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Abstract

We present a method to fit covariance and precision matrix of a Gaussian graphical

model via linear regression.

1 Method

When the data x = (x1, x2, · · · , xp)T is drawn from a joint Gaussian distribution N(0,Σ), it

is straightforward to estimate the covariance matrix and thus the precision matrix, i.e.,

Σ̂ =
1

n

n∑
i=1

x(i)x(i)
T

and Ω̂ = Σ̂−1

However, when the model gets complicated (for example, time series model) or the dimension

gets higher, there are chances where the above equation becomes harder to use, but fitting

linear regression xi ∼ x1, · · · , xi−1, xi+1, · · · , xp remains simple. In this note, we deduct the

equation that recovers the covariance and precision matrix.

For a given dimension xi, we denote Σi as its covariance, Σ−i as the covariance of the
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remaining dimensions and Σi,−i as the correlation between xi and the rest dimensions. We

have similar notions for Ω. It is obvious that the conditional distribution of xi follows

xi ∼ N(mi, Ci) where

mi = Σi,−iΣ
−1
−ix−i = −Ωi,−iΩ

−1
i x−i

and

Ci = Σi − Σi,−iΣ
−1
−i Σ−i,i = Ω−1i

Therefore, we can rewrite the conditional distribution in a linear regression form

xi = x1β
(i)
1 + x2β

(i)
2 + · · ·+ xpβ

(i)
p +N(0, σ2

i )

and we can relate β(i) and σi to the precision matrix as

β(i) = −Ωi,−iΩ
−1
i x−i and Ω−1i = σ2

i

Thus, by fitting a linear regression xi ∼ x−i, we obtain that

Ω̂i,−i = −β̂(i)/σ̂2
i and Ω̂i = σ̂−2i

and the precision estimator is

Ω̂ =



σ̂−21 −σ̂−22 β̂
(2)
1 −σ̂−23 β̂

(3)
1 · · · −σ̂−2p β̂

(p)
1

−σ̂−21 β̂
(1)
2 σ̂−22 −σ̂−23 β̂

(3)
2 · · · −σ̂−2p β̂

(p)
2

−σ̂−21 β̂
(1)
3 −σ̂−22 β̂

(2)
3 σ̂−23 · · · −σ̂−2p β̂

(p)
3

...
...

...
...

−σ̂−21 β̂
(1)
p −σ̂−22 β̂

(2)
p −σ̂−23 β̂

(3)
p · · · σ̂−2p


(1)
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Thus, the covariance matrix will be

Σ̂ = Ω̂−1.

2 Numerical experiments

We verify this result via some simple numerical examples. We consider three different co-

variance structure

Case i Σ = Ip is an identity matrix

Case ii Σij = 0.9|i−j| is a power decay matrix

Case iii Σ = sprandsym(p, 0.2) + aIp where sprandsym(p, q) is a matlab function to produce

random sparse matrix with p dimension and q density. a = 8 for p = 10, 50 and a = 20

for p = 200.

We compare the linear regression method to the direct method shown in the beginning and

demonstrate the result in terms of ‖Σ̂ − Σ‖2F and ‖Ω̂ − Ω‖2F where ‖ · ‖F is the Frobenious

norm. The sample size is set to be n = 1000 and the dimension is set to be p = 10, 50, 200.

The results are summarized in

Table 1: The results for Case i

‖Σ̂− Σ‖2F ‖Ω̂− Ω‖2F
p = 10 Direct estimate 0.12 0.15

Linear regression 0.11 0.15
p = 50 Direct estimate 2.65 3.41

Linear regression 2.65 3.41
p = 200 Direct estimate 39.49 89.15

Linear regression 39.45 89.07
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Table 2: The results for Case ii

‖Σ̂− Σ‖2F ‖Ω̂− Ω‖2F
p = 10 Direct estimate 0.66 8.11

Linear regression 0.66 7.87
p = 50 Direct estimate 1.60 271.18

Linear regression 1.63 271.39
p = 200 Direct estimate 39.45 8465

Linear regression 39.31 8433

Table 3: The results for Case iii

‖Σ̂− Σ‖2F ‖Ω̂− Ω‖2F
p = 10 Direct estimate 8.61 0.01

Linear regression 8.55 0.01
p = 50 Direct estimate 167.76 0.14

Linear regression 167.67 0.14
p = 200 Direct estimate 16056 0.36

Linear regression 16031 0.35

3 Application

One application lies in the time series models. When the the observation is multidimensional,

a joint modeling of the p-dimension observation would result in many problems. First, the

Kalman filter becomes fairly complicated. For example, each dimension could have different

latent structures, then the joint Kalman filter could be bad. Second, the computation burden

is high. One have to invert an p × p matrix every step when conducting forward filtering.

This might result in bad computational performance when p is large.

Instead, we can make use of the estimation method in this article to estimate the covari-

ance matrix between the p observations. We simply treat the p-dimensional observation as p

separate time series. When fitting one particular dimension, we treat the remaining dimen-

sions (using filtered results) as the control variables. Thus, the fitting can be parallelizable

and is very efficient. Like EM, We then repeat this approach for certain amount of iterations

to update the filtered results at each dimension to finalize the output. Finally, we recover

the covariance or precision matrix using (1).
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