16  HPT: sklearn XGB Classifier VBDP Data

This document refers to the following software versions:

pip list | grep  "spot[RiverPython]"
spotPython               0.2.51
spotRiver                0.0.94
Note: you may need to restart the kernel to use updated packages.

spotPython can be installed via pip. Alternatively, the source code can be downloaded from gitHub: https://github.com/sequential-parameter-optimization/spotPython.

!pip install spotPython
# import sys
# !{sys.executable} -m pip install --upgrade build
# !{sys.executable} -m pip install --upgrade --force-reinstall spotPython

16.1 Step 1: Setup

Before we consider the detailed experimental setup, we select the parameters that affect run time and the initial design size.

MAX_TIME = 1
INIT_SIZE = 5
ORIGINAL = False
import os
import copy
import socket
from datetime import datetime
from dateutil.tz import tzlocal
start_time = datetime.now(tzlocal())
HOSTNAME = socket.gethostname().split(".")[0]
experiment_name = '17-xgb-sklearn' + "_" + HOSTNAME + "_" + str(MAX_TIME) + "min_" + str(INIT_SIZE) + "init_" + str(start_time).split(".", 1)[0].replace(' ', '_')
experiment_name = experiment_name.replace(':', '-')
print(experiment_name)
if not os.path.exists('./figures'):
    os.makedirs('./figures')
17-xgb-sklearn_maans05_1min_5init_2023-06-28_17-11-26
import warnings
warnings.filterwarnings("ignore")

16.2 Step 2: Initialization of the Empty fun_control Dictionary

Caution: Tensorboard does not work under Windows
  • Since tensorboard does not work under Windows, we recommend setting the parameter tensorboard_path to None if you are working under Windows.
from spotPython.utils.init import fun_control_init
fun_control = fun_control_init(task="classification",
    tensorboard_path="runs/16_spot_hpt_sklearn_classification")

16.3 Step 3: PyTorch Data Loading

16.3.1 1. Load Data: Classification VBDP

import pandas as pd
if ORIGINAL == True:
    train_df = pd.read_csv('./data/VBDP/trainn.csv')
    test_df = pd.read_csv('./data/VBDP/testt.csv')
else:
    train_df = pd.read_csv('./data/VBDP/train.csv')
    # remove the id column
    train_df = train_df.drop(columns=['id'])
from sklearn.preprocessing import OrdinalEncoder
n_samples = train_df.shape[0]
n_features = train_df.shape[1] - 1
target_column = "prognosis"
# Encoder our prognosis labels as integers for easier decoding later
enc = OrdinalEncoder()
train_df[target_column] = enc.fit_transform(train_df[[target_column]])
train_df.columns = [f"x{i}" for i in range(1, n_features+1)] + [target_column]
print(train_df.shape)
train_df.head()
(707, 65)
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ... x56 x57 x58 x59 x60 x61 x62 x63 x64 prognosis
0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0
1 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0
2 0.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 3.0
3 0.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 1.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 ... 0.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 6.0

5 rows × 65 columns

The full data set train_df 64 features. The target column is labeled as prognosis.

16.3.2 Holdout Train and Test Data

We split out a hold-out test set (25% of the data) so we can calculate an example MAP@K

import numpy as np
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(train_df.drop(target_column, axis=1), train_df[target_column],
                                                    random_state=42,
                                                    test_size=0.25,
                                                    stratify=train_df[target_column])
train = pd.DataFrame(np.hstack((X_train, np.array(y_train).reshape(-1, 1))))
test = pd.DataFrame(np.hstack((X_test, np.array(y_test).reshape(-1, 1))))
train.columns = [f"x{i}" for i in range(1, n_features+1)] + [target_column]
test.columns = [f"x{i}" for i in range(1, n_features+1)] + [target_column]
print(train.shape)
print(test.shape)
train.head()
(530, 65)
(177, 65)
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ... x56 x57 x58 x59 x60 x61 x62 x63 x64 prognosis
0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0
1 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0
2 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0
3 1.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0
4 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0

5 rows × 65 columns

# add the dataset to the fun_control
fun_control.update({"data": train_df, # full dataset,
               "train": train,
               "test": test,
               "n_samples": n_samples,
               "target_column": target_column})

16.4 Step 4: Specification of the Preprocessing Model

Data preprocesssing can be very simple, e.g., you can ignore it. Then you would choose the prep_model “None”:

prep_model = None
fun_control.update({"prep_model": prep_model})

A default approach for numerical data is the StandardScaler (mean 0, variance 1). This can be selected as follows:

# prep_model = StandardScaler()
# fun_control.update({"prep_model": prep_model})

Even more complicated pre-processing steps are possible, e.g., the follwing pipeline:

# categorical_columns = []
# one_hot_encoder = OneHotEncoder(handle_unknown="ignore", sparse_output=False)
# prep_model = ColumnTransformer(
#         transformers=[
#             ("categorical", one_hot_encoder, categorical_columns),
#         ],
#         remainder=StandardScaler(),
#     )

16.5 Step 5: Select Model (algorithm) and core_model_hyper_dict

The selection of the algorithm (ML model) that should be tuned is done by specifying the its name from the sklearn implementation. For example, the SVC support vector machine classifier is selected as follows:

fun_control = add_core_model_to_fun_control(SVC, fun_control, SklearnHyperDict)

Other core_models are, e.g.,:

  • RidgeCV
  • GradientBoostingRegressor
  • ElasticNet
  • RandomForestClassifier
  • LogisticRegression
  • KNeighborsClassifier
  • RandomForestClassifier
  • GradientBoostingClassifier
  • HistGradientBoostingClassifier

We will use the RandomForestClassifier classifier in this example.

from sklearn.linear_model import RidgeCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.linear_model import ElasticNet
from spotPython.hyperparameters.values import add_core_model_to_fun_control
from spotPython.data.sklearn_hyper_dict import SklearnHyperDict
from spotPython.fun.hypersklearn import HyperSklearn
# core_model  = RidgeCV
# core_model = GradientBoostingRegressor
# core_model = ElasticNet
core_model = RandomForestClassifier
# core_model = SVC
# core_model = LogisticRegression
# core_model = KNeighborsClassifier
# core_model = GradientBoostingClassifier
core_model = HistGradientBoostingClassifier
fun_control = add_core_model_to_fun_control(core_model=core_model,
                              fun_control=fun_control,
                              hyper_dict=SklearnHyperDict,
                              filename=None)

Now fun_control has the information from the JSON file. The available hyperparameters are:

print(*fun_control["core_model_hyper_dict"].keys(), sep="\n")
loss
learning_rate
max_iter
max_leaf_nodes
max_depth
min_samples_leaf
l2_regularization
max_bins
early_stopping
n_iter_no_change
tol

16.6 Step 6: Modify hyper_dict Hyperparameters for the Selected Algorithm aka core_model

16.6.1 Modify hyperparameter of type numeric and integer (boolean)

Numeric and boolean values can be modified using the modify_hyper_parameter_bounds method. For example, to change the tol hyperparameter of the SVC model to the interval [1e-3, 1e-2], the following code can be used:

fun_control = modify_hyper_parameter_bounds(fun_control, "tol", bounds=[1e-3, 1e-2])

from spotPython.hyperparameters.values import modify_hyper_parameter_bounds
# fun_control = modify_hyper_parameter_bounds(fun_control, "tol", bounds=[1e-3, 1e-2])
# fun_control = modify_hyper_parameter_bounds(fun_control, "min_samples_split", bounds=[3, 20])
# fun_control = modify_hyper_parameter_bounds(fun_control, "dual", bounds=[0, 0])
# fun_control = modify_hyper_parameter_bounds(fun_control, "probability", bounds=[1, 1])
# fun_control["core_model_hyper_dict"]["tol"]
# fun_control = modify_hyper_parameter_bounds(fun_control, "min_samples_leaf", bounds=[1, 25])
# fun_control = modify_hyper_parameter_bounds(fun_control, "n_estimators", bounds=[5, 10])

16.6.2 Modify hyperparameter of type factor

spotPython provides functions for modifying the hyperparameters, their bounds and factors as well as for activating and de-activating hyperparameters without re-compilation of the Python source code. These functions were described in Section 14.6.

Factors can be modified with the modify_hyper_parameter_levels function. For example, to exclude the sigmoid kernel from the tuning, the kernel hyperparameter of the SVC model can be modified as follows:

fun_control = modify_hyper_parameter_levels(fun_control, "kernel", ["linear", "rbf"])

The new setting can be controlled via:

fun_control["core_model_hyper_dict"]["kernel"]

from spotPython.hyperparameters.values import modify_hyper_parameter_levels
# XGBoost:
fun_control = modify_hyper_parameter_levels(fun_control, "loss", ["log_loss"])

16.6.3 Optimizers

Optimizers are described in Section 14.6.1.

16.7 Step 7: Selection of the Objective (Loss) Function

16.7.1 Evaluation

The evaluation procedure requires the specification of two elements:

  1. the way how the data is split into a train and a test set and
  2. the loss function (and a metric).

16.7.2 Selection of the Objective: Metric and Loss Functions

  • Machine learning models are optimized with respect to a metric, for example, the accuracy function.
  • Deep learning, e.g., neural networks are optimized with respect to a loss function, for example, the cross_entropy function and evaluated with respect to a metric, for example, the accuracy function.

16.7.3 Loss Function

The loss function, that is usually used in deep learning for optimizing the weights of the net, is stored in the fun_control dictionary as "loss_function".

16.7.4 Metric Function

There are two different types of metrics in spotPython:

  1. "metric_river" is used for the river based evaluation via eval_oml_iter_progressive.
  2. "metric_sklearn" is used for the sklearn based evaluation.

We will consider multi-class classification metrics, e.g., mapk_score and top_k_accuracy_score.

Predict Probabilities

In this multi-class classification example the machine learning algorithm should return the probabilities of the specific classes ("predict_proba") instead of the predicted values.

We set "predict_proba" to True in the fun_control dictionary.

16.7.4.1 The MAPK Metric

To select the MAPK metric, the following two entries can be added to the fun_control dictionary:

"metric_sklearn": mapk_score"

"metric_params": {"k": 3}.

16.7.4.2 Other Metrics

Alternatively, other metrics for multi-class classification can be used, e.g.,: * top_k_accuracy_score or * roc_auc_score

The metric roc_auc_score requires the parameter "multi_class", e.g.,

"multi_class": "ovr".

This is set in the fun_control dictionary.

Weights

spotPython performs a minimization, therefore, metrics that should be maximized have to be multiplied by -1. This is done by setting "weights" to -1.

  • The complete setup for the metric in our example is:
from spotPython.utils.metrics import mapk_score
fun_control.update({
               "weights": -1,
               "metric_sklearn": mapk_score,
               "predict_proba": True,
               "metric_params": {"k": 3},
               })

16.7.5 Evaluation on Hold-out Data

  • The default method for computing the performance is "eval_holdout".
  • Alternatively, cross-validation can be used for every machine learning model.
  • Specifically for RandomForests, the OOB-score can be used.
fun_control.update({
    "eval": "train_hold_out",
})

16.7.5.1 Cross Validation

Instead of using the OOB-score, the classical cross validation can be used. The number of folds is set by the key "k_folds". For example, to use 5-fold cross validation, the key "k_folds" is set to 5. Uncomment the following line to use cross validation:

# fun_control.update({
#      "eval": "train_cv",
#      "k_folds": 10,
# })

16.8 Step 8: Calling the SPOT Function

16.8.1 Preparing the SPOT Call

  • Get types and variable names as well as lower and upper bounds for the hyperparameters.
# extract the variable types, names, and bounds
from spotPython.hyperparameters.values import (get_bound_values,
    get_var_name,
    get_var_type,)
var_type = get_var_type(fun_control)
var_name = get_var_name(fun_control)
fun_control.update({"var_type": var_type,
                    "var_name": var_name})
lower = get_bound_values(fun_control, "lower")
upper = get_bound_values(fun_control, "upper")
from spotPython.utils.eda import gen_design_table
print(gen_design_table(fun_control))
| name              | type   | default   |   lower |   upper | transform             |
|-------------------|--------|-----------|---------|---------|-----------------------|
| loss              | factor | log_loss  |   0     |   0     | None                  |
| learning_rate     | float  | -1.0      |  -5     |   0     | transform_power_10    |
| max_iter          | int    | 7         |   3     |  10     | transform_power_2_int |
| max_leaf_nodes    | int    | 5         |   1     |  12     | transform_power_2_int |
| max_depth         | int    | 2         |   1     |  20     | transform_power_2_int |
| min_samples_leaf  | int    | 4         |   2     |  10     | transform_power_2_int |
| l2_regularization | float  | 0.0       |   0     |  10     | None                  |
| max_bins          | int    | 255       | 127     | 255     | None                  |
| early_stopping    | factor | 1         |   0     |   1     | None                  |
| n_iter_no_change  | int    | 10        |   5     |  20     | None                  |
| tol               | float  | 0.0001    |   1e-05 |   0.001 | None                  |

16.8.2 The Objective Function

The objective function is selected next. It implements an interface from sklearn’s training, validation, and testing methods to spotPython.

from spotPython.fun.hypersklearn import HyperSklearn
fun = HyperSklearn().fun_sklearn

16.8.3 Run the Spot Optimizer

  • Run SPOT for approx. x mins (max_time).
  • Note: the run takes longer, because the evaluation time of initial design (here: initi_size, 20 points) is not considered.
from spotPython.hyperparameters.values import get_default_hyperparameters_as_array
hyper_dict=SklearnHyperDict().load()
X_start = get_default_hyperparameters_as_array(fun_control, hyper_dict)
X_start
array([[ 0.00e+00, -1.00e+00,  7.00e+00,  5.00e+00,  2.00e+00,  4.00e+00,
         0.00e+00,  2.55e+02,  1.00e+00,  1.00e+01,  1.00e-04]])
import numpy as np
from spotPython.spot import spot
from math import inf
spot_tuner = spot.Spot(fun=fun,
                   lower = lower,
                   upper = upper,
                   fun_evals = inf,
                   fun_repeats = 1,
                   max_time = MAX_TIME,
                   noise = False,
                   tolerance_x = np.sqrt(np.spacing(1)),
                   var_type = var_type,
                   var_name = var_name,
                   infill_criterion = "y",
                   n_points = 1,
                   seed=123,
                   log_level = 50,
                   show_models= False,
                   show_progress= True,
                   fun_control = fun_control,
                   design_control={"init_size": INIT_SIZE,
                                   "repeats": 1},
                   surrogate_control={"noise": True,
                                      "cod_type": "norm",
                                      "min_theta": -4,
                                      "max_theta": 3,
                                      "n_theta": len(var_name),
                                      "model_fun_evals": 10_000,
                                      "log_level": 50
                                      })
spot_tuner.run(X_start=X_start)
spotPython tuning: -0.3333333333333333 [----------] 4.00% 
spotPython tuning: -0.33959899749373434 [#---------] 9.49% 
spotPython tuning: -0.33959899749373434 [#---------] 13.41% 
spotPython tuning: -0.33959899749373434 [##--------] 22.94% 
spotPython tuning: -0.33959899749373434 [###-------] 27.91% 
spotPython tuning: -0.33959899749373434 [###-------] 33.34% 
spotPython tuning: -0.33959899749373434 [####------] 36.67% 
spotPython tuning: -0.33959899749373434 [####------] 40.69% 
spotPython tuning: -0.3659147869674186 [#####-----] 45.23% 
spotPython tuning: -0.3659147869674186 [#####-----] 50.54% 
spotPython tuning: -0.3659147869674186 [#####-----] 54.54% 
spotPython tuning: -0.3659147869674186 [######----] 59.15% 
spotPython tuning: -0.3659147869674186 [######----] 63.95% 
spotPython tuning: -0.3659147869674186 [#######---] 68.23% 
spotPython tuning: -0.3659147869674186 [#######---] 73.05% 
spotPython tuning: -0.3659147869674186 [########--] 77.91% 
spotPython tuning: -0.3659147869674186 [########--] 82.45% 
spotPython tuning: -0.3822055137844611 [#########-] 87.02% 
spotPython tuning: -0.3822055137844611 [#########-] 92.83% 
spotPython tuning: -0.3822055137844611 [##########] 98.13% 
spotPython tuning: -0.3822055137844611 [##########] 100.00% Done...
<spotPython.spot.spot.Spot at 0x1321b98a0>

16.9 Step 9: Tensorboard

The textual output shown in the console (or code cell) can be visualized with Tensorboard as described in Section 14.9, see also the description in the documentation: Tensorboard.

16.10 Step 10: Results

After the hyperparameter tuning run is finished, the progress of the hyperparameter tuning can be visualized. The following code generates the progress plot from ?fig-progress.

spot_tuner.plot_progress(log_y=False,
    filename="./figures/" + experiment_name+"_progress.png")

Progress plot. Black dots denote results from the initial design. Red dots illustrate the improvement found by the surrogate model based optimization.
  • Print the results
print(gen_design_table(fun_control=fun_control,
    spot=spot_tuner))
| name              | type   | default   |   lower |   upper |               tuned | transform             |   importance | stars   |
|-------------------|--------|-----------|---------|---------|---------------------|-----------------------|--------------|---------|
| loss              | factor | log_loss  |     0.0 |     0.0 |                 0.0 | None                  |         0.00 |         |
| learning_rate     | float  | -1.0      |    -5.0 |     0.0 | -0.8581185096678258 | transform_power_10    |        65.62 | **      |
| max_iter          | int    | 7         |     3.0 |    10.0 |                 9.0 | transform_power_2_int |         0.00 |         |
| max_leaf_nodes    | int    | 5         |     1.0 |    12.0 |                 8.0 | transform_power_2_int |         0.00 |         |
| max_depth         | int    | 2         |     1.0 |    20.0 |                17.0 | transform_power_2_int |         0.16 | .       |
| min_samples_leaf  | int    | 4         |     2.0 |    10.0 |                 4.0 | transform_power_2_int |        74.76 | **      |
| l2_regularization | float  | 0.0       |     0.0 |    10.0 |   9.424874016339015 | None                  |         1.64 | *       |
| max_bins          | int    | 255       |   127.0 |   255.0 |               214.0 | None                  |         0.00 |         |
| early_stopping    | factor | 1         |     0.0 |     1.0 |                 1.0 | None                  |       100.00 | ***     |
| n_iter_no_change  | int    | 10        |     5.0 |    20.0 |                18.0 | None                  |         0.00 |         |
| tol               | float  | 0.0001    |   1e-05 |   0.001 |               0.001 | None                  |         0.00 |         |

16.10.1 Show variable importance

spot_tuner.plot_importance(threshold=0.025, filename="./figures/" + experiment_name+"_importance.png")

Variable importance plot, threshold 0.025.

16.10.2 Get Default Hyperparameters

from spotPython.hyperparameters.values import get_default_values, transform_hyper_parameter_values
values_default = get_default_values(fun_control)
values_default = transform_hyper_parameter_values(fun_control=fun_control, hyper_parameter_values=values_default)
values_default
{'loss': 'log_loss',
 'learning_rate': 0.1,
 'max_iter': 128,
 'max_leaf_nodes': 32,
 'max_depth': 4,
 'min_samples_leaf': 16,
 'l2_regularization': 0.0,
 'max_bins': 255,
 'early_stopping': 1,
 'n_iter_no_change': 10,
 'tol': 0.0001}
from sklearn.pipeline import make_pipeline
model_default = make_pipeline(fun_control["prep_model"], fun_control["core_model"](**values_default))
model_default
Pipeline(steps=[('nonetype', None),
                ('histgradientboostingclassifier',
                 HistGradientBoostingClassifier(early_stopping=1, max_depth=4,
                                                max_iter=128, max_leaf_nodes=32,
                                                min_samples_leaf=16,
                                                tol=0.0001))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

16.10.3 Get SPOT Results

X = spot_tuner.to_all_dim(spot_tuner.min_X.reshape(1,-1))
print(X)
[[ 0.00000000e+00 -8.58118510e-01  9.00000000e+00  8.00000000e+00
   1.70000000e+01  4.00000000e+00  9.42487402e+00  2.14000000e+02
   1.00000000e+00  1.80000000e+01  1.00000000e-03]]
from spotPython.hyperparameters.values import assign_values, return_conf_list_from_var_dict
v_dict = assign_values(X, fun_control["var_name"])
return_conf_list_from_var_dict(var_dict=v_dict, fun_control=fun_control)
[{'loss': 'log_loss',
  'learning_rate': 0.138637746451649,
  'max_iter': 512,
  'max_leaf_nodes': 256,
  'max_depth': 131072,
  'min_samples_leaf': 16,
  'l2_regularization': 9.424874016339015,
  'max_bins': 214,
  'early_stopping': 1,
  'n_iter_no_change': 18,
  'tol': 0.001}]
from spotPython.hyperparameters.values import get_one_sklearn_model_from_X
model_spot = get_one_sklearn_model_from_X(X, fun_control)
model_spot
HistGradientBoostingClassifier(early_stopping=1,
                               l2_regularization=9.424874016339015,
                               learning_rate=0.138637746451649, max_bins=214,
                               max_depth=131072, max_iter=512,
                               max_leaf_nodes=256, min_samples_leaf=16,
                               n_iter_no_change=18, tol=0.001)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

16.10.4 Evaluate SPOT Results

  • Fetch the data.
from spotPython.utils.convert import get_Xy_from_df
X_train, y_train = get_Xy_from_df(fun_control["train"], fun_control["target_column"])
X_test, y_test = get_Xy_from_df(fun_control["test"], fun_control["target_column"])
X_test.shape, y_test.shape
((177, 64), (177,))
  • Fit the model with the tuned hyperparameters. This gives one result:
model_spot.fit(X_train, y_train)
y_pred = model_spot.predict_proba(X_test)
res = mapk_score(y_true=y_test, y_pred=y_pred, k=3)
res
0.3493408662900188
def repeated_eval(n, model):
    res_values = []
    for i in range(n):
        model.fit(X_train, y_train)
        y_pred = model.predict_proba(X_test)
        res = mapk_score(y_true=y_test, y_pred=y_pred, k=3)
        res_values.append(res)
    mean_res = np.mean(res_values)
    print(f"mean_res: {mean_res}")
    std_res = np.std(res_values)
    print(f"std_res: {std_res}")
    min_res = np.min(res_values)
    print(f"min_res: {min_res}")
    max_res = np.max(res_values)
    print(f"max_res: {max_res}")
    median_res = np.median(res_values)
    print(f"median_res: {median_res}")
    return mean_res, std_res, min_res, max_res, median_res

16.10.5 Handling Non-deterministic Results

  • Because the model is non-determinstic, we perform \(n=30\) runs and calculate the mean and standard deviation of the performance metric.
_ = repeated_eval(30, model_spot)
mean_res: 0.3388575015693659
std_res: 0.01447101805979866
min_res: 0.3032015065913371
max_res: 0.3644067796610169
median_res: 0.34180790960451973

16.10.6 Evalution of the Default Hyperparameters

model_default.fit(X_train, y_train)["histgradientboostingclassifier"]
HistGradientBoostingClassifier(early_stopping=1, max_depth=4, max_iter=128,
                               max_leaf_nodes=32, min_samples_leaf=16,
                               tol=0.0001)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
  • One evaluation of the default hyperparameters is performed on the hold-out test set.
y_pred = model_default.predict_proba(X_test)
mapk_score(y_true=y_test, y_pred=y_pred, k=3)
0.3333333333333333

Since one single evaluation is not meaningful, we perform, similar to the evaluation of the SPOT results, \(n=30\) runs of the default setting and and calculate the mean and standard deviation of the performance metric.

_ = repeated_eval(30, model_default)
mean_res: 0.34152542372881356
std_res: 0.013027401401843972
min_res: 0.307909604519774
max_res: 0.36252354048964214
median_res: 0.34180790960451973

16.10.7 Plot: Compare Predictions

from spotPython.plot.validation import plot_confusion_matrix
plot_confusion_matrix(model_default, fun_control, title = "Default")

plot_confusion_matrix(model_spot, fun_control, title="SPOT")

min(spot_tuner.y), max(spot_tuner.y)
(-0.3822055137844611, -0.20927318295739344)

16.10.8 Cross-validated Evaluations

from spotPython.sklearn.traintest import evaluate_cv
fun_control.update({
     "eval": "train_cv",
     "k_folds": 10,
})
evaluate_cv(model=model_spot, fun_control=fun_control, verbose=0)
(0.33364779874213835, None)
fun_control.update({
     "eval": "test_cv",
     "k_folds": 10,
})
evaluate_cv(model=model_spot, fun_control=fun_control, verbose=0)
(0.2680827886710239, None)
  • This is the evaluation that will be used in the comparison:
fun_control.update({
     "eval": "data_cv",
     "k_folds": 10,
})
evaluate_cv(model=model_spot, fun_control=fun_control, verbose=0)
(0.3405097250167673, None)

16.10.9 Detailed Hyperparameter Plots

filename = "./figures/" + experiment_name
spot_tuner.plot_important_hyperparameter_contour(filename=filename)
learning_rate:  65.62302449298677
max_depth:  0.1555445752453013
min_samples_leaf:  74.76448692131154
l2_regularization:  1.638826037588056
early_stopping:  100.0

16.10.10 Parallel Coordinates Plot

spot_tuner.parallel_plot()

16.10.11 Plot all Combinations of Hyperparameters

  • Warning: this may take a while.
PLOT_ALL = False
if PLOT_ALL:
    n = spot_tuner.k
    for i in range(n-1):
        for j in range(i+1, n):
            spot_tuner.plot_contour(i=i, j=j, min_z=min_z, max_z = max_z)