
MatchingPennies: An agent submitted to the

ANAC 2024 SCM league

Arnie He, Akash Singirikonda, Amy Greenwald

April 17, 2024

1 Introduction

MatchingPennies employs concurrent negotiation and a heuristic function to
identify the most profitable subsets of current offers. It aims to balance ’match-
ing’ quantities with negotiating prices for ’pennies’.

2 Agent Design

MatchingPennies follows a 2-step process:

1. Concurrent Negotiation: We select the best subset of offers to accept
using a heuristic function and accept them at the offered price. For the
remaining partners, with whom we did not reach an agreement in this
round, we redistribute our needs as evenly as possible and re-propose
offers based on the following rules:

• For each remaining partner i, propose (pi, qi), where:∑
qi = Needs

pi =

{
self.BestPrice if Needs ≤ 2

Partner proposed price if Needs > 2

2. Renegotiation: In certain rare scenarios, we engage in complete renego-
tiation with our partners during this round, guided by specific conditions
and strategies:

• Let q represent the quantity offered by the current best bundle, Q
denote current needs, and 1.5Q(chosen constant) be the minimum
quantity expected in the next concurrent round (a record of which is
maintained throughout the simulation).

1



• If q > Q
2 and q < Q, and either the expected quantity in the next

round is at least 1.2Q or the simulation day is less than 3 (to gather
information on the record), we redistribute all offers as evenly as
possible among current partners and request the best prices.

This strategy is based on empirical findings that the best bundle often
nearly fulfills current needs, but a small remaining quantity can be chal-
lenging to secure in subsequent rounds. Complete renegotiation at this
stage can address this issue, enhancing stability and overall performance.

2.1 Best Offer Subset In Concurrent Negotiation

MatchingPennies utilizes the counter all() function for concurrency, strate-
gically identifying and accepting the best subset of offers from agents still in
negotiation. The optimal subset is determined by a heuristic function:

normalized quantity diff× p− (1− p)× normalized profit

where:

• normalized quantity diff is the ratio of the quantity difference to the po-
tential maximum difference, calculated as quantity diff

max diff . Here, quantity diff
represents the shortfall or excess relative to the contractual quantity re-
quirement.

• normalized profit scales the total profit relative to potential utility, defined
by total profit−min utility

max utility−min utility .

• p is a hyperparameter that adjusts the balance between fulfilling quantity
requirements and maximizing profit. It is defined as 1− exogenousquantity

100 ,
indicating the agent’s risk preference towards contract compliance versus
profit maximization.

This function effectively guides the decision-making process, balancing the need
to meet contract stipulations with the drive for profitability.

2.2 Risk Management

Our strategy for prioritizing either quantity matching or price negotiation is
influenced by the exogenous contracted quantity. As the required quantity in-
creases, our focus shifts towards optimizing for price, referred to as the ”pennies”
aspect. Conversely, with lower quantity demands, we prioritize the ”matching”
aspect, aligning our quantities closely with those demanded.

In rare scenarios where the best bundle offered nearly satisfies our current
needs but leaves a small yet critical shortfall, we engage in complete renegotia-
tion. As mentioned before, this strategy of complete renegotiation is designed to
address difficulties in securing minor quantities in subsequent rounds, thereby
enhancing the stability and overall performance of our negotiation process.

2



3 Evaluation

We tested MatchingPennies by running it against winning agents from previous
years under multiple configurations. Specifically, we tested against SyncRan-
domOneShotAgent, QuantityOrientedAgent, PatientAgent, and GreedySyncA-
gent.

Here’s the mean performance of the agents over 5 trials with 10 steps and 2
configurations.

Agent Mean Performance (5 games)

MatchingPennies 1.087856
SyncRandomOneShotAgent 1.059264
QuantityOrientedAgent 1.0327694

PatientAgent 1.022377
GreedySyncAgent 0.7784422

4 Lessons and Conclusions

Initially we aimed for an RL agent for the competition, however as we advance
in the development we feel it’s unnecessary for having an RL strategy in such
a simple game setup( We feel that RL approaches could be more impactful in
tracks that involve standard or collusion elements). Our strategy rely heavily
on empirical data gathered from local competitions and estimates of other par-
ticipants’ strategies. We believe that attention to detail is crucial in the oneshot
game format. Among agents that prioritize quantity, our goal is to stand out
by maximizing profits through strategic price negotiations.

3



5 Pseudocode

Algorithm 1 Best Subset Selection

1: best total loss←∞
2: best quantity diff ←∞
3: best index← −1
4: for each i and partner ids in plist do
5: offered quantity ← sum(offers[p][QUANTITY ] for p in partner ids)
6: quantity diff ← |offered quantity− needs|
7: penalties← CalculatePenalties(quantity diff, awi.level,needs)
8: if offered quantity > needs + 1 then
9: continue

10: end if
11: total profit← total contracts cost− penalties
12: (normalized diff,normalized profit)← Normalize(quantity diff, total profit)
13: t←quantity cost tradeoff
14: loss← t× normalized diff− (1− t)× normalized profit
15: if loss < best total loss then
16: best quantity diff ← quantity diff
17: best index← i
18: best total loss← loss
19: end if
20: end for
21: return (best quantity diff,best index)

4


