Algorithm
FindMaximumRegion

Purpose: From a region (smin, smax) with singular mapping to actiona in
tree, find a smax’ such that the region (smin, smax’) has the following
properties:

singular mapping to action a in tree

it does not cause any other region in tree to be split in more

than two

(it does not overlap with previously found regions)

no increment of smax’ in any dimension can retain the above

properties

Requires:
tree -> a decision tree inducing the partitioning to minimize
bounds -> a nested list of bounds in each dimension, sorted
in ascending order

pmin, pmax -> vectors of indices pointing to values in bounds

smin, smax -> points in the state space that together defines (the
remains of) a region in the original partitioning.
Corresponds to the values in bounds pointed to by
pmin and pmax respectively

trackTree -> a decision tree used to track the areas of the state space

already covered by previous iterations

Assumes functions:
MakeState(p, bounds) -> create a state s, where s_i = bounds_{i, p_i}
IsExplored(smin, smax, tree) -> return true if any part of the region (smin,
smax) has decision value in tree
ActionsInRegion(smin, smax, tree) -> return the set of actions assigned
to the region (smin, smax) in tree
GetBroken(smin, smax, tree) -> return a list of leaves in tree that the
region (smin, smax) splits in more than 2
MarkAsExhausted(dim) -> mark dimension dim as exhausted

do expansionin
some dimension if
we are not healing
broken regions

check the result of
performing the
expansion

case 1: simply undo
the expansion

case 2: start
healing process
and don’t undo last
expansion...

...or accept that we
can’'t heal the
regions and reset
to last accepted
pmax

case 3: the
expansion was
successful, so
update the
accepted pmax
(and exhaust dim if
we are on the
edge)

<

L

healing <- false
candPmax <- pmax
while unexhausted dimensions do

if not healing then
dim <- choose unexhausted dimension
prevPmaxInDim <- candPmax_dim
candPmax_dim <- candPmax_dim + 1
endif

candSmax <- MakeState(candPmax, bounds)
explored <- IsExplored(smin, candSmax, trackTree)
actions <- ActionsInRegion(smin, candSmax, tree)
broken <- GetBroken(smin, candSmax, tree)

if explored or actions ! = {a} then
healing <- false
MarkAsExhausted(dim)
candPmax_dim <- prevPmaxInDim

else if broken is not empty then
healing <- true
prevPmaxInDim <- candPmax_dim
candPmax_dim <- maximum bound on dimension dim for any region in broken

if prevPmaxInDim = candPmax_dim then
healing <- false
MarkAsExhausted(dim)
candPmax <- pmax

endif

else then
healing <- false
pmax <- candPmax

if pmax_dim is the maximum bound on dimension dim then
MarkAsExhausted(dim)
endif

endif
endwhile

return pmax



