The Cosmic Linear Anisotropy Solving System

(CLASS)

Julien Lesgourgues

March 25, 2016

Where to find information and documentation on CLASS ?

e for what the code can actually compute: all possible input param-
eters, all coded cosmological models, all functionalities, all observables,

etc.:

read the file explanatory.ini in the main CLASS directory: it is a

reference file where we keep track of all possible input.

e for the physics and equations used in the code: mainly, the following
papers:

“Cosmological perturbation theory in the synchronous and
conformal Newtonian gauges”

C. P. Ma and E. Bertschinger.

astro-ph/9506072

10.1086/176550

Astrophys. J. 455, 7 (1995)

“The Cosmic Linear Anisotropy Solving System (CLASS)
II: Approximation schemes”

D. Blas, J. Lesgourgues and T. Tram.

arXiv:1104.2933 [astro-ph.CO]

10.1088/1475-7516,/2011/07/034

JCAP 1107, 034 (2011)

“The Cosmic Linear Anisotropy Solving System (CLASS)
IV: efficient implementation of non-cold relics”

J. Lesgourgues and T. Tram.

arXiv:1104.2935 [astro-ph.CO]

10.1088/1475-7516,/2011/09/032

JCAP 1109, 032 (2011)

“Optimal polarisation equations in FLRW universes”
T. Tram and J. Lesgourgues.

arXiv:1305.3261 [astro-ph.CO]
10.1088/1475-7516,/2013/10/002

JCAP 1310, 002 (2013)

— “Fast and accurate CMB computations in non-flat FLRW
universes”
J. Lesgourgues and T. Tram.
arXiv:1312.2697 [astro-ph.CO]
10.1088/1475-7516/2014,/09/032
JCAP 1409, no. 09, 032 (2014)

— “The CLASSgal code for Relativistic Cosmological Large
Scale Structure”
E. Di Dio, F. Montanari, J. Lesgourgues and R. Durrer.
arXiv:1307.1459 [astro-ph.CO]
10.1088/1475-7516,/2013/11/044
JCAP 1311, 044 (2013)

e for the structure, style, and concrete aspects of the code: this
documentation; plus the slides of our CLASS lectures, for instance those
from Tokyo 2014 available at

https://www.dropbox.com/sh/mabmuh76sggwk8k/AAB1 _DDUBEzAj jdywMjeTya2a?d1=0

in the folder CLASS_Lecture_slides.

e for the python wrapper of CLASS : at the moment, the best is the slides
from these lectures, for instance following the previous link and looking
into

CLASS Lecture_slides/lecture7_wrapper.pdf
and into
IPython_Notebooks

for example of python sessions. We will expand soon the documentation
on this part with a dedicated webpage.

1 Overall architecture of CLASS

1.1 Files and directories

After downloading CLASS , one can see the following files in the root directory
contains:

e some example of input files, the most important being explanatory.ini.
a reference input file containing all possible flags, options and physical
input parameters. While this documentation explains the structure and

use of the code, explanatory.ini can be seen as the physical documen-
tation of CLASS . The other input file are alternative parameter input files
(ending with .ini)and precision input files (ending with .pre)

e the Makefile, with which you can compile the code by typing make
clean; make; this will create the executable class and some binary files
in the directory build/. The Makefile contains other compilation options
that you can view inside the file.

e CPU.py is a python script designed for plotting the CLASS output; for
documentation type python CPU.py --help

e plot_CLASS_output.m is the counterpart of CPU.py for MatLab

e there are other input files for various applications: an example of a non-
cold dark matter distribution functions (psd_FD_single.dat), and exam-
ples of evolution and selection functions for galaxy number count observ-
ables (myevolution.dat, myselection.dat).

Other files are split between the following directories:

e source/ contains the C files for each CLASS module, i.e. each block con-
taining some part of the physical equations and logic of the Boltzmann
code.

e tools/ contains purely numerical algorithms, applicable in any context:
integrators, simple manipulation of arrays (derivation, integration, inter-
polation), Bessel function calculation, quadrature algorithms, parser, etc.

e main/ contains the main module class.c with the main routine class(...),
to be used in interactive runs (but not necessarily when the code is inter-
faced with other ones).

e test/ contains alternative main routines which can be used to run only
some part of the code, to test its accuracy, to illustrate how it can be
interfaced with other codes, etc.

e include/ contains all the include files with a .h suffix.

e output/ is where the output files will be written by default (this can be
changed to another directory by adjusting the input parameter root =
<...>)

e python/ contains the python wrapper of CLASS , called classy (see python/README)
e cpp/ contains the C++ wrapper of CLASS , called ClassEngine (see cpp/README)

e doc/ contains the automatic documentation (manual and input files re-
quired to build it)

e external Pk/ contains exemples of external codes that can be used to
generate the primordial spectrum and be interfaced with CLASS , when
one of the many options already built inside the code are not sufficient.

e bbn/ contains interpolation tables produced by BBN codes, in order to
predict e.g. Yie(wp, ANeg).

e hyrec/ contains the recombination code HyRec of Yacine Ali-Haimoud
and Chris Hirata, that can be used as an alternative to the built-in Recfast
(using the input parameter recombination = <...>).

1.2 The ten-module backbone

1.2.1 Ten tasks

The purpose of CLASS consists in computing some power spectra for a given
set of cosmological parameters. This task can be decomposed in few steps or
modules:

1. set input parameter values.
2. compute the evolution of cosmological background quantitites.

3. compute the evolution of thermodynamical quantitites (ionization frac-
tions, etc.)

4. compute the evolution of source functions S(k,7) (by integrating over all
perturbations).

5. compute the primordial spectra.

6. eventually, compute non-linear corrections at small redshift /large wavenum-
ber.

7. compute transfer functions in harmonic space A;(k) (unless one needs only
Fourier spectra P(k)’s and no harmonic spectra C;’s).

8. compute the observable power spectra C;’s (by convolving the primordial
spectra and the harmonic transfer functions) and/or P(k)’s (by multiply-
ing the primordial spectra and the appropriate source functions S(k, 7)).

9. eventually, compute the lensed CMB spectra (using second-order pertur-
bation theory)

10. write results in files (when CLASS is used interactively. The pyhton wrap-
per would not go to this step and just keep the output stored internally).

1.2.2 Ten structures
In cLASS, each of these steps is associated with a structure:

1. struct precision for input precision parameters (input physical para-
maters are dispatched among the other structures listed below)

2. struct background for cosmological background,

struct thermo for thermodynamics,

-~ W

struct perturbs for source functions,
struct primordial for primordial spectra,
struct nonlinear for nonlinear corrections,
struct transfers for transfer functions,

struct spectra for observable spectra,

S

struct lensing for lensed CMB spectra,
10. struct output for auxiliary variable describing the output format.

A given structure contains “everything concerning one step that the subse-
quent steps need to know” (for instance, struct perturbs contains everything
about source functions that the transfer module needs to know). In particular,
each structure contains one array of tabulated values (for struct background
, background quantitites as a function of time, for struct thermo, thermo-
dynamical quantitites as a function of redshift, for struct perturbs, sources
S(k,T), etc.). It also contains information about the size of this array and the
value of the index of each physical quantity, so that the table can be easily read
and interpolated. Finally, it contains any derived quantity that other modules
might need to know. Hence, the comunication from one module A to another
module B consists in passing a pointer to the structure filled by A, and nothing
else.
All “precision parameters” are grouped in the single structure struct precision.

The code contains no other arbitrary numerical coefficient.

1.2.3 Ten modules

Each structure is defined and filled in one of the following modules (and precisely
in the order below):

1. input.c
2. background.c
3. thermodynamics.c

4. perturbations.c

5. primordial.c
nonlinear.c
transfer.c

spectra.c

e »® N @

lensing.c
10. output.c
Each of these modules contains at least three functions:
e module_init(...)
o module_free(...)
e module_something_at_somevalue(. . .)

where module is one of input, background, thermodynamics, perturb, primordial,
nonlinear, transfer, spectra, lensing, output.

The first function allocates and fills each structure. This can be done pro-
vided that the previous structures in the hierarchy have been already allocated
and filled. In summary, calling one of module_init(...) amounts in solving
entirely one of the steps 1 to 10.

The second function deallocates the fields of each structure. This can be
done optionally at the end of the code (or, when the code is embedded in a
sampler, this must be done between each execution of CLASS, and especially
before calling module_init(...) again with different input parameters).

The third function is able to interpolate the pre-computed tables. For in-
stance, background_init () fills a table of background quantitites for discrete
values of conformal time 7, but background at_tau(tau, * values) will re-
turn these values for any arbitrary 7.

Note that functions of the type module_something_at_somevalue(...) are
the only ones which are called from another module, while functions of the type
module_init (. ..) and module_free(...) are the only one called by the main
executable. All other functions are for internal use in each module.

When writing a C code, the ordering of the functions in the *.c file is in
principle arbitrary. However, for the sake of clarity, we always respected the
following order in each CLASS module:

1. all functions that may be called by other modules, i.e. “external func-
tions”, usually named like module_something_at_somevalue(. . .)

2. then, module_init (...)
3. then, module_free()

4. then, all functions used only internally by the module

1.3 main() function(s)
1.3.1 The nain.c file

The main executable of CLASS is the function main () located in the filemain/main.c.
This function consist only in the following lines (not including comments and
error-management lines explained later):

main() {
struct precision pr;
struct background ba;
struct thermo th;
struct perturbs pt;
struct primordial pm;
struct nonlinear nl;
struct transfers tr;
struct spectra sp;
struct lensing le;
struct output op;

input_init from_arguments(argc, argv,&pr,&ba,&th,&pt,&tr,&pm,&sp,&nl,&le,&op,errmsg) ;
background_init (&pr,&ba) ;

thermodynamics_init (&pr,&ba,&th) ;

perturb_init (&pr,&ba,&th,&pt) ;

primordial_init (&pr,&pt,&pm) ;

nonlinear_init (&pr,&ba,&th,&pt,&pm,&nl) ;

transfer_init (&pr,&ba,&th,&pt,&nl,&tr) ;

spectra_init (&pr,&ba,&pt,&pm,&nl,&tr,&sp) ;

lensing init (&pr,&pt,&sp,&nl,&le);

output_init (&ba,&th,&pt,&pm,&tr,&sp,&nl,&le,&op)

/*kkxkx done *kxkkkxk/

lensing free(&le);
spectra_free(&sp) ;
transfer_free(&tr);
nonlinear_free(&nl);
primordial free(&pm) ;
perturb_free(&pt) ;
thermodynamics_free(&th);
background_free(&ba) ;

We can come back on the role of each argument. The arguments above are all
pointers to the 10 structures of the code, excepted argc, argv which contains
the input files passed by the user, and errmsg which contains the output error

message of the input module (error management will be described below).

input_init_from_arguments needs all structures, because it will set the pre-
cision parameters inside the precision structure, and the physical parameters
in some fields of the respective other structures. For instance, an input param-
eter relevant for the primordial spectrum calculation (like the tilt ng) will be
stored in the primordial structure. Hence, in input_init_from_arguments, all
structures can be seen as output arguments.

Other module_init () functions typically need all previous structures, which
contain the result of the previous modules, plus its own structures, which contain
some relevant input parameters before the function is called, as well as all the
result form the module when the function has been executed. Hence all passed
structures can be seen as input argument, excepted the last one which is both
input and output. An example is perturb_init (&pr,&ba,&th,&pt).

Each function module_init () does not need all previous structures, it hap-
pens that a module does not depend on a all previous one. For instance, the
primordial module does not need information on the background and thermody-
namics evolution in order to compute the primordial spectra, so the dependency
is reduced: primordial_init(&pr,&pt,&pm).

Fach function module_init () only deallocates arrays defined in the struc-
ture of their own module, so they need only their own structure as argument.
(This is possible because all structures are self-contained, in the sense that
when the structure contains an allocated array, it also contains the size of this
array). The first and last module, input and output, have no input_free()
or output_free() functions, because the structures precision and output do
not contain arrays that would need to be de-allocated after the execution of the
module.

1.3.2 The test <...>.c files

For a given purpose, somebody could only be interested in the intermediate steps
(only background quantities, only the thermodynamics, only the perturbations
and sources, etc.) It is then straightforward to truncate the full hierarchy of
modules 1, ... 10 at some arbitrary order. We provide several “reduced ex-
ecutables” achieving precisely this. They are located in test/test_module.c
(like, for instance, test/test_perturbations.c) and they can be complied us-
ing the Makefile, which contains the appropriate commands and definitions (for
instance, you can type make test_perturbations).

The test/ directory contains other useful example of alternative main func-
tions, like for instance test_loops.c which shows how to call CLASS within a
loop over different parameter values. There is also a version test/test_loops_omp.c
using a double level of openMP parallelisation: one for running several CLASS in-
stances in parallel, one for running each CLASS instance on several cores. The
comments in theses files are self-explanatory.

2 Input/output

2.1 Input

There are two types of input:

1. “precision parameters” (controlling the precision of the output and the
execution time),

2. “input parameters” (cosmological parameters, flags telling to the code
what it should compute, ...)

The code can be executed with a maximum of two input files, e.g.
./class explanatory.ini cl_permille.pre

The file with a .ini extension is the cosmological parameter input file, and
the one with a .pre extension is the precision file. Both files are optional: all
parameters are set to default values corresponding to the “most usual choices”,
and are eventually replaced by the parameters passed in the two input files. For
instance, if one is happy with default accuracy settings, it is enough to run with

./class explanatory.ini

Input files do not necessarily contain a line for each parameter, since many
of them can be left to default value. The example file explanatory.ini is
very long and somewhat indigestible, since it contains all possible parameters,
together with lengthy explanations. We recommend to keep this file unchanged
for reference, and to copy it in e.g. test.ini. In the latter file, the user can
erase all sections in which he/she is absolutely not interested (e.g., all the part
on isocurvature modes, or on tensors, or on non-cold species, etc.). Another
option is to create an input file from scratch, copying just the relevant lines
from explanatory.ini. For the simplest applications, the user will just need a
few lines for basic cosmological parameters, one line for the output entry (where
one can specifying which power spectra must be computed), and one line for
the root entry (specifying the prefix of all output files).
The syntax of the input files is explained at the beginning of explanatory.ini.

Typically, lines in those files look like:

parameterl = valuel

free comments

parameter2 = value2 # further comments
commented_parameter = commented_value

and parameters can be entered in arbitrary order. This is rather intuitive. The
user should just be careful not to put an “=” sign not preceded by a “#” sign

inside a comment: the code would then think that one is trying to pass some
unidentified input parameter.

The syntax for the cosmological and precision parameters is the same. It is
clearer to split these parameters in the two files .ini and .pre, but there is no
strict rule about which parameter goes into which file: in principle, precision
parameters could be passed in the .ini, and vice-versa. The only important
thing is not to pass the same parameter twice: the code would then complain
and not run.

The CLASS input files are also user-friendly in the sense that many different
cosmological parameter bases can be used. This is made possible by the fact
that the code does not only read parameters, it “interprets them” with the level
of logic which has been coded in the input.c module. For instance, the Hubble
parameter, the photon density, the baryon density and the ultra-relativistic
neutrino density can be entered as:

h=0.7

T_cmb = 2.726 # Kelvin units
omega b = 0.02

N eff = 3.04

(in arbitrary order), or as

HO = 70

omega_g = 2.5e-5 # g is the label for photons

Omega b = 0.04

omega ur = 1.7e-5 # ur is the label for ultra-relativistic species

or any combination of the two. The code knows that for the photon density,
one should pass one (but not more than one) parameter out of T_cmb, omega_g,
Omega_g (where small omega’s refer to w; = 2;h?). It searches for one of these
values, and if needed, it converts it into one of the other two parameters, us-
ing also other input parameters. For instance, omega_g will be converted into
Omega_g even if h is written later in the file than omega_g: the order makes no
difference. Lots of alternatives have been defined. If the code finds that not
enough parameters have been passed for making consistent deductions, it will
complete the missing information with in-built default values. On the contrary,
if it finds that there is too much information and no unique solution, it will
complain and return an error.

In summary, the input syntax has been defined in such way that the user
does not need to think too much, and can pass his preferred set of parameters
in a nearly informal way.

Let us mention a two useful parameters defined at the end of explanatory.ini,
that we recommend setting to yes in order to run the code in a safe way:

10

write parameters = [yes or no| (default: no)

When set to yes, all input/precision parameters which have been read are
written in a file <root>parameters.ini, to keep track all the details of this
execution; this file can also be re-used as a new input file. Also, with this
option, all parameters that have been passed and that the code did not read
(because the syntax was wrong, or because the parameter was not relevant in
the context of the run) are written in a file <root>unused parameters. When
you have doubts about your input or your results, you can check what is in there.

write warnings = [yes or no| (default: no)

When set to yes, the parameters that have been passed and that the code
did not read (because the syntax was wrong, or because the parameter was
not relevant in the context of the run) are written in the standard output as
[Warning:]....

There is also a list of “verbose” parameters at the end of explanatory.ini.
They can be used to control the level of information passed to the standard
output (0 means silent; 1 means normal, e.g. information on age of the universe,
etc.; 2 is useful for instance when you want to check on how many cores the run
is parallelised; 3 and more are intended for debugging).

This part of the documentation will be expanded with details on default pre-
cision and on the proposed alternative precision files.

2.2 Output

The input file may contain a line
root = <root>

where <root> is a path of your choice, e.g. output/test_. Then all output files
will start like this, e.g. output/test_cl.dat, output/test_cl lensed.dat,
etc. Of course the number of output files depends on your settings in the
input file. There can be input files for CMB, LSS, background, thermody-
namics, transfer functions, primordial spectra, etc. All this is documented in
explanatory.ini.

If you do not pass explicitly a root = <root>, the code will name the out-
put in its own way, by concatenating output/, the name of the input parameter
file, and the first available integer number, e.g.

output/explanatory03_cl.dat, etc.

11

3 General principles

3.1 Error management

Error management is based on the fact that all functions are defined as integers
returning either _SUCCESS_ or _FAILURE.. Before returning _FAILURE_, they
write an error message in the structure of the module to which they belong.
The calling function will read this message, append it to its own error message,
and return a _FAILURE_; and so on and so forth, until the main routine is reached.
This error management allows the user to see the whole nested structure of error
messages when an error has been met. The structure associated to each module
contains a field for writing error messages, called structure_i.error message,
where structure_i could be one of background, thermo, perturbs, etc. So,
when a function from a module 7 is called within module j and returns an error,
the goal is to write in structure_j.error_message a local error message, and
to append to it the error message in structure_i.error message. These steps
are implemented in a macro class_call(), used for calling whatever function:

class_call(module_i_function(...,structure_i),
structure_i.error_message,
structure_j.error_message) ;

So, the first argument of call_call () is the function we want to call; the second
argument is the location of the error message returned by this function; and the
third one is the location of the error message which should be returned to the
higher level. Usually, in the bulk of the code, we use pointer to structures rather
than structure themselves; then the syntax is

class_call(module_i_function(...,pi),
pi->error message,
pj—>error message) ;

where in this generic example, pi and pj are assumed to be pointers towards
the structures structure_i and structure_j.

The user will find in include/common.h a list of additional macros, all start-
ing by class_... (), which are all based on this logic. For instance, the macro
class_test () offers a generic way to return an error in a standard format if a
condition is not fulfilled. A typical error message from CLASS looks like:

Error in module_j_functionl

=> module_j_functionl (L:340) : error in module_i_function2(...)
=> module_i_function2 (L:275) : error in module k function3(...)
=> module x_functionN (L:735) : your choice of input parameter blabla=30

is not consistent with the constraint blabla<l

12

where the L’s refer to line numbers in each file. These error messages are very
informative, and are built almost entirely automatically by the macros. For in-
stance, in the above example, it was only necessary to write inside the function
module_x_functionN() a test like:

class_test(blabla >= 1,
px->error_message,
"your choice of input parameter blabla=Ye is not consistent
with the constraint blabla<le",
blabla,blablamax) ;

All the rest was added step by step by the various class_call() macros.

3.2 Dynamical allocation of indices

On might be tempted to decide that in a given array, matrix or vector, a given
quantity is associated with an explicit index value. However, when modifying
the code, extra entries will be needed and will mess up the initial scheme; the
user will need to study which index is associated to which quantity, and possibly
make an error. All this can be avoided by using systematically a dynamical index
allocation. This means that all indices remain under a symbolic form, and in
each, run the code attributes automatically a value to each index. The user
never needs to know this value. This part of the documentation will be expanded
with concrete guidelines.

3.3 No hard coding

Any feature or equation which could be true in one cosmology and not in an-
other one should not be written explicitly in the code, and should not be taken
as granted in several other places. Discretization and integration steps are usu-
ally defined automatically by the code for each cosmology, instead of being set
to something which might be optimal for minimal models, and not sufficient
for other ones. This part of the documentation will be expanded with concrete
examples.

3.4 Modifying the code

This part of the documentation will be expanded with concrete guidelines.

4 Units and equations

This part of the documentation will be expanded with concrete guidlines.

13

