Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

 

# -*- coding: utf-8 -*- 

 

u'''I{Veness}' Terrestrial Reference Frames (TRF). 

 

Classes L{RefFrame}, registry L{RefFrames} and L{TRFError}. 

 

Transcoded from I{Chris Veness'} (C) 2006-2019 JavaScript originals 

U{latlon-ellipsoidal-referenceframe.js<https://GitHub.com/ChrisVeness/geodesy/blob/master/ 

latlon-ellipsoidal-referenceframe.js>} and U{latlon-ellipsoidal-referenceframe-txparams.js 

<https://GitHub.com/ChrisVeness/geodesy/blob/master/latlon-ellipsoidal-referenceframe-txparams.js>}. 

 

Following is a copy of the comments in I{Veness}' U{latlon-ellipsoidal-referenceframe.js 

<https://GitHub.com/ChrisVeness/geodesy/blob/master/latlon-ellipsoidal-referenceframe.js>}. 

 

Modern geodetic reference frames: a latitude/longitude point defines a geographic location on, 

above or below the earth’s surface, measured in degrees from the equator and the U{International 

Reference Meridian<https://WikiPedia.org/wiki/IERS_Reference_Meridian>} (IRM) and metres above 

the ellipsoid within a given I{Terrestrial Reference Frame} at a given I{epoch}. 

 

This is scratching the surface of complexities involved in high precision geodesy, but may 

be of interest and/or value to those with less demanding requirements. More information U{here 

<https://www.Movable-Type.co.UK/scripts/geodesy-library.html>} and U{here 

<https://www.Movable-Type.co.UK/scripts/geodesy-library.html#latlon-ellipsoidal-referenceframe>}. 

 

Note that I{ITRF solutions} do not directly use an ellipsoid, but are specified by Cartesian 

coordinates. The GRS80 ellipsoid is recommended for transformations to geographical coordinates. 

 

Note WGS84(G730/G873/G1150) are coincident with ITRF at 10-centimetre level, see also U{here 

<ftp://ITRF.ENSG.IGN.Fr/pub/itrf/WGS84.TXT>}. WGS84(G1674) and ITRF20014 / ITRF2008 I{"are likely 

to agree at the centimeter level"}, see also U{QPS/Qinsy<https://Confluence.QPS.NL/qinsy/ 

en/how-to-deal-with-etrs89-datum-and-time-dependent-transformation-parameters-45353274.html>}. 

 

@var RefFrames.ETRF2000: RefFrame(name='ETRF2000', epoch=2005, ellipsoid=Ellipsoid(name='GRS80') 

@var RefFrames.GDA2020: RefFrame(name='GDA2020', epoch=2020, ellipsoid=Ellipsoid(name='GRS80') 

@var RefFrames.GDA94: RefFrame(name='GDA94', epoch=1994, ellipsoid=Ellipsoid(name='GRS80') 

@var RefFrames.ITRF2000: RefFrame(name='ITRF2000', epoch=1997, ellipsoid=Ellipsoid(name='GRS80') 

@var RefFrames.ITRF2005: RefFrame(name='ITRF2005', epoch=2000, ellipsoid=Ellipsoid(name='GRS80') 

@var RefFrames.ITRF2008: RefFrame(name='ITRF2008', epoch=2005, ellipsoid=Ellipsoid(name='GRS80') 

@var RefFrames.ITRF2014: RefFrame(name='ITRF2014', epoch=2010, ellipsoid=Ellipsoid(name='GRS80') 

@var RefFrames.ITRF90: RefFrame(name='ITRF90', epoch=1988, ellipsoid=Ellipsoid(name='GRS80') 

@var RefFrames.ITRF91: RefFrame(name='ITRF91', epoch=1988, ellipsoid=Ellipsoid(name='GRS80') 

@var RefFrames.ITRF93: RefFrame(name='ITRF93', epoch=1988, ellipsoid=Ellipsoid(name='GRS80') 

@var RefFrames.NAD83: RefFrame(name='NAD83', epoch=1997, ellipsoid=Ellipsoid(name='GRS80') 

@var RefFrames.WGS84: RefFrame(name='WGS84', epoch=1984, ellipsoid=Ellipsoid(name='WGS84') 

@var RefFrames.WGS84g1150: RefFrame(name='WGS84g1150', epoch=2001, ellipsoid=Ellipsoid(name='WGS84') 

@var RefFrames.WGS84g1674: RefFrame(name='WGS84g1674', epoch=2005, ellipsoid=Ellipsoid(name='WGS84') 

@var RefFrames.WGS84g1762: RefFrame(name='WGS84g1762', epoch=2005, ellipsoid=Ellipsoid(name='WGS84') 

''' 

 

from pygeodesy.basics import map1, _xinstanceof 

from pygeodesy.datums import _ellipsoid, Transform 

from pygeodesy.ellipsoids import Ellipsoids, Fmt, Property_RO 

from pygeodesy.errors import _IsnotError, TRFError 

from pygeodesy.interns import NN, _COMMASPACE_, _cartesian_, _conversion_, \ 

_ellipsoid_, _ellipsoidal_, _epoch_, _exists_, \ 

_float as _F, _GRS80_, _NAD83_, _name_, _no_, _s_, \ 

_SPACE_, _sx_, _sy_, _sz_, _to_, _tx_, _ty_, _tz_, \ 

_WGS84_, _0_0, _0_001, _0_01, _0_1, _0_26, _0_5, _1_0 

from pygeodesy.lazily import _ALL_LAZY 

from pygeodesy.named import classname, _lazyNamedEnumItem as _lazy, _NamedEnum, \ 

_NamedEnumItem, _NamedDict as _XD, _NamedTuple 

# from pygeodesy.props import Property_RO # from .ellipsoids 

# from pygeodesy.streprs import Fmt # from .ellipsoids 

from pygeodesy.units import Epoch, Float 

 

from math import ceil 

 

__all__ = _ALL_LAZY.trf 

__version__ = '22.04.07' 

 

_0_02 = _F( 0.02) 

_0_06 = _F( 0.06) 

_0_09 = _F( 0.09) 

_366_0 = _F(366) 

_mDays = (0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0) 

 

_ETRF2000_ = 'ETRF2000' 

_GDA2020_ = 'GDA2020' 

_GDA94_ = 'GDA94' 

_ITRF_ = 'ITRF' 

_ITRF88_ = 'ITRF88' 

_ITRF89_ = 'ITRF89' 

_ITRF90_ = 'ITRF90' 

_ITRF91_ = 'ITRF91' 

_ITRF92_ = 'ITRF92' 

_ITRF93_ = 'ITRF93' 

_ITRF94_ = 'ITRF94' 

_ITRF96_ = 'ITRF96' 

_ITRF97_ = 'ITRF97' 

_ITRF2000_ = 'ITRF2000' 

_ITRF2005_ = 'ITRF2005' 

_ITRF2008_ = 'ITRF2008' 

_ITRF2014_ = 'ITRF2014' 

_WGS84g1150_ = 'WGS84g1150' 

_WGS84g1674_ = 'WGS84g1674' 

_WGS84g1762_ = 'WGS84g1762' 

 

 

class RefFrame(_NamedEnumItem): 

'''Terrestrial Reference Frame (TRF) parameters. 

''' 

_ellipsoid = None # ellipsoid GRS80 or WGS84 (L{Ellipsoid} or L{Ellipsoid2}) 

_epoch = _0_0 # epoch, calendar year (L{Epoch} or C{float}) 

 

def __init__(self, epoch, ellipsoid, name=NN): 

'''New L{RefFrame}. 

 

@arg epoch: Epoch, a fractional calendar year (C{scalar} or C{str}). 

@arg ellipsoid: The ellipsoid (L{Ellipsoid}, L{Ellipsoid2}, 

L{Datum} or L{a_f2Tuple}). 

@kwarg name: Optional, unique name (C{str}). 

 

@raise NameError: A L{RefFrame} with that B{C{name}} 

already exists. 

 

@raise TRFError: Invalid B{C{epoch}}. 

 

@raise TypeError: Invalid B{C{ellipsoid}}. 

''' 

self._ellipsoid = _ellipsoid(ellipsoid, name=name) 

self._epoch = Epoch(epoch) 

self._register(RefFrames, name) 

 

def __matmul__(self, other): # PYCHOK Python 3.5+ 

'''Convert cartesian or ellipsoidal B{C{other}} to this reframe. 

 

@raise TypeError: Invalid B{C{other}}. 

''' 

try: # only Cartesian- and LatLonEllipsoidalBase 

return other.toRefFrame(self) 

except AttributeError: 

pass 

raise _IsnotError(_cartesian_, _ellipsoidal_, other=other) 

 

@Property_RO 

def ellipsoid(self): 

'''Get this reference frame's ellipsoid (L{Ellipsoid} or L{Ellipsoid2}). 

''' 

return self._ellipsoid 

 

@Property_RO 

def epoch(self): 

'''Get this reference frame's epoch (C{Epoch}). 

''' 

return self._epoch 

 

def toStr(self, name=NN, **unused): # PYCHOK expected 

'''Return this reference frame as a text string. 

 

@kwarg name: Override name (C{str}) or C{None} to exclude the 

reframe's name. 

 

@return: This L{RefFrame}'s attributes (C{str}). 

''' 

e = self.ellipsoid 

t = (Fmt.EQUAL(_name_, repr(name or self.name)), 

Fmt.EQUAL(_epoch_, self.epoch), 

Fmt.PAREN(Fmt.EQUAL(_ellipsoid_, classname(e)), 

Fmt.EQUAL(_name_, repr(e.name)))) 

return _COMMASPACE_.join(t[1:] if name is None else t) 

 

 

class RefFrames(_NamedEnum): 

'''(INTERNAL) L{RefFrame} registry, I{must} be a sub-class 

to accommodate the L{_LazyNamedEnumItem} properties. 

''' 

def _Lazy(self, epoch, ellipsoid_name, name=NN): 

'''(INTERNAL) Instantiate the L{RefFrame}. 

''' 

return RefFrame(epoch, Ellipsoids.get(ellipsoid_name), name=name) 

 

RefFrames = RefFrames(RefFrame) # PYCHOK singleton 

'''Some pre-defined L{RefFrame}s, all I{lazily} instantiated.''' 

# <https://GitHub.com/ChrisVeness/geodesy/blob/master/latlon-ellipsoidal-referenceframe.js> 

RefFrames._assert( 

ETRF2000 = _lazy(_ETRF2000_, _F(2005), _GRS80_), # ETRF2000(R08) 

GDA2020 = _lazy(_GDA2020_, _F(2020), _GRS80_), # Australia 

GDA94 = _lazy(_GDA94_, _F(1994), _GRS80_), # Australia 

ITRF2000 = _lazy(_ITRF2000_, _F(1997), _GRS80_), 

ITRF2005 = _lazy(_ITRF2005_, _F(2000), _GRS80_), 

ITRF2008 = _lazy(_ITRF2008_, _F(2005), _GRS80_), # aks ITRF08 

ITRF2014 = _lazy(_ITRF2014_, _F(2010), _GRS80_), 

ITRF90 = _lazy(_ITRF90_, _F(1988), _GRS80_), 

ITRF91 = _lazy(_ITRF91_, _F(1988), _GRS80_), 

ITRF93 = _lazy(_ITRF93_, _F(1988), _GRS80_), 

NAD83 = _lazy(_NAD83_, _F(1997), _GRS80_), # CORS96 

WGS84 = _lazy(_WGS84_, _F(1984), _WGS84_), 

WGS84g1150 = _lazy(_WGS84g1150_, _F(2001), _WGS84_), 

WGS84g1674 = _lazy(_WGS84g1674_, _F(2005), _WGS84_), 

WGS84g1762 = _lazy(_WGS84g1762_, _F(2005), _WGS84_)) # same epoch 

 

 

def date2epoch(year, month, day): 

'''Return the reference frame C{epoch} for a calendar day. 

 

@arg year: Year of the date (C{scalar}). 

@arg month: Month in the B{C{year}} (C{scalar}, 1..12). 

@arg day: Day in the B{C{month}} (C{scalar}, 1..31). 

 

@return: Epoch, the fractional year (C{float}). 

 

@raise TRFError: Invalid B{C{year}}, B{C{month}} or B{C{day}}. 

 

@note: Any B{C{year}} is considered a leap year, i.e. having 

29 days in February. 

''' 

try: 

y, m, d = map1(int, year, month, day) 

if y > 0 and 1 <= m <= 12 and 1 <= d <= _mDays[m]: 

return Epoch(y + float(sum(_mDays[:m]) + d) / _366_0, low=0) 

 

t = NN # _invalid_ 

except (TRFError, TypeError, ValueError) as x: 

t = str(x) 

raise TRFError(year=year, month=month, day=day, txt=t) 

 

 

def epoch2date(epoch): 

'''Return the date for a reference frame C{epoch}. 

 

@arg epoch: Fractional year (C{scalar}). 

 

@return: 3-Tuple C{(year, month, day)}. 

 

@raise TRFError: Invalid B{C{epoch}}. 

 

@note: Any B{C{year}} is considered a leap year, i.e. having 

29 days in February. 

''' 

e = Epoch(epoch, Error=TRFError, low=0) 

y = int(e) 

d = int(ceil(_366_0 * (e - y))) 

for m, n in enumerate(_mDays[1:]): 

if d > n: 

d -= n 

else: 

break 

return y, (m + 1), max(1, d) 

 

 

_mas = _mm = _ppb = Float # as == arcseconds 

_Forward = _0_001 # mm2m, ppb2ppM, mas2as 

_Inverse = -_0_001 # same, inverse transforms 

 

 

def _intermediate(n1, n2): 

'''(INTERNAL) Find a trf* "in between" C{n1} and C{n2}. 

''' 

f1 = set(m for n, m in _trfXs.keys() if n == n1) # from trf1 

t2 = set(n for n, m in _trfXs.keys() if m == n2) # to trf2 

n = f1.intersection(t2) 

return n.pop() if n else NN 

 

 

def _reframeTransforms2(rf2, rf, epoch): 

'''(INTERNAL) Get 0, 1 or 2 Helmert L{Transform}s to convert 

reference frame B{C{rf}} observed at B{C{epoch}} into B{C{rf2}}. 

''' 

e = rf.epoch if epoch is None else Epoch(epoch) 

 

n2 = rf2.name # .upper() 

n1 = rf.name # .upper() 

if n1 == n2 or (n1.startswith(_ITRF_) and n2.startswith(_WGS84_)) \ 

or (n2.startswith(_ITRF_) and n1.startswith(_WGS84_)): 

return e, () # PYCHOK returns 

 

if (n1, n2) in _trfXs: 

return e, (_2Transform((n1, n2), e, _Forward),) # PYCHOK returns 

 

if (n2, n1) in _trfXs: 

return e, (_2Transform((n2, n1), e, _Inverse),) # PYCHOK returns 

 

n = _intermediate(n1, n2) 

if n: 

return e, (_2Transform((n1, n), e, _Forward), # PYCHOK returns 

_2Transform((n, n2), e, _Forward)) 

 

n = _intermediate(n2, n1) 

if n: 

return e, (_2Transform((n, n1), e, _Inverse), # PYCHOK returns 

_2Transform((n2, n), e, _Inverse)) 

 

t = _SPACE_(RefFrame.__name__, repr(n1), _to_, repr(n2)) 

raise TRFError(_no_(_conversion_), txt=t) 

 

 

def _2Transform(n1_n2, epoch, _Forward_Inverse): 

'''(INTERNAL) Combine the dual Helmert transforms from TRF 

conversion C{_trfXs[n1_n2]} into a into a single Helmert 

L{Transform} observed at B{C{epoch}}. 

 

@note: Translations in C{millimeter} are converted to 

C{meter} and rotations in C{milliarcseconds} to 

C{arcseconds}. 

''' 

X = _trfXs[n1_n2] 

e = epoch - X.epoch # fractional delta years 

d = dict((n, (x + r * e) * _Forward_Inverse) for 

n, x, r in zip(Transform7Tuple._Names_, X.xform, X.rates)) 

return Transform(**d) 

 

 

class Transform7Tuple(_NamedTuple): 

'''7-Tuple C{(tx, ty, tz, s, sx, sy, sz)} Helmert transformation 

with translations C{tx}, C{ty} and C{tz} in C{millimeter}, 

scale C{s} in C{ppb} and rotations C{sx}, C{sy} and C{sz} in 

C{milliarcseconds}. 

 

@see: L{Transform}. 

''' 

_Names_ = (_tx_, _ty_, _tz_, _s_, _sx_, _sy_, _sz_) 

_Units_ = (_mm, _mm, _mm, _ppb, _mas, _mas, _mas) 

 

def __new__(cls, tx=_0_0, ty=_0_0, tz=_0_0, s=_0_0, 

sx=_0_0, sy=_0_0, sz=_0_0, name=NN): 

'''New L{Transform7Tuple}. 

 

@kwarg tx: Optional X translation (C{millimeter}). 

@kwarg ty: Optional Y translation (C{millimeter}). 

@kwarg tz: Optional Z translation (C{millimeter}). 

@kwarg s: Optional scale (C{float}), ppb. 

@kwarg sx: Optional X rotation (C{milliarcseconds}). 

@kwarg sy: Optional Y rotation (C{milliarcseconds}). 

@kwarg sz: Optional Z rotation (C{milliarcseconds}). 

@kwarg name: Optional name (C{str}). 

''' 

t = map1(_F, tx, ty, tz, s, sx, sy, sz) 

return _NamedTuple.__new__(cls, *t, name=name) 

 

 

def trfXform(reframe1, reframe2, epoch=None, xform=None, rates=None): 

'''Define a new Terrestrial Reference Frame (TRF) conversion. 

 

@arg reframe1: Source reframe (L{RefFrame}), converting I{from}. 

@arg reframe2: Destination reframe (L{RefFrame}), converting I{to}. 

@kwarg epoch: Epoch, a fractional calendar year (C{scalar} or C{str}) 

or C{None} for C{B{reframe2}.epoch}. 

@kwarg xform: Helmert transform (C{Tranform7Tuple}). 

@kwarg rates: Helmert transform (C{Tranform7Tuple}). 

 

@raise TRFError: Invalid B{C{epoch}} or TRF conversion already exists. 

''' 

_xinstanceof(RefFrame, reframe1=reframe1, reframe2=reframe2) 

e = reframe2.epoch if epoch is None else Epoch(epoch=epoch, Error=TRFError) 

_xinstanceof(Transform7Tuple, xform=xform, rates=rates) 

_trfX(reframe1.name, reframe2.name, epoch=e, xform=xform, rates=rates) 

 

 

def _trfX(n1, n2, **epoch_xform_rates): 

'''(INTERNAL) New C{_trfXs} entry. 

''' 

n1_n2 = n1, n2 

if n1_n2 in _trfXs: 

raise TRFError(trfX=n1_n2, txt=_exists_) # _NameError 

_trfXs[n1_n2] = _XD(X=n1_n2, **epoch_xform_rates) 

 

 

_T = Transform7Tuple 

_T_0_0_x_7 = _T(_0_0, _0_0, _0_0, _0_0, _0_0, _0_0, _0_0) 

# TRF conversions specified as an epoch and dual 7-parameter Helmert transforms. Most from U{Transformation 

# Parameters<http://ITRF.IGN.Fr/trans_para.php>}, more at U{Quinsy QPS<https://confluence.QPS.NL/qinsy/ 

# files/latest/en/182618383/182618384/1/1579182881000/ITRF_Transformation_Parameters.xlsx>}. See also 

# U{Quinsy International Terrestrial Reference Frame 2014 (ITRF2014)<https://confluence.QPS.NL/qinsy/ 

# latest/en/international-terrestrial-reference-frame-2014-itrf2014-182618383.html>}. 

_trfXs = dict() # key is [(from_TRF, to_TRF)] 2-tuple 

# see U{Transformation Parameters ITRF2014<http://ITRF.IGN.Fr/doc_ITRF/Transfo-ITRF2014_ITRFs.txt>} 

_trfX(_ITRF2014_, _ITRF2008_, epoch=_F(2010), # <http://ITRF.ENSG.IGN.Fr/ITRF_solutions/2014/tp_14-08.php> 

xform=_T( 1.6, 1.9, 2.4, -0.02, _0_0, _0_0, _0_0), 

rates=_T( _0_0, _0_0, -_0_1, 0.03, _0_0, _0_0, _0_0)) 

_trfX(_ITRF2014_, _ITRF2005_, epoch=_F(2010), 

xform=_T( 2.6, _1_0, -2.3, 0.92, _0_0, _0_0, _0_0), 

rates=_T( 0.3, _0_0, -_0_1, 0.03, _0_0, _0_0, _0_0)) 

_trfX(_ITRF2014_, _ITRF2000_, epoch=_F(2010), 

xform=_T( 0.7, 1.2, -26.1, 2.12, _0_0, _0_0, _0_0), 

rates=_T( _0_1, _0_1, -1.9, 0.11, _0_0, _0_0, _0_0)) 

_trfX(_ITRF2014_, _ITRF97_, epoch=_F(2010), 

xform=_T( 7.4, -_0_5, -62.8, 3.8, _0_0, _0_0, _0_26), 

rates=_T( _0_1, -_0_5, -3.3, 0.12, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2014_, _ITRF96_, epoch=_F(2010), 

xform=_T( 7.4, -_0_5, -62.8, 3.8, _0_0, _0_0, _0_26), 

rates=_T( _0_1, -_0_5, -3.3, 0.12, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2014_, _ITRF94_, epoch=_F(2010), 

xform=_T( 7.4, -_0_5, -62.8, 3.8, _0_0, _0_0, _0_26), 

rates=_T( _0_1, -_0_5, -3.3, 0.12, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2014_, _ITRF93_, epoch=_F(2010), 

xform=_T( -50.4, 3.3, -60.2, 4.29, -2.81, -3.38, 0.4), 

rates=_T( -2.8, -_0_1, -2.5, 0.12, -0.11, -0.19, 0.07)) 

_trfX(_ITRF2014_, _ITRF92_, epoch=_F(2010), 

xform=_T( 15.4, 1.5, -70.8, 3.09, _0_0, _0_0, _0_26), 

rates=_T( _0_1, -_0_5, -3.3, 0.12, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2014_, _ITRF91_, epoch=_F(2010), 

xform=_T( 27.4, 15.5, -76.8, 4.49, _0_0, _0_0, _0_26), 

rates=_T( _0_1, -_0_5, -3.3, 0.12, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2014_, _ITRF90_, epoch=_F(2010), 

xform=_T( 25.4, 11.5, -92.8, 4.79, _0_0, _0_0, _0_26), 

rates=_T( _0_1, -_0_5, -3.3, 0.12, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2014_, _ITRF89_, epoch=_F(2010), 

xform=_T( 30.4, 35.5, -130.8, 8.19, _0_0, _0_0, _0_26), 

rates=_T( _0_1, -_0_5, -3.3, 0.12, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2014_, _ITRF88_, epoch=_F(2010), 

xform=_T( 25.4, -_0_5, -154.8, 11.29, _0_1, _0_0, _0_26), 

rates=_T( _0_1, -_0_5, -3.3, 0.12, _0_0, _0_0, _0_02)) 

 

# see U{Transformation Parameters ITRF2008<http://ITRF.IGN.Fr/doc_ITRF/Transfo-ITRF2008_ITRFs.txt>} 

# _trfX(_ITRF2008_, _ITRF2005_, epoch=_F(2005), # <http://ITRF.ENSG.IGN.Fr/ITRF_solutions/2008/tp_08-05.php> 

# xform=_T(-_0_5, -0.9, -4.7, 0.94, _0_0, _0_0, _0_0), 

# rates=_T( 0.3, _0_0, _0_0, _0_0, _0_0, _0_0, _0_0)) 

_trfX(_ITRF2008_, _ITRF2005_, epoch=_F(2000), 

xform=_T( -2.0, -0.9, -4.7, 0.94, _0_0, _0_0, _0_0), 

rates=_T( 0.3, _0_0, _0_0, _0_0, _0_0, _0_0, _0_0)) 

_trfX(_ITRF2008_, _ITRF2000_, epoch=_F(2000), 

xform=_T( -1.9, -1.7, -10.5, 1.34, _0_0, _0_0, _0_0), 

rates=_T( _0_1, _0_1, -1.8, 0.08, _0_0, _0_0, _0_0)) 

_trfX(_ITRF2008_, _ITRF97_, epoch=_F(2000), 

xform=_T( 4.8, 2.6, -33.2, 2.92, _0_0, _0_0, _0_06), 

rates=_T( _0_1, -_0_5, -3.2, _0_09, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2008_, _ITRF96_, epoch=_F(2000), 

xform=_T( 4.8, 2.6, -33.2, 2.92, _0_0, _0_0, _0_06), 

rates=_T( _0_1, -_0_5, -3.2, _0_09, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2008_, _ITRF94_, epoch=_F(2000), 

xform=_T( 4.8, 2.6, -33.2, 2.92, _0_0, _0_0, _0_06), 

rates=_T( _0_1, -_0_5, -3.2, _0_09, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2008_, _ITRF93_, epoch=_F(2000), 

xform=_T( -24.0, 2.4, -38.6, 3.41, -1.71, -1.48, -0.3), 

rates=_T( -2.8, -_0_1, -2.4, _0_09, -0.11, -0.19, 0.07)) 

_trfX(_ITRF2008_, _ITRF92_, epoch=_F(2000), 

xform=_T( 12.8, 4.6, -41.2, 2.21, _0_0, _0_0, _0_06), 

rates=_T( _0_1, -_0_5, -3.2, _0_09, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2008_, _ITRF91_, epoch=_F(2000), 

xform=_T( 24.8, 18.6, -47.2, 3.61, _0_0, _0_0, _0_06), 

rates=_T( _0_1, -_0_5, -3.2, _0_09, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2008_, _ITRF90_, epoch=_F(2000), 

xform=_T( 22.8, 14.6, -63.2, 3.91, _0_0, _0_0, _0_06), 

rates=_T( _0_1, -_0_5, -3.2, _0_09, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2008_, _ITRF89_, epoch=_F(2000), 

xform=_T( 27.8, 38.6, -101.2, 7.31, _0_0, _0_0, _0_06), 

rates=_T( _0_1, -_0_5, -3.2, _0_09, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2008_, _ITRF88_, epoch=_F(2000), 

xform=_T( 22.8, 2.6, -125.2, 10.41, _0_1, _0_0, _0_06), 

rates=_T( _0_1, -_0_5, -3.2, _0_09, _0_0, _0_0, _0_02)) 

 

_trfX(_ITRF2005_, _ITRF2000_, epoch=_F(2000), # <http://ITRF.ENSG.IGN.Fr/ITRF_solutions/2005/tp_05-00.php> 

xform=_T( _0_1, -0.8, -5.8, 0.4, _0_0, _0_0, _0_0), 

rates=_T( -0.2, _0_1, -1.8, 0.08, _0_0, _0_0, _0_0)) 

 

_trfX(_ITRF2000_, _ITRF97_, epoch=_F(1997), 

xform=_T( 0.67, 0.61, -1.85, 1.55, _0_0, _0_0, _0_0), 

rates=_T( _0_0, -0.06, -0.14, _0_01, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2000_, _ITRF96_, epoch=_F(1997), 

xform=_T( 0.67, 0.61, -1.85, 1.55, _0_0, _0_0, _0_0), 

rates=_T( _0_0, -0.06, -0.14, _0_01, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2000_, _ITRF94_, epoch=_F(1997), 

xform=_T( 0.67, 0.61, -1.85, 1.55, _0_0, _0_0, _0_0), 

rates=_T( _0_0, -0.06, -0.14, _0_01, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2000_, _ITRF93_, epoch=_F(1988), 

xform=_T( 12.7, 6.5, -20.9, 1.95, -0.39, 0.8, -1.14), 

rates=_T( -2.9, -0.2, -0.6, _0_01, -0.11, -0.19, 0.07)) 

_trfX(_ITRF2000_, _ITRF92_, epoch=_F(1988), 

xform=_T( 1.47, 1.35, -1.39, 0.75, _0_0, _0_0, -0.18), 

rates=_T( _0_0, -0.06, -0.14, _0_01, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2000_, _ITRF91_, epoch=_F(1988), 

xform=_T( 26.7, 27.5, -19.9, 2.15, _0_0, _0_0, -0.18), 

rates=_T( _0_0, -0.6, -1.4, _0_01, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2000_, _ITRF90_, epoch=_F(1988), 

xform=_T( 2.47, 2.35, -3.59, 2.45, _0_0, _0_0, -0.18), 

rates=_T( _0_0, -0.06, -0.14, _0_01, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2000_, _ITRF89_, epoch=_F(1988), 

xform=_T( 2.97, 4.75, -7.39, 5.85, _0_0, _0_0, -0.18), 

rates=_T( _0_0, -0.06, -0.14, _0_01, _0_0, _0_0, _0_02)) 

_trfX(_ITRF2000_, _ITRF88_, epoch=_F(1988), 

xform=_T( 2.47, 1.15, -9.79, 8.95, _0_1, _0_0, -0.18), 

rates=_T( _0_0, -0.06, -0.14, _0_01, _0_0, _0_0, _0_02)) 

 

# see U{Boucher, C. & Altamimi, Z. "Memo: Specifications for reference frame fixing in the 

# analysis of a EUREF GPS campaign" (2011) <https://ETRS89.ENSG.IGN.Fr/memo-V8.pdf>} and 

# Altamimi, Z. U{"Key results of ITRF2014 and implication to ETRS89 realization", EUREF2016 

# <https://www.EUREF.EU/symposia/2016SanSebastian/01-02-Altamimi.pdf>}. 

_trfX(_ITRF2014_, _ETRF2000_, epoch=_F(2000), 

xform=_T( 53.7, 51.2, -55.1, 1.02, 0.891, 5.39, -8.712), 

rates=_T( _0_1, _0_1, -1.9, 0.11, 0.081, 0.49, -0.792)) 

_trfX(_ITRF2008_, _ETRF2000_, epoch=_F(2000), 

xform=_T( 52.1, 49.3, -58.5, 1.34, 0.891, 5.39, -8.712), 

rates=_T( _0_1, _0_1, -1.8, 0.08, 0.081, 0.49, -0.792)) 

_trfX(_ITRF2005_, _ETRF2000_, epoch=_F(2000), 

xform=_T( 54.1, 50.2, -53.8, 0.4, 0.891, 5.39, -8.712), 

rates=_T( -0.2, _0_1, -1.8, 0.08, 0.081, 0.49, -0.792)) 

_trfX(_ITRF2000_, _ETRF2000_, epoch=_F(2000), 

xform=_T( 54.0, 51.0, -48.0, _0_0, 0.891, 5.39, -8.712), 

rates=_T( _0_0, _0_0, _0_0, _0_0, 0.081, 0.49, -0.792)) 

 

# GDA2020 "Geocentric Datum of Australia 2020 Technical Manual", v1.5, 2020-12-09, Table 3.3 and 3.4 

# <https://www.ICSM.gov.AU/sites/default/files/2020-12/GDA2020%20Technical%20Manual%20V1.5_4.pdf> 

# (the GDA2020 xforms are different but the rates are the same as GDA94, further below) 

_trfX(_ITRF2014_, _GDA2020_, epoch=_F(2020), 

xform=_T_0_0_x_7, 

rates=_T( _0_0, _0_0, _0_0, _0_0, 1.50379, 1.18346, 1.20716)) 

_trfX(_ITRF2008_, _GDA2020_, epoch=_F(2020), 

xform=_T( 13.79, 4.55, 15.22, 2.5, 0.2808, 0.2677, -0.4638), 

rates=_T( 1.42, 1.34, 0.9, 0.109, 1.5461, 1.182, 1.1551)) 

_trfX(_ITRF2005_, _GDA2020_, epoch=_F(2020), 

xform=_T( 40.32, -33.85, -16.72, 4.286, -1.2893, -0.8492, -0.3342), 

rates=_T( 2.25, -0.62, -0.56, 0.294, -1.4707, -1.1443, -1.1701)) 

_trfX(_ITRF2000_, _GDA2020_, epoch=_F(2020), 

xform=_T(-105.52, 51.58, 231.68, 3.55, 4.2175, 6.3941, 0.8617), 

rates=_T( -4.66, 3.55, 11.24, 0.249, 1.7454, 1.4868, 1.224)) 

 

# see Table 2 in U{Dawson, J. & Woods, A. "ITRF to GDA94 coordinate transformations", Journal of Applied 

# Geodesy 4 (2010), 189-199<https://www.ResearchGate.net/publication/258401581_ITRF_to_GDA94_coordinate_transformations>} 

# (note, sign of rotations for GDA94 reversed as "Australia assumes rotation to be of coordinate axes", 

# rather than the more conventional "position around the coordinate axes") 

_trfX(_ITRF2008_, _GDA94_, epoch=_F(1994), 

xform=_T( -84.68, -19.42, 32.01, 9.71, -0.4254, 2.2578, 2.4015), 

rates=_T( 1.42, 1.34, 0.9, 0.109, 1.5461, 1.182, 1.1551)) 

_trfX(_ITRF2005_, _GDA94_, epoch=_F(1994), 

xform=_T( -79.73, -6.86, 38.03, 6.636, 0.0351, -2.1211, -2.1411), 

rates=_T( 2.25, -0.62, -0.56, 0.294, -1.4707, -1.1443, -1.1701)) 

_trfX(_ITRF2000_, _GDA94_, epoch=_F(1994), 

xform=_T( -45.91, -29.85, -20.37, 7.07, -1.6705, 0.4594, 1.9356), 

rates=_T( -4.66, 3.55, 11.24, 0.249, 1.7454, 1.4868, 1.224)) 

 

# see U{Solar, T. & Snay, R.A. "Transforming Positions and Velocities between the 

# International Terrestrial Reference Frame of 2000 and North American Datum of 1983" 

# (2004)<https://www.NGS.NOAA.gov/CORS/Articles/SolerSnayASCE.pdf>} 

_trfX(_ITRF2000_, _NAD83_, epoch=_F(1997), # note NAD83(CORS96) 

xform=_T( 995.6, -1901.3, -521.5, 0.615, -25.915, -9.426, -11.599), 

rates=_T( 0.7, -0.7, _0_5, -0.182, -0.06667, 0.75744, 0.05133)) 

 

# see U{Quinsy QPS<https://confluence.QPS.NL/qinsy/files/latest/en/182618383/182618384/1/1579182881000/ 

# ITRF_Transformation_Parameters.xlsx>}, sheets ITRF and NAD83 

_trfX(_ITRF2008_, _NAD83_, epoch=_F(1997), 

xform=_T( 993.43, -1903.31, -526.55, 1.71504, -25.91467, -9.42645, -11.59935), 

rates=_T( 0.79, -0.6, -1.34, -0.10201, -0.06667, 0.75744, 0.05133)) 

_trfX(_ITRF2005_, _NAD83_, epoch=_F(1997), 

xform=_T( 996.3, -1902.4, -521.9, 0.775, -25.915, -9.426, -11.599), 

rates=_T( 0.5, -0.6, -1.3, -0.10201, -0.06667, 0.75744, 0.05133)) 

_trfX(_ITRF90_, _NAD83_, epoch=_F(1997), 

xform=_T( 973.0, -1919.2, -482.9, -0.9, -25.79, -9.65, -11.66), 

rates=_T( _0_0, _0_0, _0_0, _0_0, -0.053, 0.742, 0.032)) 

_trfX(_ITRF90_, _WGS84_, epoch=_F(1984), 

xform=_T( 60.0, -517.0, -223.0, -11.0, 18.3, -0.3, 7.0), 

rates=_T_0_0_x_7) 

del _T 

 

if __name__ == '__main__': 

 

from pygeodesy.interns import _COMMA_, _NL_, _NL_var_, _STAR_ 

 

D = date2epoch.__name__ 

E = epoch2date.__name__ 

y = 2021 

for m in range(1, 13): 

for d in (1, _mDays[m] - 1, _mDays[m]): 

f = '%s(%d,%3d,%3d)' % (D, y, m, d) 

e = date2epoch(y, m, d) 

t = epoch2date(e) 

x = NN if t == (y, m, d) else _STAR_ 

e = '%.3f' % (e,) 

e = '%s, %s(%s)' % (e, E, e) 

t = '%d,%3d,%3d' % t 

print('# %s = %s = %s %s' % (f, e, t, x)) 

 

# __doc__ of this file, force all into registery 

t = [NN] + RefFrames.toRepr(all=True).split(_NL_) 

print(_NL_var_.join(i.strip(_COMMA_) for i in t)) 

 

# **) MIT License 

# 

# Copyright (C) 2016-2022 -- mrJean1 at Gmail -- All Rights Reserved. 

# 

# Permission is hereby granted, free of charge, to any person obtaining a 

# copy of this software and associated documentation files (the "Software"), 

# to deal in the Software without restriction, including without limitation 

# the rights to use, copy, modify, merge, publish, distribute, sublicense, 

# and/or sell copies of the Software, and to permit persons to whom the 

# Software is furnished to do so, subject to the following conditions: 

# 

# The above copyright notice and this permission notice shall be included 

# in all copies or substantial portions of the Software. 

# 

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 

# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 

# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

# OTHER DEALINGS IN THE SOFTWARE. 

 

# % python -m pygeodesy.trf 

# 

# date2epoch(2021, 1, 1) = 2021.003, epoch2date(2021.003) = 2021, 1, 1 

# date2epoch(2021, 1, 30) = 2021.082, epoch2date(2021.082) = 2021, 1, 30 

# date2epoch(2021, 1, 31) = 2021.085, epoch2date(2021.085) = 2021, 1, 31 

# date2epoch(2021, 2, 1) = 2021.087, epoch2date(2021.087) = 2021, 2, 2 * 

# date2epoch(2021, 2, 28) = 2021.161, epoch2date(2021.161) = 2021, 2, 28 

# date2epoch(2021, 2, 29) = 2021.164, epoch2date(2021.164) = 2021, 3, 1 * 

# date2epoch(2021, 3, 1) = 2021.167, epoch2date(2021.167) = 2021, 3, 2 * 

# date2epoch(2021, 3, 30) = 2021.246, epoch2date(2021.246) = 2021, 3, 31 * 

# date2epoch(2021, 3, 31) = 2021.249, epoch2date(2021.249) = 2021, 4, 1 * 

# date2epoch(2021, 4, 1) = 2021.251, epoch2date(2021.251) = 2021, 4, 1 

# date2epoch(2021, 4, 29) = 2021.328, epoch2date(2021.328) = 2021, 4, 29 

# date2epoch(2021, 4, 30) = 2021.331, epoch2date(2021.331) = 2021, 4, 30 

# date2epoch(2021, 5, 1) = 2021.333, epoch2date(2021.333) = 2021, 5, 1 

# date2epoch(2021, 5, 30) = 2021.413, epoch2date(2021.413) = 2021, 5, 30 

# date2epoch(2021, 5, 31) = 2021.415, epoch2date(2021.415) = 2021, 6, 1 * 

# date2epoch(2021, 6, 1) = 2021.418, epoch2date(2021.418) = 2021, 6, 2 * 

# date2epoch(2021, 6, 29) = 2021.495, epoch2date(2021.495) = 2021, 6, 30 * 

# date2epoch(2021, 6, 30) = 2021.497, epoch2date(2021.497) = 2021, 7, 1 * 

# date2epoch(2021, 7, 1) = 2021.500, epoch2date(2021.500) = 2021, 7, 1 

# date2epoch(2021, 7, 30) = 2021.579, epoch2date(2021.579) = 2021, 7, 30 

# date2epoch(2021, 7, 31) = 2021.582, epoch2date(2021.582) = 2021, 7, 31 

# date2epoch(2021, 8, 1) = 2021.585, epoch2date(2021.585) = 2021, 8, 1 

# date2epoch(2021, 8, 30) = 2021.664, epoch2date(2021.664) = 2021, 8, 31 * 

# date2epoch(2021, 8, 31) = 2021.667, epoch2date(2021.667) = 2021, 9, 1 * 

# date2epoch(2021, 9, 1) = 2021.669, epoch2date(2021.669) = 2021, 9, 2 * 

# date2epoch(2021, 9, 29) = 2021.746, epoch2date(2021.746) = 2021, 9, 30 * 

# date2epoch(2021, 9, 30) = 2021.749, epoch2date(2021.749) = 2021, 10, 1 * 

# date2epoch(2021, 10, 1) = 2021.751, epoch2date(2021.751) = 2021, 10, 1 

# date2epoch(2021, 10, 30) = 2021.831, epoch2date(2021.831) = 2021, 10, 30 

# date2epoch(2021, 10, 31) = 2021.833, epoch2date(2021.833) = 2021, 10, 31 

# date2epoch(2021, 11, 1) = 2021.836, epoch2date(2021.836) = 2021, 11, 1 

# date2epoch(2021, 11, 29) = 2021.913, epoch2date(2021.913) = 2021, 11, 29 

# date2epoch(2021, 11, 30) = 2021.915, epoch2date(2021.915) = 2021, 12, 1 * 

# date2epoch(2021, 12, 1) = 2021.918, epoch2date(2021.918) = 2021, 12, 2 * 

# date2epoch(2021, 12, 30) = 2021.997, epoch2date(2021.997) = 2021, 12, 31 * 

# date2epoch(2021, 12, 31) = 2022.000, epoch2date(2022.000) = 2022, 1, 1 *