
CodPy : a Python library for machine learning,
mathematical finance, and statistics

Philippe G. LeFloch1 , Jean-Marc Mercier, and Shohruh Miryusupov2

2022-10-03

1Laboratoire J.-L. Lions, Sorbonne Université and Centre National de la Recherche Scientifique, 4 Place
Jussieu, 75258 Paris, France. Email:contact@philippelefloch.org

2MPG-Partners, 136 Boulevard Haussmann, 75008 Paris, France. Email:jean-marc.mercier@mpg-
partners.com, shohruh.miryusupov@mpg-partners.com 3

2

Contents

1 Introduction 5
1.1 Main objective . 5
1.2 Outline of this monograph . 5
1.3 References . 6

2 Brief overview of methods of machine learning 9
2.1 A framework for machine learning . 9
2.2 Exploratory data analysis . 13
2.3 Performance indicators for machine learning . 14
2.4 General specification of tests . 18
2.5 Bibliography . 24
2.6 Appendix to chapter 2 . 24

3 Reproducing-kernel methods for machine learning 27
3.1 Purpose of this chapter . 27
3.2 Fundamental notions for supervised learning . 28
3.3 Dealing with kernels . 36
3.4 Discrete differential operators . 37
3.5 Kernel engineering . 44
3.6 A first application: a clustering algorithm . 46
3.7 Bibliography . 49
3.8 Appendix to Chapter 3 . 50

4 Kernel methods for optimal transport 51
4.1 A brief overview of discrete optimal transport . 51
4.2 Linear Sum Assignment Problems (LSAP) . 52
4.3 Conditional expectation algorithm . 56
4.4 The sampler function and discrete polar factorization 57
4.5 Bibliography . 59
4.6 Appendix to Chapter 4 . 59

5 Application to supervised machine learning 61
5.1 Aims of this chapter . 61
5.2 Regression problem: housing price prediction . 61
5.3 Classification problem: handwritten digits . 63
5.4 Reconstruction problems : learning from sub-sampled signals in tomography. . . . 65
5.5 Appendix . 67

6 Applications to unsupervised machine learning 69
6.1 Aims of this chapter . 69
6.2 Classification problem: handwritten digits . 69
6.3 German credit risk . 71

3

4 CONTENTS

6.4 Credit card marketing strategy . 72
6.5 Credit card fraud detection . 73
6.6 Portfolio of stock clustering . 74
6.7 Appendix . 76

7 Generative models with kernels 79
7.1 Aim of this section . 79
7.2 Numerical illustration . 82
7.3 Monte Carlo pricing . 88
7.4 P&L explanation . 90
7.5 The Bachelier problem . 93

8 Application to partial differential equations 95
8.1 Automatic algorithmic differentiation. 95
8.2 Differential machines benchmarks . 95
8.3 Taylor expansions using differential learning machines 97

This a preliminary version of a monograph in preparation This version: April 5, 2022.

Chapter 1

Introduction

1.1 Main objective
This monograph presents the algorithms that are implemented in the Python library CodPy —an
acronym that stands for the “Curse Of Dimensionality in PYthon”. This library provides the user
with a support vector machine (SVM) and encompasses a broad set of applications. The proposed
algorithms apply to partial differential equations arising, for instance, in mathematical finance and
fluid dynamics, as well as to discrete models arising in machine learning and statistics. Our basic
numerical strategy relies on a combination of ideas from the theory of reproducing kernel Hilbert
spaces (RKHS) and the theory of optimal transport. The authors have developed this library over
the past decade, originally for applications in mathematical finance, and it has now reach a stage
where it can be applied to problems of interest to engineering and industry.

We proceed by presenting first, in several tutorial chapters (Chapters 2 to 4), fundamental notions
about kernel-based discretizations as we proposed for the CodPy library, and at this stage we only
include elementary examples which illustrate the relevance of these fundamental concepts. In the
second part of this monograph (Chapters 5 to 8), we apply this general framework and introduce
further (and somewhat more involved) discretization techniques while presenting numerical results
and applications. Here, we treat several important problems arising in pattern recognition and
mathematical finance. Kernel-engineering technique are discussed and aim at formulating support
vector machines in a way that makes it easy to adapt them to many problems of interest in
engineering and industry.

The methodology applies to the discretization of partial differential operators and leads us to kernel-
based building blocks (associated with any given support vector machine) which can be used for
the approximation of solutions to partial differential problems, such those arising in fluid dynamics
modeling. Importantly, to all of our numerical results we associate quantitative error bounds (or
quality tests), which are of crucial importance in applications especially in mathematical finance.

We found it convenient to write this monograph by relying on a combination of Python code, R
code, and Latex code. We produced a Jupyter notebook in which all of the numerical tests can
be repeated and modified by the reader1.

1.2 Outline of this monograph
• In Chapter 2 we provide the reader with a brief overview of techniques of machine learning

and we introduce the notation and terminology we will use in this monograph while pointing
1The CodPy library is available for download.

5

6 CHAPTER 1. INTRODUCTION

out some other terminology also used within the machine learning community. Here, we
thus discuss the notions relevant for

– the description of numerical algorithms of machine learning,

– the description of performance indicators (or error estimates) which provide a measure
of the relevance of any given learning machine, and

– we briefly list the class of libraries currently available.

It is out of the scope of this monograph to cover all of the techniques that are currently available,
and we restrict attention to a selection of kernel-based methods of machine learning and specific
applications of central interest. By our own presentation of this material, we attempt here to
provide a new insight on the subject.

Kernel-based projection operators and kernel-based clustering methods presented in Chapter 3 are
novel algorithms that have no equivalent formulation in the existing algorithmic literature. We
also advocate here the use of the notion of discrepancy error and kernel-based norms which lead
us to performance indicators with good efficiency in the applications.

We provide criteria that can be used to evaluate the performance of an algorithm and do not
depend on the specific method in use. This leads us to a suitable benchmark of existing methods.
Many methods of machine learning have been proposed in the literature, and we advocate the
use of the above indicator in order to systematically benchmark them. * To any given learning
problem, represented by a list of input data,
* one should pick up several scenarios, several learning machines, and several performance indica-
tors, and then * systematically run the corresponding tests in order to compare, from the output,
the various performance indicators.

We consider here several learning machines, and compare with our strategy first with one- or two-
dimensional examples, leading to relevant benchmarks for supervised learning and unsupervised
learning. We then proceed with the study of problems of direct interest in the application.

The following topics are covered in this monograph.

• Chapter 2: Brief overview of methods of machine learning

• Chapter 3: Kernel methods for machine learning

• Chapter 4: Kernel methods for optimal transport

• Chapter 5: Application to supervised machine learning

• Chapter 6: Application to unsupervised machine learning

• Chapter 7: Application to optimal transport problems

• Chapter 8: Application to some partial differential equations

1.3 References
Our primarily intention in this monograph is to provide an introduction to our Python library,
and only a brief bibliography is included here, while we refer to the research papers cited below
for additional references. Indeed, a large literature is available on support vector machines and
reproducing kernel Hilbert spaces (RKHS), it is not our purpose to review it here. The interested
reader can refer to the textbooks by Berlinet and Thomas-Agnan [3] and Fasshauer [10],[11],[12]
which were very influential in the development of the present code and the reader will find therein
a background on the subject.

Our own contributions concerning the kernel-based meshfree algorithms presented in this mono-
graph can be found in the research papers by LeFloch and Mercier [28],[29],[30],[31],[32]. Moreover,

1.3. REFERENCES 7

the unpublished notes [33]–[38] contain earlier versions of the material in this monograph. For
additional material on meshfree methods and kernel-based methods and applications in fluid and
material dynamics, see for instance [2],[4],[16],[18],[22],[39],[41],[43],[46],[48],[52],[59].

8 CHAPTER 1. INTRODUCTION

Chapter 2

Brief overview of methods of
machine learning

2.1 A framework for machine learning
2.1.1 Prediction machine for supervised/unsupervised learning
Machine learning methods can be roughly split into two main approaches: unsupervised and
supervised methods. Both can be described within a general framework, referred to here as a
prediction machine. In short, a predictor, denoted by 𝒫𝑚, is an extrapolation or interpolation
operator

𝑓𝑧 = 𝒫𝑚(𝑋, 𝑌 = [], 𝑍 = 𝑋, 𝑓(𝑋)).
We use on a standard Python notation and the brackets above indicate that the variables 𝑌 , 𝑍
are optional input data.

• The choice of the method is indicated by the subscript 𝑚. Each method relies on a set of
external parameters. Fine tuning such parameters is sometimes very cumbersome and
provide a source of error and, in fact, some of the strategies in the literature propose to rely
on a learning machine in order to determine these external parameters. No performance
indicator is provided for this parameter tuning step, and this is an issue to take into account
in the applications before selecting up a particular method.

• The input data 𝑋, 𝑌 , 𝑍, 𝑓(𝑋) are as follows.

– The non-optional parameter 𝑋 ∈ ℝ𝑁𝑥×𝐷 is called the training set. The parameter 𝐷
is usually referred as the total number of features.

– The variable 𝑓(𝑋) ∈ ℝ𝑁𝑥×𝐷𝑓 is called the training set values, while the parameter
𝐷𝑓 is the number of training features.

– The variable 𝑍 ∈ ℝ𝑁𝑧×𝐷 is called the test set. If it is not specified, we tacitly assume
that 𝑍 = 𝑋.

– The variable 𝑌 ∈ ℝ𝑁𝑦×𝐷 is called the internal parameter set1 and is necessary in
order to define 𝒫𝑚.

• The output data are as follow.

– Supervised learning: this corresponds to choosing the input function values 𝑓(𝑋)
and we then write

𝑓𝑍 = 𝒫𝑚(𝑋, 𝑌 = [], 𝑍 = 𝑋, 𝑓(𝑋)) ∼ 𝑓(𝑍),
1also called weight set in neural network theory

9

10 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

where the values 𝑓𝑧 ∈ ℝ𝑁𝑧×𝐷 are called a prediction. We distinguish between two
cases.
∗ If the input data 𝑌 is left empty, then the prediction machine (2.1.1) is called a

feed-backward machine. In this case, the method computes this set with an
internal method and determine 𝑓𝑧.

∗ If 𝑌 is specified as input data, then the prediction machine (2.1.1) is referred
as a feed-forward machine. In this case, the method uses the set of internal
parameters and compute the prediction 𝑓𝑧.

– Unsupervised learning: we may also choose

𝑓𝑧 = 𝒫𝑚(𝑋, 𝑍 = 𝑋), (2.1.1)

where the output values 𝑓𝑧 ∈ ℝ𝑁𝑧×𝐷 are sometimes called clusters for the so-called
clustering methods (described later on).

Other machine learning methods can be described with the same notation. For instance, two
methods 𝑚1, 𝑚2 being defined, then the following composition describes a feed-backward machine,
which is quite close to the definition of semi-supervised learning in the literature and also
encompasses feed-backward learning machines:

𝑓𝑧 = 𝒫𝑚1
(𝑋, 𝒫𝑚2

(𝑋, 𝑓(𝑋)), 𝑍, 𝑓(𝑋)),

We summarize our main notation in Table 2.1. The sizes of the input data, that is, the integers
𝐷, 𝑁𝑥, 𝑁𝑦, 𝑁𝑧, 𝐷𝑓 , are also considered as input parameters. The distinction between supervised
and unsupervised learning is a matter of having, or not, optional input data and the correspondence
will be clarified in the rest of this chapter.

Table 2.1: Main parameters for machine learning

𝑋 𝑌 𝑍 𝑓(𝑋) 𝑓𝑧

training set parameter set test set training values predictions
size 𝑁𝑥 × 𝐷 size 𝑁𝑦 × 𝐷 size 𝑁𝑧 × 𝐷 size 𝑁𝑥 × 𝐷𝑓 size 𝑁𝑧 × 𝐷𝑓

Moreover, from any machine learning method 𝑚 we can also compute the gradient of a real valued
function 𝑓 = 𝑓(𝑥1, … , 𝑥𝐷) by

(∇𝑓)𝑍 = (∇𝑍𝒫𝑚)(𝑋, 𝑌 = [], 𝑍 = 𝑋, 𝑓(𝑋) = []) ∼ ∇𝑓(𝑍),

where ∇ ∶= (𝜕𝑥1
, … , 𝜕𝑥𝐷

), then we say that 𝑚 is a differentiable learning machine.

2.1.2 Techniques of supervised learning
Supervised learning (2.1.1) corresponds to the situation where the function values 𝑓(𝑋) is part of
the input data:

𝑓𝑧 = 𝒫𝑚(𝑋, 𝑌 = [], 𝑍 = 𝑋, 𝑓(𝑋)). (2.1.2)

Supervised learning can be best understood as a simple extrapolation procedure: from historical
observations of a given function 𝑋, 𝑓(𝑋), one wants to predict (or extrapolate) the function on a
new set of values 𝑍. Concerning the terminology, a method is said to be multi-class or multi-
output if the function 𝑓 under consideration can be vector-valued, that is, 𝐷𝑓 ≥ 1 in our notation.
Observe that one can always combine learning machines in order to produce multi-class methods.
However, this usually comes at a heavy computational cost, and this motivates our definition.
Moreover, the input function 𝑓 can be either:

2.1. A FRAMEWORK FOR MACHINE LEARNING 11

• discrete, that is, the set of unique values 𝑓(ℝ𝐷) is a discrete set, denoted 𝑅𝑎𝑛(𝑓). The set is
referred as labels, and this set can always be mapped to integer [1, … , #(𝑅𝑎𝑛(𝑓))], where
#(𝐸) denotes the number of elements, or cardinal, of a set.

• continuous, or
• mixed (some data being discrete, some data being continuous).

A classification of existing methods of supervised learning can be found at the website https:
//scikit-learn.org

We distinguish between:

• Different families of methods: linear models, support vector machines, neural networks, …

• Different particular methods: neural networks, Gaussian processes, …

• Different computational libraries: scikit-learn, TensorFlow,…

2.1.3 Techniques of unsupervised learning
Unsupervised learning corresponds to the situation where the function values 𝑓(𝑋) is not part of
input data (see (2.1.1)):

𝒫𝑚(𝑋, 𝑌 = [], 𝑍 = 𝑋). (2.1.3)
Unsupervised learning can be best understood as a simple interpolation procedure: from historical
observations of a given distribution 𝑋, one wants to extract (or interpolate) 𝑁𝑦 features that best
represent 𝑋. The output data of a standard clustering method are the cluster set, denoted
𝑌 ∈ ℝ𝑁𝑦×𝐷.

There are natural connections between supervised and unsupervised learning.

• In the context of semi-supervised clustering methods, the clusters 𝑦 are used in a supervised
learning machine to produce a prediction 𝑓𝑧 ∈ ℝ𝑁𝑧×𝐷𝑓 ; see (2.1.1).

• In the context of unsupervised clustering methods, a prediction 𝑓𝑧 ∈ ℝ𝑁𝑧 can also be made.
This prediction attaches each point 𝑧𝑖 of the test set to the cluster set 𝑌 , producing 𝑓𝑧 as a
map [1, … , 𝑁𝑧] ↦ [1, … , 𝑁𝑦].

In the literature, many clustering methods are available for performing the task above; see for
instance the dedicated Wikipedia page2.

2link to cluster analysis Wikipedia page.

https://scikit-learn.org
https://scikit-learn.org
https://en.wikipedia.org/wiki/Cluster_analysis

12 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

• Different family of methods are available: linear models, support vector machines, neural
networks,…

• Different particular methods are available: neural networks, Gaussian processes,…

• Different libraries are also available: Scikit-learn,…

Clustering represents one approach to unsupervised learning, and the library Scikit-learn does offer
a quite impressive list of clustering methods; see 3. In Figure 2.1 we provide some illustration:

Figure 2.1: List of scikit-learn clustering methods.

3link to scikit-learn clustering

https://scikit-learn.org/stable/modules/clustering.html

2.2. EXPLORATORY DATA ANALYSIS 13

• Each column corresponds to a particular clustering algorithm.
• Each row corresponds to a particular clustering, unsupervised problem:

– Each image scatter shows the training set 𝑋 and the test set 𝑍, which coincide here.
– Each image color indicates the predicted values 𝑓𝑧.

2.2 Exploratory data analysis
Preliminaries. Exploratory data analysis plays a central role in data engineering and allows one
to understand the structure of a given dataset, including its correlation and statistical properties.
For instance, we can study whether a data distribution is multimodal, skew, or discontinuous,
among other features. The technique can help in many different applications and, for instance in
unsupervised learning, one can produce a first guess concerning the number of possible clusters
associated with a given dataset, or concerning the type of kernels one should choose before applying
a kernel regression method.

As an example, we illustrate the visualization tools that we are using, consider the Iris flower data
set. Iris data set introduced by the British statistician, eugenicist, and biologist Ronald Fisher in
his 1936 paper “The use of multiple measurements in taxonomic problems”. The data set consists
of 50 samples from each of three species of Iris (Iris setosa, Iris virginica and Iris versicolor). Four
features were measured from each sample: the length and the width of the sepals and petals, in
centimeters.

Non-parametric density estimations. The density of the input data is estimated using a kernel
density estimate (KDE). Let (𝑥1, 𝑥2, … , 𝑥𝑛) be independent and identically distributed samples,
drawn from some univariate distribution with unknown density denoted by 𝑓 at any given point
𝑥. We are interested in estimating the shape of this function 𝑓 and the kernel density estimator is

̂𝑓ℎ(𝑥) = 1
𝑛

𝑛
∑
𝑖=1

𝐾ℎ(𝑥 − 𝑥𝑖) = 1
𝑛ℎ

𝑛
∑
𝑖=1

𝐾(𝑥 − 𝑥𝑖

ℎ),

where 𝐾 is a kernel (say any non-negative function) and ℎ > 0 is a smoothing parameter called
the bandwidth. Among the range of possible kernels that are are commonly used, we have:
uniform, triangular, biweight, triweight, Epanechnikov, normal, and many others. The ability of
the KDE to accurately represent the data depends on the choice of the smoothing bandwidth.
An over-smoothed estimate can remove meaningful features, but an under-smoothed estimate can
obscure the true shape within the random noise.

0 1 2 3 4 5 6 7 8
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Co
un

t

sepal length (cm)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

Figure 2.2: Kernel density estimator

Scatter plots. Another way to visualize data is to rely on a scatter plot, where the data are
displayed as a collection of points, each having the value of one variable determining the position

14 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

on the horizontal axis and the value of the other variable determining the position on the vertical
axis.

0 50

4.5

5.0

5.5

6.0

6.5

7.0

7.5

sepal length (cm)

0 50

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

sepal width (cm)

0 50
1

2

3

4

5

6

petal length (cm)

0 50
0.0

0.5

1.0

1.5

2.0

2.5

petal width (cm)

Figure 2.3: Scatter plot

Heat maps. The correlation matrix of 𝑛 random variables 𝑥1, … , 𝑥𝑛 is the 𝑛 × 𝑛 matrix whose
(𝑖, 𝑗) entry is 𝑐𝑜𝑟𝑟(𝑥𝑖, 𝑥𝑗). Thus the diagonal entries are all identically unity.

sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)

sepal length (cm)

sepal width (cm)

petal length (cm)

petal width (cm)

-0.032

0.86 -0.33

0.79 -0.25 0.95

Correlation matrix

0.2

0.0

0.2

Figure 2.4: Correlation matrix

Summary plots. The summary plot visualizes the density of each feature of the data on the
diagonal. The KDE plot on the lower diagonal and the scatter plot on the upper diagonal.

2.3 Performance indicators for machine learning
2.3.1 Distances and divergences
f-divergences. The notion of distance between probability distributions has many applications
in mathematical statistics, information theory, such as hypothesis and distribution testing, den-
sity estimation, etc. One family of well-studied and understood family of distances/divergences
between probability distributions are so-called 𝑓−divergences, we give a brief classification. Let
𝑓 ∶ (0, ∞) ↦ ℝ be a convex function with 𝑓(1) = 0. Let 𝑃 and 𝑄 be two probability distributions
on a discrete measurable space (𝒳, ℱ). If 𝑃 is absolutely continuous with respect to 𝑄, then
𝑓-divergence is defined as

𝐷𝑓(𝑃 ||𝑄) = 𝔼𝑄[𝑓 (𝑑𝑃
𝑑𝑄)] = ∑

𝑥
𝑄(𝑥)𝑓 (𝑑𝑃(𝑥)

𝑑𝑄(𝑥))

2.3. PERFORMANCE INDICATORS FOR MACHINE LEARNING 15

4.5

5.0

5.5

6.0

6.5

7.0

7.5

se
pa

l l
en

gt
h

(c
m

)

 = -0.03 = 0.86 = 0.79

2.0

2.5

3.0

3.5

4.0

4.5

se
pa

l w
id

th
 (c

m
)

 = -0.33 = -0.25

0

2

4

6

8

pe
ta

l l
en

gt
h

(c
m

)

 = 0.95

4 5 6 7 8
sepal length (cm)

0

1

2

3

pe
ta

l w
id

th
 (c

m
)

2.0 2.5 3.0 3.5 4.0 4.5
sepal width (cm)

0 2 4 6 8
petal length (cm)

1 0 1 2 3
petal width (cm)

Figure 2.5: Summary plot

16 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

We list the following common 𝑓−divergences:

• Kullback-Leibler (KL) divergence with 𝑓(𝑥) = 𝑥 log(𝑥).
• Squared Hellinger Distance with 𝑓(𝑥) = (1 − √𝑥)2. Then the formula of Hellinger

distance ℋ2(𝑃 , 𝑄) is given by

ℋ(𝑃, 𝑄) = 1√
2

||
√

𝑑𝑃 − √𝑑𝑄||2.

Maximum mean discrepancy. Another popular family of distances are the integral proba-
bility metrics (IPMs)4, that includes Wasserstein or Kantorovich distance, total variation (TVD)
or Kolmogorov distance and maximum mean discrepancy (MMD). MMD is defined in Section 3.2.6.

2.3.2 Indicators for supervised learning
Comparison to ground truth values. A huge family of indicators is available in order to evalu-
ate the performance of a learning machine, most of them being readily described and implemented
in scikit-learn5.

We do not discuss them all, but rather overview those that we have included in the CodPy
library. First of all, in the context of supervised clustering methods, if the function 𝑓 is known in
advance, then predictions of learning machines 𝑓𝑧 can be compared with ground truth values,
𝑓(𝑍) ∈ ℝ𝑁𝑧×𝐷𝑓 . Below we list the main metrics that are used.

• For labeled functions (i.e., discrete functions), a common indicator is the score, defined as

1
𝑁𝑧

#{𝑓𝑛
𝑧 = 𝑓(𝑍)𝑛, 𝑛 = 1 … 𝑁𝑧}

producing an indicator between 0 and 1, the higher being the better.

• For continuous functions (i.e., discrete functions), a common indicator is ℓ𝑝 norms, defined
as 1

𝑁𝑧
‖𝑓𝑧 − 𝑓(𝑍)‖ℓ𝑝 , 1 ≤ 𝑝 ≤ ∞.

the case 𝑝 = 2 is referred as the root-mean-square error (RMSE).

• As the above indicator is not normalized, the following version is preferred.

‖𝑓𝑧 − 𝑓(𝑍)‖ℓ𝑝

‖𝑓𝑧‖ℓ𝑝 + ‖𝑓(𝑍)‖ℓ𝑝
, 1 ≤ 𝑝 ≤ ∞.

producing an indicator between 0 and 1, the smaller being the better, interpreted as error-
percentages. In finance, this notion is sometimes referred to as the basis point indicator.

Cross validation scores. The cross validation score consists in randomly selecting a part of the
training set and values as test set and values, and to perform a score or RMSE type error analysis
on each run. See the dedicated page on scikit-learn.

Confusion matrix. This indicator is available for labeled, supervised learning, is a matrix
representation of the numbers of ground-truth labels in a row, while each column represents the
predicted labels in an actual class. Confusion matrix is a quite simple and efficient data error
visualization methods, a simple example is shown in the following sections. Its common form is

𝑀(𝑖, 𝑗) = #{𝑓(𝑍) = 𝑖 𝑎𝑛𝑑 𝑓𝑧 = 𝑗},
4A. Muller, “Integral probability metrics and their generating classes of functions”, Advances in Applied Proba-

bility, vol. 29, pp. 429–443, 1997.
5link to scikit-learn metrics.

https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

2.3. PERFORMANCE INDICATORS FOR MACHINE LEARNING 17

representing correct predicted numbers in the matrix diagonal, since off-diagonal elements counts
false positive predictions. Note that numerous others performance indicators can be straightfor-
wardly deduced from the confusion matrix, as Rand Index, Fowlkes-Mallows scores, etc…

Norm of output. If no ground truth values are known, the quality of the prediction 𝑓𝑧, depends
on a priori error estimates or error bounds. Such estimates exist only for kernel methods (to
the best of the knowledge of the authors), and are described in the next chapter, see 3.2.5. Such
estimates uses the norm of functions and was proven to be a useful indicator in the applications.

ROC curves. A receiver operating characteristic curve, or ROC curve, is a graphical plot that
illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is
varied. The method was originally developed for operators of military radar receivers starting in
1941, which led to its name.

ROC is the plot of TPR versus FPR by varying the threshold. These metrics are are summarized
up in the following table:

Metric Formula Equivalent
True Positive Rate TPR 𝑇 𝑃

𝑇 𝑃+𝐹𝑁 Recall, sensitivity
False Positive Rate FPR 𝐹𝑃

𝑇 𝑁+𝐹𝑃 1-specificity

We can use precision score (𝑃𝑅𝐸) to measure the performance across all classes:

𝑃𝑅𝐸 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃 .

In “micro averaging”, we calculate the performance, e.g., precision, from the individual true posi-
tives, true negatives, false positives, and false negatives of the the k-class model:

𝑃𝑅𝐸𝑚𝑖𝑐𝑟𝑜 = 𝑇 𝑃1 + ⋯ + 𝑇 𝑃𝑘
𝑇 𝑃1 + ⋯ + 𝑇 𝑃𝑘 + 𝐹𝑃1 + ⋯ + 𝐹𝑃𝑘

.

And in macro-averaging, we average the performances of each individual class

𝑃𝑅𝐸𝑚𝑎𝑐𝑟𝑜 = 𝑃𝑅𝐸1 + ⋯ + 𝑃𝑅𝐸𝑘
𝑘 .

2.3.3 Indicators for unsupervised learning
Maximum mean discrepancy. Evaluation of clustering algorithms benefits from a lot of per-
formance indicators, a lot of them being implemented in Scikit-learn:see this link.

As an alternative to standard unsupervised learning metrics, we propose to use MMD. It is used
primarily to produce worst error estimates, together with the norm of functions, as described in
3.2.5, but it was also found to be useful as a performance indicator for unsupervised learning
machine.

Inertia indicator. The inertia indicator is used for k-means algorithm. We describe it precisely,
as it uses a notation that will be used in other parts. It shares some similarities with the discrepancy
error one but is not equivalent. To define inertia, one first pick a distance, denoted 𝑑(𝑥, 𝑦), as the
squared Euclidean one, although other distances are considered, as the Manhattan or log-entropy,
depending upon the problem under consideration. Consider any point 𝑤 ∈ ℝ𝐷. Then 𝑤 is attached
naturally to a point 𝑦𝜎(𝑤,𝑦), where the index function 𝜎(𝑤, 𝑦) is defined as

𝜎(𝑤, 𝑌) ∶= arg inf
𝑗=1…𝑁𝑌

𝑑(𝑤, 𝑦𝑗).

https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation

18 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

Then the inertia is defined as

𝐼(𝑋, 𝑌) =
𝑁𝑥

∑
𝑛=0

|𝑥𝑛 − 𝑦𝜎𝑑(𝑥𝑛,𝑌)|2.

Observe that this functional might not be convex, even if the distance under consideration is
convex, as is the squared Euclidean distance. For k-means algorithms, the cluster centers 𝑦 are
computed minimizing this functional. The parameter set 𝑦 is called the set of centroids for
k-means algorithms.

2.4 General specification of tests
2.4.1 Preliminaries
We now overview a benchmark methodology and apply it to some supervised learning methods.
For each machine,

• we illustrate the prediction function 𝒫𝑚, and
• we illustrate the computation of some performance indicators.

We then present benchmarks using these indicators and restrict attention to toy examples while
more practical cases will be studied in Chapter 5.

We begin by describing a general first quality assurance test for supervised learning machines.
The goal of this framework is to measure accuracy of any machine learning models, using the
extrapolation operator . Hence all our unit tests are based on the following input sizes:

a function: f , a method: m ,five integers: 𝐷, 𝑁𝑥, 𝑁𝑦, 𝑁𝑧, 𝐷𝑓

To benchmark our model, we use a list of scenarios, that is a list of entries 𝐷, 𝑁𝑥, 𝑁𝑦, 𝑁𝑧, 𝐷𝑓 .
Table 2.3 is an example of a list of five scenarios.

Table 2.3: scenario list

𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧
1 100 100 100
1 200 200 200
1 300 300 300
1 400 400 400
2 2500 2500 2500
2 1600 1600 1600
2 900 900 900
2 400 400 400

For the function 𝑓 we set a periodic and an increasing function:

𝑓(𝑋) = Π𝑑=1..𝐷 cos(4𝜋𝑥𝑑) + ∑
𝑑=1..𝐷

𝑥𝑑. (2.4.1)

2.4.2 Extrapolation in one dimension
Description. During this experiment, we used a generator, configured to select 𝑋 (resp. 𝑌 , 𝑍)
as 𝑁𝑥 (resp. 𝑁𝑦, 𝑁𝑧) points regularly (resp. randomly, regularly) generated on a unit cube. A
validation set 𝑍 is distributed over a larger cube, to observe extrapolation and interpolation effects.

2.4. GENERAL SPECIFICATION OF TESTS 19

1.0 0.5 0.0 0.5 1.0
x-units

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f(x
)-u

ni
ts

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x-units

2

1

0

1

2

f(x
)-u

ni
ts

Figure 2.6: training and test set.

As an illustration, in Figure 2.6 we show both graphs (𝑋, 𝑓(𝑋)) (left, training set),(𝑍, 𝑓(𝑍)) (right,
test set).

A comparison between methods. We compare codpy’s periodic kernel with following machine
learning models: scipy’s RBF kernel regression, support vector regression (SVR), decision tree
(DT), adaboost, random forest (RF) by scikit-learn library and TensorFlow’s neural network
(NN) model.

The set of external parameters for kernel-based methods consists simply in picking-up a kernel,
and is discussed in the next chapter; see Section ??. For the SVR we chose RBF kernel, for DT we
set the maximum depth to 10, for the RF and XGBoost we set the number of estimators to 10 and
5 respectively and the maximum depth to 5. For the feed-forward NN we chose 50 epochs with
batch size set to 16, we chose Adam optimization algorithm and mean squared error as the loss
function. The NN is composed of two hidden layers (64 cells), one input (8 cells) and one output
layers (1 cell) with the following sequence of activation functions: RELU - RELU - RELU - Linear.
All other hyperparameters in the models are default set by scikit-learn, SciPy and TensorFlow.

Figure 2.7 visualizes extrapolation of each method. We note that a periodic kernel gives a better
extrapolation between [−1.5, −1] and [1, 1.5], that is also confirmed in Figure 2.8 showing RMSE
error for different sample size 𝑁𝑥.

Observe that function norms and discrepancy errors are not method-dependent. Clearly, for this
example, a periodical kernel-based method outperforms the two other ones. However, it is not our
goal to illustrate a particular method supremacy, but a benchmark methodology, particularly in
the context of extrapolating test set data far from the training set.

2.4.3 Extrapolation in two dimensions
Description. Now we show the fact that the dimension arising in the problem under consideration
does not change benchmark methods. To illustrate this point, we simply repeat the previous steps
used for the one-dimensional case, but the dimension is set to two, that is 𝐷 = 2, and the reader
can test with this parameter. Only data visualization changes.

The data is generated using five scenarios from Table 2.3, corresponding to a two dimensional
case. Figure 2.9 shows both graphs (𝑋, 𝑓(𝑋)) (left, training set),(𝑍, 𝑓(𝑍)) (right, test set) for
illustration purposes, 𝑓 is a two-dimensional periodic function defined in Section 2.4.1. Observe
that, if the dimension is greater to two, we use a two dimensional visualization, plotting 𝑋̃, 𝑓(𝑋),
where 𝑋̃ is obtained by either setting indices 𝑋̃ ∶= 𝑋[𝑖𝑛𝑑𝑒𝑥1, 𝑖𝑛𝑑𝑒𝑥2] or performing a PCA over
𝑥 and setting 𝑋̃ ∶= 𝑃𝐶𝐴(𝑋)[𝑖𝑛𝑑𝑒𝑥1, 𝑖𝑛𝑑𝑒𝑥2].
A comparison between methods. We compare two models for function’s extrapolation:

20 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

1 0 1
x-units

2

1

0

1

2

f(x
)-u

ni
ts

Periodic kernel:CodPy

1 0 1
x-units

1

0

1

2

f(x
)-u

ni
ts

The RFB kernel:SciPy

1 0 1
x-units

0.5

0.0

0.5

1.0

1.5

2.0

f(x
)-u

ni
ts

SVR:Scikit

1 0 1
x-units

1

0

1

2

3

4

f(x
)-u

ni
ts

NN:TensorFlow

1 0 1
x-units

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f(x
)-u

ni
ts

Decision tree:Scikit

1 0 1
x-units

1.0

0.5

0.0

0.5

1.0

1.5

f(x
)-u

ni
ts

Adaboost:Scikit

1 0 1
x-units

1.5

1.0

0.5

0.0

0.5

1.0

1.5
f(x

)-u
ni

ts
XGBoost

1 0 1
x-units

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f(x
)-u

ni
ts

RF:Scikit

Figure 2.7: Periodic kernel:CodPy, the RBF kernel: SciPy, SVR: Scikit, Neural Network: Tensor-
Flow, Decision tree: Scikit, Adaboost: Scikit, XGBoost, Random Forest: Scikit

100 200 300 400
Nx

0.0

0.1

0.2

0.3

0.4

0.5

0.6

sc
or

es

AdaBoost
Decision tree
RForest
SVM
Tensorflow
XGboost
codpy extra
scipy pred

100 200 300 400
Ny

0.05

0.06

0.07

0.08

0.09

0.10

0.11

di
sc

re
pa

nc
y_

er
ro

rs AdaBoost
Decision tree
RForest
SVM
Tensorflow
XGboost
codpy extra
scipy pred

100 200 300 400
Ny

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ex
ec

ut
io

n_
tim

e

AdaBoost
Decision tree
RForest
SVM
Tensorflow
XGboost
codpy extra
scipy pred

Figure 2.8: RMSE, MMD and execution time

2.4. GENERAL SPECIFICATION OF TESTS 21

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

210123

1.5 1.0 0.50.0 0.5 1.0 1.5

1.5
1.0

0.5
0.0

0.5
1.0

1.5

2024

Figure 2.9: Train vs test set.

codpy’s periodic Gaussian kernel with SciPy’s RBF kernel.

1 0 1

1

0

1

2024

1 0 1

1

0

1

2024

1 0 1

1

0

1

202

1 0 1

1

0

1

202

Figure 2.10: RBF (the first and the second), a periodic Gaussian kernel (the third and the forth)

The first two graphs in Figure 2.10 shows RBF’s predictions for first two scenarios defined in Table
2.3, and the last two graphs for a periodic Gaussian kernel.

2.4.4 Clustering
Description. The goal of this section is to overview our own methodology (which will be fully
described in the next chapter).

• We illustrate the prediction function 𝒫𝑚 for some methods in the context of supervised
learning.

• We illustrate the computations of some performance indicators, as well as to present a toy
benchmark using these indicators.

The data is generated using a multimodal and multivariate Gaussian distribution with a covariance
matrix Σ = 𝜎𝐼𝑑. The problem is to identify the modes of the distribution using a clustering method.
In the following we will generate distribution with a predetermined number of modes, it will allow
to test validation scores on this toy example.

A comparison between methods. We compute and compare codpy’s clustering MMD mini-
mization with Scikit’s implementation of k-means algorithm. During this experiment we generate
distributions with different number of modes (between 2 and 6).

The two first two graphs in Figure 2.13 correspond to the computed clusters using k-means algo-
rithm and the last two graphs correspond to the MMD minimization.

22 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

100 200 300 400
Nx

0.0

0.1

0.2

0.3

0.4

0.5

0.6

sc
or

es

AdaBoost
Decision tree
RForest
SVM
Tensorflow
XGboost
codpy extra
scipy pred

100 200 300 400
Nx

0.05

0.06

0.07

0.08

0.09

0.10

0.11

di
sc

re
pa

nc
y_

er
ro

rs AdaBoost
Decision tree
RForest
SVM
Tensorflow
XGboost
codpy extra
scipy pred

100 200 300 400
Nx

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ex
ec

ut
io

n_
tim

e

AdaBoost
Decision tree
RForest
SVM
Tensorflow
XGboost
codpy extra
scipy pred

Figure 2.11: A periodic Gaussian kernel vs RBF kernel

5 0 5
x

2

1

0

1

2

3

y

5 0 5
x

1.0

0.5

0.0

0.5

1.0

1.5

y

5 0 5
x

2

1

0

1

2

3

4

y

5 0 5
x

1.0

0.5

0.0

0.5

1.0

1.5

y

Figure 2.12: Scatter plots of k-means and MMD minimization algorithms

2.4. GENERAL SPECIFICATION OF TESTS 23

Figure 2.13 illustrates four confusion matrices, the first row corresponds to k-means algorithm and
the second to the MMD minimization.

0 1 2

0

1

2

4 0 0

0 4 0

0 0 2

k-means

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 1

0

1

6 0

0 4

k-means

0

1

2

3

4

5

6
0 1 2

0

1

2

4 0 0

0 4 0

0 0 2

MMD:CodPy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 1

0

1

6 0

0 4

MMD-codpy

0

1

2

3

4

5

6

Figure 2.13: Confusion matrices of k-means and MMD minimization algorithms

We compare various methods under consideration, by means of performance indicators, as illus-
trated by Figure 2.14. In order to avoid confusion of defining best possible clustering, we chose
inertia as the metric to evaluate the performance of algorithms. MMD error just indicates the
fact that two samples are the same, they coincide at the different levels of sample size. Table 2.6
in the appendix to the chapter resumes the experiment.

2 3
Ny

0.96

0.98

1.00

1.02

1.04

sc
or

es

codpy
k-means

2 3
Ny

0.12

0.14

0.16

0.18

0.20

0.22

di
sc

re
pa

nc
y_

er
ro

rs

codpy
k-means

2 3
Ny

14.0

14.5

15.0

15.5

16.0

16.5

17.0

in
er

tia

codpy
k-means

2 3
Ny

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

ex
ec

ut
io

n_
tim

e

codpy
k-means

Figure 2.14: benchmark of various performance indicators for clustering.

24 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

2.5 Bibliography
XGBoost6 is a computationally efficient implementation of the original gradient boost algorithm.
Standard libraries for neural networks are TensorFlow7 and Pytorch8. Scikit-learn library9 offers
a comprehensive set of models (linear, SVMs, stochastic gradient and feature selection methods).
Recently TensorFlow added “TensorFlow probability10” library that contains modules on linear
algebra, statistics, positive-definite kernels and Gaussian process methods, Monte Carlo and etc.

2.6 Appendix to chapter 2
Results of 1D extrapolation. Table 2.4 illustrates the performance of supervised machine
learning models to extrapolate the values of a periodic function define in Section 2.4.1. We
compare the performance using four measures: execution time, scores, the norm of the function
to be predicted and MMD errors.

Table 2.4: Supervised algorithms performance indicators

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time RMSE MMD
codpy extra 1 100 100 100 1 0.04 0.0127 0.0451
codpy extra 1 200 200 200 1 0.04 0.0064 0.1078
codpy extra 1 300 300 300 1 0.03 0.0042 0.1144
codpy extra 1 400 400 400 1 0.06 0.0032 0.0895
scipy pred 1 100 100 100 1 0.00 0.3885 0.0451
scipy pred 1 200 200 200 1 0.00 0.3865 0.1078
scipy pred 1 300 300 300 1 0.00 0.3859 0.1144
scipy pred 1 400 400 400 1 0.01 0.3856 0.0895
SVM 1 100 100 100 1 0.03 0.5645 0.0451
SVM 1 200 200 200 1 0.00 0.6015 0.1078
SVM 1 300 300 300 1 0.01 0.6293 0.1144
SVM 1 400 400 400 1 0.01 0.6478 0.0895
Tensorflow 1 100 100 100 1 2.70 0.4951 0.0451
Tensorflow 1 200 200 200 1 3.00 0.4021 0.1078
Tensorflow 1 300 300 300 1 3.38 0.3683 0.1144
Tensorflow 1 400 400 400 1 3.64 0.4704 0.0895
Decision tree 1 100 100 100 1 0.03 0.3326 0.0451
Decision tree 1 200 200 200 1 0.00 0.3294 0.1078
Decision tree 1 300 300 300 1 0.00 0.3285 0.1144
Decision tree 1 400 400 400 1 0.00 0.3280 0.0895
AdaBoost 1 100 100 100 1 0.05 0.3358 0.0451
AdaBoost 1 200 200 200 1 0.01 0.3404 0.1078
AdaBoost 1 300 300 300 1 0.03 0.3216 0.1144
AdaBoost 1 400 400 400 1 0.03 0.3309 0.0895
XGboost 1 100 100 100 1 0.07 0.3349 0.0451
XGboost 1 200 200 200 1 0.01 0.3320 0.1078
XGboost 1 300 300 300 1 0.01 0.3312 0.1144
XGboost 1 400 400 400 1 0.01 0.3307 0.0895
RForest 1 100 100 100 1 0.08 0.3321 0.0451
RForest 1 200 200 200 1 0.09 0.3297 0.1078

6see this dedicated page for a description of XGBoost project
7see this dedicated page for a description of TensorFlow neural networks
8see this dedicated page for a description of Pytorch’s neural networks
9see this dedicated page for a description of Scikit’s library

10see this dedicated page for a description of TensorFlow probability’s library

https://xgboost.readthedocs.io/en/latest/tutorials/model.html
https://www.tensorflow.org/tutorials/customization/basics
https://pytorch.org
https://scikit-learn.org/stable/supervised_learning.html
https://www.tensorflow.org/probability/overview

2.6. APPENDIX TO CHAPTER 2 25

Table 2.4: Supervised algorithms performance indicators (continued)

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time RMSE MMD
RForest 1 300 300 300 1 0.10 0.3287 0.1144
RForest 1 400 400 400 1 0.10 0.3283 0.0895

Results of 2D extrapolation. Table 2.5 shows the computed indicators after running all sce-
narios indicated in Table 2.6.

Table 2.5: Supervised algorithms performance indicators

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time RMSE MMD
codpy extra 2 2601 2500 2500 1 3.22 0.0000 0.0600
codpy extra 2 1681 1600 1600 1 1.05 0.0000 0.0849
codpy extra 2 961 900 900 1 0.26 0.0000 0.1416
codpy extra 2 441 400 400 1 0.08 0.0000 0.1817
scipy pred 2 2601 2500 2500 1 0.32 0.2009 0.0600
scipy pred 2 1681 1600 1600 1 0.12 0.2036 0.0849
scipy pred 2 961 900 900 1 0.04 0.2083 0.1416
scipy pred 2 441 400 400 1 0.01 0.2182 0.1817

Results of clustering methods. Table 2.6 represents the results obtained during clustering
experiments, the performance is measured using four indicators: execution time, scores, MMD
and inertia.

Table 2.6: Unsupervised algorithms performance indicators (Clustering)

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time scores MMD inertia
k-means 2 10 3 10 1 0.24 1 0.1080 13.68
k-means 2 10 2 10 1 0.10 1 0.1635 17.08
codpy 2 10 3 10 1 0.09 1 0.1375 13.68
codpy 2 10 2 10 1 0.09 1 0.2183 17.08

26 CHAPTER 2. BRIEF OVERVIEW OF METHODS OF MACHINE LEARNING

Chapter 3

Reproducing-kernel methods for
machine learning

3.1 Purpose of this chapter
We begin with the description ofreproducing-kernel methods which are adapted to problems arising
in the theory of machine learning. We discuss two of the main ingredients required in the design
of our CodPy algorithms.

• First of all, our algorithms depend on the choice of a reproducing-kernel space and on the
use of transformation maps which we apply to collection of basic kernels in order to adapt
them to any particular problem.

• Second, we also define the kernel-based notions of (mesh-free) discrete differential operators
which are relevant for machine learning.

The notions presented here provide us with the key building blocks for our basic algorithms of
machine learning, but also to deal with problems involving partial differential operators. In the
following chapters of this monograph we will next presentmore advanced algorithms and various
applications.

For a description of the framework of interest we need some notation. A set of 𝑁𝑥 variables in 𝐷
dimensions is given, denoted by 𝑋 ∈ ℝ𝑁𝑥×𝐷, together with a 𝐷𝑓 -dimensional vector-valued data
function 𝑓(𝑋) ∈ ℝ𝑁𝑥×𝐷𝑓 which represents the training values associated with the training set 𝑋.
The input data therefore consists of

(𝑋, 𝑓(𝑋)) ∶= {𝑥𝑛, 𝑓(𝑥𝑛)}𝑛=1,…,𝑁𝑥
, 𝑋 ∈ ℝ𝑁𝑥×𝐷, 𝑓(𝑋) ∈ ℝ𝑁𝑥×𝐷𝑓 .

We are interested in predicting the so-called test values 𝑓𝑍 ∈ ℝ𝑁𝑧×𝐷𝑓 on a new set of variables
called the test set 𝑍 ∈ ℝ𝑁𝑧×𝐷:

(𝑍, 𝑓𝑍) ∶= {𝑧𝑛, 𝑓𝑛
𝑧 }𝑛=1,…,𝑁𝑧

, 𝑍 ∈ ℝ𝑁𝑧×𝐷, 𝑓𝑍 ∈ ℝ𝑁𝑧×𝐷𝑓 . (3.1.1)

Note in passing that all of the examples and numerical experiments given below will be based
on the following choice of function consisting of the sum of a periodic function and an increasing
function (in each direction):

𝑓(𝑥) = 𝑓(𝑥1, … , 𝑥𝐷) = ∏
𝑑=1,…,𝐷

cos(4𝜋𝑥𝑑) + ∑
𝑑=1,…,𝐷

𝑥𝑑, 𝑥 ∈ ℝ𝐷. (3.1.2)

27

28 CHAPTER 3. REPRODUCING-KERNEL METHODS FOR MACHINE LEARNING

Table 3.1: choice of dimension for data extrapolation

𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧
2 529 529 529

At this stage, we do not explain all of our notation but provide some numerical illustration only,
concerning the prediction (𝑍, 𝑓𝑍) from the training set (𝑋, 𝑓(𝑋)). In fact, in addition to our
notation 𝑋 ∈ ℝ𝑁𝑥×𝐷 and 𝑍 ∈ ℝ𝑁𝑧×𝐷 together with 𝑓(𝑋) ∈ ℝ𝑁𝑥×𝐷𝑓 and 𝑓(𝑍) ∈ ℝ𝑁𝑧×𝐷𝑓 , we
also introduce an extra variable denoted by 𝑌 below and we distinguish between several cases.
The choice 𝑁𝑥 = 𝑁𝑧 will correspond to a data extrapolation, as will be explained in Section 3.2.4
below. On the other hand, a choice 𝑁𝑦 << 𝑁𝑥 will correspond to a data projection, as will be also
explained below.

Table 3.2: A choice of dimensions for data projection

𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧
2 529 18 529

Hence, Figure 3.1 provides us with a typical illustration of results of machine learning, and we
will particularly on the choice made in the first test throughout the following discussion. The left-
hand plots show the (variables, value) training set (𝑋, 𝑓(𝑋)), while the right-hand plot displays
the (variables, values) test set (𝑍, 𝑓(𝑍)). The plots in the middle display the (variables, values)
parameter set (𝑌 , 𝑓(𝑌)), whose importance will be explained later on: in short, the choice of 𝑌
closely determines not only the overall accuracy of the algorithm, but also its computational cost.
Having provided a broad illustration we can now proceed and define all relevant concept in full
details.

3.2 Fundamental notions for supervised learning
3.2.1 Preliminaries
Positive kernels and kernel matrices. Let 𝑘 = 𝑘(𝑥, 𝑦) ∶ ℝ𝐷 × ℝ𝐷 ↦ ℝ be a symmet-
ric real-valued function, that is, a function satisfying 𝑘(𝑥, 𝑦) = 𝑘(𝑦, 𝑥). Given two collection
𝑋 = (𝑥1, ⋯ , 𝑥𝑁𝑥) and 𝑌 = (𝑦1, ⋯ , 𝑦𝑁𝑦) of points in ℝ𝐷, we define the associated kernel matrix
𝐾(𝑋, 𝑌) ∶= (𝑘(𝑥𝑛, 𝑦𝑚)) ∈ ℝ𝑁𝑥×𝑁𝑦 by

𝐾(𝑋, 𝑌) = ⎛⎜
⎝

𝑘(𝑥1, 𝑦1) ⋯ 𝑘(𝑥1, 𝑦𝑁𝑦)
⋱ ⋱ ⋱

𝑘(𝑥𝑁𝑥 , 𝑦1) ⋯ 𝑘(𝑥𝑁𝑥 , 𝑦𝑁𝑦)
⎞⎟
⎠

. (3.2.1)

We say that 𝑘 is a positive kernel if, for any collection of distinct points 𝑋 ∈ ℝ𝑁𝑥×𝐷 and for any
(non-identically vanishing) 𝑐1, ..., 𝑐𝑁𝑥 ∈ ℝ𝑁𝑥 ,

∑
1≤𝑖,𝑗≤𝑁𝑥

𝑐𝑖𝑐𝑗𝑘(𝑥𝑖, 𝑥𝑗) > 0. (3.2.2)

When 𝑁𝑥 = 𝑁𝑦, the square matrix 𝐾(𝑋, 𝑌) is called a Gram matrix. The dimension of the null
space of the matrix 𝐾(𝑋, 𝑌) is usually 𝑁𝑥 × 𝑁𝑦, except typically for some kernels, as can be
checked in the section on kernel engineering (Section 3.5).

If 𝐾(𝑋, 𝑌) is positive only on a certain sub-manifold of ℝ𝐷, we say that the kernel is conditionally
positive, that is, the ositivity condition golds only if 𝑋, 𝑌 belongs to this sub-manifold.

3.2. FUNDAMENTAL NOTIONS FOR SUPERVISED LEARNING 29

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

210123

training set

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

210123

parameter set (extrapolation)

1 0 1

1

0

1

2024

test set

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

210123

training set

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

10123

parameter set (projection)

1 0 1

1

0

1

2024

test set

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

210123

training set

1 0 1

1

0

1

2024

parameter set (interpolation)

1 0 1

1

0

1

2024

test set

Figure 3.1: Examples of (training, parameter, test) sets for three different choice of 𝑌

30 CHAPTER 3. REPRODUCING-KERNEL METHODS FOR MACHINE LEARNING

We always use positive or conditionally positive kernels. The available kernels in our library are
listed in the table below.

3.2. FUNDAMENTAL NOTIONS FOR SUPERVISED LEARNING 31

Kernel name $k(x, y)
1. Dot product 𝑘(𝑥, 𝑦) = 𝑥𝑇 𝑦
2. RELU 𝑘(𝑥, 𝑦) = max(𝑥 − 𝑦, 0)
3. Gaussian 𝑘(𝑥, 𝑦) = exp(−𝜋|𝑥 − 𝑦|2)
4. Periodic Gaussian 𝜎2 exp(− 2

𝑙2 sin2(𝜋 |𝑥−𝑦|
𝑝)

5. Matern norm
6. Matern tensor
7. Matern periodic
8. Multiquadric norm
9. Multiquadric tensor
10. Sincard square tensor
11. Sincard tensor
12. Tensor norm
13. Truncated norm
14. Truncated periodic

Here, for the Gaussian kernel, 𝑙 denotes the length scale, 𝑝 the period, and 𝜎 the mplitude. A
scaling of the basic kernels may be required in order to handle input data, which is exactly the
purpose of the maps, discussed below.

Example 3.2.1. Gaussian kernel reads (and is used by default in the CodPy library)

𝑘(𝑥, 𝑦) = exp(−𝜋|𝑥 − 𝑦|2). (3.2.3)

Example 3.2.2. A mapping 𝑆 ∶ ℝ𝐷 ↦ ℝ𝑃 begin given, consider the family of kernels

𝑘(𝑥, 𝑦) = 𝑔(< 𝑆(𝑥), 𝑆(𝑦) >ℝ𝑃), 𝑥, 𝑦 ∈ ℝ𝐷,
where 𝑔 is called an activation function. In particular, the scalar products between the collections
of successive powers of 𝑥𝑑 and 𝑦𝑑, denoted by

𝑘(𝑥, 𝑦) =< (1, 𝑥, 𝑥𝑇 𝑥, …), (1, 𝑦, 𝑦𝑇 𝑦, …) >
defines a kernel corresponding to a linear regression over a polynomial basis. It is positive, but the
null space of the associated matrix kernel is non-empty. The so-called RELU kernel given by

𝑘(𝑥, 𝑦) = max(< 𝑥, 𝑦 > +𝑐, 0)
(𝑐 being a constant) is a conditionally positive kernel

Let us consider the kernel to be tensornorm (discussed below) and let us refer to Section 2 for the
description of the relevant parameters in our algorithm. We then display some typical values of
the kernel matrix, in Table 3.4„ which are computed using our function op.Knm in CodPy.

Table 3.4: First four rows and columns of the kernel matrix 𝐾(𝑋, 𝑌)

1.003472 1.005208 1.006944 1.008681
1.005208 1.008681 1.012153 1.015625
1.006944 1.012153 1.017361 1.022569
1.008681 1.015625 1.022569 1.029514

Inverse of a kernel matrix. The inverse of a kernel matrix is denoted 𝐾(𝑋, 𝑌)−1 and is
computed, if we choose 𝑋 = 𝑌 , as follows:

𝐾(𝑋, 𝑋)−1 = (𝐾(𝑋, 𝑋) + 𝜖𝐼𝑑)−1.

32 CHAPTER 3. REPRODUCING-KERNEL METHODS FOR MACHINE LEARNING

When 𝑋 ≠ 𝑌 , this inverse is computed using a least-square approach, namely

𝐾(𝑋, 𝑌)−1 = (𝐾(𝑌 , 𝑋)𝐾(𝑋, 𝑌) + 𝜖𝐼𝑑)−1𝐾(𝑌 , 𝑋)

The so-called Tikhonov parameter 𝜖 represents a regularization parameter (and, by default in
CodPy, takes the value 𝜖 = 10−8).

Table 3.5 displays the first four rows and columns of the inverse of the kernel matrix 𝐾(𝑋, 𝑌)−1 ∈
ℝ𝑁𝑦×𝑁𝑥 when 𝑁𝑥 = 𝑁𝑦.

Table 3.5: First four rows and columns of an inverted kernel matrix 𝐾(𝑋, 𝑌)−1

0.0004324 0.0004139 0.0003954 0.0003768
0.0004139 0.0003967 0.0003795 0.0003623
0.0003954 0.0003795 0.0003636 0.0003478
0.0003768 0.0003623 0.0003478 0.0003332

The matrix product 𝐾(𝑋, 𝑌)𝐾(𝑋, 𝑌)−1 in Table 3.5 is just a projection operator. It might not
be the identity depending on the setup of interest, for one of the following reasons:

• If 𝑁𝑥 ≠ 𝑁𝑦.

• If the Tikhonov regularization parameter 𝜖 > 0 is non-zero. While the user can choose 𝜖 = 0,
some performance issues may arise. Namely, if the kernel is not (unconditionally) positive,
then the CodPy library might raise an “exception’ ’, and will switch from the standard
inversion of matrices to an adapted inversion (of non-invertible matrices) which can be more
computationally costly.

• If the kernel under consideration is such that 𝐾(𝑋, 𝑋)𝐾(𝑋, 𝑋)−1 does not have a full rank,
for instance if a linear regression kernel is used; see the section on kernel engineering (Section
3.5). In which case this matrix is a projection over the null space of the matrix 𝐾(𝑋, 𝑋).

Distance matrices. The notion of distance matrix defined now is a simple and very convenient
tool within the framework of kernel methods. To any positive kernel 𝑘 ∶ ℝ𝐷 × ℝ𝐷 ↦ ℝ we can
associated the distance function 𝑑𝑘(𝑥, 𝑦) for all 𝑥 ∈ ℝ𝐷 and 𝑦 ∈ ℝ𝐷, defined by

𝑑𝑘(𝑥, 𝑦) = 𝑘(𝑥, 𝑥) + 𝑘(𝑦, 𝑦) − 2𝑘(𝑥, 𝑦). (3.2.4)

For a positive kernel, this expression is continuous, non-negative, and satisfies 𝑑(𝑥, 𝑥) = 0.
For any collections 𝑋 = (𝑥1, ..., 𝑥𝑁𝑥) and 𝑌 = (𝑦1, ..., 𝑦𝑁𝑦) of points in ℝ𝐷 we define a the
associated distance matrix 𝐷(𝑋, 𝑌) ∈ ℝ𝑁𝑥×𝑁𝑦 by

𝐷(𝑋, 𝑌) = ⎛⎜
⎝

𝑑𝑘(𝑥1, 𝑦1) ⋯ 𝑑𝑘(𝑥1, 𝑦𝑀)
⋱ ⋱ ⋱

𝑑𝑘(𝑥𝑁 , 𝑦1) ⋯ 𝑑𝑘(𝑥𝑁 , 𝑦𝑀)
⎞⎟
⎠

. (3.2.5)

Table 3.6 displays the first four columns of the kernel-based distance distance matrix 𝐷(𝑋, 𝑌),
and obviously the diagonal of this matrix vanishes.

Table 3.6: First four rows and columns of a kernel-based distance matrix 𝐷(𝑋, 𝑌)

0.0000000 0.1900826 0.3966942 0.6198347
0.1900826 0.0000000 0.1900826 0.3966942
0.3966942 0.1900826 0.0000000 0.1900826
0.6198347 0.3966942 0.1900826 0.0000000

3.2. FUNDAMENTAL NOTIONS FOR SUPERVISED LEARNING 33

3.2.2 Methodology of the CodPy algorithms
Our algorithms provide one with general functions in order to make predictions in (3.1.1) from
the choice of a kernel. More precisely, the following operator (with 𝐴−1 ∶= (𝐴𝑇 𝐴)−1𝐴𝑇 denoting
the least-square inverse)

𝑓𝑧 ∶= 𝒫𝑘(𝑋, 𝑌 , 𝑍)𝑓(𝑋) ∶= 𝐾(𝑍, 𝑌)𝐾(𝑋, 𝑌)−1𝑓(𝑋), 𝐾(𝑍, 𝑌) ∈ ℝ𝑁𝑧×𝑁𝑦 , 𝐾(𝑋, 𝑌) ∈ ℝ𝑁𝑥×𝑁𝑦

(3.2.6)
defines a supervised learning machine which we call a feed-forward machine. We also consider
𝒫𝑘(𝑋, 𝑌 , 𝑍) ∈ ℝ𝑁𝑧×𝑁𝑥 as a projection operator and it is well-defined once a kernel 𝑘 has been
chosen. Observe that two factors arise in (3.2.6), namely the so-called kernel matrix 𝐾(𝑋, 𝑌)
(discussed below) and the projection set of variables denoted by 𝑌 ∈ ℝ𝑁𝑦×𝐷. To motivate the
role of the later, let us consider two particular operators that do not depend upon 𝑌 :

Extrapolation operator: 𝒫𝑘(𝑋, 𝑍) = 𝐾(𝑍, 𝑋)𝐾(𝑋, 𝑋)−1, (3.2.7)
Interpolation operator: 𝒫𝑘(𝑋, 𝑍) = 𝐾(𝑋, 𝑍)−1𝐾(𝑋, 𝑋). (3.2.8)

These operators sometimes generate computational issues, due to the fact that the kernel matrix
𝐾(𝑋, 𝑋) ∈ ℝ𝑁𝑥×𝑁𝑥 must be inverted (3.2.6) and this is a rather costly computational step in pres-
ence of a large set of input data. This is our motivation for introducing the additional variable 𝑌
which has the effect to lower the computational cost. It reduces the overall algorithmic complexity
of (3.2.6) to the order of

𝐷 ((𝑁𝑦)3 + (𝑁𝑦)2𝑁𝑥 + (𝑁𝑦)2𝑁𝑧).
Most importantly, the projection operator 𝒫𝑘 is linear in term of, both, input and output data.
Hence, while keeping the set 𝑌 to a reasonable size, we can consider large set of data, as input or
output.

The reader can imagine also that choosing a relevant set 𝑌 is a major source of optimization. We
use this idea intensively in several applications. For instance, kernel clustering methods described
in the section ?? aims minimizing the error committed by our learning machine with respect to
the set 𝑌 = 𝒫𝑘(𝑋, 𝑍), called sharp discrepancy sequences and defined below. We refer to this
step as learning process, as this step is exactly the counterpart of the weight set for the neural
network approach. This construction amounts to define a feed-backward machine, analogous to
(3.2.6), as

𝑓𝑧 ∶= 𝒫𝑘(𝑋, 𝒫𝑘(𝑋, 𝑍), 𝑍)𝑓(𝑋).

Observe that (3.2.6) allows us also to compute the following operation, where ∇ ∶= (𝜕1, … , 𝜕𝐷)
holds for the gradient

(∇𝑓)(𝑍) ∶= (∇𝒫𝑘)(𝑋, 𝑌 , 𝑍)𝑓(𝑋) ∶= (∇𝑧𝑘)(𝑍, 𝑌)𝐾(𝑋, 𝑌)−1𝑓(𝑋) ∈ ℝ𝐷×𝑁𝑧×𝐷𝑓

meaning that ∇𝒫𝑘 ∈ ℝ𝐷×𝑁𝑧×𝑁𝑥 is interpreted as a tensor operator. This operator is described in
Section 3.4, as well as numerous others, as for instance Laplacian, Leray, integral operators, that
are based on it. They will be used in designing computational methods for problems involving
partial differential equations (PDEs) and differential learning machine methods.

3.2.3 Transportation maps
We will use surjective maps 𝑆 ∶ ℝ𝑇 ↦ ℝ𝐷, referred to as transportation maps, and we can distin-
guish between several types:

• rescaling maps when 𝑇 = 𝐷, in order properly the data 𝑋, 𝑌 , 𝑍 to a given kernel,
• dimension reduction maps when 𝑇 ≤ 𝐷, or
• dimension augmentation when 𝑇 ≥ 𝐷, when adding information to the training set is

required. This transformation is sometimes called a kernel trick.

The list of maps available in our framework is given in the following table.

34 CHAPTER 3. REPRODUCING-KERNEL METHODS FOR MACHINE LEARNING

Maps S(X)
1. Affine 𝑆(𝑋) =
2. Exponential 𝑆(𝑋) = 𝑒𝑋

3. Identity 𝑆(𝑋) = 𝑋
4. Log 𝑆(𝑋) = log(𝑋)
5. Map to grid 𝑆(𝑋)
6. Scale to standard deviation 𝑆(𝑋) = 𝑥

𝜎 ,
𝜎 = √ 1

𝑁𝑥
∑𝑛<𝑁𝑥

(𝑥𝑛 − 𝜇),
𝜇 = 1

𝑁𝑥
∑𝑛<𝑁𝑥

𝑥𝑛

7. Scale to erf 𝑆(𝑋) = 𝑒𝑟𝑓(𝑥), 𝑒𝑟𝑓 is the
standard error function.

8. Scale to erfinv 𝑆(𝑋) = 𝑒𝑟𝑓−1(𝑥), 𝑒𝑟𝑓−1 is the
inverse of 𝑒𝑟𝑓 .

9. Scale to mean distance 𝑆(𝑋) = 𝑥√𝛼 , 𝛼 =
∑𝑖,𝑘≤𝑁𝑥

|𝑥𝑖−𝑥𝑘|2
𝑁2𝑥

.
10. Scale to min distance 𝑆(𝑋) = 𝑥√𝛼 , 𝛼 =

1
𝑁𝑥

∑𝑖≤𝑁𝑥
min𝑘≠𝑖 |𝑥𝑖 − 𝑥𝑘|2.

11. Scale to unit cube 𝑆(𝑋) = 𝑥−min𝑛 𝑥𝑛+ 0.5
𝑁𝑥

𝛼 , 𝛼 ∶=
max𝑛 𝑥𝑛 − min𝑛 𝑥𝑛.

Using a map 𝑆 amounts to change the kernel as 𝑘(𝑥, 𝑦) ↦ 𝑘(𝑆(𝑥), 𝑆(𝑦)). For instance, for Gaussian
kernels the Scale to min distance is usually a good choice: this map scales all points to the average
min distance. Let us transform our Gaussian kernel with this map. Observe that, from the
signature of the Gaussian setter function, we see that the Gaussian kernel is handled with the
default map 𝑠𝑒𝑡_𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑚𝑎𝑝. We do not discuss all optional parameters now, but refer
the reader to a later section.

𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑒𝑡𝑡𝑒𝑟𝑠.𝑠𝑒𝑡_𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛_𝑘𝑒𝑟𝑛𝑒𝑙(𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙_𝑜𝑟𝑑𝑒𝑟 ∶ 𝑖𝑛𝑡 = 0,
𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∶ 𝑓𝑙𝑜𝑎𝑡 = 1𝑒 − 8,
𝑠𝑒𝑡_𝑚𝑎𝑝 = 𝑚𝑎𝑝_𝑠𝑒𝑡𝑡𝑒𝑟𝑠.𝑠𝑒𝑡_𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑚𝑎𝑝)

3.2.4 Extrapolation, interpolation, and projection
The Python function in our framework that describes the projection operator 𝒫𝑘 is based on the
definition in (3.2.6), namely

𝑓𝑧 = op.projection(𝑋, 𝑌 , 𝑍, 𝑓(𝑋) = [], 𝑘 = 𝑁𝑜𝑛𝑒, 𝑟𝑒𝑠𝑐𝑎𝑙𝑒 = 𝐹𝑎𝑙𝑠𝑒) ∈ ℝ𝑁𝑧×𝐷𝑓 .

The optional values in this function are as follows:

• The function 𝑓(𝑋) is optional, meaning that the user can retrieve the whole matrix
𝒫𝑘(𝑋, 𝑌 , 𝑍) ∈ ℝ𝑁𝑧×𝑁𝑥 if desired.

• The kernel 𝑘 is optional, meaning that we let to the user the freedom to re-use an already
input kernel.

• The optional value rescale, defaulted to false, allow to call the map prior of performing the
projection operation (3.2.6), in order to compute its internal states for proper data scaling.
For instance, a rescaling computes 𝛼 according to the set (𝑋, 𝑌 , 𝑍).

Interpolation and extrapolation Python functions are, in agreement with (3.2.8), simple decorators
toward the operator 𝒫𝑘; see (3.2.4). Obviously, the main question arising at this stage is how good

3.2. FUNDAMENTAL NOTIONS FOR SUPERVISED LEARNING 35

the approximation is 𝑓𝑧 compared to 𝑓(𝑍), which is the question addressed in the next section.

𝑓𝑧 = op.extrapolation(𝑋, 𝑍, 𝑓(𝑋) = [], …), 𝑓𝑧 = op.interpolation(𝑋, 𝑍, 𝑓(𝑋) = [], …)

3.2.5 Functional spaces and Kolmogorov decomposition
Given any finite collection of points 𝑋 = [𝑥1...𝑥𝑁𝑥], 𝑥𝑖 ∈ ℝ𝐷, 𝑖 = 1, ..., 𝑁𝑥, we introduce a (finite
dimensional) vector space ℋ𝑥

𝑘 consisting of all linear combinations of the basis functions 𝑥 ↦
𝑘(𝑥, 𝑥𝑛). In other words, we set

ℋ𝑥
𝑘 = { ∑

1≤𝑚≤𝑁𝑥

𝑎𝑚𝑘(⋅, 𝑥𝑚) / 𝑎 = (𝑎1, … , 𝑎𝑁𝑥) ∈ ℝ𝑁𝑥}. (3.2.9)

The functional space ℋ𝑘 is (after suitably passing to a limit in (3.2.9))

ℋ𝑘 = Span{𝑘(⋅, 𝑥) / 𝑥 ∈ ℝ𝐷}. (3.2.10)

This space consists of all linear combinations of the functions 𝑘(𝑥, ⋅) (that is, parametrized by
𝑥 ∈ ℝ𝐷) and is endowed with the scalar product

⟨𝑘(⋅, 𝑥), 𝑘(⋅, 𝑦)⟩ℋ𝑘
= 𝑘(𝑥, 𝑦), 𝑥, 𝑦 ∈ ℝ𝐷. (3.2.11)

On every finite dimensional subspace ℋ𝑥
𝑘 ⊂ ℋ𝑘 we can check that, according to the expression of

the scalar product,

⟨𝑘(⋅, 𝑥𝑖), 𝑘(⋅, 𝑥𝑗)⟩ℋ𝑥
𝑘

= 𝑘(𝑥𝑖, 𝑥)𝐾(𝑋, 𝑋)−1𝑘(𝑥, 𝑥𝑗) = 𝑘(𝑥𝑖, 𝑥𝑗), 𝑖, 𝑗 = 1, ..., 𝑁𝑥. (3.2.12)

The norm of any function 𝑓 , in view of the functional space ℋ𝑘, is fully determined by the kernel
𝑘. A reasonable approximation of this norm, which is induced by the kernel matrix 𝐾 is given by

‖𝑓‖2
ℋ𝑘

∼ 𝑓(𝑋)𝑇 𝐾(𝑋, 𝑋)−1𝑓(𝑋)

It is computed via the function in Python:

𝑜𝑝.𝑛𝑜𝑟𝑚(𝑋, 𝑌 , 𝑍, 𝑓(𝑋), 𝑠𝑒𝑡_𝑐𝑜𝑑𝑝𝑦_𝑘𝑒𝑟𝑛𝑒𝑙 = 𝑁𝑜𝑛𝑒, 𝑟𝑒𝑠𝑐𝑎𝑙𝑒 = 𝑇 𝑟𝑢𝑒).

Again we let the reader the choice to perform a rescaling of the kernel based on a transport map.

3.2.6 Error estimates based on the generalized maximum mean discrep-
ancy

Recall the notation for the projection operator (3.2.6). Then the following estimation error holds
for any vector-valued function 𝑓 ∶ ℝ𝐷 ↦ ℝ𝐷𝑓 :

∣ 1
𝑁𝑥

𝑁𝑥

∑
𝑛=1

𝑓(𝑥𝑛) − 1
𝑁𝑧

𝑁𝑧

∑
𝑛=1

𝑓𝑧𝑛 ∣ ≤ (𝑑𝑘(𝑋, 𝑌) + 𝑑𝑘(𝑌 , 𝑍))‖𝑓‖ℋ𝑘
.

Before describing this formula, let us precise that it is a computationally tractable one, that can
be systematically applied to check the pertinence of any kernel machine. It is also a quite general
one: this formula can be adapted to others kind of error measuring. We have also

∥𝑓(𝑍) − 𝑓𝑧∥
ℓ2(𝑁𝑧)𝐷𝑓

≤ (𝑑𝑘(𝑋, 𝑌) + 𝑑𝑘(𝑌 , 𝑍))‖𝑓‖ℋ𝑘
.

This error formula can be split into two parts.

36 CHAPTER 3. REPRODUCING-KERNEL METHODS FOR MACHINE LEARNING

The first part, (𝑑𝑘(𝑋, 𝑌) + 𝑑𝑘(𝑌 , 𝑍)) measures some kernel-related distance between a set of
points, that we call the discrepancy functional, known as the maximum mean discrepancy
(MMD), first introduced in [14]. It is a quite natural quantity, as one expects that the quality
of an extrapolation degrades if the extrapolation set 𝑍 move away from the sampling set 𝑋. Its
definition is

𝑑𝑘(𝑋, 𝑌)2 ∶= 1
𝑁2𝑥

𝑁𝑥,𝑁𝑥

∑
𝑛=1,𝑚=1

𝑘(𝑥𝑛, 𝑥𝑚) + 1
𝑁2𝑦

𝑁𝑦,𝑁𝑦

∑
𝑛=1,𝑚=1

𝑘(𝑦𝑛, 𝑦𝑚) − 2
𝑁𝑥𝑁𝑦

𝑁𝑥,𝑁𝑦

∑
𝑛=1,𝑚=1

𝑘(𝑥𝑛, 𝑦𝑚)

and is described in the Python function

𝑜𝑝.𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦(𝑋, 𝑌 , 𝑍, 𝑠𝑒𝑡_𝑐𝑜𝑑𝑝𝑦_𝑘𝑒𝑟𝑛𝑒𝑙 = 𝑁𝑜𝑛𝑒, 𝑟𝑒𝑠𝑐𝑎𝑙𝑒 = 𝑇 𝑟𝑢𝑒)

In particular, the user should pay attention to an undesirable rescaling effect due to the variable
rescale. Section 3.6.5 contains plots and some analysis of this functional. In this book we call
generalized MMD and discrepancy error equivalently.

3.3 Dealing with kernels
3.3.1 Maps and kernels
Maps can ruin your prediction. We now compare the ground truth values (𝑍, 𝑓(𝑍)) ∈ ℝ𝑁𝑧×𝐷×
ℝ𝑁𝑧×𝐷𝑓 and the predicted values (𝑍, 𝑓𝑧) ∈ ℝ𝑁𝑧×𝐷 × ℝ𝑁𝑧×𝐷𝑓 . In Figure 3.2. we set a different
map, called mean distance map, which scales all points to the average distance for a Gaussian
kernel. This example illustrates how maps can drastically influence the computation. However,
the very same map can be appropriate for other kernels; see Figure 3.2.

1 0 1

1

0

1

2024

1 0 1

1

0

1

051015

1 0 1

1

0

1

21012

Figure 3.2: A ground truth value (first), Gaussian (second) and Matern kernels (third) with mean
distance map

Composition of maps. Maps can be composed together. For instance, consider the following
Python definition of one of our maps, which we may use as a Swiss-knife map for Gaussian kernels:

𝑚𝑎𝑝_𝑠𝑒𝑡𝑡𝑒𝑟𝑠.𝑠𝑒𝑡_𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑚𝑎𝑝(∗∗𝑘𝑤𝑎𝑟𝑔𝑠)
𝑝𝑖𝑝𝑒_𝑚𝑎𝑝_𝑠𝑒𝑡𝑡𝑒𝑟𝑠.𝑝𝑖𝑝𝑒_𝑒𝑟𝑓𝑖𝑛𝑣_𝑚𝑎𝑝()

𝑝𝑖𝑝𝑒_𝑚𝑎𝑝_𝑠𝑒𝑡𝑡𝑒𝑟𝑠.𝑝𝑖𝑝𝑒_𝑢𝑛𝑖𝑡𝑐𝑢𝑏𝑒_𝑚𝑎𝑝()

For any 𝑋 ∈ ℝ𝑁𝑥×𝐷, this composite map performs the following operations: first, rescale all data to
the unit cube using scale to unit cube map; second, apply the map defined as 𝑆(𝑋) = 𝑒𝑟𝑓−1(2𝑋−1)
and finally use the average min distance map.

3.4. DISCRETE DIFFERENTIAL OPERATORS 37

3.3.2 Illustration of different kernels predictions
As it is clear from previous sections, the external parameters of a kernel-based prediction machine
are

• In most situations, a kernel is defined by

– a positive definite kernel function,
– a map.

• The choice of the inner parameters set 𝑌 . We usually face three main choices here.

– 𝑌 = 𝑋, that corresponds to the extrapolation case; cf. Section 3.2.4. This is the most
efficient choice when one seeks for high accuracy results.

– 𝑌 is randomly picked among 𝑋. This choice trades accuracy for execution time and is
adapted to heavy training set.

– 𝑌 is set as a sharp discrepancy sequence of 𝑋, described in Section ??. This choice
optimizes accuracy versus execution time. These are the most possible accurate machine
at a given computational burden but involves a time-consuming algorithm.

In order to illustrate the effects of different kernels and maps on learning machines, we compare
predictions for the one-dimensional test described for different kernels.

1 0 1
x-units

2

1

0

1

2

f(x
)-u

ni
ts

linear / periodic, no map

1 0 1
x-units

1.0

0.5

0.0

0.5

1.0

f(x
)-u

ni
ts

periodic, no map

1 0 1
x-units

30

25

20

15

10

5

0

f(x
)-u

ni
ts

matern kernel, no map

1 0 1
x-units

1.5

1.0

0.5

0.0

0.5

1.0

1.5
f(x

)-u
ni

ts

linear regressor kernel, no map

3.4 Discrete differential operators
3.4.1 Coefficient operator
We start this section by further analyzing the projection operator (3.2.6). We can interpret this
operator in a basis function setting:

𝑓𝑍 ∶= 𝐾(𝑍, 𝑌)𝑐𝑌 , 𝑐𝑌 ∶= 𝐾(𝑋, 𝑌)−1𝑓(𝑋) ∈ ℝ𝑁𝑌 ×𝐷𝑓 . (3.4.1)

The coefficients 𝑐𝑌 corresponds to the representation of 𝑓 in a basis of functions

𝑓𝑍 ∶=
𝑁𝑌

∑
𝑛=1

𝑐𝑛
𝑦 𝐾(𝑍, 𝑦𝑛), (3.4.2)

Coefficients are matrices also, having size 𝑁𝑌 × 𝐷𝑓 , except for some composite kernels. The table
below shows the first four coefficients of the test function 𝑓𝑧.

3.4.2 Partition of unity
For any 𝑌 ∈ ℝ𝑁𝑦×𝐷, consider the projection operator (3.2.6), and the following vector-valued
function:

𝜙 ∶ 𝑌 ↦ (𝜙1(𝑌), … , 𝜙𝑁𝑥(𝑌)) = 𝐾(𝑌 , 𝑋)𝐾(𝑋, 𝑋)−1 ∈ ℝ𝑁𝑦×𝑁𝑥 . (3.4.3)

38 CHAPTER 3. REPRODUCING-KERNEL METHODS FOR MACHINE LEARNING

that corresponds to the projection operator 𝒫𝑘(𝑋, 𝑋, 𝑌). On every point 𝑥𝑛, one computes
(without considering regularization terms)

𝜙(𝑥𝑛) ∶= (0, … , 1, … , 0) = 𝛿𝑛,𝑚, (3.4.4)

where 𝛿𝑛,𝑚 = 1 if 𝑛 = 𝑚, 0 else. For this reason, we call 𝜙(𝑥) a partition of unity. Figure 3.3
illustrates partitions functions.

1 0 1
1

0
1

0.0

0.5

1 0 1
1

0
1

0.0
0.2
0.4

1 0 1
1

0
1

0.0
0.2
0.4

1 0 1
1

0
1

0.0

0.5

Figure 3.3: Four partitions of unity functions

3.4.3 Gradient operator
For any positive-definite kernel 𝑘, and points 𝑋, 𝑌 , 𝑍, we define ∇ operator as the 3-tensor:

∇𝑘(𝑋, 𝑌 , 𝑍) = (∇𝑧𝑘)(𝑍, 𝑌)𝐾(𝑋, 𝑌)−1 ∈ ℝ𝐷×𝑁𝑥×𝑁𝑧 ,

where (∇𝑧𝑘)(𝑍, 𝑌) ∈ ℝ𝐷×𝑁𝑥×𝑁𝑦 is interpreted as a three-tensor. The gradient of any vector
valued function 𝑓 , is computed as

(∇𝑓)(𝑍) ∼ (∇𝑘)(𝑍, 𝑌 , 𝑍)𝑓(𝑋) ∈ ℝ𝐷×𝑁𝑧×𝐷𝑓 ,

where we omit the dependence ∇𝑘(𝑋, 𝑌 , 𝑍) for concision. Observe that maps, introduced in
Section 3.2.3, modify the operator ∇𝑘 as follows:

∇𝑘∘𝑆(𝑋, 𝑌 , 𝑍) ∶= (∇𝑆)(𝑍)(∇1𝑘)(𝑆(𝑍), 𝑆(𝑌))𝐾(𝑆(𝑋), 𝑆(𝑌))−1, (3.4.5)

where (∇1𝑘)(𝑍, 𝑌) ∈ ℝ𝐷×𝑁𝑧×𝑁𝑦 is interpreted as a three-tensor, as is (∇𝑆)(𝑍) ∶= (𝜕𝑑𝑆𝑗)(𝑍𝑛𝑧) ∈
ℝ𝐷×𝐷×𝑁𝑧 , representing the Jacobian of the map 𝑆, and the multiplication holds for the two first
indices.

Two-dimensional example. Figure 3.4 illustrate a corresponding derivative and compare it to
the original one for the first and second dimensions respectively.

3.4.4 Divergence operator
We define the ∇𝑇 operator as the transpose of the 3-tensor operator ∇:

< ∇𝑘(𝑋, 𝑌 , 𝑍)𝑓(𝑋), 𝑔(𝑍) >=< 𝑓(𝑋), ∇𝑘(𝑋, 𝑌 , 𝑍)𝑇 𝑔(𝑍) > .

3.4. DISCRETE DIFFERENTIAL OPERATORS 39

1 0 1

1

0

1

505

1 0 1

1

0

1

505

1 0 1

1

0

1

505

1 0 1

1

0

1

505

Figure 3.4: The first two graphs correspond to the first dimension (original on the left-hand,
computed on the right-hand). The next two graphs correspond to the second dimension (original
on the left-hand, computed on the right-hand).

Hence, as the left-hand side is homogeneous with, for any smooth function 𝑓 and vector fields 𝑔,
and ∇⋅ denotes the divergence operator

∫(∇𝑓) ⋅ 𝑔𝑑𝜇 = − ∫ 𝑓∇ ⋅ (𝑔𝑑𝜇). (3.4.6)

The operator ∇𝑇 is thus consistent with the divergence operator

∇𝑘(𝑋, 𝑌 , 𝑍)𝑇 𝑓(𝑍) ∼ −∇ ⋅ (𝑓𝜇)(𝑥)

To compute this operator, we proceed as follows: starting from the definition of the gradient
operator (3.4.5), we define, for any 𝑓(𝑋) ∈ ℝ𝑁𝑥×𝐷𝑓 ,𝑔(𝑍) ∈ ℝ𝐷×𝑁𝑧×𝐷𝑓

< (∇𝑧𝐾)(𝑍, 𝑌)𝐾(𝑋, 𝑌)−1𝑓𝑥, 𝑔𝑧 >=< 𝑓𝑥, 𝐾(𝑋, 𝑌)−𝑇 (∇𝑧𝐾)(𝑍, 𝑌)𝑇 𝑔𝑧 > .

Thus the operator ∇𝑘(𝑋, 𝑌 , 𝑍) is defined by

∇𝑘(𝑋, 𝑌 , 𝑍)𝑇 = 𝐾(𝑋, 𝑌)−𝑇 (∇𝑧𝐾)(𝑍, 𝑌)𝑇 ∈ ℝ𝑁𝑥×𝑁𝑧𝐷,

where ∇𝑧𝐾(𝑍, 𝑌)𝑇 ∈ ℝ𝑁𝑦×(𝑁𝑧𝐷) is the transpose of the matrix ∇𝑧𝐾(𝑍, 𝑌).
A two-dimensional example. Figure 3.5 compares the outer product of the gradient to Laplace
operator ∇𝑘(𝑋, 𝑌 , 𝑍)𝑇 ∇𝑘(𝑋, 𝑌 , 𝑍)𝑓(𝑋) to Δ𝑘(𝑋, 𝑌)𝑓(𝑋); see the next section.

3.4.5 Laplace operator
We define the Laplace operator as the matrix

Δ𝑘(𝑋, 𝑌) = (∇𝑘(𝑋, 𝑌 , 𝑋)𝑇)(∇𝑘(𝑋, 𝑌 , 𝑋)) ∈ ℝ𝑁𝑥×𝑁𝑥 .

This operator is not consistent with the “true” Laplace operator, but is instead consistent with
(3.4.6).

−∇ ⋅ (∇𝑓𝜇).

3.4.6 Inverse Laplace operator
This operator is simply the pseudo-inverse of the Laplacian Δ𝑘(𝑋, 𝑌) ∈ ℝ𝑁𝑥×𝑁𝑥 .

40 CHAPTER 3. REPRODUCING-KERNEL METHODS FOR MACHINE LEARNING

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

6040200204060

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

6040200204060

Figure 3.5: Comparison of the outer product of the gradient to Laplace operator

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

210123

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

201001020

Figure 3.6: Comparison between original function to the product of Laplace and its inverse

3.4. DISCRETE DIFFERENTIAL OPERATORS 41

A two-dimensional example. Figure 3.6 compares 𝑓(𝑋) with Δ𝑘(𝑋, 𝑌)−1Δ𝑘(𝑋, 𝑌)𝑓(𝑋). This
latter operator is a projection operator (hence is stable).

We also compute the operator Δ𝑘,𝑥,𝑦,𝑧Δ−1
𝑘,𝑥,𝑦,𝑧𝑓(𝑋) in Figure 3.7, to check that pseudo-inversion

commutes, as highlighted by the following computations:

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

210123

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

10050050100

Figure 3.7: Comparison between original function and the product of the inverse of the Laplace
operator and the Laplace operator

3.4.7 Integral operator - inverse gradient operator
The following operator ∇−1

𝑘 is an integral-type operator

∇−1
𝑘 = Δ−1

𝑘 ∇𝑇
𝑘 ∈ ℝ𝑁𝑥×𝐷𝑁𝑧 .

It can be interpreted as a matrix, computed first considering ∇𝑘(𝑋, 𝑌 , 𝑍) ∈ ℝ𝐷×𝑁𝑧×𝑁𝑥 , down
casting it to a matrix ℝ𝐷𝑁𝑧×𝑁𝑥 before performing a least-square inversion. This operator acts on
any 3-tensor 𝑣𝑧 ∈ ℝ𝐷×𝑁𝑧×𝐷𝑣𝑧 , and outputs a matrix

∇−1
𝑘 (𝑋, 𝑌 , 𝑍)𝑣𝑧 ∈ ℝ𝑁𝑥×𝐷𝑣𝑧 , 𝑣𝑧 ∈ ℝ𝐷×𝑁𝑧×𝐷𝑣𝑧

The operator ∇−1
𝑘 corresponds to the minimization procedure:

ℎ(𝑋) ∶= arg inf
ℎ∈ℝ𝑁𝑥×𝐷𝑣𝑧

‖∇𝑘(𝑋, 𝑌 , 𝑍)ℎ − 𝑣𝑧‖2
𝐷,𝑁𝑧,𝑁𝑥

.

A two-dimensional example. In Figure 3.8 we show that (∇)(∇)−1𝑓(𝑋) coincides with 𝑓(𝑋).
Observe however that this latter operation is not equivalent to Figure 3.9, which uses 𝑍 as extrap-
olation set.

3.4.8 Integral operator - inverse divergence operator
The following operator (∇𝑇

𝑘)−1 is another integral-type operator of interest. We define the (∇𝑇)−1

operator as the pseudo-inverse of the ∇𝑇 operator:

(∇𝑇
𝑘 (𝑋, 𝑌 , 𝑍))−1 = ∇𝑘(𝑋, 𝑌 , 𝑍)Δ𝑘(𝑋, 𝑌 , 𝑍)−1.

A two-dimensional example. We compute ∇𝑘(𝑋, 𝑌 , 𝑍)𝑇 (∇𝑇
𝑘 (𝑋, 𝑌 , 𝑍))−1 = Δ𝑘(𝑋, 𝑌 , 𝑍)Δ𝑘(𝑋, 𝑌 , 𝑍)−1.

Thus, the following computations should give comparable results as those obtained in the section
concerning the inverse Laplace operator; see Section 3.4.6.

42 CHAPTER 3. REPRODUCING-KERNEL METHODS FOR MACHINE LEARNING

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

210123

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

012345

Figure 3.8: Comparison between original function to the product of the gradient operator and its
inverse

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

210123

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

50510

Figure 3.9: Comparison between original function to the product of the inverse of the gradient
operator and the gradient operator

1.0 0.5 0.0 0.5 1.01.0
0.5

0.0
0.5

1.0

2
1

0
1
2
3

1.0 0.5 0.0 0.5 1.01.0
0.5

0.0
0.5

1.0

5.0
2.5

0.0
2.5
5.0
7.5

Figure 3.10: Comparison between the product of the divergence operator and its inverse and the
product of Laplace operator and its inverse

3.4. DISCRETE DIFFERENTIAL OPERATORS 43

3.4.9 Leray-orthogonal operator
We define the Leray-orthogonal operator as

𝐿𝑘(𝑋, 𝑌)⟂ ∶= ∇𝑘(𝑋, 𝑌)Δ𝑘(𝑋, 𝑌)−1∇𝑇
𝑘,𝑥,𝑦,𝑥 = ∇𝑘(𝑋, 𝑌 , 𝑍)∇𝑘(𝑋, 𝑌 , 𝑍)−1.

This operator acts on any vector field 𝑓(𝑍) ∈ ℝ𝐷×𝑁𝑧×𝐷𝑓 , down casting it, performing a matrix
multiplication and producing a three-tensor:

𝐿𝑘(𝑋, 𝑌 , 𝑍)⟂𝑓(𝑍) ∈ ℝ𝐷×𝑁𝑧×𝐷𝑓 .

In Figure 3.11, we compare this operator to the original function (∇𝑓)(𝑍):

1 0 1

1

0

1

505

1 0 1

1

0

1

05

1 0 1

1

0

1

505

1 0 1

1

0

1

05

Figure 3.11: Comparing f(z) and the transpose of the Leray operator on each direction

3.4.10 Leray operator and Helmholtz-Hodge decomposition
We define the Leray operator as

𝐿𝑘(𝑋, 𝑌 , 𝑍) ∶= 𝐼𝑑 − 𝐿𝑘(𝑋, 𝑌 , 𝑍)⟂ = 𝐼𝑑 − ∇𝑘(𝑋, 𝑌 , 𝑍)Δ𝑘(𝑋, 𝑌 , 𝑍)−1∇𝑘(𝑋, 𝑌 , 𝑍)𝑇 ,

where 𝐼𝑑 is the identity. Hence, we get the following orthogonal decomposition of any tensor fields:

𝑣𝑧 = 𝐿𝑘(𝑋, 𝑌 , 𝑍)𝑣𝑧 + 𝐿𝑘(𝑋, 𝑌 , 𝑍)⟂𝑣𝑧, < 𝐿𝑘(𝑋, 𝑌 , 𝑍)𝑣𝑧, 𝐿𝑘(𝑋, 𝑌 , 𝑍)⟂𝑣𝑧 >𝐷,𝑁𝑧,𝐷𝑣
= 0.

This agrees with the Helmholtz-Hodge decomposition, decomposing any vector field into an or-
thogonal sum of a gradient and a divergence free vector:

𝑣 = ∇ℎ + 𝜁, ∇ ⋅ 𝜁 = 0, ℎ ∶= Δ−1∇ ⋅ 𝑣

Here we have also an orthogonal decomposition from a numerical point of view:

𝑣𝑧 = ∇𝑘(𝑋, 𝑌 , 𝑍)ℎ𝑥 + 𝜁𝑧, ℎ𝑥 ∶= ∇𝑘(𝑋, 𝑌 , 𝑍)−1𝑣𝑧, 𝜁𝑧 ∶= 𝐿𝑘(𝑋, 𝑌 , 𝑍)𝑣𝑧,

satisfying numerically

∇𝑘(𝑋, 𝑌 , 𝑍)𝑇 𝜁𝑧 = 0, ⟨𝜁𝑧, ∇𝑘(𝑋, 𝑌 , 𝑍)ℎ𝑥⟩𝐷×𝑁𝑧×𝐷𝑓
= 0.

In Figure 3.12 we compare this operator to the original function (∇𝑓)(𝑍).

44 CHAPTER 3. REPRODUCING-KERNEL METHODS FOR MACHINE LEARNING

1 0 1

1

0

1

505

1 0 1

1

0

1

505

1 0 1

1

0

1

505

1 0 1

1

0

1

505

Figure 3.12: Comparing f(z) and the Leray operator in each direction

3.5 Kernel engineering
3.5.1 Manipulating kernels
In this section we describe some general operations on kernels, which allow us to generate new
and relevant kernels. These operations preserve a positiveness property required for kernels. For
this section, two kernels denoted by 𝑘𝑖(𝑥, 𝑦) ∶ ℝ𝐷 × ℝ𝐷 ↦ ℝ, 𝑖 = 1, 2 are given with corresponding
matrices 𝐾1 and 𝐾2. In agreement with (3.2.6), we introduce the corresponding two projection
operators:

𝒫𝑘𝑖
(𝑋, 𝑌 , 𝑍) ∶= 𝐾𝑖(𝑍, 𝑌)𝐾𝑖(𝑋, 𝑌)−1 ∈ ℝ𝑁𝑧×𝑁𝑥 , 𝑖 = 1, 2 (3.5.1)

In order to work with two (or more) kernels, we introduced the following Python function, which
are basic setters and getters to kernels: get_kernel_ptr() and set_kernel_ptr(kernel_ptr). The
first one allows us to recover an already input kernel of our library, while the second one allows
us to input it into our framework.

3.5.2 Adding kernels
The first operation, denoted by 𝑘1 +𝑘2 and defined from any two kernels, consists in simply adding
two kernels. If 𝐾1 and 𝐾2 are two kernel matrices associated to the kernels 𝑘1 and 𝑘2, then we
define the sum of two kernels as 𝐾(𝑋, 𝑌) ∈ ℝ𝑁𝑥×𝑁𝑦 and corresponding projection operator as
𝒫𝑘(𝑋, 𝑌 , 𝑍) ∈ ℝ𝑁𝑧×𝑁𝑦 :

𝐾(𝑋, 𝑌) ∶= 𝐾1(𝑋, 𝑌) + 𝐾2(𝑋, 𝑌), 𝒫𝑘(𝑋, 𝑌 , 𝑍) = 𝐾(𝑍, 𝑋)𝐾(𝑋, 𝑌)−1. (3.5.2)

The functional space generated by 𝑘1 + 𝑘2 is then

ℋ𝑘 = { ∑
1≤𝑚≤𝑁𝑥

𝑎𝑚(𝑘1(⋅, 𝑥𝑚) + 𝑘2(⋅, 𝑥𝑚))}. (3.5.3)

3.5.3 Multiplicating kernels
A second operation, denoted by 𝑘1 ⋅𝑘2 and defined from any two kernels, consists in multiplying two
kernels together. A kernel matrix 𝐾(𝑋, 𝑌) ∈ ℝ𝑁𝑥×𝑁𝑦 and a projection operator 𝒫𝑘(𝑋, 𝑌 , 𝑍) ∈
ℝ𝑁𝑧×𝑁𝑦 corresponding to the product of two kernels are defined as

𝐾(𝑋, 𝑌) ∶= 𝐾1(𝑋, 𝑌) ∘ 𝐾2(𝑋, 𝑌), 𝒫𝑘(𝑋, 𝑌 , 𝑍) = 𝐾(𝑍, 𝑋)𝐾(𝑋, 𝑌)−1, (3.5.4)

where ∘ is the Hadamard product of two matrices. The functional space generated by 𝑘1 ⋅ 𝑘2 is

ℋ𝑘 = { ∑
1≤𝑚≤𝑁𝑥

𝑎𝑚(𝑘1(⋅, 𝑥𝑚)𝑘2(⋅, 𝑥𝑚))}. (3.5.5)

3.5. KERNEL ENGINEERING 45

3.5.4 Convoluting kernels
Our next operation, denoted by 𝑘1 ∗ 𝑘2 and defined from any two kernels, consists in multiplying
corresponding kernel matrices 𝐾1 and 𝐾2 as

𝐾(𝑋, 𝑌) ∶= 𝐾1(𝑋, 𝑌)𝐾2(𝑌 , 𝑌), (3.5.6)

where 𝐾1(𝑋, 𝑌)𝐾2(𝑌 , 𝑌) stands for the standard matrix multiplication. The projection operator
is given by 𝒫𝑘(𝑋, 𝑌 , 𝑍) = 𝐾(𝑍, 𝑋)𝐾(𝑋, 𝑌)−1. Suppose that 𝑘1(𝑥, 𝑦) = 𝜑1(𝑥 − 𝑦), 𝑘2(𝑥, 𝑦) =
𝜑2(𝑥 − 𝑦), then the functional space generated by 𝑘1 ∗ 𝑘2 is

ℋ𝑘 = { ∑
1≤𝑚≤𝑁𝑥

𝑎𝑚(𝑘(⋅, 𝑥𝑚))}, (3.5.7)

where 𝑘(𝑥, 𝑦) ∶= (𝜑1 ∗ 𝜑2)(𝑥 − 𝑦) is the convolution of the two kernels.

3.5.5 Piped kernels
Another important operation is referred to here as “piping kernels” and provides yet another route
for generating new kernels in a natural and explicit way. It is denoted by 𝑘1|𝑘2 and corresponds
to define the projection operator (3.2.4) as follows:

𝒫𝑘(𝑋, 𝑌 , 𝑍) = 𝒫𝑘1
(𝑋, 𝑌 , 𝑍)𝜋1(𝑋, 𝑌) + 𝒫𝑘2

(𝑋, 𝑌 , 𝑍)(𝐼𝑑 − 𝜋1(𝑋, 𝑌)), (3.5.8)

where the projection operator here reads

𝜋1(𝑋, 𝑌) ∶= 𝐾1(𝑋, 𝑌)𝐾1(𝑋, 𝑌)−1 = 𝒫𝑘1
(𝑋, 𝑌 , 𝑋).

This operation splits the projection operator 𝒫𝑘(𝑋, 𝑌 , 𝑍) into two parts. The first part is handled
by a single kernel, while the second kernel handles the remaining error. From a mathematical
standpoint point, this is equivalent to a functional Gram-Schmidt orthogonalization process of
both functional spaces ℋ𝑥

𝑘1
, ℋ𝑥

𝑘2
, and the corresponding functional space defined by (3.5.8) is,

after (3.2.10),
ℋ𝑥

𝑘 = { ∑
1≤𝑚≤𝑁𝑥

𝑎𝑚𝑘1(⋅, 𝑥𝑚) + ∑
1≤𝑚≤𝑁𝑥

𝑏𝑚𝑘2(⋅, 𝑥𝑚)}. (3.5.9)

Hence, this doubles up the coefficients (3.4.1). We define its inverse concatenating matrix

𝐾−1(𝑋, 𝑌) = (𝐾1(𝑋, 𝑌)−1, 𝐾2(𝑋, 𝑌)−1(𝐼𝑁𝑥
− 𝜋1(𝑋, 𝑌))) ∈ ℝ2𝑁𝑦×𝑁𝑥 . (3.5.10)

The kernel matrix associated to a “piped” kernel pair is then

𝐾(𝑋, 𝑌) = (𝐾1(𝑋, 𝑌), 𝐾2(𝑋, 𝑌)) ∈ ℝ𝑁𝑥×2𝑁𝑦 . (3.5.11)

3.5.6 Piping scalar product kernels: an example with a polynomial re-
gression

Let 𝑆 ∶ ℝ𝐷 ↦ ℝ𝑁 be given by a family of 𝑁 basis functions 𝜑𝑛, i.e. 𝑆(𝑥) = (𝜑1(𝑥), … , 𝜑𝑁(𝑥)) and
consider the following kernel, called dot product kernel (which is conditionally positive-definite):

𝑘1(𝑥, 𝑦) ∶=< 𝑆(𝑥), 𝑆(𝑦) > . (3.5.12)

Now, given any positive kernel 𝑘2(𝑥, 𝑦), consider a “pipe” kernel 𝑘1|𝑘2. In particular, such a
construction is very useful with a polynomial basis function 𝑆(𝑥) = (1, 𝑥1, …) : it consists of a
classical polynomial regression, allowing to perfectly match moments of distributions, since the
remaining error is handled by the second kernel.

46 CHAPTER 3. REPRODUCING-KERNEL METHODS FOR MACHINE LEARNING

3.5.7 Neural networks viewed as kernel methods
Our setup describes the strategies developed in deep learning theory, which are based on neural
networks. Namely, we consider any feed-forward neural network of depth 𝑀 , defined by

𝑧𝑚 = 𝑦𝑚𝑔𝑚−1(𝑧𝑚−1) ∈ ℝ𝑁𝑚 , 𝑦𝑚 ∈ ℝ𝑁𝑚×𝑁𝑚−1 , 𝑧0 = 𝑦0 ∈ ℝ𝑁0 ,

in which 𝑦0, … , 𝑦𝑀 are considered as weights and 𝑔𝑚 as prescribed activation functions. By
concatenation, we arrive at the function

𝑧𝑀(𝑦) = 𝑦𝑀𝑧𝑀−1(𝑦0, … , 𝑦𝑀−1) ∶ ℝ𝑁0×…×𝑁𝑀 ↦ ℝ𝑁𝑀 .

This neural network is thus entirely represented by the kernel composition

𝑘(𝑦𝑚, … , 𝑦0) = 𝑘𝑚(𝑦𝑚, 𝑘𝑚−1(… , 𝑘1(𝑦1, 𝑦0))) ∈ ℝ𝑁𝑚×…×𝑁0 ,

where 𝑘𝑚(𝑥, 𝑦) = 𝑔𝑚−1(𝑥𝑦𝑇), indeed 𝑧𝑀(𝑦) = 𝑦𝑀𝑘(𝑦𝑀−1, … , 𝑦0).

3.6 A first application: a clustering algorithm
3.6.1 Distance-based unsupervised learning machines
In this section we describe a kernel-based clustering algorithm. This algorithm, already presented
with a toy example in Section 2.4.4, is also benchmarked in a forthcoming section devoted to more
concrete problems; see Chapter ??.

Distance-based minimization algorithms can be thought as finding a minimum of a distance be-
tween set of points 𝑑(𝑋, 𝑌), defining equivalently a distance between discrete measures 𝜇𝑥, 𝜇𝑦.
Within this setting, minimization problem can be expressed as

𝑌 = arg inf
𝑌 ∈ℝ𝑁𝑦×𝐷

𝑑(𝑋, 𝑌).

Suppose that this last problem is well-posed, assuming that the distance functional is convex1.
Once the cluster set 𝑌 ∶= (𝑦1, … , 𝑦𝑁𝑦) is computed, then one can define the index function
𝜎(𝑤, 𝑌) ∶= arg inf𝑗=1…𝑁𝑌

{𝑑(𝑤, 𝑦𝑗)}, as for (2.3.3). One we can extend naturally this function,
defining a map

𝜎(𝑍, 𝑌) ∶= {𝜎(𝑧1, 𝑌), … , 𝜎(𝑧𝑁𝑧 , 𝑌)} ∈ [1, … , 𝑁𝑦]𝑁𝑧 , (3.6.1)

that acts on the indices of the test set 𝑍. This allows to compare this prediction to a given,
user-desired, partition of 𝑓(𝑍), if needed.
Note that the function 𝜎(𝑍, 𝑌) is surjective (many-to-one). Hence we can define its injective
(one-to-many) inverse, 𝜎(𝑍, 𝑌)−1(𝑛), describing those points of the test set attached to one 𝑦𝑛.
This construction defines cells, very similarly to quantization, 𝐶𝑛 ∶= 𝜎(ℝ𝐷, 𝑦𝑛)−1(𝑛), defining a
partition of unity of the space ℝ𝐷. A last remark: consider, in the context of supervised clustering
methods, the training set and its values 𝑋, 𝑓(𝑋) and the index map 𝜎(𝑋, 𝑌) ∈ [1, … , 𝑁𝑥]𝑁𝑦

defined above. One can always define a prediction on the test set 𝑍 as

𝑓𝑧 ∶= 𝑓(𝑋𝜎(𝑌 𝜎(𝑍,𝑌),𝑋)),

showing that a distance-minimization unsupervised algorithm naturally defines a supervised one.

1although most of existing distance are not convex

3.6. A FIRST APPLICATION: A CLUSTERING ALGORITHM 47

3.6.2 Sharp discrepancy sequences
Our kernel-based algorithm for clustering can be described as follows:

• The unsupervised algorithm aims to solve the minimization problem (3.6.1) with the MMD
or the discrepancy functional (3.2.6). This procedure is separated into two main steps.

– First solve a discrete version of (3.6.1), namely

𝑋𝜎 = arg inf
𝜎∈Σ

𝑑𝑘(𝑋, 𝑋𝜎),

where Σ denotes the set of all subsets from [1, … , 𝑁𝑦] ↦ [1, … , 𝑁𝑥], and 𝑑𝑘 is the
discrepancy functional. This minimization problem is described Chapter ??.

– Depending on kernels, this step is completed by a simple gradient descent algorithm.
The initial state for this minimization is chosen to be 𝑋𝜎.

– The resulting solution 𝑌 is named sharp discrepancy sequences.
• The supervised algorithm consists then simply to compute the projection operator (3.2.6),

that we recall here.
𝑓𝑧 ∶= 𝒫𝑘(𝑋, 𝑌 , 𝑍)𝑓(𝑋)

using the python function (3.2.4), where the weight set 𝑌 is taken as the sharp discrepancy
sequence computed above.

3.6.3 Python functions
• The unsupervised clustering algorithm is given by the Python function

𝑠ℎ𝑎𝑟𝑝_𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦(𝑋, 𝑌 = [], 𝑁𝑦 = 0, 𝑠𝑒𝑡_𝑐𝑜𝑑𝑝𝑦_𝑘𝑒𝑟𝑛𝑒𝑙 = 𝑁𝑜𝑛𝑒, 𝑟𝑒𝑠𝑐𝑎𝑙𝑒 = 𝐹𝑎𝑙𝑠𝑒, 𝑛𝑚𝑎𝑥 = 10).

• Let 𝑋 ∈ ℝ𝑁𝑥×𝐷, 𝑌 ∈ ℝ𝑁𝑦×𝐷 any two distributions of points and 𝑘(𝑥, 𝑦) a positive-definite
kernel. The following Python function

𝑐𝑜𝑑𝑝𝑦.𝑎𝑙𝑔.𝑚𝑎𝑡𝑐ℎ(𝑌 , 𝑋, 𝑛𝑚𝑎𝑥 = 10)

provides an approximation to the following problem

arg inf
𝑌 ∈ℝ𝑁𝑦×𝐷

𝑑𝑘(𝑋, 𝑌)2

via a simple descent algorithm: starting from the input distribution 𝑌 , the algorithm per-
forms 𝑛𝑚𝑎𝑥 steps of a descent algorithm and output the resulting distribution.

• The computation of index associations (4.1), that is the function 𝜎𝑑𝑘
(𝑋, 𝑌), is given by

𝑎𝑙𝑔.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑙𝑎𝑏𝑒𝑙𝑙𝑖𝑛𝑔(𝑋, 𝑌 , 𝑠𝑒𝑡_𝑐𝑜𝑑𝑝𝑦_𝑘𝑒𝑟𝑛𝑒𝑙 = 𝑁𝑜𝑛𝑒, 𝑟𝑒𝑠𝑐𝑎𝑙𝑒 = 𝑇 𝑟𝑢𝑒).

This function relies on the distance matrix 𝐷(𝑋, 𝑌); see 3.2.

3.6.4 Impact of sharp discrepancy sequences on discrepancy errors
Figure 2.4.4 presented a first illustration of the impact of computing discrepancy errors on several
toy “blob” examples. In this paragraph, we fix the number of “blobs” to two, and the number
of generated points 𝑁𝑥 to 100. We then follow the test methodology of Section 2.4.4, re-running
all tests with scenarios for 𝑁𝑦 covering [0,100]. Figure 3.13 compare the results for discrepancy
errors of the three methods. One can check visually that discrepancy errors is zero, whatever the
clustering method is, when the number of clusters 𝑁𝑦 tends to 𝑁𝑥. Note also that our kernel
clustering methods shows quite good inertia performance indicators. This is surprising, as our
method is based on discrepancy error minimization, not inertia. An interpretation could be that
the inertia functional is bounded by the discrepancy error one.

48 CHAPTER 3. REPRODUCING-KERNEL METHODS FOR MACHINE LEARNING

20 40 60 80
Ny

0.5

1.0

1.5

2.0
di

sc
re

pa
nc

y_
er

ro
rs

codpy
k-means
minibatch

20 40 60 80
Ny

200

300

400

500

600

700

800

900

in
er

tia

codpy
k-means
minibatch

Figure 3.13: benchmark of discrepancy errors and inertia

3.6.5 A study of the discrepancy functional
As stated in the previous section, we first compute a discrete minimizing problem and denote 𝑋𝜎 its
solution. We eventually complete this step with a simple gradient descent algorithm. This section
explains and motivate this choice. Indeed, the minimizing properties 𝑑𝑘(𝑋, 𝑌) relies heavily on
the kernel definition 𝑘(𝑥, 𝑦), and we face an alternative, depending on regularity of kernels, that
we illustrate numerically in this section:

• If the kernel is smooth, then the distance functional 𝑑𝑘(𝑋, 𝑌) also is, and a descent algorithm
based on gradients computations is an efficient option.

• If the kernel is only continuous, or piecewise derivable, then we assume that the minimum
is attained by the discrete minimum solution 𝑋𝜎.

Hence, we study in this section the effect of some classical kernel over this functional for a better
understanding. To that aim, let us produce some random distributions 𝑥 ∈ ℝ𝑁𝑥 in one dimension,
we will study then for three kernels the following functionals:

ℝ𝑁𝑦 ∋ 𝑦 ↦ 𝑑𝑘(𝑥, 𝑦),

ℝ𝑁𝑦×2 ∋ 𝑌 = (𝑦1, 𝑦2) ↦ 𝑑𝑘(𝑥, 𝑌).

We generate uniform random variables 𝑥 ∈ ℝ𝑁𝑥 , 𝑦 ∈ ℝ𝑁𝑦 and 𝑌 = (𝑦1, 𝑦2) ∈ ℝ𝑁𝑦×2.

An example of smooth kernels: Gaussian. We start our study of the discrepancy functional
with a Gaussian kernel. The Gaussian kernels is a family of kernels based upon the following
kernel, generating functional spaces of smooth functions.

𝑘(𝑥, 𝑦) = exp(−(𝑥 − 𝑦)2)

The following picture shows the function 𝑦 ↦ 𝑑𝑘(𝑥, 𝑦) in blue. We also display the function
𝑑𝑘(𝑥, 𝑥𝑛), 𝑛 = 1 … 𝑁𝑥 in Figure 3.14 in orderto illustrate that this functional is neither convex nor
concave.

We see that the functional 𝑦 ↦ 𝑑𝑘(𝑥, 𝑦) admits a minimum which is close to 𝑦 = 1
2 , as expected.

Figure 3.15 displays 𝑦 ∶= (𝑦1, 𝑦2) ↦ 𝑑𝑘(𝑥, 𝑦). We see that this functional admits two minima, and
this reflects the fact that the functional 𝑦 ↦ 𝑑𝑘(𝑥, 𝑦) is invariant by permutation of the indices of
𝑦.
An example of Lipschitz continuous kernels: RELU. Let us now consider a kernel which
generate a functional space with less regularity. RELU kernels is the following family of kernels
(essentially generating the space of functions with bounded variation):

𝑘(𝑥, 𝑦) = 1 − |𝑥 − 𝑦|.

3.7. BIBLIOGRAPHY 49

As is clear in Figure 3.14 the function 𝑦 ↦ 𝑑𝑘(𝑥, 𝑦) is only piecewise differentiable. Hence in
some cases, the functional 𝑑𝑘(𝑥, 𝑦) might have an infinity of solutions (here on the “flat” segment).
Figure 3.15 displays 𝑦 ∶= (𝑦1, 𝑦2) ↦ 𝑑𝑘(𝑥, 𝑦) for a two-dimensional example

An example of continuous kernel: Matern. The Matern kernel reads (and generates a space
of continuous functions)

𝑘(𝑥, 𝑦) = exp(−|𝑥 − 𝑦|).

In Figure 3.14 we see that the function 𝑦 ↦ 𝑑𝑘(𝑥, 𝑦) admits concave parts, and a gradient-descent
algorithm can not give satisfactory results. Figure 3.15 shows a two-dimensional example 𝑦 ∶=
(𝑦1, 𝑦2) ↦ 𝑑𝑘(𝑥, 𝑦)

1 0 1
x-units

0.2

0.4

0.6

0.8

f(x
)-u

ni
ts

Gaussian kernel

1 0 1
x-units

0.4

0.6

0.8

1.0

f(x
)-u

ni
ts

RELU kernel

1 0 1
x-units

0.3

0.4

0.5

0.6

0.7

0.8

f(x
)-u

ni
ts

Matern kernel

Figure 3.14: Distance functional for the Gaussian, the Matern and the RELU kernels (1D)

1.0 0.5 0.0 0.5 1.01.0
0.5

0.0
0.5
1.0

0.2
0.4
0.6
0.8

Gaussian kernel

1.0 0.5 0.0 0.5 1.01.0
0.5

0.0
0.5
1.0

0.2
0.4
0.6
0.8
1.0

RELU kernel

1.0 0.5 0.0 0.5 1.01.0
0.5

0.0
0.5
1.0

0.2

0.4

0.6

Matern kernel

Figure 3.15: Distance functional for the Gaussian, the Matern and the RELU kernels (3D)

3.7 Bibliography
There esxists a vast literature on RKHS methods (cf. the list of refetences at the end of this
monograph) and, in particular on kernel regressions. A good reference is the textbook “Elements of
Statistical Learning Data Mining, Inference, and Prediction” by R.Tibshirani et al. RKHS methods
in statistics and related fields are described in the textbook “Reproducing Kernel Hilbert Spaces
in Probability and Statistics” by C. Thomas-Agnan et al. This also studied in “A Hilbert Space
Embedding for Distributions” by A. Smola, A. Gretton et al. A dimension reduction technique
for kernel least-square models was introduced in “Kernel Partial Least Squares Regression in
Reproducing Kernel Hilbert Space” by R. Rosipal and L. Trejo.

50 CHAPTER 3. REPRODUCING-KERNEL METHODS FOR MACHINE LEARNING

3.8 Appendix to Chapter 3
3.8.1 Maps and kernels
In the table below we propose a list of kernels with maps that best fit to each kernel

Kernels Maps
1. Dot Product
2. RELU
3. Gaussian Affine map, mean distance map,
4. Periodic Gaussian Affine map
5. Matern norm
6. Matern tensor
7. Matern periodic
8. Multiquadric norm
9. Multiquadric tensor
10. Sincard square tensor
11. sincard tensor
12. Tensor norm Unit cube map
13. Truncated norm
14. Truncated periodic

Chapter 4

Kernel methods for optimal
transport

4.1 A brief overview of discrete optimal transport
In this short introduction we recall basic facts concerning optimal transport, by focusing on the
discrete cases discussed in [6], and we explain describe how we connect these standard tools to our
error-based learning machines. For a complete review of optimal transport theory, see [56].

Consider a probability measure 𝜈 ∈ ℳ on ℝ𝐷, and a mapping 𝑆 ∶ ℝ𝐷 ↦ ℝ𝐷. Denote by 𝜇 ∈ ℳ
the measure defined by the change of variable

∫
ℝ𝐷

𝜑(𝑥)𝑑𝜇 = ∫
ℝ𝐷

(𝜑 ∘ 𝑆)(𝑥)𝑑𝜈, 𝜑 ∈ 𝒞(ℝ𝐷).

One then says that 𝑆 transports 𝜈 into 𝜇, and 𝑆#𝜈 = 𝜇 is referred to as the push-forward. Consider
a cost function, that is a positive, scalar-valued, symmetric, 𝒞1-regular function 𝑐 = 𝑐(⋅, ⋅). The
Monge problem, given 𝜈, 𝜇, consists in finding a mapping 𝑆 minimizing the transportation cost
from 𝜈 to 𝜇, that is

𝑆 = arg inf
𝑆#𝜈=𝜇

∫
ℝ𝐷

𝑐(𝑥, 𝑆(𝑥))𝑑𝜈.

In a discrete point of view, we consider two discrete measures 𝜇, 𝜈 = 𝛿𝑋, 𝛿𝑍, in which 𝑋 =
(𝑥1, … , 𝑥𝑁) and 𝑍 = (𝑧1, … , 𝑧𝑁) are two sequences of distinct points with the same length. Then
the Monge problem (4.1) amounts to determine a permutation 𝜎 ∶ [1 … 𝑁] ↦ [1 … 𝑁] satisfying

𝑆(𝑥𝑛) = 𝑧𝜎(𝑛) with 𝜎 = arg inf
𝜎∈Σ

𝑁
∑
𝑛=1

𝑐(𝑥𝑛, 𝑧𝜎(𝑛)).

Here, Σ is the set of all permutations, and we simply write 𝑆(𝑋) = 𝑍𝜎. Consider the matrix

𝐶(𝑋, 𝑍) = (𝑐(𝑥𝑖, 𝑧𝑗))
𝑗=1…𝑁

𝑖=1…𝑁
. Then the following problem is called the discrete Kantorovitch

problem
̄𝛾 = arg inf

𝛾∈Γ
𝐶(𝑋, 𝑍) ⋅ 𝛾,

where 𝐴 ⋅ 𝐵 denotes the Frobenius scalar matrix product, Γ is the set of all bi-stochastic matrix
𝛾 ∈ ℝ𝑁×𝑁 , i.e. satisfying ∑𝑁

𝑛=1 𝛾𝑚,𝑛 = ∑𝑁
𝑛=1 𝛾𝑛,𝑚 = 1 and 𝛾𝑛,𝑚 ≥ 0 for all 𝑚 = 1, … , 𝑁 . The

minimization problem (4.1) admits a dual expression, called the dual-Kantorovich problem:

𝜑, 𝜓 = arg sup
𝜑,𝜓

𝑁
∑
𝑛=1

𝜑(𝑥𝑛) − 𝜓(𝑧𝑛), 𝜑(𝑥𝑛) − 𝜓(𝑧𝑚) ≤ 𝑐(𝑥𝑛, 𝑧𝑚),

51

52 CHAPTER 4. KERNEL METHODS FOR OPTIMAL TRANSPORT

where 𝜑 ∶ 𝑋 ↦ ℝ, 𝜓 ∶ 𝑍 ↦ ℝ are discrete functions. As stated in [6], the three discrete problems
above are equivalent. We observe that the discrete Monge problem (4.1) is also known as the
linear sum assignment problem (LSAP), and was solved in the 50’s by an algorithm due to
H.W. Kuhn; it is also known as the Hungarian method1.

For the continuous case, under suitable conditions on 𝜈, 𝜇 (namely, with compact, connected, and
smooth support), any transport map 𝑆#𝜈 = 𝜇 can be polar-factorized as

𝑆(𝑋) = 𝑆 ∘ 𝑇 (𝑋), 𝑇#𝜈 = 𝜈,

where 𝑆 is the unique solution to the Monge problem (4.1), and is the gradient of a 𝑐−convex
potential 𝑆(𝑋) = exp𝑥 (− ∇ℎ(𝑋)). Here, exp𝑥 is the standard notation for the exponential
map (used in Riemannian geometry). A scalar function is said to be 𝑐-convex if ℎ𝑐𝑐 = ℎ, where
ℎ𝑐(𝑍) = inf𝑥 𝑐(𝑋, 𝑍)−ℎ(𝑋) is called the infimal 𝑐−convolution. Standard convexity coincides with
𝑐-convexity for convex cost functions such as the Euclidean function, in which case the following
polar factorization holds: 𝑆(𝑋) = (∇ℎ) ∘ 𝑇 (𝑋) with a convex ℎ. These results go back to [7]
(convex distance case) and [25] (general Riemannian distance) in the continuous setting.

We now describe the main connection between these techniques and learning machines 2.4.1. In-
deed, consider the cost function defined as 𝑐(𝑋, 𝑍) = 𝑑𝐾(𝛿𝑋, 𝛿𝑍), where the discrepancy functional
𝑑𝑘 is described in 3.2.6. Consider, as above, two discrete measures 𝜇, 𝜈 = 𝛿𝑋, 𝛿𝑍, defining the map
𝑆(𝑥𝑛) = 𝑧𝑛. With this notation, finding the map 𝑇 appearing in the right-hand side of the polar
factorization (4.1) consists in finding the permutation

𝜎 = arg inf
𝜎∈Σ

𝑁
∑
𝑛=1

𝑑𝐾(𝛿𝑥𝑛 , 𝛿𝑧𝜎(𝑛)).

Then, considering a differential learning machine 2.4.1, a discrete polar factorization consists in
solving the following equation for the unknown potential ℎ

𝑍𝜎 = exp𝑋 (− ∇𝑋𝒫𝑚(𝑋, 𝑌 , 𝑋, ℎ(𝑋))).

Such algorithms can be implemented for any differential, error-based learning machines.

4.2 Linear Sum Assignment Problems (LSAP)
LSAP. The “linear assignment value” problem is a fundamental combinatorial optimization prob-
lem, which is used in a number of academic and industrial applications. It is an old and well-
documented problem 2.

An illustration of the LSAP problem. Let 𝐴 ∈ ℝ𝑁,𝑀 be any, real-valued matrix. A
standard way to describe the LSAP problem is to find a permutation 𝜎 ∶ [0, .., 𝑚𝑖𝑛(𝑁, 𝑀)] ↦
[0, .., 𝑚𝑖𝑛(𝑁, 𝑀)] s.t.

𝜎 = arg inf
𝜎∈Σ

𝑇 𝑟(𝐴𝜎), 𝐴𝜎 ∶= 𝐴(𝜎(𝑛), 𝑚)𝑛,𝑚

where Σ is the set of all permutations.

Let us give a quick illustration for better understanding to this problem. We fill out a matrix with
random values in Table 4.1, and output also its cost, that is 𝑇 𝑟(𝑀).

1this algorithm seems nowadays credited to a 1890 posthumous paper by Jacobi.
2see the Wikipedia page https://en.wikipedia.org/wiki/Assignment_problem

https://en.wikipedia.org/wiki/Assignment_problem

4.2. LINEAR SUM ASSIGNMENT PROBLEMS (LSAP) 53

Table 4.1: a 4x4 random matrix

0.2617057 0.2469788 0.9062546 0.2495462
0.2719497 0.7593983 0.4497398 0.7767106
0.0653662 0.4875712 0.0336136 0.0626532
0.9064375 0.1392454 0.5324207 0.4110956

Table 4.2: Total cost before permutation

1.465813

Then we compute the permutation 𝜎. The python interface to this function is simply 𝜎 = lsap(𝑀).

Table 4.3: Permutation

1 3 2 0

We use this permutation for the row of the matrix 𝑀𝜎 ∶= 𝑀[𝜎], and we output the new cost after
ordering, that is 𝑇 𝑟(𝑀𝜎). we check in the following that the LSAP algorithm decreased the total
cost.

Table 4.4: Total cost after ordering

0.6943549

An illustration of a discrepancy based reordering algorithm. The ordering algorithm
takes two distributions in input, and output a permutation of one of its input data (𝑋 or 𝑌), as
well as the permutation 𝜎:

𝑋𝜎, 𝑌 𝜎, 𝜎 = 𝑎𝑙𝑔.𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔(𝑋, 𝑌 , 𝑠𝑒𝑡_𝑐𝑜𝑑𝑝𝑦_𝑘𝑒𝑟𝑛𝑒𝑙, 𝑟𝑒𝑠𝑐𝑎𝑙𝑒, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑁𝑜𝑛𝑒)

This python function takes as input the following:

• Two distributions of points having shapes

𝑋 ∶= (𝑥1, … , 𝑥𝑁𝑥) ∈ ℝ𝑁𝑥×𝐷, 𝑌 ∶= (𝑦1, … , 𝑦𝑁𝑦) ∈ ℝ𝑁𝑦×𝐷

• A positive kernel 𝑘(𝑥, 𝑦), defined through the input variable set_codpy_kernel. This defines
the cost matrix as being 𝑀 = 𝑑𝑘(𝑥, 𝑦), where the distance matrix is defined in 2.4.1.

• Alternatively an optional parameter 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 taking values among

– “norm1”, in which case the sorting is done accordingly to the Manhattan distance
𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|1

– “norm2”, in which case the sorting is done accordingly to the Euclidean distance
𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|2

– “normifty”, in which case the sorting is done accordingly to the Chebyshev distance
𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|∞

This function outputs :

• Two distributions 𝑋𝜎, 𝑌 𝜎 having length 𝑁𝑦. If 𝑁𝑥 > 𝑁𝑦, then 𝑌 𝜎 = 𝑌 . The case 𝑁𝑦 > 𝑁𝑥
is symmetric, letting the original distribution 𝑋 unchanged.

54 CHAPTER 4. KERNEL METHODS FOR OPTIMAL TRANSPORT

Table 4.7: Cost

393.3725

Table 4.9: Permutation

2 3 1 0

• A permutation 𝜎, represented as a vector 𝑖 ↦ 𝜎𝑖, 0 ≤ 𝑖 ≤ min(𝑁𝑥, 𝑁𝑦).
A quantitative illustration. We show first the results given by our ordering algorithm on a
simple example. We generate two random variables 𝑋 ∈ ℝ4×5, 𝑌 ∈ ℝ4×5, such that 𝑋 ∼ 𝒩(𝜇, 𝐼5)
and 𝑌 ∼ 𝑈𝑛𝑖𝑓([0, 1]4×5) with 𝜇 = [5, ..., 5]. The first is generated by multivariate Gaussian
distribution centered at 𝜇, the second one by a uniform distribution supported into the unit cube.

Table 4.5 shows the distance matrix 𝐷𝑘 induced by the Matern kernel 𝑘, and the transportation
cost is the trace of the matrix, i.e. 𝑇 𝑟𝑎𝑐𝑒(𝐷𝑘).

Table 4.5: Distance matrix before ordering

98.23496 107.96167 97.30143 102.42566
84.92364 93.94385 84.94698 90.99258
95.84254 106.71865 96.46384 101.69583
101.26279 104.96670 98.23994 104.72984

Table 4.6: Permutation before ordering

1 3 2 0

We then invoke the ordering algorithm and output the cost after ordering.

Finally, we output the distance matrix again after ordering in Table 4.8, as well as the permutation
𝜎 in Table 4.9

Table 4.8: Distance matrix after ordering

95.84254 106.71865 96.46384 101.69583
101.26279 104.96670 98.23994 104.72984
84.92364 93.94385 84.94698 90.99258
98.23496 107.96167 97.30143 102.42566

One can check that the sum of the diagonal elements, i.e. the total cost has decreased.

A qualitative illustration. This algorithm can be best illustrated in the two-dimensional case.
First we consider a Euclidean distance function 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|2, in which case this algorithm
corresponds to a classical rearrangement, i.e. the one corresponding to the Wasserstein distance.
To illustrate this behavior, let us generate a bi-modal type distribution 𝑋 ∈ ℝ𝑁𝑥×𝐷 and a random
uniform one 𝑌 ∈ [0, 1]𝑁𝑦×𝐷.

Table 4.10: Total cost after ordering

388.1819

4.2. LINEAR SUM ASSIGNMENT PROBLEMS (LSAP) 55

For a convex distance, this algorithm is characterized by a ordering where characteristic lines do
not cross each others, as plot in Figure ??, plotting both edges 𝑥𝑖 ↦ 𝑦𝑖, before and after the
ordering algorithm.

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

Note however that kernels based distance might lead to different permutations. This is due to
the fact that kernels defines distance that might not be Euclidean. Indeed, kernel distance might
not respect the triangular inequality. For instance, the kernel selected above defines a distance
equivalent to 𝑑(𝑥, 𝑦) = Π𝑑|𝑥𝑑 − 𝑦𝑑|, and leads to a ordering for which some characteristics should
cross

0 1 2 3 4 5 6

0

1

2

3

4

5

6

0 1 2 3 4 5 6

0

1

2

3

4

5

6

4.2.1 LSAP extensions
Different input sizes. Next we describe some extensions of the LSAP algorithms that we use in
our library. A first quite straightforward extension of the LSAP problem can be found for inputs
set of different sizes, without loss of generality 𝑁𝑦 ≤ 𝑁𝑥. Figure ?? illustrates the behavior of our
LSAP algorithm in this setting

4 2 0 2 4

4

2

0

2

4

3 2 1 0 1 2 3 4

3

2

1

0

1

2

3

4

56 CHAPTER 4. KERNEL METHODS FOR OPTIMAL TRANSPORT

General cost functions and motivations. Consider any real-valued matrix 𝑀 ∈ ℝ𝑁×𝑁 . In
situations of interests, we consider cost functional 𝑐(𝑀) that generalizes the classical cost func-
tional for LSAP problem 𝑐(𝑀) = ∑𝑛 𝑀(𝑛, 𝑛). Our algorithm generalizes to these cases, finding
a permutation 𝜎 ∶ [1 … 𝑁] ↦ [1 … 𝑁] such that

𝜎̄ = arg inf
𝜎∈Σ

𝑐(𝑀𝜎), 𝑀𝜎 = 𝑚(𝑛, 𝜎(𝑛))

An example of such a LSAP problem extension arised with kernel methods in Section 3.6.2. It corre-
sponds to compute the minimum of the discrepancy functional 3.6.2, for the particular choice where
𝑋𝜎 ⊂ 𝑋 is a subset of 𝑋 having length 𝑁𝑦 < 𝑁𝑥. We used the notations 𝑋𝜎 = (𝑥𝜎1 , … , 𝑥𝜎𝑁𝑦),
with 𝜎 ∶ [1 … 𝑁𝑦] ↦ [1 … 𝑁𝑥]. In this context, the matrix is defined as 𝑀(𝑛, 𝑚) = 𝑘(𝑥𝑛, 𝑥𝑚), and
the cost function is

𝑑𝑘(𝑥, 𝑥𝜎)2 = 𝑐(𝑀) = 1
𝑁2𝑥

𝑁𝑥,𝑁𝑥

∑
𝑛=1,𝑚=1

𝑀(𝑛, 𝑚)+ 1
𝑁2𝑦

𝑁𝑦,𝑁𝑦

∑
𝑛=1,𝑚=1

𝑀(𝜎(𝑛), 𝜎(𝑚))− 2
𝑁𝑥𝑁𝑦

𝑁𝑥,𝑁𝑦

∑
𝑛=1,𝑚=1

𝑘(𝑛, 𝜎(𝑚)).

So that our target minimization problem can be described as finding a permutation 𝜎̄ such that

𝜎 = arg inf
𝜎∶[1…𝑁𝑦]↦[1…𝑁𝑥]

𝑐(𝑀𝜎), 𝑀𝜎(𝑛, 𝑚) = 𝑘(𝑥𝑛, 𝑥𝜎(𝑚))

4.3 Conditional expectation algorithm
Motivation. Kernel methods to compute conditional expectations were considered a decade ago,
see for instance [27]. Indeed, these algorithms are central, in particular, for financial applications,
as they are at the heart of pricing technologies. They also have numerous other applications.
In this subsection, we propose a general python interface to a function computing conditional
expectations problems in arbitrary dimensions, that we named Pi. We also propose a kernel-based
implementation of these problems, which is described in [29] - [31].

Benchmarking such algorithms is a difficult task, as the literature did not provide competitor
algorithms to compute conditional expectations to kernel-based methods, for arbitrary dimensions,
to our knowledge. Indeed, these algorithms are tightly concerned with the so called curse of
dimensionality, as we are dealing with arbitrary dimensions algorithms.

However, there is a recent, but impressively fast-growing, literature, devoted to the study of
machine learning methods, particularly in the mathematical finance applications, see [17] and
ref. therein for instance. In particular, a neural networks approach has been proposed to compute
conditional expectation in [20] that we can use as benchmark. Hence a first benchmark is conducted
in section 7.5.

The Pi function. Consider any martingale process 𝑡 ↦ 𝑋(𝑡), and any positive definite kernel 𝑘,
we define the operator Π - using python notations -

𝑓𝑍|𝑋 = Π(𝑋, 𝑍, 𝑓(𝑍))

where

• 𝑋 ∈ ℝ𝑁𝑥×𝐷 is any set of points generated by a i.i.d sample of 𝑋(𝑡1) where 𝑡1 is any time.

• 𝑍 ∈ ℝ𝑁𝑧×𝐷 is any set of points, generated by a i.i.d sample of 𝑋(𝑡2) at any time 𝑡2 > 𝑡1.

• 𝑓(𝑍) ∈ ℝ𝑁𝑧×𝐷𝑓 is any, optional, function.

4.4. THE SAMPLER FUNCTION AND DISCRETE POLAR FACTORIZATION 57

The output is a matrix 𝑓𝑍|𝑋, representing the conditional expectation

𝑓𝑍|𝑋 ∼ 𝔼𝑋(𝑡2)(𝑓(⋅)|𝑋(𝑡1)) ∈ ℝ𝑁𝑥×𝐷𝑓 =∶𝑛𝑜𝑡. 𝑓(𝑍|𝑋). (4.3.1)

• if 𝑓(𝑍) is let empty, the output 𝑓𝑍|𝑋 ∈ ℝ𝑁𝑧×𝑁𝑥 is a matrix, representing a convergent
approximation of the stochastic matrix 𝔼𝑋(𝑡1)(𝑍|𝑋).

• if 𝑓(𝑍) ∈ ℝ𝑁𝑧×𝐷𝑓 is not empty, 𝑓𝑍|𝑋 ∈ ℝ𝑁𝑧×𝐷𝑓 is a matrix, representing the conditional
expectation 𝑓(𝑍|𝑋) ∶= 𝔼𝑋(𝑡1)(𝑓(𝑍)|𝑋).

4.4 The sampler function and discrete polar factorization
Sampler function. In this paragraph, we illustrate the polar factorization (4.1) through a quite
simple algorithm, the sampler function. In many applications we would like to fit the scattered
data to a given model that best represents them. To be specific, consider any distributions of
points 𝑋 ∈ ℝ𝑁𝑥×𝐷, representing i.i.d. samples of a random variable 𝑋, 𝑍 ∈ ℝ[0,1]𝑁𝑧×𝐷 , any i.i.d.
of the uniform distribution into the unit cube, and suppose that we solved (4.1) in the following,
discrete, sense

𝑋 = (∇𝑓)(𝑍), 𝑓 convex, 𝑋 ∈ ℝ𝑁𝑥×𝐷, 𝑍 ∈ [0, 1]𝑁𝑧×𝐷.

Then the function
𝑌 ↦ (∇𝑓)(𝑌),

where 𝑌 ∈ ℝ[0,1]𝑁𝑦×𝐷 provides us with a natural candidate for others i.i.d. realization of the
random variable 𝑋.

Hence this section illustrates the following python function

𝑌 = 𝑠𝑎𝑚𝑝𝑙𝑒𝑟(𝑋, 𝑁𝑦, 𝑠𝑒𝑒𝑑)

that outputs 𝑁𝑦 values 𝑌 ∈ ℝ𝑁𝑦×𝐷 of a distribution sharing close statistical properties with the
discrete distribution 𝑋, that we discuss in the next paragraph.

4.4.1 Examples
One dimensional distributions. Consider two one-dimensional distributions : a bi-modal
Gaussian and bi-modal Student’s 𝑡−distribution. The experiment consists of comparing the truth
distribution 𝑋 ∈ ℝ1000×1 and a computed distribution 𝑌 ∈ ℝ1000×1 using a a sampling function.

Figure 4.1 compares kernel desnity estimates and histogram of the original sample and the distri-
bution generated using a sampling function, the first plot compares to a Gaussian and second to
𝑡−distribution.

Tables 4.12 and ?? in Appendix show that sampling algorithm generated samples that are very
close in skewness, kurtosis and in terms of KL divergence and MMD.

Two dimensional distributions. Next we simply repeat the experiment for a two-dimensional
case. Figure 4.2 compares the distributions of 𝑋 ∈ ℝ1000×2 and 𝑌 ∈ ℝ1000×2 (original and the
computed distribution), the first scatter plot compares to a Gaussian, second to 𝑡−distribution
and third and forth scatters plots are bimodal Gaussian and 𝑡−distribution respectively with
𝑁𝑥 = 𝑁𝑦 = 1000.
Tables 4.12 and ?? in Appendix to this chapter output third and forth moments of the truth and
sampled distributions. On the one hand, the sampling algorithm can not capture the forth moment

58 CHAPTER 4. KERNEL METHODS FOR OPTIMAL TRANSPORT

7.5 5.0 2.5 0.0 2.5 5.0 7.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Gaussian distribution
sampled
generated

7.5 5.0 2.5 0.0 2.5 5.0 7.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

t-distribution
sampled
generated

Figure 4.1: Histograms of Bi-modal Gaussian vs sampled (left) and Student’s t distribution vs
sampled (right)

3 2 1 0 1 2 3

3

2

1

0

1

2

3

Gaussian
True
Sampling

15 10 5 0 5 10

15

10

5

0

5

10

15

20
t-distribution

True
Sampling

10 5 0 5

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Gaussian bimodal
True
Sampling

10 5 0 5 10

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

t-bimodal
True
Sampling

Figure 4.2: 2D Gaussian vs sampled (left) and 2D Student’s t distribution vs sampled (center)
and 2D bimodal Gaussian vs sampled (right)

4.5. BIBLIOGRAPHY 59

for heavy-tailed unimodal distribution, we chose a degree of freedom 𝑑𝑓 = 3 for 𝑡-distribution. On
the other hand, it can capture third and forth moments of light and heavy-tailed distributions,
but we can see in Figure 4.2 that there are some samples between two modes.

4.5 Bibliography
There many realizations of LSAP that are available with a python interface. For example, Scipy’s
optimization and root finding module3 allows to find LSAP using a Hungarian algorithm when the
cost matrix is unbalanced. A python library Lapjv4 allows to find LSAP using Jonker-Volgenant
algorithm5. The Sinkhorn algorithm6,7 is fast heuristic for the Kantorovich problem, that allows
to solve efficiently LSAP, but the matrix obtained by using the Sinkhorn algorithm is not always
a permutation matrix. It was implemented for some cases in POT library8.

4.6 Appendix to Chapter 4
1D distributions. Table 4.11 illustrates the skewness, the kurtosis between 𝑋 ∈ ℝ1000×1 and
𝑌 ∈ ℝ1000×1 for the Gaussian and Student’s 𝑡−distributions from Section 4.4.

Table 4.11: Stats

Gaussian bimodal 0 t-bimodal 0
Mean 0.021 (0.28) -0.071 (0.18)
Variance 26 (25) 26 (25)
Skewness -0.00033 (-0.12) -0.00072 (-0.13)
Kurtosis -1.9 (-1.8) -1.9 (-1.8)
KS test 0.289 (0.05) 0.356 (0.05)

2D distributions. To check numerically some first properties of the generated distribution, We
output in Table 4.12 the skewness and kurtosis, probability distances of both 𝑋 ∈ ℝ1000×2 and
𝑌 ∈ ℝ1000×2. Each row represents the truth distribution 𝑋 and generated distribution using a
sampling function labeled as “sampled” 𝑌 :

Table 4.12: Summary statistics

Gaussian 0 1 t-distribution 0 1 Gaussian bimodal 0 1 t-bimodal 0 1
Mean -0.032 (0.0084) -0.0038 (0.058) -0.11 (-0.034) 0.074 (0.2) -0.012 (0.061) -0.038 (0.0027) -0.085 (-0.077) -0.0069 (0.034)
Variance 0.95 (0.74) 1 (0.92) 2.7 (2.1) 2.9 (3.8) 26 (25) 26 (24) 26 (25) 26 (25)
Skewness 0.0057 (0.19) 0.076 (0.24) -1.1 (-0.44) -0.75 (2.2) 0.0026 (-0.015) 0.00023 (-0.0012) 0.01 (-0.035) -0.0013 (-0.031)
Kurtosis 0.12 (0.57) -0.11 (0.25) 13 (4.2) 21 (20) -1.9 (-1.7) -1.9 (-1.8) -1.9 (-1.7) -1.8 (-1.7)
KS test 0.12 (0.05) 0.127 (0.05) 0.395 (0.05) 0.222 (0.05) 0.116 (0.05) 0.092 (0.05) 0.056 (0.05) 0.255 (0.05)

3Scipy, see this url. https://github.com/src-d/lapjv
4Lapjv, see this url
5R. Jonker and A. Volgenant, “A Shortest Augmenting Path Algorithm for Dense and Sparse Linear Assignment

Problems,” Computing, vol. 38, pp. 325-340, 1987.
6Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic matrices. Pacific

Journal of Mathematics, 21-343-348, 1967.
7Jason Altschuler, Jonathan Weed, and Philippe Rigollet. Near-linear time approximation algorithms for optimal

transport via sinkhorn iteration. CoRR, 2017.(https://arxiv.org/abs/1705.09634)
8POT, see this url.

https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.linear_sum_assignment.html
https://github.com/src-d/lapjv
https://github.com/src-d/lapjv
https://arxiv.org/abs/1705.09634
https://pythonot.github.io/

60 CHAPTER 4. KERNEL METHODS FOR OPTIMAL TRANSPORT

Chapter 5

Application to supervised machine
learning

5.1 Aims of this chapter
In this chapter and the following ones, we present some examples of more concrete learning ma-
chines problems. Some of these tests are taken from kaggle1.

Supervised learning problems can be split into regression and classification problems. Both prob-
lems have as goal the construction of a model that can predict the value of the output from the
input variables. In the case of regression the output is a real valued variable, whereas in the case
of classification the output is category (e.g. “disease” or “no disease”). Codpy’s extrapolate and
projection function can be used to treat each of above mentioned problems.

We present two cases corresponding two each typical problems in supervised learning: Boston
housing prices prediction and MNIST classification.

5.2 Regression problem: housing price prediction
Description. This database contains information collected by the U.S Census Service concerning
housing in the area of Boston Mass. There are 506 cases and 13 attributes (features) with a target
column (price). More details can be found in the article published by Harrison, D. and Rubinfeld,
D.L. “Hedonic prices and the demand for clean air”, J. Environ. Economics & Management, vol.5,
81-102, 1978.

A comparison between methods. We compare codpy’s extrapolation operator defined in
(3.2.8)-left with following machine learning models: decision tree (DT) by scikit-learn library
and TensorFlow’s neural network (NN) model. Starting from the training set 𝑋 ∈ ℝ𝑁𝑥×𝐷, we
extrapolate the labels 𝑓𝑧, and compare to test set labels 𝑓(𝑍).

For the feed-forward NN we chose 50 epochs with batch size set to 16, with Adam optimization
algorithm and MSE as the loss function. The NN is composed of two hidden (64 cells), one
input (8 cells) and one output layers with the following sequence of activation functions: RELU -
RELU - RELU - Linear. All the rest hyperparameters in the models are default set by scikit-learn,
TensorFlow.

1kaggle, see this url.

61

https://www.kaggle.com/

62 CHAPTER 5. APPLICATION TO SUPERVISED MACHINE LEARNING

Table 5.1: scenario list

𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧
-1 505.0 505.0 -1
-1 456.5 456.5 -1
-1 408.0 408.0 -1
-1 359.5 359.5 -1
-1 311.0 311.0 -1
-1 262.5 262.5 -1
-1 214.0 214.0 -1
-1 165.5 165.5 -1
-1 117.0 117.0 -1
-1 68.5 68.5 -1

The first plot in Figure 5.1 compares methods in term of scores, the second and third plots
discrepancy errors and execution time for different scenarii defined in Table 5.1.

We give an interpretation of these results.

• First note that the RKHS-based method codpy lab extra, that is the extrapolation method,
obtains both best scores and worst execution time.

• Note that if we subtract the discrepancy error from one, the result matches the scores of
the method codpy lab extra. This indicates that the discrepancy error is an appropriate
indicator.

• Another kernel method, codpy lab proj, that is the projection method above, is a more
balanced method.

• Both kernel methods are shipped with a very standard kernel, that is the Gaussian one, that
is the only parameter for kernel methods. We emphasize that kernel engineering can easily
improves these results. We do not present these improved kernel methods, as our purposes
is to benchmark standard methods.

Observe that function norms and MMD errors are not method-dependent. Clearly, for this exam-
ple, a periodical kernel-based method outperforms the two other ones. However, it is not our goal
to illustrate a particular method supremacy, but a benchmark methodology, particularly in the
context of extrapolating test set data far from the training set ones.

200 400
Nx

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

sc
or

es

Decision tree
Tensorflow
housing codpy

200 400
Ny

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

di
sc

re
pa

nc
y_

er
ro

rs

Decision tree
Tensorflow
housing codpy

200 400
Ny

0

1

2

3

4

ex
ec

ut
io

n_
tim

e

Decision tree
Tensorflow
housing codpy

Figure 5.1: MMD and execution time

5.3. CLASSIFICATION PROBLEM: HANDWRITTEN DIGITS 63

5.3 Classification problem: handwritten digits
Description. This section contains an example of classification for images, which is a typical
academic example referred to as the MNIST problem, and allows us to benchmark our results
against more popular methods.

MNIST (“Modified National Institute of Standards and Technology”) contains 60,000 training
images and 10,000 testing images. Half of the training set and half of the test set were taken
from NIST’s training dataset, while the other half of the training set and the other half of the
test set were taken from NIST’s testing dataset. Since its release in 1999, this classic database of
handwritten images has served as the basis for benchmarking classification algorithms.

Short introduction to MNIST. The MNIST dataset is composed of 60, 000 images defining
a training set of handwritten digits. Each image is a vector having dimensions 784 (a 28 × 28
grayscale image flattened in row-order). There are 10 digits 0–9. The test set is composed of
10, 000 images with their labels.

We formalize the problem as follows. Given the test set represented by a matrix 𝑋 ∈ ℝ𝑁𝑥×𝐷,
𝐷 = 784, the labels 𝑓(𝑋) ∈ ℝ𝑁𝑥×𝐷𝑓 , 𝐷𝑓 = 10, and the test set 𝑍 ∈ ℝ𝑁𝑧×𝐷, 𝑁𝑧 = 10000, predict
the label function 𝑓(𝑍) ∈ ℝ𝑁𝑧×𝐷𝑓 . Data are retrieved from Y. LeCun MNIST home page this
dedicated page for a description of the MNIST database, and we will test different values for 𝑁𝑥.

The following picture shows an image of hand-written number, that is the first image 𝑥1, as well
as numerous others

A comparison between methods. We compare different machine learning models to classify
MNIST digits : support vector classifier (SVC), decision tree classifier (DT), adaboost classifier,
random forest classifier(RF) by scikit-learn library and TensorFlow’s neural network (NN) model.

For the feed-forward NN we chose 10 epochs with batch size set to 16, with Adam optimization
algorithm and sparse categorial entropy as the loss function. The NN is composed of 128 input and
10 output layers with a RELU activation function. All the rest hyperparameters in the models are
default set by scikit-learn, TensorFlow. We also straightforwardly apply the projection operator
(3.2.6) with the kernel function defined by a composition of the Gaussian kernel with a mean
distance map, where the training set is 𝑋 ∈ ℝ𝑁𝑥×784, and 𝑌 ∈ ℝ𝑁𝑦×784 ⊂ 𝑋 is randomly chosen.

Table 5.2: Scenario list

D Nx Ny Nz
784 32 8 10000
784 64 16 10000
784 128 32 10000
784 256 64 10000

Scores are computed using the formula (2.3.2), a scalar in the interval between 0 and 1, which
counts the number of correctly predicted images.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

64 CHAPTER 5. APPLICATION TO SUPERVISED MACHINE LEARNING

Figure 5.2 is a confusion matrix for the last scenario in Table 5.2 for a neural network.

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

893 0 17 0 3 42 16 2 7 0
0 1046 2 1 1 0 3 0 81 1
16 64 828 13 29 6 3 16 55 2
17 21 61 782 3 22 2 21 66 15
1 9 7 3 756 0 9 0 8 189
71 11 21 250 47 294 16 26 118 38
44 23 113 0 30 32 699 7 9 1
1 43 20 4 9 2 0 850 23 76
34 36 37 65 28 30 12 32 673 27
12 13 14 15 213 2 1 61 20 658

0

200

400

600

800

1000

Figure 5.2: Confusion matrix for Neural network: Tensorflow

Figure 5.3 compares methods in term of scores, MMD errors and execution time. We give an
interpretation of these results.

• First notice that the kernel method codpy class. extra is a multiple-input/multiple-output
classifier, which is basically an extrapolation method, obtains both best scores and worst
execution time.

• Notice also that one, minus the discrepancy error, matches the scores of the method codpy
class. extra. This indicates that the discrepancy error is a pertinent indicator.

• Another RKHS - based method, codpy class. proj, allows to reduce the computational
complexity of extrapolation by using a projection of the input data to lower dimensions. It
is a more balanced method with respect to accuracy vs complexity.

• Both kernel methods use a standard Gaussian kernel, that is the only parameter for kernel
methods. We emphasize that kernel engineering can easily improves these results. We do not
present these improved kernel methods, as our purposes is to benchmark standard methods.

Observe that function norms and discrepancy errors are not method-dependent. Clearly, for this
example, a periodic kernel-based method outperforms the two other ones. However, it is not our
goal to illustrate a particular method supremacy, but a benchmark methodology, particularly in
the context of extrapolating test set data far from the training set ones.

100 200
Nx

0.2

0.3

0.4

0.5

0.6

0.7

0.8

sc
or

es

AdaBoost
Decision tree
RForest
SVC
Tensorflow
codpy extra

20 40 60
Ny

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

di
sc

re
pa

nc
y_

er
ro

rs

AdaBoost
Decision tree
RForest
SVC
Tensorflow
codpy extra

20 40 60
Ny

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ex
ec

ut
io

n_
tim

e AdaBoost
Decision tree
RForest
SVC
Tensorflow
codpy extra

Figure 5.3: MMD and execution time

5.4. RECONSTRUCTION PROBLEMS : LEARNING FROM SUB-SAMPLED SIGNALS IN TOMOGRAPHY.65

5.4 Reconstruction problems : learning from sub-sampled
signals in tomography.

Description. This numerical experience illustrates an interesting capability of learning machines
to reconstruction problems from sub-sampled signals. Indeed, in this test, we will be learning from
a well-established algorithm, that is the SART one, to fasten the reconstruction.

There are many applications of such problems. We illustrate this section with a problem coming
from a medical image reconstruction, that can be used also as a medical helping diagnosis decision
tool. However, such problems occur in a wide variety of other situations: biology, oceanography,
astrophysics, …

Poor input signal quality can sometimes be a choice. For instance, in nuclear medicine, it is
better to work with lower radioisotopes concentration for obvious health reasons. Another inter-
esting motivation for sub-sampling signals can be also accelerating data acquisition processes from
expensive machines.

We illustrate this section with an example of such a reconstruction coming from reconstructing a
signal from a sub-sampled SPEC (tomography) problem that we describe now.

A problem coming from SPECT tomography. The purpose of this test is to illustrate a
sub-sampling reconstruction in the context of medical imagery, more precisely from sub-sampled
SPECT images. To that aim, we start from collecting a set of high resolution images2. The set
itself is not really important for our illustration sake in this section. However it should be chosen
carefully for real, production problem.

This database image consists in high resolution (512 × 512) images, consisting in approximately
30 images of 82 patients. The training set is built on the first 81 patient. The 82-th patient is
used for the test set. We first transform the training set database to produce our data. For each
image in the training set (2470 images):

• We perform a “high” resolution (256 × 256) radon transform 3, called a sinogram 4. A
sinogram is quite close to a Fourier transform of the original image, generating sinusoids.

• We perform a “low” resolution (8x256) radon transform.
• We reconstruct the original image from the high resolution sinogram to simulate high reso-

lution SPECT images from these data. The reconstruction algorithm consists in computing
an inverse radon transform 5.

An example of training set construction is presented Figure 5.4. Left is the reconstructed image
from the “high resolution” sinogram (middle). The low resolution sinogram is plot at right.

The test consists then in reconstructing all images of the 82-th patient using low-resolution sino-
grams.

A comparison between methods. We present here the test resulting from a benchmark of a
kernel-based method and the SART algorithm6

Following our notations, section 2.1, we introduce

• The training set 𝑥 ∈ ℝ2473×2304, consisting in 2473 sinograms having resolution 8 × 256,
consisting in all low-resolution sinograms of the 81 first patients, plus the first one of the
82-th patient. This last figure is added to check an important feature in these problems :
the learning machine must be able to retrieve an already input example.

2the image set is available publicly at this kaggle link.
3An introduction to radon transform can be found at this wikipedia page.
4We used the standard radon transform from scikit, available at this url.
5We used a SART algorithm, 3 iterations, for reconstruction, available at this url.
6We did not succeed finding competitive parameters for other methods.

https://www.kaggle.com/vbookshelf/computed-tomography-ct-images/
https://en.wikipedia.org/wiki/Radon_transform
https://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.radon
https://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.iradon_sart

66 CHAPTER 5. APPLICATION TO SUPERVISED MACHINE LEARNING

Figure 5.4: high resolution sinogram (middle), low resolution (right), reconstructed image (left)

• The test set 𝑧 ∈ ℝ29×2304, consisting in 29 sinograms of the 82-th patient, having resolution
8 × 256.

• The training values set 𝑓𝑥 ∈ ℝ2473×65536, consisting in the 2473 images in “high-resolution”.
• The ground truth values 𝑓(𝑍) ∈ ℝ29×65536, consists in 29 images in “high-resolution”.

We perform the tests and output the results in Table ??. The columns are the predictor identity,
𝐷, 𝑁𝑥, 𝑁𝑦, 𝑁𝑧, 𝐷𝑓 , the execution time, and the score, computed with the RMSE % error indicator,
see (2.3.2).

• The first line, named exact, simply output the original figures, leading to zero error.
• The second one, named SART, reconstruct the figures from the SART algorithm with sub-

sampled data.
• The third one, named codpy, reconstruct the figures from the sub-sampled data with the

kernel extrapolation method (3.2.8).

Figure 5.5 plots the first 8 images, presenting the original one at left, the reconstruction from SART
algorithm, middle, and our algorithm, right. One can check visually that this kernel method better
reconstruct the original image. It would be erroneous to conclude that this reconstruction process
performs better than the SART algorithm, and it is not at all our speech here. We simply illustrate
here the capacity of our algorithm to recognize existing patterns: indeed, note that the first image
is perfectly reconstructed, as it is part of the training set. This property emphasizes that such
methods suit well to pattern recognition problems, as automated tools to support professionals
diagnosis.

5.5. APPENDIX 67

Figure 5.5: Example of reconstruction original (left), sub-sampled SART (middle), kernel extrap-
olation (right)

5.5 Appendix
Tables 5.3 and 5.4 indicates performance indicators for the Boston housing prices and MNIST
datasets.

Table 5.3: Performance indicators for housing prices database

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time scores MMD
housing codpy 13 505 505 -1 1 1.22 0.0012 0.0000
housing codpy 13 456 456 -1 1 0.97 0.0220 1.2415
housing codpy 13 408 408 -1 1 0.84 0.0253 0.9470
housing codpy 13 359 359 -1 1 0.57 0.0291 2.2870
housing codpy 13 311 311 -1 1 0.46 0.0355 3.0667
housing codpy 13 262 262 -1 1 0.35 0.0394 6.3171
housing codpy 13 214 214 -1 1 0.27 0.0494 4.9851
housing codpy 13 165 165 -1 1 0.18 0.0644 5.0520
housing codpy 13 117 117 -1 1 0.15 0.0785 14.5699
housing codpy 13 68 68 -1 1 0.09 0.1080 20.1727
Tensorflow 13 505 505 -1 1 4.21 0.1001 0.0000
Tensorflow 13 456 456 -1 1 3.94 0.1117 1.2415
Tensorflow 13 408 408 -1 1 3.79 0.0814 0.9470
Tensorflow 13 359 359 -1 1 3.75 0.0969 2.2870
Tensorflow 13 311 311 -1 1 3.39 0.1186 3.0667
Tensorflow 13 262 262 -1 1 3.39 0.1348 6.3171
Tensorflow 13 214 214 -1 1 3.14 0.1367 4.9851
Tensorflow 13 165 165 -1 1 3.08 0.1588 5.0520

68 CHAPTER 5. APPLICATION TO SUPERVISED MACHINE LEARNING

Table 5.3: Performance indicators for housing prices database (continued)

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time scores MMD
Tensorflow 13 117 117 -1 1 2.83 0.1480 14.5699
Tensorflow 13 68 68 -1 1 2.66 0.1749 20.1727
Decision tree 13 505 505 -1 1 0.00 0.0197 0.0000
Decision tree 13 456 456 -1 1 0.01 0.0328 1.2415
Decision tree 13 408 408 -1 1 0.00 0.0431 0.9470
Decision tree 13 359 359 -1 1 0.00 0.0488 2.2870
Decision tree 13 311 311 -1 1 0.00 0.0505 3.0667
Decision tree 13 262 262 -1 1 0.00 0.0717 6.3171
Decision tree 13 214 214 -1 1 0.00 0.0883 4.9851
Decision tree 13 165 165 -1 1 0.00 0.0853 5.0520
Decision tree 13 117 117 -1 1 0.00 0.0860 14.5699
Decision tree 13 68 68 -1 1 0.00 0.1068 20.1727

Table 5.4: Performance indicators for MNIST database

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time scores MMD
Tensorflow 784 32 8 10000 1 0.67 0.3104 0.3490
Tensorflow 784 64 16 10000 1 0.35 0.5004 0.2648
Tensorflow 784 128 32 10000 1 0.34 0.6719 0.2207
Tensorflow 784 256 64 10000 1 0.36 0.7479 0.1754
codpy extra 784 32 8 10000 1 1.05 0.2744 0.3490
codpy extra 784 64 16 10000 1 1.05 0.1915 0.2648
codpy extra 784 128 32 10000 1 1.10 0.1834 0.2207
codpy extra 784 256 64 10000 1 1.21 0.1591 0.1754
SVC 784 32 8 10000 1 0.04 0.5446 0.3490
SVC 784 64 16 10000 1 0.08 0.6634 0.2648
SVC 784 128 32 10000 1 0.14 0.7288 0.2207
SVC 784 256 64 10000 1 0.23 0.8105 0.1754
Decision tree 784 32 8 10000 1 0.01 0.2660 0.3490
Decision tree 784 64 16 10000 1 0.01 0.3652 0.2648
Decision tree 784 128 32 10000 1 0.02 0.4954 0.2207
Decision tree 784 256 64 10000 1 0.02 0.5115 0.1754
AdaBoost 784 32 8 10000 1 0.78 0.2878 0.3490
AdaBoost 784 64 16 10000 1 0.73 0.4581 0.2648
AdaBoost 784 128 32 10000 1 0.79 0.4819 0.2207
AdaBoost 784 256 64 10000 1 0.87 0.5289 0.1754
RForest 784 32 8 10000 1 0.86 0.4558 0.3490
RForest 784 64 16 10000 1 0.83 0.6292 0.2648
RForest 784 128 32 10000 1 0.95 0.7085 0.2207
RForest 784 256 64 10000 1 1.04 0.7749 0.1754

Chapter 6

Applications to unsupervised
machine learning

6.1 Aims of this chapter
In this section we apply some clustering methods for a number of use cases.We benchmarked
our kernel-based algorithms (see Section 2.4.4 against the popular k-means algorithms. Both are
distance-based minimization algorithms, aiming to solve the problem @ref{eq:dist}, that we recall
here

𝑌 = arg inf
𝑌 ∈ℝ𝑁𝑦×𝐷

𝑑(𝑋, 𝑌)

The clusters 𝑌 ∈ ℝ𝑁𝑦×𝐷 are the results of this minimization algorithm, where :

• For k-means algorithm, the distance is called the inertia, see section ??.

• For kernel-based algorithms, the distance is MMD, see section 3.2.6.

Importantly, if the distance functional 𝑑(𝑋, 𝑌) is not convex, then a solution to (3.6.1) might not
be unique. For instance, a k-means algorithm usually output different clusters output at different
runs.

6.2 Classification problem: handwritten digits
Description. The MNIST test is also studied in the section 5. Here we consider it as a semi-
supervised learning: we use the train set 𝑋 ∈ ℝ𝑁𝑥×𝐷 to compute the cluster’s centroids 𝑌 ∈ ℝ𝑁𝑦×𝐷.
Then we use these clusters to predict the test labels 𝑓𝑧 ∈ ℝ𝑁𝑧×𝐷𝑓 , corresponding to the test set
𝑍 ∈ ℝ𝑁𝑧×𝐷.

A comparison between methods. First we use scikit’s k-means algorithm implementation,
which is simply partitioning the input data 𝑋 ∈ ℝ𝑁𝑥×𝐷 into 𝑁𝑦 sets so as to minimize the within-
cluster sum of squares, which is defined as “inertia”. The inertia represents the sum of distances
of all points to the centroid 𝑌 ∈ ℝ𝑁𝑦×𝐷 in a cluster. K-means algorithm starts with a group of
randomly initialized centroids and then performs iterative calculations to optimize the position of
centroids until the centroids stabilizes, or the defined number of iterations is reached.

Second we apply codpy’s MMD minimization-based algorithm described in ?? using the distance
𝑑𝑘(𝑥, 𝑦) induced by a Gaussian kernel: 𝑘(𝑥, 𝑦) = exp(−(𝑥 − 𝑦)2).

69

70 CHAPTER 6. APPLICATIONS TO UNSUPERVISED MACHINE LEARNING

Table 6.1: scenario list

𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧
-1 1000 128 1000
-1 1000 256 1000

0 50 100 150 200 250

0

25
0 50 100 150 200 250

0

25

0 50 100 150 200 250

0

25
0 50 100 150 200 250

0

25

Figure 6.1: Scikit (the first row) and codpy (second row) clusters interpreted as images

The result of k-means algorithm is 𝑁𝑦 clusters in 𝐷 = 784 dimensions, i.e. 𝑌 ∈ ℝ𝑁𝑦×𝐷. Note that
the cluster centroids themselves are 784-dimensional points, and can themselves be interpreted
as the “typical” digit within the cluster. Figure 6.1 plots some examples of computed clusters,
interpreted as images. As can be seen, they are perfectly recognizable.

Finally, we illustrate a benchmark plot, displaying the computed performance indicator of scikit’s
k-means and codpy’s MMD minimization-based algorithm in terms of MMD, inertia, accuracy
scores (when applicable) and execution time, using scenarios in Table 6.1. The higher the scores
and the lower are the inertia and MMD the better.

6.3. GERMAN CREDIT RISK 71

150 200 250
Ny

0.80

0.82

0.84

0.86

0.88

sc
or

es codpy
k-means

150 200 250
Ny

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

di
sc

re
pa

nc
y_

er
ro

rs

codpy
k-means

150 200 250
Ny

14000

15000

16000

17000

18000

19000

20000

in
er

tia

codpy
k-means

150 200 250
Ny

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

ex
ec

ut
io

n_
tim

e

codpy
k-means

The scores are quite high, compared to supervised methods for similar size of training set, see
results section 5. MMD-based minimization have an inertia indicator that is comparable to k-
means. This is surprising as k-means algorithms are based on inertia minimization. Moreover,
scores seems to indicate that the MMD distance is a more reliable criteria than inertia on this
pattern recognition problem.

6.3 German credit risk
Description. The original dataset1 contains 1000 entries with 20 categorial/symbolic attributes.
In this database, each entry represents a person who takes a credit by a bank. The goal is to
categorize each person as good or bad credit risks according to the set of attributes.

3 2 1 0 1 2 3 4
pca1

3

2

1

0

1

2

3

4

5

pc
a2

3 2 1 0 1 2 3 4
pca1

3

2

1

0

1

2

3

4

5

pc
a2

A comparison between methods. The result of k-means and codpy’s sharp discrepancy algo-
rithm algorithm is 𝑁𝑦 clusters in 𝐷 dimensions. Notice that the cluster centroids themselves are
𝐷-dimensional points.

Table 6.2: scenario list

𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧
-1 -1 10 -1
-1 -1 20 -1

Next we visualize the clusters and corresponding centroids of scikit and codpy’s sharp discrepancy
algorithm, where we vary the number of clusters 𝑁𝑦 from 1 to 8. Obviously in this example we see
that the high number of clusters leads to overfitting and one is unable to interpret the resulting
clusters when 𝑁𝑦 = 8.

1The German credit risk dataset is described in the kaggle page link

https://www.kaggle.com/uciml/german-credit

72 CHAPTER 6. APPLICATIONS TO UNSUPERVISED MACHINE LEARNING

Finally, we illustrate a benchmark plot, displaying the computed performance indicators of scikit’s
k-means and codpy’s sharp discrepancy algorithms using scenarios from Table 6.2.

10 15 20
Ny

0.4

0.6

0.8

1.0

1.2

1.4

di
sc

re
pa

nc
y_

er
ro

rs

codpy
k-means.

10 15 20
Ny

2600

2800

3000

3200

3400

3600

3800

in
er

tia

codpy
k-means.

10 15 20
Ny

0.16

0.18

0.20

0.22

0.24

0.26

0.28

ex
ec

ut
io

n_
tim

e

codpy
k-means.

6.4 Credit card marketing strategy

Description. The problem can be formalized as follows. Develop a customer segmentation to
define marketing strategy. The sample dataset2 summarizes the usage behavior of 8,950 active
credit card holders during the last 6 months. The database contains 17 features and 8,950 records.
The data describes customer’s purchase and payment habits, such as how often a customer in-
stallment purchases, or how often they make cash advances, how much payments are made, etc.
By inspecting each customer, we can find which type of purchase he/she is keen on, or if he/she
prefers cash advance over purchases.

A comparison between methods. The result of k-means algorithm and codpy’s sharp dis-
crepancy algorithm is 𝑁𝑦 clusters in 𝐷 dimensions. Note that the cluster centroids 𝑌 ∈ ℝ𝑁𝑦×𝐷

themselves are 𝐷-dimensional points.

Table 6.3: scenario list

𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧
-1 -1 2 -1
-1 -1 5 -1
-1 -1 8 -1
-1 -1 11 -1
-1 -1 14 -1
-1 -1 17 -1
-1 -1 20 -1

2The credit card marketing strategy dataset is detailed on this dedicated kaggle page.

https://www.kaggle.com/arjunbhasin2013/ccdata

6.5. CREDIT CARD FRAUD DETECTION 73

0 20
pca1

0

5

10

15

20

25

pc
a2

0 20
pca1

0

5

10

15

20

25

pc
a2

0 20
pca1

0

5

10

15

20

25

pc
a2

0 20
pca1

0

5

10

15

20

25

pc
a2

Next we visualize the clusters and corresponding centroids of scikit’s k-means implementation
codpy’s sharp discrepancy algorithm, where we vary the number of clusters 𝑁𝑦 from 2 to 4.
Finally, we illustrate a benchmark plot, displaying the computed performance indicator of scikit’s
k-means and codpy’s sharp discrepancy algorithms using scenarii from Table 6.3.

5 10 15 20
Ny

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

di
sc

re
pa

nc
y_

er
ro

rs

k-means.

5 10 15 20
Ny

50000

60000

70000

80000

90000

100000

110000

120000

130000

in
er

tia

k-means.

5 10 15 20
Ny

0.2

0.3

0.4

0.5

0.6
ex

ec
ut

io
n_

tim
e

k-means.

6.5 Credit card fraud detection
Description. The database3 contains transactions made by credit cards in September 2013 by
European cardholders. It presents transactions that occurred in two days, where we have 492
frauds out of 284, 807 transactions. The database is highly unbalanced, the positive class (frauds)
account for 0.172% of all transactions.

The study addresses the fraud detection system to analyze the customer transactions in order to
identify the patterns that lead to frauds. In order to facilitate this pattern recognition work, the
k-means clustering algorithm is used which is an unsupervised learning algorithm and applied to
find out the normal usage patterns of credit card users based on their past activity.

It contains only numerical input variables which are the result of a PCA transformation. The only
features which have not been transformed with PCA are ‘Time’ and ‘Amount’. Feature ‘Time’
contains the seconds elapsed between each transaction and the first transaction in the database.
The feature ‘Amount’ is the transaction Amount, this feature can be used for example-dependant
cost-sensitive learning.

Feature ‘Class’ is the response variable and it takes value 1 in case of fraud and 0 otherwise.

A comparison between methods. Table 6.4 defines different scenarii of our experiment.

3You can find more details on this use case following the link kaggle page link.

https://www.kaggle.com/mlg-ulb/creditcardfraud

74 CHAPTER 6. APPLICATIONS TO UNSUPERVISED MACHINE LEARNING

Table 6.4: scenario list

𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧
-1 500 15 1000
-1 500 30 1000
-1 500 45 1000
-1 500 60 1000
-1 500 75 1000
-1 500 90 1000

Figure 6.2 illustrates confusion matrices for the last scenario of each approach.

0 1

0

1

278105 5460

32 214

MMD:CodPy

50000

100000

150000

200000

250000

0 1

0

1

268881 14684

204 42

k-means

50000

100000

150000

200000

250000

Figure 6.2: confusion matrix for codpy

Finally, we illustrate a benchmark plot, that shows the performance of scikit’s k-means and codpy’s
sharp discrepancy algorithms in terms of discrepancy errors, inertia, accuracy scores (when appli-
cable) and execution time.

25 50 75
Ny

0.88

0.90

0.92

0.94

0.96

0.98

1.00

sc
or

es

codpy
k-means

25 50 75
Ny

10

15

20

25

30

di
sc

re
pa

nc
y_

er
ro

rs

codpy
k-means

25 50 75
Ny

15000

20000

25000

30000

35000

in
er

tia

codpy
k-means

25 50 75
Ny

0

1

2

3

4

5

6

7

8

ex
ec

ut
io

n_
tim

e

codpy
k-means

6.6 Portfolio of stock clustering
Description. This case represents daily stock price movements 𝑋 ∈ ℝ𝑁𝑥×𝐷 (i.e. the dollar
difference between the closing and opening prices for each trading day) from 2010 to 2015.

6.6. PORTFOLIO OF STOCK CLUSTERING 75

Table 6.5: Stock’s clustering

k-means MMD minimization
0 American express Caterpillar, DuPont de Nemours, Navistar
1 Cisco, Intel, Microsoft, Taiwan

Semiconductor Manufacturing, Texas
instruments

Colgate-Palmolive, Kimberly-Clark, Procter
Gamble

2 General Electrics, Xerox ConocoPhillips, Chevron, Schlumberger,
Valero Energy, Exxon

3 Coca Cola, Pepsi, Philip Morris Dell
4 Walgreen Bank of America, Goldman Sachs,

JPMorgan Chase, Wells Fargo
5 British American Tobacco,

GlaxoSmithKline, Novartis, Royal Dutch
Shell, SAP, Sanofi-Aventis, Total, Unilever

Boeing, Lookheed Martin, Northrop
Grumman

6 Apple, Google/Alphabet American express, General Electrics, Home
Depot, IBM, MasterCard, 3M, Symantec

7 Colgate-Palmolive, Kimberly-Clark, Procter
Gamble

Coca Cola, McDonalds, Pepsi, Philip Morris

8 AIG, Bank of America, Goldman Sachs,
JPMorgan Chase, Wells Fargo

British American Tobacco,
GlaxoSmithKline, Novartis, Royal Dutch
Shell, SAP, Sanofi-Aventis, Total, Unilever

9 Boeing, Lookheed Martin, Northrop
Grumman

Canon, Ford, Honda, Mitsubishi, Sony,
Toyota, Xerox

10 MasterCard HP
11 Caterpillar, DuPont de Nemours, Home

Depot, IBM, 3M, Symantec
Intel, Taiwan Semiconductor

Manufacturing, Texas instruments
12 Dell, HP Apple
13 Amazon, Yahoo Johnson & Johnson, Pfizer, Walgreen
14 Ford, Navistar Amazon, Google/Alphabet
15 Canon, Honda, Mitsubishi, Sony, Toyota Microsoft
16 Valero Energy Yahoo
17 Johnson & Johnson, Pfizer, Wal-Mart AIG
18 McDonalds Wal-Mart
19 ConocoPhillips, Chevron, Schlumberger,

Exxon
Cisco

A comparison between methods. The table with a list of stocks shows that k-means clustering
and MMD minimization displays stocks into coherent groups. Finally, we illustrate a benchmark
plot, that shows the performance of scikit’s k-means and codpy’s sharp discrepancy algorithms in
terms of discrepancy errors, inertia, accuracy scores (when applicable) and execution time.

76 CHAPTER 6. APPLICATIONS TO UNSUPERVISED MACHINE LEARNING

10 15 20
Ny

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

di
sc

re
pa

nc
y_

er
ro

rs

k-means.

10 15 20
Ny

18

19

20

21

22

23

24

25

26

in
er

tia

k-means.

10 15 20
Ny

0.1300

0.1325

0.1350

0.1375

0.1400

0.1425

0.1450

0.1475

0.1500

ex
ec

ut
io

n_
tim

e

k-means.

6.7 Appendix

Table 6.6: Performance indicators for MNIST dataset

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time scores MMD inertia
k-means 784 1000 128 -1 1 1.06 0.8017 0.3177 20073.11
k-means 784 1000 256 -1 1 2.06 0.8323 0.2081 14263.97
codpy 784 1000 128 -1 1 1.60 0.8690 0.1374 20179.44
codpy 784 1000 256 -1 1 2.53 0.8931 0.1319 14148.60

Table 6.7: Performance indicators for German credit database

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time MMD inertia
k-means. 24 272 10 -1 0 0.15 1.4592 3750.21
k-means. 24 272 20 -1 0 0.17 0.8986 2473.49
codpy 24 272 10 -1 0 0.28 0.4561 3785.59
codpy 24 272 20 -1 0 0.23 0.3283 2498.88

Table 6.8: Performance indicators for credit card marketing database

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time MMD inertia
k-means. 17 8950 2 -1 0 0.15 1.5323 127785.05
k-means. 17 8950 5 -1 0 0.23 3.3306 91502.98
k-means. 17 8950 8 -1 0 0.31 4.0575 74492.65
k-means. 17 8950 11 -1 0 0.40 3.2265 63645.30
k-means. 17 8950 14 -1 0 0.45 3.1983 57496.11
k-means. 17 8950 17 -1 0 0.60 3.6764 52926.03
k-means. 17 8950 20 -1 0 0.62 3.1822 49534.69
k-means. 17 8950 2 -1 0 0.13 1.5320 127784.87
k-means. 17 8950 5 -1 0 0.20 4.9401 91805.97
k-means. 17 8950 8 -1 0 0.28 3.5581 74624.72
k-means. 17 8950 11 -1 0 0.39 3.3447 63618.66
k-means. 17 8950 14 -1 0 0.56 3.2204 57483.26
k-means. 17 8950 17 -1 0 0.43 2.7132 53445.48
k-means. 17 8950 20 -1 0 0.56 3.1055 49898.14

6.7. APPENDIX 77

Table 6.9: Performance indicators for credit card fraud database

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time scores MMD inertia
k-means 30 996 15 -1 1 0.33 0.9993 28.3943 34979.77
k-means 30 996 30 -1 1 0.37 0.9896 28.9360 23470.18
k-means 30 996 45 -1 1 0.41 0.9916 21.7840 19200.31
k-means 30 996 60 -1 1 0.46 0.9991 21.9045 16644.38
k-means 30 996 75 -1 1 0.51 0.9978 21.7911 14858.67
k-means 30 996 90 -1 1 0.51 0.9806 19.8914 13316.49
codpy 30 996 15 -1 1 6.71 0.9641 6.6490 34930.21
codpy 30 996 30 -1 1 6.95 0.9629 6.6440 23771.68
codpy 30 996 45 -1 1 7.27 0.9368 6.6387 19474.94
codpy 30 996 60 -1 1 7.45 0.8839 6.6366 16675.26
codpy 30 996 75 -1 1 7.62 0.9713 6.6413 14704.13
codpy 30 996 90 -1 1 7.88 0.9475 6.6409 13263.98

Table 6.10: Performance indicators for stock price

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 𝐷 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝐷𝑓 time MMD inertia
k-means. 963 60 10 -1 0 0.13 0.5038 25.68
k-means. 963 60 20 -1 0 0.15 0.3636 17.97
k-means. 963 60 10 -1 0 0.13 0.4967 25.69
k-means. 963 60 20 -1 0 0.15 0.3643 18.17

78 CHAPTER 6. APPLICATIONS TO UNSUPERVISED MACHINE LEARNING

Chapter 7

Generative models with kernels

7.1 Aim of this section
Synthetic data generation is a data obtained as a result of fitting observed data to a given model.
There are many applications using synthetic financial time series data, for risk management, deci-
sion tools, or backtesting purposes.

A classical approach to this problem are autoregressive, also called parametric methods, fitting
a known process to market observations, as GARCH (Generalized Autoregressive Conditional
Heteroscedasticity).

A more recent field of research are non-parametric models, based on neural networks, as for
instance GAN (Generative Adversarial Networks). There exists a number of works using GANs
in finance for time series prediction, portfolio management or fraud detection, see for instance [9]
for a review. However, this approach still needs to prove its efficiency for pricing purposes.

In this paper, we describe an alternative approach to non-parametric models, producing synthetic
data using kernel methods. Kernel methods are explainable since we can measure the accuracy
of predictions with error estimates. These estimates are based on a distance between measures,
that is a natural link to optimal transport theory. This allows to reproduce any random variables
based on the observation of their realizations, as well as to quantify theoretically the discretization
error.

Indeed, the capability to reproduce a given random variable accurately is key to synthetic data.
The section 7 describes our approach, whereas the section 7.2 gives numerical illustrations of our
construction.

Finally, we illustrate our approach via two financial applications in section ??. The first checks
that the time series forecast can be used for Monte Carlo pricing. The second is a P&L explanation
that can be used for intradays real time P&L approximation of large derivative portfolios. We
compute various numerical metrics to show the convergence properties of our methods.

7.1.1 Settings
Let 𝕏 be an unknown probability measure, absolutely continuous with respect to the Lebesgue
measure, supported over a convex set 𝒳 ⊂ ℝ𝐷, 𝐷 being the dimension, which is the number of
risk sources for financial applications. We focus in this paper on the discrete case, that is, let

𝑋 ∶= {𝑥𝑛
𝑑 }𝑁𝑥,𝐷

𝑛,𝑑=1 ∈ ℝ𝑁𝑥,𝐷 (7.1.1)

be a set of distinct points in 𝒳, defined as random samples following 𝕏, and consider the discrete
probability measure 𝕏𝑥 = 1

𝑁𝑥
∑𝑁𝑥

𝑖=1 𝛿𝑥𝑖 , 𝛿𝑥 being the Dirac measure concentrated at 𝑥. Consider

79

80 CHAPTER 7. GENERATIVE MODELS WITH KERNELS

𝕐 another probability measure, with a known law, for instance a uniform distribution over 𝒳, and
define as for 𝕏𝑥, 𝕐𝑦 = 1

𝑁𝑦
∑𝑁𝑦

𝑖=1 𝛿𝑦𝑖 .

7.1.2 Kernel review
We refer to [3] for a complete introduction to reproducing kernel Hilbert spaces (RKHS) theory.
We call a function 𝑘 ∶ 𝒳 × 𝒳 ↦ ℝ a kernel if it is symmetric and positive definite (see [3] for a
definition). A reproducing kernel Hilbert space ℋ𝑘 is a Hilbert space, generated by the kernel
𝑘, which scalar product satisfies the following reproducing property : 𝑘(𝑥, 𝑦) = ⟨𝑘(𝑥, ⋅), 𝑘(𝑦, ⋅)⟩ℋ𝑘

,
∀(𝑥, 𝑦) ∈ 𝒳 × 𝒳, see [15].

The discrepancy between two probability measures 𝕏 and 𝕐, induced by a kernel 𝑘 is

𝐷𝑘(𝕏, 𝕐)2 ∶= ∫ ∫ 𝑘(𝑥, 𝑦)𝑑𝕏𝑑𝕏+
∫ ∫ 𝑘(𝑥, 𝑦)𝑑𝕐𝑑𝕐 − 2 ∫ ∫ 𝑘(𝑥, 𝑦)𝑑𝕏𝑑𝕐. (7.1.2)

For the discrete case, this amounts to the following formula, introduced in [14]

𝐷𝑘(𝕏𝑥, 𝕐𝑦)2 ∶= 𝛼 ∑𝑁𝑥
𝑛,𝑚=1 𝑘(𝑥𝑛, 𝑥𝑚)+

𝛽 ∑𝑁𝑦
𝑛,𝑚 𝑘(𝑦𝑛, 𝑦𝑚) − 𝛾 ∑𝑁𝑥,𝑁𝑦

𝑛,𝑚=1 𝑘(𝑥𝑛, 𝑦𝑚),
(7.1.3)

where 𝛼 = 1
𝑁2𝑥

, 𝛽 = 1
𝑁2𝑦

and 𝛾 = 2
𝑁𝑥𝑁𝑦

. For (7.1.2), or (7.1.3), we define sharp discrepancy
sequences (SDS, see [31]), as solutions of the following, non-convex, minimization problem

̄𝑌 = arg inf
𝑦∈𝒳𝑁𝑦

𝐷𝑘(𝕏, 𝕐𝑦) (7.1.4)

We introduce also the discrepancy matrix induced by the kernel 𝑘 as 𝑀𝑘(𝑋, 𝑌) ∶=
(𝑑𝑘(𝑥𝑛, 𝑦𝑚))𝑁𝑥,𝑁𝑦

𝑛,𝑚=1, defined as

𝑑𝑘(𝑥, 𝑦) = 𝑘(𝑥, 𝑥) + 𝑘(𝑦, 𝑦) − 2𝑘(𝑥, 𝑦) (7.1.5)

Let 𝑓 ∶ 𝒳 ↦ ℝ𝐷𝑓 any vector valued function. Kernel methods allow to define a simple interpolation
/ extrapolation procedure. Denoting 𝑧 ↦ 𝑓𝑧 the interpolated function and the “ground truth
values” 𝑓(𝑧), we introduce the following sets, using a classical terminology for a supervised machine
learning. Consider a training set 𝑋, 𝑓(𝑋) ∈ 𝒳𝑁𝑥 , ℝ𝑁𝑥,𝐷𝑓 , a test set 𝑍, 𝑓(𝑍) ∈ 𝒳𝑁𝑧 , ℝ𝑁𝑧,𝐷𝑓 , as
well as a third set 𝑌 ∈ 𝒳𝑁𝑦 of internal parameters (to fix ideas, 𝑌 is equivalent to the “weight set”
for neural networks). Let 𝐾(𝑋, 𝑌) be a kernel matrix, induced by the kernel 𝑘, i.e. 𝐾(𝑋, 𝑌) ∶=
(𝑘(𝑥𝑛, 𝑦𝑚))𝑁𝑥,𝑁𝑦

𝑛,𝑚=1. We define a projection operator 𝑓𝑍 ∶= 𝒫𝑘(𝑋, 𝑌 , 𝑍)𝑓(𝑋), induced by the kernel
𝑘, defined as a matrix through

𝒫𝑘(𝑋, 𝑌 , 𝑍) ∶= 𝐾(𝑌 , 𝑍)𝐾(𝑋, 𝑌)−1. (7.1.6)

The inverse is computed using a least-squares approach, as follows, 𝐾(𝑋, 𝑌)−1 = (𝐾(𝑌 , 𝑋)𝐾(𝑋, 𝑌)+
𝜖𝐼𝑑)−1𝐾(𝑌 , 𝑋), where 𝜖 ≥ 0 is a (optional) regularization term. The projection operator (7.1.6)
benefits from the following error estimate (see [31]), that are confidence levels

‖𝑓(𝑍) − 𝑓𝑍‖ℓ2 ≤ 𝐷𝑘(𝑋, 𝑌 , 𝑍)‖𝑓‖ℋ𝑘
, (7.1.7)

where 𝐷𝑘(𝑋, 𝑌 , 𝑍) ∶= 𝐷𝑘(𝑋, 𝑌) + 𝐷𝑘(𝑌 , 𝑍). Starting from the formula (7.1.6), we can define all
kind of differential operators, as for instance the gradient

∇𝑓𝑍 = (∇𝑍𝐾)(𝑌 , 𝑍)𝐾(𝑋, 𝑌)−1𝑓(𝑋). (7.1.8)

7.1. AIM OF THIS SECTION 81

7.1.3 Kernel-based transport maps
Consider a map 𝑇 that transports 𝕐𝑦 into 𝕏𝑥. Using standard optimal transport definitions, 𝑇 is a
push forward map with notation 𝑇#𝕐𝑦 = 𝕏𝑥. To fix ideas, in the discrete case, and 𝑁𝑥 = 𝑁𝑦, 𝑇 is
defined through any permutation map 𝜎 ∶ {1, ..., 𝑁𝑥} ↦ {1, ..., 𝑁𝑥}, as 𝑇 (𝑌) ∶= 𝑋𝜎 ∶= {𝑥𝜎(𝑛)}𝑁𝑥

𝑛=1.

To set a well-defined map, we choose to define 𝑇 as a convex map, with respect to a non-Euclidean
metric, which is the discrepancy (7.1.5), as follows

𝜎̄ = arg inf
𝜎∈Σ

𝑇 𝑟(𝑀𝑘(𝑋𝜎, 𝑌)), (7.1.9)

where Σ is the set of all permutations, and Tr holds for the trace of the matrix 𝑀𝑘. This problem
can be solved for instance as a linear sum assignment problem, and the resulting values can be
used as initial ones to solve the problem (7.1.4) through a gradient descent algorithm.

Once an optimal permutation 𝜎̄ is computed, we use the projection operator (7.1.6) to define a
continuous map 𝐺, as

𝑧 ↦ 𝐺𝕏𝑥(𝑧) ∶= 𝒫𝑘(𝑌 , 𝑌 , 𝑧)𝑋𝜎̄. (7.1.10)

In particular, suppose that 𝑍 ∈ 𝒳𝑁𝑧 is IID of the same random variable used to sample 𝑌 , then
𝒫𝑘(𝑌 , 𝑌 , 𝑍)𝑋𝜎̄ is a natural candidate of 𝑁𝑧 IID random samples of 𝕏.

7.1.4 Time series forecasting
In this paper we consider time series forecasting as fitting a model in order to match a stochastic
process 𝑡 ↦ 𝑋(𝑡) ∈ ℝ𝐷, observed on a time grid 𝑡1

𝑥 < … < 𝑡𝑇𝑥𝑥 , the data having the following
shape

𝑋 ∶= (𝑥𝑛,𝑘
𝑑)

𝑛,𝑘=1…𝑁𝑥,𝑇𝑥

𝑑=1…𝐷
∈ ℝ𝑁𝑥,𝐷,𝑇𝑥 . (7.1.11)

In (7.1.11), 𝑁𝑥 is the number of observed trajectories, the third component of this 3-dimensional
tensor corresponding to the time index, and the dimension is 𝐷, or might also be 𝐷 + 1, if the
time 𝑡𝑘 is added to the observation set to take into account time dependencies. Note that market
data consists usually in only one trajectory of a stochastic process, hence 𝑁𝑥 = 1 in this paper.
However, in other applications, 𝑁𝑥 ≫ 1, as are for instance customers data.

Feature engineering is a classical approach in machine learning that consists on adding new features
to target a model. In our case, we use an injective map 𝐹 ∶ ℝ𝑁𝑥,𝐷,𝑇𝑥 ↦ ℝ𝑁𝐹 ,𝐷𝐹 , assuming that
𝐹(𝑋) is a random variable. By reproducing this random variable, one can generate any number
𝑁𝑧 of trajectories as follows:

• Consider any input data 𝑋 having shape (7.1.11), use the map 𝐹 to retrieve 𝐹(𝑋) ∈ ℝ𝑁𝐹 ×𝐷𝐹

which are random samples of 𝕏.
• Generate samples using (7.1.10), considering 𝐹(𝑋) ∈ ℝ𝑁𝐹 ×𝐷𝐹 as the training set.

• From these samples, use 𝐹 −1 to output samples having shape ℝ𝑁𝑧,𝐷,𝑇𝑧 , at any time grid
𝑡1
𝑧 < … < 𝑡𝑇𝑧𝑧 .

In this paper, we consider a simple model assumption 1, adapted to stock markets modeled with
Markovian processes, fitting any positive time series to a Markovian process 𝑡 ↦ 𝑋𝑡 ∈ ℝ𝐷 having
shape

𝑋𝑡 = 𝑋𝑠 exp((𝑡 − 𝑠)𝜇 +
√

𝑡 − 𝑠𝕏), (7.1.12)

where the unknown random variable, modeling the martingale component of the process, satisfies
𝔼(𝕏) = 0 and is supposed absolutely continuous with respect to the Lebesgue measure.

1This choice is motivated to provide benchmarks in this paper.

82 CHAPTER 7. GENERATIVE MODELS WITH KERNELS

Hence we introduce the log-return map 𝐹(𝑋) ∶ ℝ𝑁𝑥,𝐷,𝑇𝑥 ↦ ℝ𝑁𝑥×𝑇𝑥,𝐷, defined as

(ln(𝑥𝑛,𝑘
𝑑) − ln(𝑥𝑛,𝑘−1

𝑑)√
𝑡𝑘 − 𝑡𝑘−1

)
𝑛,𝑘=1…𝑁𝑥,𝑇𝑥

𝑑=1…𝐷
. (7.1.13)

Considering any time grid 𝑡1
𝑧 < … < 𝑡𝑇𝑧𝑧 , we can define the inverse map 𝐹 −1(𝑍) ∶ ℝ𝑁𝑧×𝑇𝑧,𝐷 ↦

ℝ𝑁𝑧,𝐷,𝑇𝑧 as an exponential - integral operator.

7.1.5 Recurrent methods for time series predictions
Let us describe recurrent methods that can be implemented for any predictive machine (2.1.1),
and we discuss an example of prediction.

Consider some historical observations 𝑋 as in (??), and two integers 𝐻 and 𝑃 , satisfying 𝐻 +𝑃 ≤
𝑇𝑋. H is called the historical depth, P the prediction depth. This setting defines a sliding window
of size H+P over the data 𝑋, used to define the training set as follows (using slicing notations)

𝑋0 = 𝑋[⋅,⋅,𝑖∶𝑖+𝐻] ∈ ℝ𝑁̃𝑋×𝐷×𝐻 , 𝑓(𝑋0) = 𝑋[⋅,⋅,𝑖+𝐻∶𝑖+𝐻+𝑃] ∈ ℝ𝑁̃𝑋×𝐷×𝑃

for any 𝑖 = 1, … , ̃𝑁𝑋, with ̃𝑁𝑋 = (𝑇 − 𝐻 − 𝑃)𝑁𝑋. We can iterate the procedure, producing at
each step P new predicted values, using recursively a predictive machine (2.1.1) as follows

𝑋𝑘+1 = [𝑋𝑘, 𝑓(𝑋𝑘)], 𝑓(𝑋𝑘+1) = 𝒫𝑚(𝑋𝑘, 𝑌 , 𝑋𝑘+1, 𝑓(𝑋𝑘)),

[𝑋𝑘, 𝑓(𝑋𝑘)] being the concatenation of these two tensors in the last variable. Such a construction
allows to produce predicted values of the temporal series at any future times.

7.2 Numerical illustration
Let 𝑋 as in (7.1.1). We use kernels together with maps (𝑘 ∘𝑆)(𝑥, 𝑦), adapted to our sets, to ensure
positive-definiteness. In the numerical sections to follow, our kernel choice is

𝑘(𝑥, 𝑦) = Π𝑑=1…𝐷 (1 − |𝑥𝑑 − 𝑦𝑑|) , (7.2.1)

that is the kernel equivalent of a RELU activation function, together with the following scaling
map : 𝑆(𝑥) = (𝑆𝑑(𝑥𝑑))

𝑑=1…𝐷
, with

𝑆𝑑(𝑥𝑑) = 𝑥𝑑 − 𝑥𝑑
max𝑥𝑛∈𝑋 𝑥𝑛

𝑑 − min𝑥𝑛∈𝑋 𝑥𝑛
𝑑

, (7.2.2)

𝑥𝑑 being the mean ∑𝑛=1…𝑁𝑥 𝑥𝑛
𝑑

𝑁𝑥
.

7.2.1 One dimensional distributions
For illustration goals, we apply the algorithm (7.1.10) for two bi-modal distributions based on a
Gaussian and a Student’s distribution namely 𝒩(0, 1) and 𝑡(𝜈 = 5). We use here two distinct sets
(training set 𝑋 and test set 𝑍) to highlight some convergence properties of (7.1.10):

• IID : 𝑋, 𝑍 are iid samples of 𝕏.
• SDS : 𝑋, 𝑍 are sharp discrepancy sequences (SDS) of 𝕏, see (7.1.4).

For both sets, the size of the training set is 𝑁𝑥 = 1000, whereas the size of the test set is 𝑁𝑧 = 500.
We plot the results computed by the sampler algorithm (7.1.10) in Figure 7.1 (resp. Figure 7.2)
for the IID case (resp. SDS case).

7.2. NUMERICAL ILLUSTRATION 83

7.5 5.0 2.5 0.0 2.5 5.0 7.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Gaussian distribution

sampled
generated

7.5 5.0 2.5 0.0 2.5 5.0 7.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
t-distribution

sampled
generated

Figure 7.1: Density of generated IID distributions

7.5 5.0 2.5 0.0 2.5 5.0 7.5
0.00

0.05

0.10

0.15

0.20

0.25

Gaussian distribution
sampled
generated

7.5 5.0 2.5 0.0 2.5 5.0 7.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30
t-distribution

sampled
generated

Figure 7.2: Density of generated SDS distributions

84 CHAPTER 7. GENERATIVE MODELS WITH KERNELS

To measure a fit of a generated discrete distribution 𝐺𝕏𝑥 to the original distribution 𝕏, throughout
this paper we compute summary statistics of the generated distribution, together with the original
one, as well as the result of the Kolmogorov-Smirnov (KS) test for marginals and, eventually,
compute correlation matrices. The computed moment values for the original distribution are
quoted in parenthesis. The value for KS tests corresponds to the p-value for a 95% level (a
successful KS test is above 0.05).

Table 7.1: Statistics of IID-generated distributions

Gaussian 0 t-distribution 0
Mean -0.0056 (0.16) -0.038 (0.18)
Variance 26 (27) 26 (27)
Skewness -0.0027 (-0.12) -0.0026 (-0.12)
Kurtosis -1.8 (-1.8) -1.8 (-1.8)
KS test 0.262 (0.05) 0.546 (0.05)

Table 7.2: Statistics of SDS-generated distributions

Gaussian 0 t-distribution 0
Mean -0.019 (-0.019) -0.069 (-0.069)
Variance 26 (26) 26 (26)
Skewness -0.0039 (-0.0039) -0.0061 (-0.0061)
Kurtosis -1.9 (-1.9) -1.9 (-1.9)
KS test 1.0 (0.05) 1.0 (0.05)

These two tables show how an appropriate choice of sets can drastically improve the convergence
performance of (7.1.10). The convergence rate for the set of IID random samples 𝑋 ∈ ℝ𝑁𝑥,𝐷 is of
order 𝒪(1

√𝑁𝑥
), while SDS’s convergence is of order 𝒪(1

𝑁2𝑥
) for smooth distributions, see [31].

7.2.2 Time series forecasting illustration
We illustrate the time series forecast algorithm, see section 7.1.4 with real market data, retrieved
from January 1, 2016 to December 31, 2020, for three assets: Google, Apple and Amazon.

After applying the log-return map, we produce samples of this distribution using (7.1.10) and draw
both distributions, which represent historical and generated log-returns, in Figures 7.3 and 7.4,
projected on two of its components Apple and Google. We check the match between the original
and generated distribution using the same table of statistics described in section ??. Notice that
the p-value in K-S test is higher than .05 for the three marginals (see Table 7.3, line K-S).

Table 7.3: Summary statistics for Apple, Amazon and Google

AAPL AMZN GOOGL
Mean 1.3e-03 (8.6e-04) 1.3e-03 (1.7e-03) 8.6e-04 (1.1e-03)
Variance 2.9e-04 (2.8e-04) 2.8e-04 (2.4e-04) 2.3e-04 (1.9e-04)
Skewness -5.3e-01 (2.5e-02) 1.2e-01 (3.7e-01) -5.6e-01 (3.0e-02)
Kurtosis 8.0e+00 (3.3e+00) 3.6e+00 (1.9e+00) 7.4e+00 (3.3e+00)
KS test 0.372 (0.05) 0.695 (0.05) 0.672 (0.05)

We also check that the historical correlation matrices Table 7.4 is close to the generated one at
Table 7.5.

7.2. NUMERICAL ILLUSTRATION 85

0.10 0.05 0.00 0.05 0.10
Apple

0.10

0.05

0.00

0.05

Go
og

le

3.0sigma

0

10

20

30

40

0 10 20 30 40

Figure 7.3: Historical log-return distribution for Apple / Google

86 CHAPTER 7. GENERATIVE MODELS WITH KERNELS

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075
Apple

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

Go
og

le

3.0sigma

0

10

20

30

40

0 10 20 30 40 50

Figure 7.4: Generated log-return distribution for Apple / Google

7.2. NUMERICAL ILLUSTRATION 87

Table 7.4: Correlation matrix of historical data

AAPL AMZN GOOGL
AAPL 1.0000000 0.6238220 0.6559852
AMZN 0.6238220 1.0000000 0.6932071
GOOGL 0.6559852 0.6932071 1.0000000

Table 7.5: Correlation matrix of generated data

AAPL AMZN GOOGL
AAPL 1.0000000 0.5747237 0.6116212
AMZN 0.5747237 1.0000000 0.6532851
GOOGL 0.6116212 0.6532851 1.0000000

Using the generated distribution, we then reconstruct trajectories from January 1, 2021, to Decem-
ber 31, 2021, as described in section 7.1.4. We illustrate the output of ten generated trajectories
for Google, in Figure 7.5, and plot also the historical Google charts to compare with.

2016-01-04 2016-10-18 2017-08-04 2018-05-22 2019-03-11 2019-12-23 2020-10-08 2021-07-27
0

25

50

75

100

125

150

175

0
1
2
3
4
5
6
7
8
9
Real Google

Figure 7.5: Generated Google paths

7.2.3 Recurrent kernels illustration
The recurrent method (7.1.5) allows to draw one trajectory, that can be considered as a iid
realization of the temporal series, based on the knowledge of its history. Figure 7.6 shows a
toy example of historical temporal series forecast, having two components : the Bitcoin price and
the hash-rate values, for which we considered 𝑇𝑋 covering daily observations from 01/01/2015 to

88 CHAPTER 7. GENERATIVE MODELS WITH KERNELS

23/11/2020, since 𝐻 and 𝑃 are set to fit 6 months datas. Hence the settings to produce Figure
7.6 correspond to 𝑁𝑋 = 1, 𝐷 = 2, 𝑇𝑋 = 1460 in (??). Starting from this setting, we predict the
temporal series up to 31/12/2021 and compare it with the historically observed one, using a kernel
implementation of the scheme (7.1.5).

Figure 7.6: Recurrent kernels : Generated (yellow) BTC-USD left / HR right, versus historical
(blue).

This method has a lot of forecasting applications, useful for professional purposes. However, in the
context of time series forecasts, such a method faces a number of challenges. First, we are left with
two extra parameters, 𝐻 and 𝑃 . Secondly, it is not clear how to generate other realizations of the
studied temporal series. As a consequence, it is not clear neither how to generate a pertinent mean
estimator using this construction. Finally, we don’t have any argument to ensure the stability of
the recurrent scheme 7.1.5.

7.3 Monte Carlo pricing
We show that synthetic data generated in section 7.1.4, illustrated in Figure 7.5, can be used for
Monte-Carlo based pricing 2, as they share close statistical properties with simulated paths from
known processes.

7.3.1 Experiment settings
Consider a bivariate geometric Brownian motion (gBm) with initial values 𝑋0 = [100, 120]:

𝑑𝑋𝑡 = 𝜎𝑋𝑡 𝑑𝑊𝑡, (7.3.1)

where 𝑊𝑡 is a two-dimensional Brownian motion with given correlation 0.5 and the volatilities are
𝜎 = [0.1, 0.2]. Consider a standard basket option’s payoff as the following function

𝑃(𝑥) = max(𝑥 ⋅ 𝜔 − 𝐾, 0) (7.3.2)

where 𝑥 are the input market data, 𝜔 = [0.5, 0.5] are weights, 𝐾 = 108 is called the option’s strike.

We define the reference value for this test as 𝔼(𝑃(𝑋𝑇)|𝑋0), the maturity 𝑇 is set to one year (1𝑌),
which can be computed using Monte-Carlo methods.

7.3.1.1 Reproducing a Bivariate Gaussian

We simulate a trajectory 𝑋 ∈ ℝ1,2,1000 of a gBm (7.3.1) path. Following the section 7.1.4, we
compute the log-normal returns, which are random samples of a bivariate normal distribution.
We then use (7.1.10) to produce 1000 random samples, 𝑍 = 𝐺𝕏𝑥 ∈ ℝ1000,2. Table 7.6 shows that
both distributions 𝕏𝑥, ℤ𝑧 match.

2An alternative pricing method here could be to consider the Kolmogorov, or Black-Scholes, partial differential
equations, similar to a Cox tree, but for any number of underlying assets, as already presented in [30] and ref.
therein.

7.3. MONTE CARLO PRICING 89

Table 7.6: Stats for BGM

ASSET0 ASSET1
Mean -1.9e-04 (-4.4e-04) 7.1e-04 (8.0e-04)
Variance 2.8e-05 (3.4e-05) 1.2e-04 (1.3e-04)
Skewness -1.1e-01 (-1.3e-01) -2.1e-01 (-2.0e-01)
Kurtosis -2.4e-01 (-4.3e-01) -4.2e-02 (-3.3e-01)
KS test 0.24 (0.05) 0.144 (0.05)

7.3.1.2 Basket option pricing

In this paragraph we study numerically the convergence properties of our approach as the size of
the training set, that is the size of the observed gBm samples, increases. We consider as input two
sequences of observed gBm 𝑋𝑛

1 , 𝑋𝑛
2 , having varying size 𝑛 = 100, … , 100 × 𝑁 , with 𝑁 = 10. The

sets 𝑋𝑛
1 (resp. 𝑋𝑛

2) correspond to a randomly sampled gBm (resp. sharp-discrepancy sequences),
as in section ??.

Our approach follows then the steps described in section 7.1.4 : we generate IID samples 𝑍𝑛
1 ∈

ℝ10000,2 (resp. SDS sample 𝑍𝑛
2 ∈ ℝ10000,2), and we evaluate the option’s price at the maturity

time 𝑇 , using 1
𝑁𝑧

∑𝑁𝑧
𝑛=0 𝑃(𝑧𝑛) in order to approximate the option’s reference value. The results

are plot in Figure 7.7.

100 200 300 400 500 600 700 800 900

Number of training observations

4.5

5.0

5.5

6.0

6.5

7.0

7.5

Va
ni

lla
 o

pt
io

n
pr

ice

CodPy Price with random prior sampling
CodPy Price with sharp discrepancy prior sampling
Theoretical Price
Generated trajectories size statistical error

Figure 7.7: Convergence pattern

The blue dashed lines in Figure 7.7 is the reference price computed using a Monte Carlo method,
the red (resp. green) lines correspond to the prices computed using a random generated sample
𝑍𝑛

1 (resp. SDS 𝑍𝑛
2). Note that the results are within the Monte-Carlo’s statistical error, that are

the dotted line in the figure.

90 CHAPTER 7. GENERATIVE MODELS WITH KERNELS

7.4 P&L explanation
7.4.1 Experiment settings
We illustrate our approach with an application of real time P&L explanation for large multi-asset
portfolios, which we outline here for a better understanding in the one-dimensional case.

Consider a function 𝑃(𝑡, 𝑥) ∈ ℝ𝐷𝑃 , 𝑥 ∈ ℝ𝐷, corresponding to an external engine pricing a portfolio
of 𝐷𝑃 instruments, assuming that the risk sources values are 𝑥 at time 𝑡. Pricing engines are often
computationally intensive and can hardly be used in real-time. This experiment proposes a quicker
alternative using nightly batches. For illustrative purposes, we consider a pricing engine taken as
a Black-Scholes formula with predefined values, see below.

Consider a historical market data set, for this test consisting of 253 closing values, denoted
𝑥−252, … , 𝑥0, for the S&P500, during the period of time 𝑡−252 = June 1, 2021 and 𝑡0 = June
1, 2022, retrieved from Yahoo Finance. Thus, considering (7.1.11), this set is described by a
tensor with 𝑁𝑥 = 1, 𝐷 = 1, 𝑇𝑥 = 253.
We use the historical data set to produce synthetic data at a future horizon date 𝑡1 = 𝑡0 + 4 days,
following section 7.1.4, simulating night-batch computed Value-at-Risk (VaR) scenario. We also
produce similarly a test set 𝑍 ∈ ℝ𝑁𝑧 with the same method, corresponding to simulated, real time
data at date 𝑡1.

To benchmark our approach, we compute the P&L on the test set 𝑍 using three methods:

• Analytical P&L : it is computed as 𝑃(𝑡1, 𝑍) − 𝑃(𝑡0, 𝑥0), and is the reference values for our
tests.

• Predicted P&L: the price function 𝑃(𝑡1, 𝑍) is approximated using the formula (7.1.6), as
𝒫𝑘(𝑋, 𝑋, 𝑍)𝑃(𝑡1, 𝑋) − 𝑃(𝑡0, 𝑥0).

• Taylor approximation: the price function 𝑃(𝑡1, 𝑍) is computed using a second order Taylor
formula approximation around 𝑃(𝑡0, 𝑥0). 3

7.4.2 Training set
According to (7.1.7), the interpolation error committed by the projection operator 𝑃𝑘 (7.1.6),
defined on a set 𝑋, is driven at any point 𝑧 by the quantity 𝑑𝑘(𝑧, 𝑋). We plot at Figure 7.8 the
isocontours of this error function for two distinct sets.

• (a) 𝑋 is generated as VaR scenarios for the three dates 𝑡−1, 𝑡0, 𝑡1.

• (b) 𝑋 is the historical data set.

The blue dots in Figure 7.8 are the test set 𝑍, and corresponds to simulated, intraday, market
values.

It is clear from this picture that the interpolation error is smaller if we consider the VaR sce-
nario dataset on the left-hand side. Indeed, since banks must produce VaR data for regulatory
constraints, such data are available, and we considered them as training set in this paper to extrap-
olate the P&L. We could use only the historical data set, at the expense of less accurate results.
Note that this situation might be of interest, if only historical data are available.

Notice finally that there are three sets of red points at Figure 7.8-(a), as we considered VaR
scenarios at three different times 𝑡−1, 𝑡0, 𝑡1 since we are interested in approximating time derivatives
for risk management, as the theta 𝜕𝑡𝑃 , see section below.

3We compare to a Taylor approximation, as this method is currently used by some banks to estimate their P&L
on a real time basis.

7.4. P&L EXPLANATION 91

7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00
time +7.3830000000e5

3800

4000

4200

4400

ba
sk

et

VaR train / test set

0.
0

0.
0

0.
0

0.
0

0.0

0.0

0.
0

0.
0

0.
0 0.
0

0.
0

0.
0

0.1

0.10.1 0.
1

0.1

0.1

0.1 0.1

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

737950 738000 738050 738100 738150 738200 738250 738300
time

4000

4200

4400

4600

4800

ba
sk

et

Hist. obs. train / test set

0.1

0.1

0.1

0.1

0.1
0.1

0.2

0.2

0.2

0.2

0.3 0.4
0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

Figure 7.8: Training and test set

7.4.3 P&L explanation of S&P 500 options
To benchmark our results, we considered the following values: the S&P value is 𝑥0 = 4101, as
of date 𝑡0=June 1, 2022. The pricing engine is taken as a Black-Scholes formula 𝐶(𝑥, 𝐾, 𝑟, 𝑇 , 𝜎),
with strike 𝐾 = 4050, which is near to the spot’s value, volatility 𝜎 = 25%, and without risk-free
interest rate (𝑟 = 0). We considered two maturities: a short one 𝑇 = 10 days, and a longer one
𝑇 = 365 days.

European option P&L.

We plot the results of three methods on the test set 𝑍 (exact P&L, our approximation, Taylor
approximation) in Figure 7.9 for two maturities.

4 2 0 2 4 6 8
Values (% K)

100

50

0

50

100

150

200

250

Va
lu

es
 (U

SD
)

T = 10 days
Exact PnL
Codpy PnL
Taylor PnL

4 2 0 2 4 6 8
Values (% K)

100

50

0

50

100

150

Va
lu

es
 (U

SD
)

T = 365 days
Exact PnL
Codpy PnL
Taylor PnL

Figure 7.9: The PnL output for 10 and 365 days maturity

We notice that the output values are accurate especially for a short-term maturity where the
predicted P&L is more precise than the P&L computed using the Taylor approximation especially
deep in the money (DIM) and deep out of the money (DOM). Indeed, this method is more
competitive than a Taylor approximation as the pricing function becomes nonlinear.

92 CHAPTER 7. GENERATIVE MODELS WITH KERNELS

Table 7.7 shows the values of error between analytical P&L and predicted P&L and also between
analytical P&L and Taylor approximation for different maturity scenarios, where the computed
error is the relative mean squared error (RMSE) expressed in percentage

𝑅𝑀𝑆𝐸(𝑓, 𝑔) = ‖𝑓 − 𝑔‖ℓ2

‖𝑓‖ℓ2 + ‖𝑔‖ℓ2
(7.4.1)

Table 7.7: PnL error in percentage

Maturity T = 10 days T = 365 days
Codpy error 0.00% 0.02%
Taylor error 2.60% 0.10%

European greeks.

Using the differential operators (see (7.1.8)), we approximate the first and second order derivatives
of 𝑃(𝑡1, 𝑍), called greeks. The Figure 7.10 plots 𝜕𝑥𝑃 (called Delta), 𝜕𝑡𝑃 (theta), and the Figure
7.11 plots the second order derivatives 𝜕2

𝑥𝑃 (gamma), 𝜕𝑡𝜕𝑥𝑃 . For the delta, we added the linear,
Taylor approximation (the green line). We notice that the results of our machine learning technique
are accurate, especially for DIM and DOM where Taylor approximation tends to diverge.

4 2 0 2 4 6 8
Values (% K)

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

es
 (U

SD
)

Delta
exact
codpy
taylor
spot
strike

4 2 0 2 4 6 8
Values (% K)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Va
lu

es
 (U

SD
)

Theta
exact
codpy
spot
strike

Figure 7.10: First order greeks - T=3M

4 2 0 2 4 6 8
Values (% K)

0.5

1.0

1.5

2.0

2.5

Va
lu

es
 (U

SD
)

1e 3 Gammas
exact
codpy
spot
strike

4 2 0 2 4 6 8
Values (% K)

1.5

1.0

0.5

0.0

0.5

1.0

Va
lu

es
 (U

SD
)

1e 2 Time/Spot
exact
codpy
spot
strike

Figure 7.11: Second order greeks - T=3M

7.5. THE BACHELIER PROBLEM 93

7.5 The Bachelier problem
Problem description. This section provides a benchmark of the methods (4.3) approximating
the conditional expectation (4.3.1) for the Bachelier problem, which we describe now. Consider a
martingale process 𝑡 ↦ 𝑋(𝑡) ∈ ℝ𝐷, given by the Brownian motion 𝑑𝑋 = 𝜎𝑑𝑊𝑡, where the matrix
𝜎 ∈ ℝ𝐷×𝐷 is randomly generated. The initial condition is 𝑋(0) = (1, ⋯ , 1), w.l.o.g. Consider
two times 1 = 𝑡1 < 𝑡2 = 2, 𝑡2 being the maturity of an option, which is a function denoted
𝑓(𝑥) = max(𝑏(𝑥) − 𝐾, 0), where 𝐾 = 1.1, 𝑏(𝑥) = 𝑥 ⋅ 𝑎 with random weights 𝑎 ∈ ℝ𝐷. It is
straightforward to verify that 𝑏(𝑥) follows a Brownian motion 𝑑𝑏 = 𝜃𝑑𝑊𝑡. To get a fixed value for
𝜃 (fixed to 0.2 in our tests), we normalize the diffusion matrix 𝜎 above.

With these settings, the conditional expectation (4.3.1) can be determined using a closed formula,
providing the reference value

𝑓(𝑥) = 𝜃
√

𝑡2 − 𝑡1𝑝𝑑𝑓(𝑑) + (𝑏(𝑥) − 𝐾)𝑐𝑑𝑓(𝑑), 𝑑(𝑥, 𝐾) = 𝑏(𝑥) − 𝐾
𝜃
√

𝑡2 − 𝑡1 ,

PDF (resp. CDF) holding for the probability density function (resp. cumulative) of the normal
law.

7.5.1 Methodology and input/output data
We test different numerical methods implementing (4.3), with the following inputs:

• 𝑋 ∈ ℝ𝑁𝑋×𝐷, is given by iid samples of the Brownian motion 𝑋(𝑡1) at time 𝑡1 = 1. The
reference values are 𝑓(𝑍|𝑋) ∈ ℝ𝑁𝑋×1, computed using (7.5).

• 𝑍 ∈ ℝ𝑁𝑍×𝐷 is an iid realization of the Brownian motion 𝑋(𝑡2)|𝑋(𝑡1) at time 𝑡2 = 2, since
𝑓(𝑍) ∈ ℝ𝑁𝑍×1 are the functions values.

For each method, the output are 𝑓𝑍|𝑋 ∈ ℝ𝑁𝑍×𝐷𝑓 approximating (4.3.1), hence are compared to
𝑓(𝑍|𝑋) in our experiments. We plot the generated learning and test set in picture 7.12, comparing
the observed variable 𝑓𝑍 and the reference values 𝑓(𝑍|𝑋). Thus the problem can be stated as :
knowing the noisy data in the left-hand side, deduce the one at right.

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0

0.1

0.2

0.3

0.4

Figure 7.12: Bachelier problem. Left training set 𝑏(𝑍), 𝑓(𝑋), right test set 𝑏(𝑋), 𝑓(𝑍|𝑋).

7.5.2 Four methods to tackle the Bachelier problem
We compare four methods for the Bachelier problem. Two methods are based on a standard
approach, that uses predictive machines of the form (2.1.1), in order to approximate a conditional
expectation (4.3) as

𝑓𝑍|𝑋 = 𝒫𝑚(𝑍, 𝑌 , 𝑋, 𝑓(𝑍))
The first machine 𝑚 is a neural network method, the second is a kernel one, labeled ANN and
CodPy pred in the figures. The third machine solves (??), labeled Pi:iid in the figures. The fourth

94 CHAPTER 7. GENERATIVE MODELS WITH KERNELS

provides a similar approach, but picks up 𝑋 (resp. 𝑍) as the sharp discrepancy sequences (SDS)
of 𝑋(𝑡1) (resp. 𝑋(𝑡2)) and is labeled Pi:sharp in our figures.

To illustrate a typical benchmark run of one of these four methods, Figure 7.13 shows the predicted
values 𝑓𝑍|𝑋 against the exact ones 𝑓(𝑍|𝑋), as functions of the basket values 𝑏(𝑍), for the last
method (SDS). We show five runs of the method with 𝑁𝑋 = 𝑁𝑍 = 32, 64, 128, 256, 512.

0.5 1.0 1.5
Basket values

0.0

0.1

0.2

0.3

0.4

Pi
:s

ha
rp

1.0 1.5
Basket values

0.0

0.1

0.2

0.3

0.4

Pi
:s

ha
rp

0.5 1.0 1.5
Basket values

0.0

0.1

0.2

0.3

0.4

Pi
:s

ha
rp

0.5 1.0 1.5
Basket values

0.0

0.1

0.2

0.3

0.4

0.5

Pi
:s

ha
rp

0.5 1.0 1.5
Basket values

0.0

0.1

0.2

0.3

0.4

0.5

Pi
:s

ha
rp

predicted (red) vs test (green) variables and values

Figure 7.13: Exact and predicted values for sharp discrepancy sequences

Figure 7.14 presents a benchmark for scores, computed accordingly to the RMSE % (2.3.2) (lower
is better), for the two dimensional case 𝐷 = 2, however the results are similar whatever the
dimensions are.

102 103 104

log2(Nx)

0.1

0.2

0.3

0.4

0.5

0.6

sc
or

es

ANN
Pi:i.i.d.
Pi:sharp
codpy pred

Figure 7.14: Benchmark of scores

7.5.3 Concluding remarks
We emphasize that the axis in Figure 7.14 is in log-scale of the size of the training 𝑁𝑥. This
test shows numerically that both predictive methods based on (2.1.1) are not converging. The
method Pi:iid (in yellow color) shows a performance profile which has a convergence pattern at
the statistical rate 1

√𝑁𝑋
, that is, the one expected with randomly sampled data. The method

Pi:sharp (in green color) is an illustration of performance gains when using the proposed sharp
discrepancy sequences.

Chapter 8

Application to partial differential
equations

8.1 Automatic algorithmic differentiation.
AAD is a family of techniques for algorithmically computing exact derivatives of compositions of
differentiable functions. It is a useful tool for several applications in this book, hence we describe
it succintly in this section.

Techniques for AAD have been known since at least the 1950s. There are two main variants of AAD:
reverse-mode and forward-mode. Reverse-mode AAD computes the derivative of a composition
of atomic differentiable functions by computing the sensitivity of an output with respect to the
intermediate variables (without materializing the matrices for the intermediate derivatives). In
this way, reverse-mode can efficiently compute the derivatives of scalar-valued functions. Forward-
mode AAD computes the derivative by calculating the sensitivity of the intermediate variables
with respect to an input variable [17].

There are number of high quality implementations of AAD in the libraries, such as1 TensorFlow
, PyTorch, autograd, Zygote and JAX. The JAX supports both reverse-mode and forward-mode
AAD.

Codpy provides a simple interface to the Pytorch AAD differentiation framework. Figure 8.1
illustrates the computations of first and second derivatives of a function 𝑓(𝑋) = 1

6 𝑋3 using AAD.

8.2 Differential machines benchmarks
AAD is a natural tool to define a differential machine starting from any predictive machine (2.1.1).
In this section, we illustrate a general multi-dimensional benchmark of two differential machines
methods. The first one uses the kernel gradient operator (see (3.4.3)). The second one uses a
neural network defined with Pytorch together with AAD tools.

An example of one-dimensional testing is shown at figure 8.2, using the same benchmark method-
ology as in chapter 2. The first row is quite similar to our one-dimensional test. The second row
provides also four plots: the first one is the exact gradient of the considered function on the test
set, computed using AAD. The second one plot the kernel gradient operator. The two remaining
ones plot two different run of the neural network differential machine.

1TensorFlow url, PyTorch url, autograd url, Zygote url, JAX url

95

https://www.tensorflow.org/
https://www.pytorch.org/
https://github.com/HIPS/autograd
https://fluxml.ai/Zygote.jl/latest/
https://github.com/google/jax

96 CHAPTER 8. APPLICATION TO PARTIAL DIFFERENTIAL EQUATIONS

2 0 2
x-units

2

1

0

1

2

3

f(x
)-u

ni
ts

cubic

2 0 2
x-units

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f(x
)-u

ni
ts

1st derivative

2 0 2
x-units

2

1

0

1

2

f(x
)-u

ni
ts

2nd derivative

Figure 8.1: A cubic function, exact AAD first order and second order derivatives

1 0 1
x-units

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f(x
)-u

ni
ts

training set

1 0 1
x-units

2

1

0

1

2

f(x
)-u

ni
ts

ground truth values

1 0 1
x-units

1

0

1

2

3

f(x
)-u

ni
ts

Pytorch f

1 0 1
x-units

2

1

0

1

2

f(x
)-u

ni
ts

Codpy f

1 0 1
x-units

4

2

0

2

4

6

f(x
)-u

ni
ts

exact grad

1 0 1
x-units

4

2

0

2

4

6

f(x
)-u

ni
ts

codpy grad

1 0 1
x-units

4

2

0

2

4

6

f(x
)-u

ni
ts

pytorch grad-1

1 0 1
x-units

6

4

2

0

2

4

6

f(x
)-u

ni
ts

pytorch grad-2

Figure 8.2: A benchmark of one-dimensional differential machines

8.3. TAYLOR EXPANSIONS USING DIFFERENTIAL LEARNING MACHINES 97

The same benchmark can be used in any dimension, and we plot the two dimensional test at figure
8.3

1 0 1
1
0
1

2
0
2

training set

1 0 1
1
0
1

2
0
2
4

ground truth values

1 0 1
1
0
1

2.5
0.0
2.5
5.0

Pytorch f

1 0 1
1
0
1

2
0
2

Codpy f

1 0 1
1
0
1

5

0

5

exact grad

1 0 1
1
0
1

5

0

5

codpy grad

1 0 1
1
0
1

5
0
5

pytorch grad-1

1 0 1
1
0
1

5

0

5

pytorch grad-2

Figure 8.3: A benchmark of two-dimensional differential machines

As noticed in these figures

• Two runs of AAD computations leads to two different results (pytorch-grad1 and 2) : NNs
do not define deterministic differential learning machines, due to the stochastic descent
algorithm, here Adam optimizer.

• Differential neural networks tends to be less accurate than a kernel-based gradient operator.

8.3 Taylor expansions using differential learning machines
Taylor expansions using differential learning machines are common for several applications, hence
we propose a general function to compute them, that we describe in this section. We start to make
a reminder of Taylor expansions.

Let us consider a smooth, vector-valued function 𝑓 , defined over ℝ𝐷. Considering any sequences of
points 𝑍, 𝑋 having the same length, the following formula is called a Taylor’s expansion of order
𝑝:

𝑓(𝑍) = 𝑓(𝑋) + (𝑍 − 𝑋) ⋅ (∇𝑓)(𝑋) + 1
2((𝑍 − 𝑋)(𝑍 − 𝑋)𝑇) ⋅ (∇2𝑓)(𝑋) + … + |𝑍 − 𝑋|𝑝𝜖(𝑓)

where :

• (𝑧 − 𝑥) ∶= (𝑧𝑖 − 𝑥𝑖)𝑖,𝑗=0..𝐷
is a 𝐷-dimensional vector.

98 CHAPTER 8. APPLICATION TO PARTIAL DIFFERENTIAL EQUATIONS

• (𝑧 − 𝑥)(𝑧 − 𝑥)𝑇 ∶= ((𝑧𝑖 − 𝑥𝑖)(𝑧𝑗 − 𝑥𝑗))𝑖,𝑗=0..𝐷
is a 𝐷 × 𝐷 matrix.

• 𝑎 ⋅ 𝑏 denotes the usual Frobenius inner product.
• ∇𝑓 ,∇2𝑓 holds for the gradient (𝐷-dimensional vector) and the Hessian (𝐷 × 𝐷 matrix).
• |𝑧−𝑥| is the standard Euclidean distance, 𝜖(𝑓) is a function depending on 𝑓 and its derivatives

that we do not detail here. The term |𝑍 − 𝑋|3𝜖(𝑓) represents the error committed by this
approximation formula.

In this section, we study Taylor formulas using differential learning machines to approximate the
derivatives, that is approximating ∇𝑓(𝑥),∇2𝑓(𝑥) with

∇𝑓𝑥 = ∇𝑍𝒫𝑚(𝑋, 𝑌 , 𝑍 = 𝑥, 𝑓(𝑋)), ∇2𝑓𝑥 = ∇2
𝑍𝒫𝑚(𝑋, 𝑌 , 𝑍 = 𝑥, 𝑓(𝑋)).

following the previous section, we performed a benchmark of a second-order Taylor formula using
three approaches

• The first one is the reference value for this test. It uses the AAD to compute both ∇𝑓𝑥, ∇2𝑓𝑥.
• The second one, uses a neural network defined with Pytorch together with AAD tools.
• The third one uses the hessian operator from codpy.

The test is genuinely multi-dimensional. We illustrate the results starting from the one-dimensional
case in figure 8.4 and Figure ?? illustrate the two dimensional case.

1 0 1
x-units

4

2

0

2

f(x
)-u

ni
ts

z, fz (AAD ord.)2

1 0 1
x-units

4

3

2

1

0

1

2

f(x
)-u

ni
ts

Codpy ord.2

1 0 1
x-units

1

0

1

2

3

4

f(x
)-u

ni
ts

Pytorch ord.2

Figure 8.4: A benchmark of one-dimensional learning machine second-order Taylor expansion

Bibliography

[1] A. Antonov and M. Konikov and M. Spector, The free boundary SABR:
natural extension to negative rates, unpublished report, January 2015, available at
https://ssrn.com/abstract=2557046.

[2] I. Babuska, U. Banerjee, and J.E. Osborn, Survey of mesh-less and generalized finite
element methods: a unified approach, Acta Numer. 12 (2003), 1–125.

[3] A. Berlinet and C. Thomas-Agnan, Reproducing kernel Hilbert spaces in probability and
statistics, Springer US, Kluwer Academic Publishers, 2004.

[4] M.A. Bessa, and J.T. Foster, T. Belytschko, and W.K. Liu, A mesh-free unification:
reproducing kernel peridynamics, Comput. Mech. 53 (2014), 1251–1264.

[5] A. Brace, and D. Gatarek and M. Musiela, The market model of interest rate dynamics,
Math. Finance 7 (1997), 127–154.

[6] H. Brezis, Remarques sur le problème de Monge–Kantorovich dans le cas discret, Comptes
Rendus Mathematique 356 (2018), 207–213.

[7] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions,
Comm. Pure Applied Math. XLIV (1991), 375–417.

[8] H. Buehler, Volatility and dividends: volatility modeling with cash dividends and simple
credit risk, February 2010, available at: https://ssrn.com/abstract=1141877.

[9] Eckerli, Florian and Osterrieder, Joerg, Generative Adversarial
Networks in finance: an overview, Comput. Methods Appl. Mech. Engrg.
http://dx.doi.org/10.48550/ARXIV.2106.06364 (2021).

[10] G.E. Fasshauer, Mesh-free methods, in “Handbook of Theoretical and Computational Nan-
otechnology”, Vol. 2, 2006.

[11] G.E. Fasshauer, Mesh-free approximation methods with Matlab, Interdisciplinary Math.
Sciences, Vol. 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.

[12] G.E. Fasshauer, Positive definite kernels: past, present and future, unpublished report,
available at http://www.math.iit.edu/ fass/PDKernels.pdf.

[13] O. Teymur, J. Gorham, M. Riabiz, and C.J. Oates Proc. 24th Int. Conf. on Artificial
Intelligence and Statistics (AISTATS) 2021, San Diego, California, USA, Volume 130, pp. 1027–
1035.

[14] A. Gretton, K.M. Borgwardt, M. Rasch, B. Schölkopf, and A.J. Smola, A kernel
method for the two sample problems, Proc. 19th Int. Conf. on Neural Information Processing
Systems, 2006, pp. 513–520. arXiv:0805.2368

[15] Bernhard Schölkopf, Ralf Herbrich, and Alexander J. Smola. A generalized representer theo-
rem. In Computational learning theory, 416–426, Springer, 2001.

99

100 BIBLIOGRAPHY

[16] F.C. Günther and W.K. Liu, Implementation of boundary conditions for mesh-less meth-
ods, Comput. Methods Appl. Mech. Engrg. 163 (1998), 205–230.

[17] A. Griewank, A. Walther, Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation, SIAM, 2008.

[18] E. Haghighat, M. Raissib, A. Moure, H. Gomez, and R. Juanes, A physics-informed
deep learning framework for inversion and surrogate modeling in solid mechanics, Comput.
Methods Appl. Mech. Engrg. 379 (2021), 113741

[19] T. Hofmann, B. Schölkopf, and A. J. Smola, Kernel methods in machine learning,
Ann. Statist. 36 (2008), 1171–1220.

[20] B.N. Huge and A. Savine, Differential machine learning, unpublished report, January 2020,
available at https://ssrn.com/abstract=3591734

[21] Charles Gustave Jacob Jacobi, «De investigando ordine systematis aequationum dif-
ferentialum vulgarium cujuscunque», herausgegeben von K. Weierstrass, Berlin, Bruck und
Verlag von Georg Reimer, 1890, p.193-216

[22] T.F. Korzeniowski and K. Weinberg, Amulti-level method for data-driven finite element
computations, Comput. Methods Appl. Mech. Engrg. 379 (2021), 113740.

[23] J.J. Koester and J.-S. Chen, Conforming window functions for mesh-free methods, Comm.
Numer. Methods Engrg. 347 (2019), 588–621.

[24] Y. LeCun, C. Cortes, and C.J.C. Burges, The MNIST database of handwritten digits,
http://yann.lecun.com/exdb/mnist/

[25] R. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal. 11
(2001), 589–608.

[26] J.-M. Mercier, Optimally Transported schemes. Applications to Mathematical Finance,
unpublished, https://www.researchgate.net/publication/228689632_Optimally_Transported
_schemes_Applications_to_Mathematical_Finance

[27] J.-M. Mercier, A High-Dimensional Pricing Framework for Financial Instruments Valua-
tion, DOI:10.2139/ssrn.2432019

[28] P.G. LeFloch and J.-M. Mercier, Revisiting the method of characteristics via a convex
hull algorithm, J. Comput. Phys. 298 (2015), 95–112.

[29] P.G. LeFloch and J.-M. Mercier, A new method for solving Kolmogorov equations in
mathematical finance, C. R. Math. Acad. Sci. Paris 355 (2017), 680–686.

[30] P.G. LeFloch and J.-M. Mercier, The Transport-based Mesh-free Method (TMM). A
short review, The Wilmott journal 109 (2020), 52–57. Available at ArXiv:1911.00992.

[31] P.G. LeFloch and J.-M. Mercier, Mesh-free error integration in arbitrary dimensions: a
numerical study of discrepancy functions, Comput. Methods Appl. Mech. Engrg. 369 (2020),
113245.

[32] P.G. LeFloch and J.-M. Mercier, A class of mesh-free algorithms for mathemati-
cal finance, machine learning, and fluid dynamics, Preprint February 2021. Available at
ssrn.com/abstract=3790066.

[33] P.G. LeFloch, J.-M. Mercier, and S. Miryusupov, CodPy: a tutorial, January 2021,
available at ssrn.com/abstract=3769804.

[34] P.G. LeFloch, J.-M. Mercier, and S. Miryusupov, CodPy: an advanced tutorial,
January 2021, available at ssrn.com/abstract=3769804.

https://www.researchgate.net/publication/228689632_Optimally_Transported_schemes_Applications_to_Mathematical_Finance
https://www.researchgate.net/publication/228689632_Optimally_Transported_schemes_Applications_to_Mathematical_Finance

BIBLIOGRAPHY 101

[35] P.G. LeFloch, J.-M. Mercier, and S. Miryusupov, CodPy: a kernel-based reordering
algorithm, January 2021, available at ssrn.com/abstract=3770557.

[36] P.G. LeFloch, J.-M. Mercier, and S. Miryusupov, CodPy: RKHS-based polar factor-
ization and sampling algorithm, in preparation.

[37] P.G. LeFloch, J.M. Mercier, and Sh. Miryusupov, CodPy: RKHS-based algorithms
and conditional expectations, in preparation.

[38] P.G. LeFloch, J.-M. Mercier, and S. Miryusupov, CodPy: Support Vector Machines
(SVM) for (reverse) stress tests in finance, in preparation.

[39] S.F. Li and W.K. Liu, Mesh-free particle methods, Springer Verlag, Berlin, 2004.

[40] G.R. Liu, Mesh-free methods: moving beyond the finite element method, CRC Press, Boca
Raton, FL, 2003.

[41] G.R. Liu, An overview on mesh-free methods for computational solid mechanics, Int. J.
Comp. Methods 13 (2016), 1630001.

[42] J.-M. Mercier and Sh. Miryusupov, Hedging strategies for net interest income
and economic values of equity, unpublished report, September 2019, available at:
https://ssrn.com/abstract=3454813.

[43] Y. Nakano, Convergence of mesh-free collocation methods for fully nonlinear parabolic
equations, Numer. Math. 136 (2017), 703–723.

[44] F. Narcowich, J. Ward, and H. Wendland, Sobolev bounds on functions with scattered
zeros, with applications to radial basis function surface fitting, Math. of Comput. 74 (2005),
743–763.

[45] H. Niederreiter, Random number generation and quasi-Monte Carlo methods, CBMS-NSF
Regional Conf. Series in Applied Math., Soc. Industr. Applied Math., 1992.

[46] H.S. Oh, C. Davis, and J.W. Jeong, Mesh-free particle methods for thin plates, Comput.
Methods Appl. Mech. Engrg. 209/212 (2012), 156–171.

[47] R. Opfer, Multiscale kernels, Adv. Comput. Math. 25 (2006), 357–380.

[48] R. Salehi and M. Dehghan, A moving least square reproducing polynomial mesh-less
method, Appl. Numer. Math. 69 (2013), 34–58.

[49] M. Sathyapriya, Dr. V. Thiagarasu, A cluster-based approach for credit card fraud
detection system using Hmm with the implementation of big data technology, Report 2019.

[50] R. Sinkhorn and P. Knopp, Concerning nonnegative matrices and doubly stochastic ma-
trices, Pacific J. Math. 21 (1967), 343–348.

[51] B.K. Sriperumbudur, A. Gretton, K. Fukumizu, B. Scholkopf, and G.R. Lanck-
riet, Hilbert space embeddings and metrics on probability measures, J. Mach. Learn. Res. 11
(2010), 1517–1561.

[52] J. Sirignano and K. Spiliopoulos, DGM: a deep learning algorithm for solving partial
differential equations, J. Comput. Phys. 375 (2018), 1339–1364.

[53] I.M. Sobol, Distribution of points in a cube and approximate evaluation of integrals, U.S.S.R
Comput. Maths. Math. Phys. 7 (1967), 86–112.

[54] P. Traccucci, L. Dumontier, G. Garchery, B. Jacot, A Triptych Approach for Re-
verse Stress Testing of Complex Portfolios. arXiv:1906.11186

[55] R.S. Varga, Matrix iterative analysis, Springer Verlag, 2000.

[56] C. Villani, Optimal transport, old and new, Springer Verlag, 2009.

102 BIBLIOGRAPHY

[57] H. Wendland, Sobolev-type error estimates for interpolation by radial basis functions, in
“Surface fitting and multiresolution methods” (Chamonix-Mont-Blanc, 1996), Vanderbilt Univ.
Press, Nashville, TN, 1997, pp. 337–344.

[58] H. Wendland, Scattered data approximation, Cambridge Monograph, Applied Comput.
Math., Cambridge University, 2005.

[59] J.X. Zhou and M.E. Li, Solving phase field equations using a mesh-less method, Comm.
Numer. Methods Engrg. 22 (2006), 1109–1115.

[60] B. Zwicknagl, Power series kernels, Constructive Approx. 29 (2008), 61–84.

	1 Introduction
	1.1 Main objective
	1.2 Outline of this monograph
	1.3 References

	2 Brief overview of methods of machine learning
	2.1 A framework for machine learning
	2.2 Exploratory data analysis
	2.3 Performance indicators for machine learning
	2.4 General specification of tests
	2.5 Bibliography
	2.6 Appendix to chapter 2

	3 Reproducing-kernel methods for machine learning
	3.1 Purpose of this chapter
	3.2 Fundamental notions for supervised learning
	3.3 Dealing with kernels
	3.4 Discrete differential operators
	3.5 Kernel engineering
	3.6 A first application: a clustering algorithm
	3.7 Bibliography
	3.8 Appendix to Chapter 3

	4 Kernel methods for optimal transport
	4.1 A brief overview of discrete optimal transport
	4.2 Linear Sum Assignment Problems (LSAP)
	4.3 Conditional expectation algorithm
	4.4 The sampler function and discrete polar factorization
	4.5 Bibliography
	4.6 Appendix to Chapter 4

	5 Application to supervised machine learning
	5.1 Aims of this chapter
	5.2 Regression problem: housing price prediction
	5.3 Classification problem: handwritten digits
	5.4 Reconstruction problems : learning from sub-sampled signals in tomography.
	5.5 Appendix

	6 Applications to unsupervised machine learning
	6.1 Aims of this chapter
	6.2 Classification problem: handwritten digits
	6.3 German credit risk
	6.4 Credit card marketing strategy
	6.5 Credit card fraud detection
	6.6 Portfolio of stock clustering
	6.7 Appendix

	7 Generative models with kernels
	7.1 Aim of this section
	7.2 Numerical illustration
	7.3 Monte Carlo pricing
	7.4 P&L explanation
	7.5 The Bachelier problem

	8 Application to partial differential equations
	8.1 Automatic algorithmic differentiation.
	8.2 Differential machines benchmarks
	8.3 Taylor expansions using differential learning machines

