
check the result of
performing the
expansion

healing <- false
candPmax <- pmax
while unexhausted dimensions do

 if not healing then
 dim <- choose unexhausted dimension
 prevPmaxInDim <- candPmax_dim
 candPmax_dim <- candPmax_dim + 1
 endif

 candSmax <- MakeState(candPmax, bounds)
 explored <- IsExplored(smin, candSmax, trackTree)
 actions <- ActionsInRegion(smin, candSmax, tree)
 broken <- GetBroken(smin, candSmax, tree)

 if explored or actions != {a} then
 healing <- false
 MarkAsExhausted(dim)
 candPmax_dim <- prevPmaxInDim

 else if broken is not empty then
 healing <- true
 prevPmaxInDim <- candPmax_dim
 candPmax_dim <- maximum bound on dimension dim for any region in broken

 if prevPmaxInDim = candPmax_dim then
 healing <- false
 MarkAsExhausted(dim)
 candPmax <- pmax
 endif

 else then
 healing <- false
 pmax <- candPmax

 if pmax_dim is the maximum bound on dimension dim then
 MarkAsExhausted(dim)
 endif

 endif
endwhile

return pmax

do expansion in
some dimension if
we are not healing
broken regions

case 1: simply undo
the expansion

case 2: start
healing process
and don’t undo last
expansion…

…or accept that we
can’t heal the
regions and reset
to last accepted
pmax

case 3: the
expansion was
successful, so
update the
accepted pmax
(and exhaust dim if
we are on the
edge)

Requires:
 tree -> a decision tree inducing the partitioning to minimize
 bounds -> a nested list of bounds in each dimension, sorted
 in ascending order
 pmin, pmax -> vectors of indices pointing to values in bounds
 smin, smax -> points in the state space that together defines (the
 remains of) a region in the original partitioning.
 Corresponds to the values in bounds pointed to by
 pmin and pmax respectively
 trackTree -> a decision tree used to track the areas of the state space
 already covered by previous iterations

Algorithm
FindMaximumRegion

Purpose: From a region (smin, smax) with singular mapping to action a in
tree, find a smax’ such that the region (smin, smax’) has the following
properties:

- singular mapping to action a in tree
- it does not cause any other region in tree to be split in more

than two
- (it does not overlap with previously found regions)
- no increment of smax’ in any dimension can retain the above

properties

Assumes functions:
MakeState(p, bounds) -> create a state s, where s_i = bounds_{i, p_i}
IsExplored(smin, smax, tree) -> return true if any part of the region (smin,
 smax) has decision value in tree
ActionsInRegion(smin, smax, tree) -> return the set of actions assigned
 to the region (smin, smax) in tree
GetBroken(smin, smax, tree) -> return a list of leaves in tree that the
 region (smin, smax) splits in more than 2
MarkAsExhausted(dim) -> mark dimension dim as exhausted

