry.LatLon.trilaterate5} method for further 

details on corner cases, like concentric or single trilaterated 

results. 

''' 

_Names_ = (min.__name__, 'minPoint', max.__name__, 'maxPoint', _n_) 

_Units_ = (Meter, _Pass, Meter, _Pass, Number_) 

 

 

class UtmUps2Tuple(_NamedTuple): # .epsg.py 

'''2-Tuple C{(zone, hemipole)} as C{int} and C{str}, where 

C{zone} is C{1..60} for UTM or C{0} for UPS and C{hemipole} 

C{'N'|'S'} is the UTM hemisphere or the UPS pole. 

''' 

_Names_ = (_zone_, _hemipole_) 

_Units_ = ( Number_, Str) 

 

 

class UtmUps5Tuple(_NamedTuple): # .mgrs.py, .ups.py, .utm.py, .utmups.py 

'''5-Tuple C{(zone, hemipole, easting, northing, band)} as C{int}, 

C{str}, C{meter}, C{meter} and C{band} letter, where C{zone} is 

C{1..60} for UTM or C{0} for UPS, C{hemipole} C{'N'|'S'} is the UTM 

hemisphere or the UPS pole and C{band} is C{""} or the I{longitudinal} 

UTM band C{'C'|'D'|..|'W'|'X'} or I{polar} UPS band C{'A'|'B'|'Y'|'Z'}. 

''' 

_Names_ = (_zone_, _hemipole_, _easting_, _northing_, _band_) 

_Units_ = ( Number_, Str, Easting, Northing, Band) 

 

def __new__(cls, z, h, e, n, B, Error=None, name=NN): 

if Error is not None: 

e = Easting( e, Error=Error) 

n = Northing(n, Error=Error) 

return _NamedTuple.__new__(cls, z, h, e, n, B, name=name) 

 

 

class UtmUps8Tuple(_NamedTuple): # .ups.py, .utm.py, .utmups.py 

'''8-Tuple C{(zone, hemipole, easting, northing, band, datum, 

convergence, scale)} as C{int}, C{str}, C{meter}, C{meter}, 

C{band} letter, C{Datum}, C{degrees} and C{scalar}, where 

C{zone} is C{1..60} for UTM or C{0} for UPS, C{hemipole} 

C{'N'|'S'} is the UTM hemisphere or the UPS pole and C{band} 

is C{""} or the I{longitudinal} UTM band C{'C'|'D'|..|'W'|'X'} 

or I{polar} UPS band C{'A'|'B'|'Y'|'Z'}. 

''' 

_Names_ = (_zone_, _hemipole_, _easting_, _northing_, 

_band_, _datum_, _convergence_, _scale_) 

_Units_ = ( Number_, Str, Easting, Northing, 

Band, _Pass, Degrees, Scalar) 

 

def __new__(cls, z, h, e, n, B, d, c, s, Error=None, name=NN): # PYCHOK 11 args 

if Error is not None: 

e = Easting( e, Error=Error) 

n = Northing(n, Error=Error) 

c = Degrees(convergence=c, Error=Error) 

s = Scalar(scale=s, Error=Error) 

return _NamedTuple.__new__(cls, z, h, e, n, B, d, c, s, name=name) 

 

 

class UtmUpsLatLon5Tuple(_NamedTuple): # .ups.py, .utm.py, .utmups.py 

'''5-Tuple C{(zone, band, hemipole, lat, lon)} as C{int}, 

C{str}, C{str}, C{degrees90} and C{degrees180}, where 

C{zone} is C{1..60} for UTM or C{0} for UPS, C{band} is 

C{""} or the I{longitudinal} UTM band C{'C'|'D'|..|'W'|'X'} 

or I{polar} UPS band C{'A'|'B'|'Y'|'Z'} and C{hemipole} 

C{'N'|'S'} is the UTM hemisphere or the UPS pole. 

''' 

_Names_ = (_zone_, _band_, _hemipole_, _lat_, _lon_) 

_Units_ = ( Number_, Band, Str, Lat, Lon) 

 

def __new__(cls, z, B, h, lat, lon, Error=None, name=NN): 

if Error is not None: 

lat = Lat(lat, Error=Error) 

lon = Lon(lon, Error=Error) 

return _NamedTuple.__new__(cls, z, B, h, lat, lon, name=name) 

 

 

class Vector2Tuple(_NamedTuple): 

'''2-Tuple C{(x, y)} of (geocentric) components, each in 

C{meter} or the same C{units}. 

''' 

_Names_ = (_x_, _y_) 

_Units_ = ( Scalar, Scalar) 

 

def to3Tuple(self, z=INT0): 

'''Extend this L{Vector2Tuple} to a L{Vector3Tuple}. 

 

@kwarg z: The Z component add (C{scalar}). 

 

@return: A L{Vector3Tuple}C{(x, y, z)}. 

 

@raise ValueError: Invalid B{C{z}}. 

''' 

return self._xtend(Vector3Tuple, z) 

 

 

class Vector3Tuple(_NamedTuple): 

'''3-Tuple C{(x, y, z)} of (geocentric) components, all in 

C{meter} or the same C{units}. 

''' 

_Names_ = (_x_, _y_, _z_) 

_Units_ = ( Scalar, Scalar, Scalar) 

 

def to4Tuple(self, h): 

'''Extend this L{Vector3Tuple} to a L{Vector4Tuple}. 

 

@arg h: The height to add (C{scalar}). 

 

@return: A L{Vector4Tuple}C{(x, y, z, h)}. 

 

@raise ValueError: Invalid B{C{h}}. 

''' 

return self._xtend(Vector4Tuple, h) 

 

@property_RO 

def xyz(self): 

'''Get X, Y and Z components (C{Vector3Tuple}). 

''' 

return self 

 

 

class Vector4Tuple(_NamedTuple): # .nvector.py 

'''4-Tuple C{(x, y, z, h)} of (geocentric) components, all 

in C{meter} or the same C{units}. 

''' 

_Names_ = (_x_, _y_, _z_, _h_) 

_Units_ = ( Scalar, Scalar, Scalar, Height) 

 

def to3Tuple(self): 

'''Reduce this L{Vector4Tuple} to a L{Vector3Tuple}. 

 

@return: A L{Vector3Tuple}C{(x, y, z)}. 

''' 

return self.xyz 

 

@property_RO 

def xyz(self): 

'''Get X, Y and Z components (L{Vector3Tuple}). 

''' 

return Vector3Tuple(*self[:3]) 

 

# **) MIT License 

# 

# Copyright (C) 2016-2022 -- mrJean1 at Gmail -- All Rights Reserved. 

# 

# Permission is hereby granted, free of charge, to any person obtaining a 

# copy of this software and associated documentation files (the "Software"), 

# to deal in the Software without restriction, including without limitation 

# the rights to use, copy, modify, merge, publish, distribute, sublicense, 

# and/or sell copies of the Software, and to permit persons to whom the 

# Software is furnished to do so, subject to the following conditions: 

# 

# The above copyright notice and this permission notice shall be included 

# in all copies or substantial portions of the Software. 

# 

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 

# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 

# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

# OTHER DEALINGS IN THE SOFTWARE. 

 

# % env PYGEODESY_FOR_DOCS=1 python -m pygeodesy.named 

# all 71 locals OK