Package pygeodesy :: Module sphericalNvector
[frames] | no frames]

Module sphericalNvector

Spherical, N-vector-based geodesy.

N-vector-based classes geodetic (lat-/longitude) LatLon, geocentric (ECEF) Cartesian and Nvector and functions areaOf, intersection, meanOf, nearestOn3, perimeterOf, sumOf, triangulate and trilaterate, all spherical.

Pure Python implementation of n-vector-based spherical geodetic (lat-/longitude) methods, transcoded from JavaScript originals by (C) Chris Veness 2011-2016, published under the same MIT Licence**. See Vector-based geodesy and Module latlon-nvector-spherical.

Tools for working with points and paths on (a spherical model of) the earth’s surface using using n-vectors rather than the more common spherical trigonometry. N-vectors make many calculations much simpler, and easier to follow, compared with the trigonometric equivalents.

Based on Kenneth Gade’s ‘Non-singular Horizontal Position Representation’, The Journal of Navigation (2010), vol 63, nr 3, pp 395-417.

Note that the formulations below take x => 0°N,0°E, y => 0°N,90°E and z => 90°N while Gade uses x => 90°N, y => 0°N,90°E, z => 0°N,0°E.

Also note that on a spherical earth model, an n-vector is equivalent to a normalised version of an (ECEF) cartesian coordinate.


Version: 22.04.20

Classes
  Cartesian
Extended to convert geocentric, Cartesian points to Nvector and n-vector-based, spherical LatLon.
  LatLon
New n-vector based point on a spherical earth model.
  Nvector
An n-vector is a position representation using a (unit) vector normal to the earth's surface.
Functions
 
ispolar(points, wrap=False)
Check whether a polygon encloses a pole.
 
areaOf(points, radius=6371008.77141)
Calculate the area of a (spherical) polygon (with great circle arcs joining consecutive points).
 
intersection(start1, end1, start2, end2, height=None, LatLon=<class 'pygeodesy.sphericalNvector.LatLon'>, **LatLon_kwds)
Locate the intersection of two paths each defined by two points or by a start point and an initial bearing.
 
meanOf(points, height=None, LatLon=<class 'pygeodesy.sphericalNvector.LatLon'>, **LatLon_kwds)
Compute the geographic mean of the supplied points.
 
nearestOn2(point, points, **closed_radius_height)
DEPRECATED, use method sphericalNvector.nearestOn3.
 
nearestOn3(point, points, closed=False, radius=6371008.77141, height=None)
Locate the point on a polygon (with great circle arcs joining consecutive points) closest to an other point.
 
perimeterOf(points, closed=False, radius=6371008.77141)
Compute the perimeter of a (spherical) polygon (with great circle arcs joining consecutive points).
 
sumOf(nvectors, Vector=<class 'pygeodesy.sphericalNvector.Nvector'>, h=None, **Vector_kwds)
Return the vectorial sum of two or more n-vectors.
 
triangulate(point1, bearing1, point2, bearing2, height=None, LatLon=<class 'pygeodesy.sphericalNvector.LatLon'>, **LatLon_kwds)
Locate a point given two known points and the initial bearings from those points.
 
trilaterate(point1, distance1, point2, distance2, point3, distance3, radius=6371008.77141, height=None, useZ=False, LatLon=<class 'pygeodesy.sphericalNvector.LatLon'>, **LatLon_kwds)
Locate a point at given distances from three other points.
Variables
  __all__ = _ALL_LAZY.sphericalNvector
Function Details

ispolar (points, wrap=False)

 

Check whether a polygon encloses a pole.

Arguments:
  • points - The polygon points (LatLon[]).
  • wrap - Wrap and unroll longitudes (bool).
Returns:
True if the polygon encloses a pole, False otherwise.
Raises:
  • PointsError - Insufficient number of points
  • TypeError - Some points are not LatLon or don't have bearingTo2, initialBearingTo and finalBearingTo methods.

areaOf (points, radius=6371008.77141)

 

Calculate the area of a (spherical) polygon (with great circle arcs joining consecutive points).

Arguments:
  • points - The polygon points (LatLon[]).
  • radius - Mean earth radius (meter) or None.
Returns:
Polygon area (meter squared , same units as radius, or radians if radius is None).
Raises:
  • PointsError - Insufficient number of points.
  • TypeError - Some points are not LatLon.

See Also: Functions pygeodesy.areaOf, sphericalTrigonometry.areaOf and ellipsoidalKarney.areaOf.

Example:

>>> b = LatLon(45, 1), LatLon(45, 2), LatLon(46, 2), LatLon(46, 1)
>>> areaOf(b)  # 8666058750.718977

intersection (start1, end1, start2, end2, height=None, LatLon=<class 'pygeodesy.sphericalNvector.LatLon'>, **LatLon_kwds)

 

Locate the intersection of two paths each defined by two points or by a start point and an initial bearing.

Arguments:
  • start1 - Start point of the first path (LatLon).
  • end1 - End point of the first path (LatLon) or the initial bearing at the first start point (compass degrees360).
  • start2 - Start point of the second path (LatLon).
  • end2 - End point of the second path (LatLon) or the initial bearing at the second start point (compass degrees360).
  • height - Optional height at the intersection point, overriding the mean height (meter).
  • LatLon - Optional class to return the intersection point (LatLon).
  • LatLon_kwds - Optional, additional LatLon keyword arguments, ignored if LatLon is None.
Returns:
The intersection point (LatLon) or 3-tuple (degrees90, degrees180, height) if LatLon is None or None if no unique intersection exists.
Raises:
  • TypeError - If start* or end* is not LatLon.
  • ValueError - Intersection is ambiguous or infinite or the paths are parallel, coincident or null.

Example:

>>> p = LatLon(51.8853, 0.2545)
>>> q = LatLon(49.0034, 2.5735)
>>> i = intersection(p, 108.55, q, 32.44)  # 50.9076°N, 004.5086°E

meanOf (points, height=None, LatLon=<class 'pygeodesy.sphericalNvector.LatLon'>, **LatLon_kwds)

 

Compute the geographic mean of the supplied points.

Arguments:
  • points - Array of points to be averaged (LatLon[]).
  • height - Optional height, overriding the mean height (meter).
  • LatLon - Optional class to return the mean point (LatLon).
  • LatLon_kwds - Optional, additional LatLon keyword arguments, ignored if LatLon is None.
Returns:
Point at geographic mean and mean height (LatLon).
Raises:
  • PointsError - Insufficient number of points.
  • TypeError - Some points are not LatLon.

nearestOn2 (point, points, **closed_radius_height)

 

DEPRECATED, use method sphericalNvector.nearestOn3.

Returns:
... 2-Tuple (closest, distance) of the closest point (LatLon) on the polygon and the distance between the closest and the given point ...
Decorators:
  • @deprecated_function

nearestOn3 (point, points, closed=False, radius=6371008.77141, height=None)

 

Locate the point on a polygon (with great circle arcs joining consecutive points) closest to an other point.

If the given point is within the extent of any great circle arc, the closest point is on that arc. Otherwise, the closest is the nearest of the arc's end points.

Arguments:
  • point - The other, reference point (LatLon).
  • points - The polygon points (LatLon[]).
  • closed - Optionally, close the polygon (bool).
  • radius - Mean earth radius (meter) or None.
  • height - Optional height, overriding the mean height for a point within the arc (meter).
Returns:
A NearestOn3Tuple(closest, distance, angle) of the closest point (LatLon) on the polygon, the distance and the angle between the closest and the given point. The distance is in meter, same units as radius or in radians if radius is None, the angle is in compass degrees360.
Raises:
  • PointsError - Insufficient number of points.
  • TypeError - Some points or point not LatLon.

perimeterOf (points, closed=False, radius=6371008.77141)

 

Compute the perimeter of a (spherical) polygon (with great circle arcs joining consecutive points).

Arguments:
  • points - The polygon points (LatLon[]).
  • closed - Optionally, close the polygon (bool).
  • radius - Mean earth radius (meter) or None.
Returns:
Polygon perimeter (meter, same units as radius or radians if radius is None).
Raises:
  • PointsError - Insufficient number of points.
  • TypeError - Some points are not LatLon.

sumOf (nvectors, Vector=<class 'pygeodesy.sphericalNvector.Nvector'>, h=None, **Vector_kwds)

 

Return the vectorial sum of two or more n-vectors.

Arguments:
  • nvectors - Vectors to be added (Nvector[]).
  • Vector - Optional class for the vectorial sum (Nvector).
  • h - Optional height, overriding the mean height (meter).
  • Vector_kwds - Optional, additional Vector keyword arguments.
Returns:
Vectorial sum (Vector).
Raises:

triangulate (point1, bearing1, point2, bearing2, height=None, LatLon=<class 'pygeodesy.sphericalNvector.LatLon'>, **LatLon_kwds)

 

Locate a point given two known points and the initial bearings from those points.

Arguments:
  • point1 - First reference point (LatLon).
  • bearing1 - Bearing at the first point (compass degrees360).
  • point2 - Second reference point (LatLon).
  • bearing2 - Bearing at the second point (compass degrees360).
  • height - Optional height at the triangulated point, overriding the mean height (meter).
  • LatLon - Optional class to return the triangulated point (LatLon).
  • LatLon_kwds - Optional, additional LatLon keyword arguments, ignored if LatLon is None.
Returns:
Triangulated point (LatLon).
Raises:
  • TypeError - If point1 or point2 is not LatLon.
  • Valuerror - Points coincide.

Example:

>>> p = LatLon("47°18.228'N","002°34.326'W")  # Basse Castouillet
>>> q = LatLon("47°18.664'N","002°31.717'W")  # Basse Hergo
>>> t = triangulate(p, 7, q, 295)  # 47.323667°N, 002.568501°W'

trilaterate (point1, distance1, point2, distance2, point3, distance3, radius=6371008.77141, height=None, useZ=False, LatLon=<class 'pygeodesy.sphericalNvector.LatLon'>, **LatLon_kwds)

 

Locate a point at given distances from three other points.

Arguments:
  • point1 - First point (LatLon).
  • distance1 - Distance to the first point (meter, same units as radius).
  • point2 - Second point (LatLon).
  • distance2 - Distance to the second point (meter, same units as radius).
  • point3 - Third point (LatLon).
  • distance3 - Distance to the third point (meter, same units as radius).
  • radius - Mean earth radius (meter).
  • height - Optional height at the trilaterated point, overriding the IDW height (meter, same units as radius).
  • useZ - Include Z component iff non-NaN, non-zero (bool).
  • LatLon - Optional class to return the trilaterated
  • LatLon_kwds - Optional, additional LatLon keyword arguments, ignored if LatLon is None.
Returns:
Trilaterated point (LatLon).
Raises:
  • IntersectionError - No intersection, trilateration failed.
  • TypeError - Invalid point1, point2 or point3.
  • ValueError - Coincident points or invalid distance1, distance2, distance3 or radius.

See Also: Trilateration.