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1 Hyperparameter Tuning

Hyperparameter tuning is an important, but often difficult and computationally intensive task.
Changing the architecture of a neural network or the learning rate of an optimizer can have a
significant impact on the performance.

The goal of hyperparameter tuning is to optimize the hyperparameters in a way that improves
the performance of the machine learning or deep learning model. The simplest, but also
most computationally expensive, approach uses manual search (or trial-and-error (Meignan
et al. 2015)). Commonly encountered is simple random search, i.e., random and repeated
selection of hyperparameters for evaluation, and lattice search (“grid search”). In addition,
methods that perform directed search and other model-free algorithms, i.e., algorithms that
do not explicitly rely on a model, e.g., evolution strategies (Bartz-Beielstein et al. 2014) or
pattern search (Lewis, Torczon, and Trosset 2000) play an important role. Also, “hyperband”,
i.e., a multi-armed bandit strategy that dynamically allocates resources to a set of random
configurations and uses successive bisections to stop configurations with poor performance
(Li et al. 2016), is very common in hyperparameter tuning. The most sophisticated and
efficient approaches are the Bayesian optimization and surrogate model based optimization
methods, which are based on the optimization of cost functions determined by simulations or
experiments.

We consider below a surrogate model based optimization-based hyperparameter tuning ap-
proach based on the Python version of the SPOT (“Sequential Parameter Optimization Tool-
box”) (Bartz-Beielstein, Lasarczyk, and Preuss 2005), which is suitable for situations where
only limited resources are available. This may be due to limited availability and cost of hard-
ware, or due to the fact that confidential data may only be processed locally, e.g., due to legal
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requirements. Furthermore, in our approach, the understanding of algorithms is seen as a key
tool for enabling transparency and explainability. This can be enabled, for example, by quan-
tifying the contribution of machine learning and deep learning components (nodes, layers, split
decisions, activation functions, etc.). Understanding the importance of hyperparameters and
the interactions between multiple hyperparameters plays a major role in the interpretability
and explainability of machine learning models. SPOT provides statistical tools for understand-
ing hyperparameters and their interactions. Last but not least, it should be noted that the
SPOT software code is available in the open source spotPython package on github1, allowing
replicability of the results. This tutorial descries the Python variant of SPOT, which is called
spotPython. The R implementation is described in Bartz et al. (2022). SPOT is an estab-
lished open source software that has been maintained for more than 15 years (Bartz-Beielstein,
Lasarczyk, and Preuss 2005) (Bartz et al. 2022).

This tutorial is structured as follows. The concept of the hyperparameter tuning software
spotPython is described in Section 2. Section 3 describes the integration of spotPython into
the PyTorch training workflow and presents the results. Finally, Section 4 presents a summary
and an outlook.

Note

The corresponding .ipynb notebook (Bartz-Beielstein 2023) is updated regularly and
reflects updates and changes in the spotPython package. It can be downloaded from
https://github.com/sequential-parameter-optimization/spotPython/blob/main/notebo
oks/14_spot_ray_hpt_torch_cifar10.ipynb.

2 The Hyperparameter Tuning Software SPOT

Surrogate model based optimization methods are common approaches in simulation and opti-
mization. SPOT was developed because there is a great need for sound statistical analysis of
simulation and optimization algorithms. SPOT includes methods for tuning based on classical
regression and analysis of variance techniques. It presents tree-based models such as classi-
fication and regression trees and random forests as well as Bayesian optimization (Gaussian
process models, also known as Kriging). Combinations of different meta-modeling approaches
are possible. SPOT comes with a sophisticated surrogate model based optimization method,
that can handle discrete and continuous inputs. Furthermore, any model implemented in
scikit-learn can be used out-of-the-box as a surrogate in spotPython.

SPOT implements key techniques such as exploratory fitness landscape analysis and sensitivity
analysis. It can be used to understand the performance of various algorithms, while simulta-
neously giving insights into their algorithmic behavior. In addition, SPOT can be used as an

1https://github.com/sequential-parameter-optimization
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optimizer and for automatic and interactive tuning. Details on SPOT and its use in practice
are given by Bartz et al. (2022).

A typical hyperparameter tuning process with spotPython consists of the following steps:

1. Loading the data (training and test datasets), see Section 3.3.
2. Specification of the preprocessing model, see Section 3.4. This model is called

prep_model (“preparation” or pre-processing). The information required for the
hyperparameter tuning is stored in the dictionary fun_control. Thus, the information
needed for the execution of the hyperparameter tuning is available in a readable form.

3. Selection of the machine learning or deep learning model to be tuned, see Section 3.5.
This is called the core_model. Once the core_model is defined, then the associated
hyperparameters are stored in the fun_control dictionary. First, the hyperparameters
of the core_model are initialized with the default values of the core_model. As default
values we use the default values contained in the spotPython package for the algorithms
of the torch package.

4. Modification of the default values for the hyperparameters used in core_model, see
Section 3.7.1. This step is optional.

1. numeric parameters are modified by changing the bounds.
2. categorical parameters are modified by changing the categories (“levels”).

5. Selection of target function (loss function) for the optimizer, see Section 3.8.
6. Calling SPOT with the corresponding parameters, see Section 3.9. The results are stored

in a dictionary and are available for further analysis.
7. Presentation, visualization and interpretation of the results, see Section 3.10.

3 Hyperparameter Tuning for PyTorch With spotPython

In this tutorial, we will show how spotPython can be integrated into the PyTorch training
workflow. It is based on the tutorial “Hyperparameter Tuning with Ray Tune” from the
PyTorch documentation (PyTorch 2023a), which is an extension of the tutorial “Training a
Classifier” (PyTorch 2023b) for training a CIFAR10 image classifier.

This document refers to the following software versions:

• python: 3.10.10
• torch: 2.0.1
• torchvision: 0.15.0
• spotPython: 0.1.3

spotPython can be installed via pip2.
2Alternatively, the source code can be downloaded from gitHub: https://github.com/sequential-parameter-

optimization/spotPython.
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!pip install spotPython

Results that refer to the Ray Tune package are taken from https://PyTorch.org/tutorials/be
ginner/hyperparameter_tuning_tutorial.html3.

3.1 Setup

Before we consider the detailed experimental setup, we select the parameters that affect run
time, initial design size and the device that is used.

MAX_TIME = 60
INIT_SIZE = 10
DEVICE = "cpu" # "cuda:0"

3.2 Initialization of the fun_control Dictionary

spotPython uses a Python dictionary for storing the information required for the hyperparam-
eter tuning process. This dictionary is called fun_control and is initialized with the function
fun_control_init. The function fun_control_init returns a skeleton dictionary. The dic-
tionary is filled with the required information for the hyperparameter tuning process. It stores
the hyperparameter tuning settings, e.g., the deep learning network architecture that should
be tuned, the classification (or regression) problem, and the data that is used for the tuning.
The dictionary is used as an input for the SPOT function.

fun_control = fun_control_init()

3.3 Data Loading

The data loading process is implemented in the same manner as described in the Section “Data
loaders” in PyTorch (2023a). The data loaders are wrapped into the function load_data. A
global data directory is used, which allows sharing the data directory between different trials.

def load_data(data_dir="./data"):
transform = transforms.Compose([

transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

])

3We were not able to install Ray Tune on our system. Therefore, we used the results from the PyTorch tutorial.
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trainset = torchvision.datasets.CIFAR10(
root=data_dir, train=True, download=True, transform=transform)

testset = torchvision.datasets.CIFAR10(
root=data_dir, train=False, download=True, transform=transform)

return trainset, testset

The test and train data are added to the dictionary fun_control.

train, test = load_data()
n_samples = len(train)
# add the dataset to the fun_control
fun_control.update({

"train": train,
"test": test,
"n_samples": n_samples})

3.4 Specification of the Preprocessing Model

After the training and test data are specified and added to the fun_control dictionary,
spotPython allows the specification of a data preprocessing pipeline, e.g., for the scaling
of the data or for the one-hot encoding of categorical variables. The preprocessing model is
called prep_model (“preparation” or pre-processing) and includes steps that are not subject to
the hyperparameter tuning process. The preprocessing model is specified in the fun_control
dictionary. The preprocessing model can be implemented as a sklearn pipeline. The following
code shows a typical preprocessing pipeline:

categorical_columns = ["cities", "colors"]
one_hot_encoder = OneHotEncoder(handle_unknown="ignore",

sparse_output=False)
prep_model = ColumnTransformer(

transformers=[
("categorical", one_hot_encoder, categorical_columns),

],
remainder=StandardScaler(),

)

Because the Ray Tune (ray[tune]) hyperparameter tuning as described in PyTorch (2023a)
does not use a preprocessing model, the preprocessing model is set to None here.
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prep_model = None
fun_control.update({"prep_model": prep_model})

3.5 Select algorithm and core_model_hyper_dict

The same neural network model as implemented in the section “Configurable neural network”
of the PyTorch tutorial (PyTorch 2023a) is used here. We will show the implementation from
PyTorch (2023a) in Section 3.5.1 first, before the extended implementation with spotPython
is shown in Section 3.5.2.

3.5.1 Implementing a Configurable Neural Network With Ray Tune

We used the same hyperparameters that are implemented as configurable in the PyTorch
tutorial. We specify the layer sizes, namely l1 and l2, of the fully connected layers:

class Net(nn.Module):
def __init__(self, l1=120, l2=84):

super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, l1)
self.fc2 = nn.Linear(l1, l2)
self.fc3 = nn.Linear(l2, 10)

def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x

The learning rate, i.e., lr, of the optimizer is made configurable, too:

optimizer = optim.SGD(net.parameters(), lr=config["lr"], momentum=0.9)
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3.5.2 Implementing a Configurable Neural Network With spotPython

spotPython implements a class which is similar to the class described in the PyTorch tutorial.
The class is called Net_CIFAR10 and is implemented in the file netcifar10.py.

import spotPython.torch.netcore as netcore
class Net_CIFAR10(netcore.Net_Core):

def __init__(self, l1, l2, lr, batch_size, epochs, k_folds, patience):
super(Net_CIFAR10, self).__init__(

lr=lr, batch_size=batch_size, epochs=epochs, k_folds=k_folds,
patience=patience

)
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, l1)
self.fc2 = nn.Linear(l1, l2)
self.fc3 = nn.Linear(l2, 10)

def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x

Net_CIFAR10 inherits from the class Net_Core which is implemented in the file netcore.py.
It implements the additional attributes that are common to all neural network models. The
attributes are the learning rate lr, the batch size batch_size, the number of epochs epochs,
the number of folds k_folds for the cross validation, and the patience patience for the early
stopping. The class Net_Core is shown below.

from torch import nn

class Net_Core(nn.Module):
def __init__(self, lr, batch_size, epochs, k_folds, patience):

super(Net_Core, self).__init__()
self.lr = lr
self.batch_size = batch_size
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self.epochs = epochs
self.k_folds = k_folds
self.patience = patience

3.5.3 Comparison of the Approach Described in the PyTorch Tutorial With spotPython

Comparing the class Net from the PyTorch tutorial and the class Net_CIFAR10 from
spotPython, we see that the class Net_CIFAR10 has additional attributes and does not
inherit from nn directly. It adds an additional class, Net_core, that takes care of additional
attributes that are common to all neural network models, e.g., the learning rate lr or the
batch size batch_size.

spotPython’s core_model implements an instance of the Net_CIFAR10 class. In addition to the
basic neural network model, the core_model can use these additional attributes. spotPython
provides methods for handling these additional attributes to guarantee 100% compatibility
with the PyTorch classes. The method add_core_model_to_fun_control adds the hyper-
parameters and additional attributes to the fun_control dictionary. The method is shown
below.

core_model = Net_CIFAR10
fun_control = add_core_model_to_fun_control(core_model=core_model,

fun_control=fun_control,
hyper_dict=TorchHyperDict,
filename=None)

Note

In addition to the class Net from the PyTorch tutorial, the class Net_CIFAR10 has
additional attributes, e.g.:

• learning rate (lr),
• batch size (batch_size),
• epochs (epochs),
• k_folds (k_folds), and
• early stopping criterion “patience” (patience)

Further attributes can be easily added to the class, e.g., optimizer or loss_function.
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3.6 The Search Space

In Section 3.6.1, we first describe how to configure the search space with ray[tune] (as
shown in PyTorch (2023a)) and then how to configure the search space with spotPython in
Section 3.6.2.

3.6.1 Configuring the Search Space With Ray Tune

Ray Tune’s search space can be configured as follows (PyTorch 2023a):

config = {
"l1": tune.sample_from(lambda _: 2**np.random.randint(2, 9)),
"l2": tune.sample_from(lambda _: 2**np.random.randint(2, 9)),
"lr": tune.loguniform(1e-4, 1e-1),
"batch_size": tune.choice([2, 4, 8, 16])

}

The tune.sample_from() function enables the user to define sample methods to obtain hy-
perparameters. In this example, the l1 and l2 parameters should be powers of 2 between 4
and 256, so either 4, 8, 16, 32, 64, 128, or 256. The lr (learning rate) should be uniformly
sampled between 0.0001 and 0.1. Lastly, the batch size is a choice between 2, 4, 8, and 16.

At each trial, ray[tune] will randomly sample a combination of parameters from these search
spaces. It will then train a number of models in parallel and find the best performing one
among these. ray[tune] uses the ASHAScheduler which will terminate bad performing trials
early.

3.6.2 Configuring the Search Space With spotPython

3.6.2.1 The hyper_dict Hyperparameters for the Selected Algorithm

spotPython uses simple JSON files for the specification of the hyperparameters. Users can
specify their individual JSON files, or they can use the JSON files provided by spotPython. The
JSON file for the core_model is called torch_hyper_dict.json.

In contrast to ray[tune], spotPython can handle numerical, boolean, and categorical hy-
perparameters. They can be specified in the JSON file in a similar way as the numerical
hyperparameters as shown below:
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"factor_hyperparameter": {
"levels": ["A", "B", "C"],
"type": "factor",
"default": "B",
"transform": "None",
"core_model_parameter_type": "str",
"lower": 0,
"upper": 2},

Each entry in the JSON file represents one hyperparameter with the following structure: type,
default, transform, lower, and upper. The corresponding entries for the Net_CIFAR10 class
are shown below.

{"Net_CIFAR10":
{

"l1": {
"type": "int",
"default": 5,
"transform": "transform_power_2_int",
"lower": 2,
"upper": 9},

"l2": {
"type": "int",
"default": 5,
"transform": "transform_power_2_int",
"lower": 2,
"upper": 9},

"lr": {
"type": "float",
"default": 1e-03,
"transform": "None",
"lower": 1e-05,
"upper": 1e-02},

"batch_size": {
"type": "int",
"default": 4,
"transform": "transform_power_2_int",
"lower": 1,
"upper": 4},

"epochs": {
"type": "int",
"default": 3,
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"transform": "transform_power_2_int",
"lower": 1,
"upper": 4},

"k_folds": {
"type": "int",
"default": 2,
"transform": "None",
"lower": 2,
"upper": 3},

"patience": {
"type": "int",
"default": 5,
"transform": "None",
"lower": 2,
"upper": 10},

"optimizer": {
"levels": ["Adadelta",

"Adagrad",
"Adam",
"AdamW",
"SparseAdam",
"Adamax",
"ASGD",
"LBFGS",
"NAdam",
"RAdam",
"RMSprop",
"Rprop",
"SGD"],

"type": "factor",
"default": "SGD",
"transform": "None",
"class_name": "torch.optim",
"core_model_parameter_type": "str",
"lower": 0,
"upper": 12},

"criterion": {
"levels": ["L1Loss",

"MSELoss",
"CrossEntropyLoss",
"CTCLoss",
"NLLLoss",
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"PoissonNLLLoss",
"GaussianNLLLoss",
"KLDivLoss",
"BCELoss",
"BCEWithLogitsLoss",
"MarginRankingLoss",
"HingeEmbeddingLoss",
"MultiLabelMarginLoss",
"HuberLoss",
"SmoothL1Loss",
"SoftMarginLoss",
"MultiLabelSoftMarginLoss",
"CosineEmbeddingLoss",
"MultiMarginLoss",
"TripletMarginLoss",
"TripletMarginWithDistanceLoss"],

"type": "factor",
"default": "CrossEntropyLoss",
"transform": "None",
"class_name": "torch.nn",
"core_model_parameter_type": "instance()",
"lower": 0,
"upper": 20}

}
}

3.7 Modifying the Hyperparameters

Ray tune (PyTorch 2023a) does not provide a way to change the specified hyperparameters
without re-compilation. However, spotPython provides functions for modifying the hyperpa-
rameters, their bounds and factors as well as for activating and de-activating hyperparameters
without re-compilation of the Python source code. These functions are described in the fol-
lowing.

3.7.1 Modify hyper_dict Hyperparameters for the Selected Algorithm aka core_model

After specifying the model, the corresponding hyperparameters, their types and bounds are
loaded from the JSON file torch_hyper_dict.json. After loading, the user can modify the
hyperparameters, e.g., the bounds. spotPython provides a simple rule for de-activating hyper-
parameters: If the lower and the upper bound are set to identical values, the hyperparameter
is de-activated. This is useful for the hyperparameter tuning, because it allows to specify a
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hyperparameter in the JSON file, but to de-activate it in the fun_control dictionary. This is
done in the next step.

3.7.2 Modify Hyperparameters of Type numeric and integer (boolean)

Since the hyperparameter k_folds is not used in the PyTorch tutorial, it is de-activated here
by setting the lower and upper bound to the same value. Note, k_folds is of type “integer”.

fun_control = modify_hyper_parameter_bounds(fun_control, "batch_size", bounds=[1, 5])
fun_control = modify_hyper_parameter_bounds(fun_control, "k_folds", bounds=[0, 0])
fun_control = modify_hyper_parameter_bounds(fun_control, "patience", bounds=[3, 3])
fun_control["core_model_hyper_dict"]

3.7.3 Modify Hyperparameter of Type factor

In a similar manner as for the numerical hyperparameters, the categorical hyperparameters
can be modified. New configurations can be chosen by adding or deleting levels. For example,
the hyperparameter optimizer can be re-configured as follows:

In the following setting, two optimizers ("SGD" and "Adam") will be compared during the
spotPython hyperparameter tuning. The hyperparameter optimizer is active.

fun_control = modify_hyper_parameter_levels(fun_control, "optimizer", ["SGD", "Adam"])

The hyperparameter optimizer can be de-activated by choosing only one value (level), here:
"SGD".

fun_control = modify_hyper_parameter_levels(fun_control, "optimizer", ["SGD"])

As discussed in Section 3.7.4, there are some issues with the LBFGS optimizer. Therefore,
the usage of the LBFGS optimizer is not deactivated in spotPython by default. However, the
LBFGS optimizer can be activated by adding it to the list of optimizers. Rprop was remmoved,
because it does perform very poorly (as some pre-tests have shown). However, it can also be
activated by adding it to the list of optimizers. Since SparseAdam does not support dense
gradients, Adam was used instead. Therefore, there are 10 default optimizers:

fun_control = modify_hyper_parameter_levels(fun_control, "optimizer",["Adadelta",
"Adagrad", "Adam", "AdamW", "Adamax", "ASGD", "NAdam", "RAdam",
"RMSprop", "SGD"])
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3.7.4 Optimizers

Table 1 shows some of the optimizers available in PyTorch:

Table 1: Optimizers available in PyTorch (selection). “mom” denotes momentum, “weight”
weight_decay, “damp” dampening, “nest” nesterov, and “lr_sc” learning rate
for scaling delta. The default values are shown in the table.

Optimizer lr mom weight damp nest rho lr_sc lr_decaybetas
SGD required float:

0
float:
0

float:
0

bool:
False

- - - -

Adadelta - - float:
0

- - float:
0.9

float:
1.0

- -

Adagrad float:
1e-2

- float:
0

- - - - float:
0

-

Adam float:
1e-3

- float:
0

- - - - - Tuple[float,
float]:
(0.9,
0.999)

AdamW float:
1e-3

- float:
1e-2

- - - - - Tuple[float,
float]:
(0.9,
0.999)

SparseAdamfloat:
1e-3

- - - - - - - Tuple[float,
float]:
(0.9,
0.999)

spotPython implements an optimization handler that maps the optimizer names to the
corresponding PyTorch optimizers.

A note on LBFGS

PyTorch’s LBFGS optimizer is deactivated in spotPython by default, because it does
not perform very well. The PyTorch documentation, see https://pytorch.org/docs/stabl
e/generated/torch.optim.LBFGS.html#torch.optim.LBFGS, states:

This is a very memory intensive optimizer (it requires additional param_bytes
* (history_size + 1) bytes). If it doesn’t fit in memory try reducing the
history size, or use a different algorithm.

Furthermore, the LBFGS optimizer is not compatible with the PyTorch tutorial. The
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reason is that the LBFGS optimizer requires the closure function, which is not imple-
mented in the PyTorch tutorial. Therefore, the LBFGS optimizer is recommended here.

Since there are 10 optimizers in the portfolio, it is not recommended tuning the hyperparam-
eters that effect one single optimizer only. Thus, the learning rate, which affects the SGD
optimizer, will be set to a fixed value. We choose the default value of 1e-3 for the learning
rate, because it is used in other PyTorch examples. We recommend tuning the learning rate
later, when a reduced set of optimizers is fixed. Here, we will demonstrate how to select in a
screening phase the optimizers that should be used for the hyperparameter tuning.

fun_control = modify_hyper_parameter_bounds(fun_control, "lr", bounds=[1e-3, 1e-3])

3.8 Evaluation

The evaluation procedure requires the specification of two elements:

1. the way how the data is split into a train and a test set and
2. the loss function (and a metric).

3.8.1 Hold-out Data Split and Cross-Validation

As a default, spotPython provides a standard hold-out data split and cross validation.

3.8.1.1 Hold-out Data Split

If a hold-out data split is used, the data will be partitioned into a training, a validation,
and a test data set. The split depends on the setting of the eval parameter. If eval is set
to train_hold_out, one data set, usually the original training data set, is split into a new
training and a validation data set. The training data set is used for training the model. The
validation data set is used for the evaluation of the hyperparameter configuration and early
stopping to prevent overfitting. In this case, the original test data set is not used. The following
splits are performed in the hold-out setting: {train0, test} → {train1, validation1, test}, where
train1 ∪ validation1 = train0.

Note

spotPython returns the hyperparameters of the machine learning and deep learning mod-
els, e.g., number of layers, learning rate, or optimizer, but not the model weights. There-
fore, after the SPOT run is finished, the corresponding model has to be trained again
with the best hyperparameter configuration. The training is performed on the training
data set. The test data set is used for the final evaluation of the model.
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Summarizing, the following splits are performed in the hold-out setting:

1. Run spotPython with eval set to train_hold_out to determine the best hyperpa-
rameter configuration.

2. Train the model with the best hyperparameter configuration on the training data
set:

• train_save(model_spot, train, "model_spot.pt").

3. Test the model on the test data:

• test_saved(model_spot, test, "model_spot.pt")

These steps will be exemplified in the following sections.

In addition to this hold-out setting, spotPython provides another hold-out setting, where an
explicit test data is specified by the user that will be used as the validation set. To choose this
option, the eval parameter is set to test_hold_out. In this case, the training data set is used
for the model training. Then, the explicitly defined test data set is used for the evaluation of
the hyperparameter configuration (the validation).

3.8.1.2 Cross-Validation

The cross validation setting is used by setting the eval parameter to train_cv or test_cv. In
both cases, the data set is split into 𝑘 folds. The model is trained on 𝑘 − 1 folds and evaluated
on the remaining fold. This is repeated 𝑘 times, so that each fold is used exactly once for
evaluation. The final evaluation is performed on the test data set. The cross validation setting
is useful for small data sets, because it allows to use all data for training and evaluation.
However, it is computationally expensive, because the model has to be trained 𝑘 times.

Note

Combinations of the above settings are possible, e.g., cross validation can be used for
training and hold-out for evaluation or vice versa. Also, cross validation can be used
for training and testing. Because cross validation is not used in the PyTorch tutorial
(PyTorch 2023a), it is not considered further here.

3.8.2 Loss Functions and Metrics

The key "criterion" specifies the loss function which is used during the optimization. There
are several different loss functions under PyTorch’s nn package. For example, a simple loss is
MSELoss, which computes the mean-squared error between the output and the target. In this
tutorial we will use CrossEntropyLoss, because it is also used in the PyTorch tutorial.
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fun_control = modify_hyper_parameter_levels(fun_control, "criterion", ["CrossEntropyLoss"])

In addition to the loss functions, spotPython provides access to a large number of metrics.
The key "metric_sklearn" is used for metrics that follow the scikit-learn conventions4.
Because the PyTorch tutorial uses the accuracy as metric, we use the same metric here. Cur-
rently, accuracy is computed in the tutorial’s example code. Therefore, we will use the same
implementation here and set the key "metric_sklearn" to None.

weights = 1.0
criterion = CrossEntropyLoss
shuffle = True
eval = "train_hold_out"
device = DEVICE
show_batch_interval = 100_000
save_model = True
path="torch_model.pt"

fun_control.update({
"data_dir": None,
"checkpoint_dir": None,
"horizon": None,
"oml_grace_period": None,
"weights": weights,
"step": None,
"log_level": 50,
"weight_coeff": None,
"metric": None,
"metric_sklearn": None,
"criterion": criterion,
"shuffle": shuffle,
"eval": eval,
"device": device,
"show_batch_interval": show_batch_interval,
"save_model": save_model,
"path": path,
})

4The key "metric" is used for the river based evaluation (Montiel et al. 2021) via eval_oml_iter_progressive.
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3.9 Calling the SPOT Function

Now, the dictionary fun_control contains all information needed for the hyperparameter
tuning. Before the hyperparameter tuning is started, it is recommended to take a look at the
experimental design. The method gen_design_table generates a design table as follows:

print(gen_design_table(fun_control))

This allows to check if all information is available and if the information is correct. Table 2
shows the experimental design for the hyperparameter tuning. Hyperparameter transforma-
tions are shown in the column “transform”, e.g., the l1 default is 5, which results in the value
25 = 32 for the network, because the transformation transform_power_2_int was selected in
the JSON file. The default value of the batch_size is set to 4, which results in a batch size of
24 = 16.
Table 2: Experimental design for the hyperparameter tuning. The table shows the hyperpa-

rameters, their types, default values, lower and upper bounds, and the transformation
function. The transformation function is used to transform the hyperparameter val-
ues from the unit hypercube to the original domain. The transformation function is
applied to the hyperparameter values before the evaluation of the objective function.

name type default lower upper transform
l1 int 5 2 9 transform_power_2_int
l2 int 5 2 9 transform_power_2_int
lr float 0.001 0.001 0.001 None
batch_size int 4 1 5 transform_power_2_int
epochs int 3 3 4 transform_power_2_int
k_folds int 2 0 0 None
patience int 5 3 3 None
optimizer factor SGD 0 9 None
criterion factor CrossEntropyLoss 0 0 None

The objective function fun_torch is selected next. It implements an interface from PyTorch’s
training, validation, and testing methods to spotPython.

fun = HyperTorch().fun_torch

The spotPython hyperparameter tuning is started by calling the Spot function. Here, we will
run the tuner for approximately 30 minutes (max_time). Note: the initial design is always
evaluated in the spotPython run. As a consequence, the run may take longer than specified
by max_time, because the evaluation time of initial design (here: init_size, 10 points) is
performed independently of max_time.
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spot_tuner = spot.Spot(fun=fun,
lower = lower,
upper = upper,
fun_evals = inf,
fun_repeats = 1,
max_time = MAX_TIME,
noise = False,
tolerance_x = np.sqrt(np.spacing(1)),
var_type = var_type,
var_name = var_name,
infill_criterion = "y",
n_points = 1,
seed=123,
log_level = 50,
show_models= False,
show_progress= True,
fun_control = fun_control,
design_control={"init_size": INIT_SIZE,

"repeats": 1},
surrogate_control={"noise": True,

"cod_type": "norm",
"min_theta": -4,
"max_theta": 3,
"n_theta": len(var_name),
"model_optimizer": differential_evolution,
"model_fun_evals": 10_000,
"log_level": 50
})

spot_tuner.run(X_start=X_start)

During the run, the following output is shown:

config: {'l1': 8, 'l2': 16, 'lr': 0.001, 'batch_size': 2,
'epochs': 16, 'k_folds': 0, 'patience': 3, 'optimizer': 'NAdam',
'criterion': CrossEntropyLoss()}
Epoch: 1
Loss on hold-out set: 1.798599960240349
Accuracy on hold-out set: 0.38035
Epoch: 2
Loss on hold-out set: 1.681505929086823
Accuracy on hold-out set: 0.4163
Epoch: 3
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Loss on hold-out set: 1.6875325478885324
Accuracy on hold-out set: 0.42245
Epoch: 4
Loss on hold-out set: 1.6695034023197601
Accuracy on hold-out set: 0.45265
Epoch: 5
Loss on hold-out set: 1.6984369342865335
Accuracy on hold-out set: 0.45085
Epoch: 6
Loss on hold-out set: 1.6061365829033545
Accuracy on hold-out set: 0.4527
Epoch: 7
Loss on hold-out set: 1.7061124059396433
Accuracy on hold-out set: 0.4566
Epoch: 8
Loss on hold-out set: 1.7162298802530742
Accuracy on hold-out set: 0.4504
Epoch: 9
Loss on hold-out set: 1.6683832777252945
Accuracy on hold-out set: 0.47205
Early stopping at epoch 8
Returned to Spot: Validation loss: 1.6683832777252945

3.10 Results

After the hyperparameter tuning run is finished, the progress of the hyperparameter tuning
can be visualized. The following code generates the progress plot from Figure 2.

spot_tuner.plot_progress(log_y=False, filename="./figures" + experiment_name+"_progress.pdf")

Figure 1: ?(caption)

Figure 2 shows a typical behaviour that can be observed in many hyperparameter studies
(Bartz et al. 2022): the largest improvement is obtained during the evaluation of the initial
design. The surrogate model based optimization-optimization with the surrogate refines the
results. Figure 2 also illustrates one major difference between ray[tune] as used in PyTorch
(2023a) and spotPython: the ray[tune] uses a random search and will generate results sim-
ilar to the black dots, whereas spotPython uses a surrogate model based optimization and
presents results represented by red dots in Figure 2. The surrogate model based optimization
is considered to be more efficient than a random search, because the surrogate model guides
the search towards promising regions in the hyperparameter space.
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Figure 2: Progress plot. Black dots denote results from the initial design. Red dots illustrate
the improvement found by the surrogate model based optimization (surrogate model
based optimization).

In addition to the improved (“optimized”) hyperparameter values, spotPython allows a sta-
tistical analysis, e.g., a sensitivity analysis, of the results. We can print the results of the
hyperparameter tuning, see Table 3.

print(gen_design_table(fun_control=fun_control, spot=spot_tuner))

Table 3: Results of the hyperparameter tuning. The table shows the hyperparameters, their
types, default values, lower and upper bounds, and the transformation function. The
column “tuned” shows the tuned values. The column “importance” shows the im-
portance of the hyperparameters. The column “stars” shows the importance of the
hyperparameters in stars. The importance is computed by the SPOT software.

name type default lower upper tuned transform importance stars
l1 int 5 2.0 9.0 7.0 pow_2_int 100.00 ***
l2 int 5 2.0 9.0 3.0 pow_2_int 96.29 ***
lr float 0.001 0.001 0.001 0.001 None 0.00
batchsize int 4 1.0 5.0 4.0 pow_2_int 0.00
epochs int 3 3.0 4.0 4.0 pow_2_int 4.18 *
k_folds int 2 0.0 0.0 0.0 None 0.00
patience int 5 3.0 3.0 3.0 None 0.00
optimizer factor SGD 0.0 9.0 3.0 None 0.16 .
criterion factor CrossEntLoss 0.0 0.0 0.0 None 0.00

To visualize the most important hyperparameters, spotPython provides the function
plot_importance. The following code generates the importance plot from Figure 3.

21



spot_tuner.plot_importance(threshold=0.025, filename="./figures" + experiment_name+"_importance.pdf")
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Figure 3: Variable importance

3.11 Get SPOT Results

The architecture of the spotPython model can be obtained by the following code:

X = spot_tuner.to_all_dim(spot_tuner.min_X.reshape(1,-1))
model_spot = get_one_core_model_from_X(X, fun_control)
model_spot

First, the numerical representation of the hyperparameters are obtained, i.e., the numpy array
X is generated. This array is then used to generate the model model_spot by the function
get_one_core_model_from_X. The model model_spot has the following architecture:

Net_CIFAR10(
(conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=64, bias=True)
(fc2): Linear(in_features=64, out_features=32, bias=True)
(fc3): Linear(in_features=32, out_features=10, bias=True)

)
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3.12 Get Default Hyperparameters

In a similar manner as in Section 3.11, the default hyperparameters can be obtained.

# fun_control was modified, we generate a new one with the original default hyperparameters
fc = copy.deepcopy(fun_control)
fc.update({"core_model_hyper_dict": hyper_dict[fun_control["core_model"].__name__]})
model_default = get_one_core_model_from_X(X_start, fun_control=fc)

The corresponding default model has the following architecture:

Net_CIFAR10(
(conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=32, bias=True)
(fc2): Linear(in_features=32, out_features=32, bias=True)
(fc3): Linear(in_features=32, out_features=10, bias=True)

)

3.13 Evaluation of the Tuned Architecture

The method train_save takes a model architecture without trained weights and trains this
model with the train data. The train data is split into train and validation data. The validation
data is used for early stopping. The trained model weights are saved as a dictionary.

This evaluation is similar to the final evaluation in PyTorch (2023a).

train_save(net=model_default, train_dataset=train, shuffle=True,
device = "cpu", show_batch_interval=1_000,
path="model_default_trained.pt", save_model=True)

test_saved(net=model_default, test_dataset=test, shuffle=False,
device = "cpu", path="model_default_trained.pt")

The following code trains the model model_spot and saves the weights of the trained model
to the file model_spot_trained.pt.

train_save(net=model_spot, train_dataset=train,
shuffle=True, path="model_spot_trained.pt", save_model=True)
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Loss on hold-out set: 1.2267619131326675
Accuracy on hold-out set: 0.58955
Early stopping at epoch 13

test_saved(net=model_spot, test_dataset=test,
shuffle=False, path="model_spot_trained.pt")

Loss on hold-out set: 1.242568492603302
Accuracy on hold-out set: 0.5957

3.14 Comparison with Default Hyperparameters and Ray Tune

Table 4 shows the loss and accuracy of the default model, the model with the hyperparameters
from SPOT, and the model with the hyperparameters from ray[tune].

Table 4: Comparison of the loss and accuracy of the default model, the model with the hyper-
parameters from SPOT, and the model with the hyperparameters from ray[tune].
ray[tune] only shows the validation loss, because training loss is not reported by
ray[tune].

Model Validation Loss Validation Accuracy Loss Accuracy
Default 2.1221 0.2452 2.1182 0.2425
spotPython 1.2268 0.5896 1.2426 0.5957
ray[tune] 1.1815 0.5836 - 0.5806

3.15 Detailed Hyperparameter Plots

The contour plots in this section visualize the interactions of the three most important hy-
perparameters, l1, l2, and epochs, and optimizer of the surrogate model used to optimize
the hyperparameters. Since some of these hyperparameters take fatorial or integer values,
sometimes step-like fitness landcapes (or response surfaces) are generated. SPOT draws the
interactions of the main hyperparameters by default. It is also possible to visualize all inter-
actions. For this, again refer to the notebook (Bartz-Beielstein 2023).

Figure 5 to Figure 10 show the contour plots of the loss as a function of the hyperparameters.
These plots are very helpful for benchmark studies and for understanding neural networks.
spotPython provides additional tools for a visual inspection of the results and give valuable
insights into the hyperparameter tuning process. This is especially useful for model explain-
ability, transparency, and trustworthiness. In addition to the contour plots, Figure 12 shows
the parallel plot of the hyperparameters.
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threshold = 0.025
impo = spot_tuner.print_importance(threshold=threshold, print_screen=True)
var_plots = [i for i, x in enumerate(impo) if x[1] > threshold]
min_z = min(spot_tuner.y)
max_z = max(spot_tuner.y)
n = spot_tuner.k
for i in var_plots:

for j in var_plots:
if j > i:

filename = "./figures" + experiment_name+"_contour_"+str(i)+"_"+str(j)+".pdf"
spot_tuner.plot_contour(i=i, j=j, min_z=min_z, max_z = max_z, filename=filename)

Figure 4: ?(caption)
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Figure 5: Contour plot of the loss as a function of l1 and l2, i.e., the number of neurons in
the layers.
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Figure 6: Contour plot of the loss as a function of the number of epochs and the neurons in
layer l1.
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Figure 7: Contour plot of the loss as a function of the optimizer and the neurons in layer l1.
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Figure 8: Contour plot of the loss as a function of the number of epochs and the neurons in
layer l2.
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Figure 9: Contour plot of the loss as a function of the optimizer and the neurons in layer l2.
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Figure 10: Contour plot of the loss as a function of the optimizer and the number of epochs.

spot_tuner.parallel_plot()

Figure 11: ?(caption)

Figure 12: Parallel plot
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4 Summary and Outlook

This tutorial presents the hyperparameter tuning open source software spotPython for
PyTorch. To show its basic features, a comparison with the “official” PyTorch hyperparam-
eter tuning tutorial (PyTorch 2023a) is presented. Some of the advantages of spotPython
are:

• Numerical and categorical hyperparameters.
• Powerful surrogate models.
• Flexible approach and easy to use.
• Simple JSON files for the specification of the hyperparameters.
• Extension of default and user specified network classes.
• Noise handling techniques.

Currently, only rudimentary parallel and distributed neural network training is possible, but
these capabilities will be extended in the future. The next version of spotPython will also
include a more detailed documentation and more examples.

Important

Important: This tutorial does not present a complete benchmarking study (Bartz-
Beielstein et al. 2020). The results are only preliminary and highly dependent on the
local configuration (hard- and software). Our goal is to provide a first impression of
the performance of the hyperparameter tuning package spotPython. To demonstrate its
capabilities, a quick comparison with ray[tune] was performed. ray[tune] was cho-
sen, because it is presented as “an industry standard tool for distributed hyperparameter
tuning.” The results should be interpreted with care.

5 Appendix

Sample Output From Ray Tune’s Run

The output from ray[tune] could look like this (PyTorch 2023b):

Number of trials: 10 (10 TERMINATED)
------+------+-------------+--------------+---------+------------+--------------------+
| l1 | l2 | lr | batch_size | loss | accuracy | training_iteration |
+------+------+-------------+--------------+---------+------------+--------------------|
| 64 | 4 | 0.00011629 | 2 | 1.87273 | 0.244 | 2 |
| 32 | 64 | 0.000339763 | 8 | 1.23603 | 0.567 | 8 |
| 8 | 16 | 0.00276249 | 16 | 1.1815 | 0.5836 | 10 |
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| 4 | 64 | 0.000648721 | 4 | 1.31131 | 0.5224 | 8 |
| 32 | 16 | 0.000340753 | 8 | 1.26454 | 0.5444 | 8 |
| 8 | 4 | 0.000699775 | 8 | 1.99594 | 0.1983 | 2 |
| 256 | 8 | 0.0839654 | 16 | 2.3119 | 0.0993 | 1 |
| 16 | 128 | 0.0758154 | 16 | 2.33575 | 0.1327 | 1 |
| 16 | 8 | 0.0763312 | 16 | 2.31129 | 0.1042 | 4 |
| 128 | 16 | 0.000124903 | 4 | 2.26917 | 0.1945 | 1 |
+-----+------+------+-------------+--------------+---------+------------+--------------------+
Best trial config: {'l1': 8, 'l2': 16, 'lr': 0.00276249, 'batch_size': 16, 'data_dir': '...'}
Best trial final validation loss: 1.181501
Best trial final validation accuracy: 0.5836
Best trial test set accuracy: 0.5806
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