
PeakPact: An agent submitted to the ANAC

2023 SCM league

Barış Arat, Alara Baysal, Ahmet Çağatay Savaşlı

April 14, 2024

1 Core Strategy

We detected four major problem points in the strategy of our base agent,
EqualDist. Our development process was to introduce new strategies and fea-
tures addressing these shortfalls to get a higher score in the competition.

In this scope, the main problem points are addressed:

1. Rejecting or accepting all offers at once without the flexibility to select
good offers in between

2. Having an acceptance threshold that causes large shortfall penalties

3. Sending an equally distributed quantity offer without considering the part-
ner’s history

4. Having only the option to send a random price or the best price for us
without considering the partner’s history

The high-level solutions we implemented for these problems are as follows:

1. If the agent can’t fulfill its needs at the given step, selects the best offers
and makes counter-offers to the rest. Therefore, it keeps the good offers
and has progress at each step of the negotiation.

2. Keep a tight acceptance threshold and aggressively target no-penalty goals.

3. Sending a proportional response to the offers in quantity by considering
the agent’s last offer from its partners.

4. Sending a higher price counter-offer while keeping the last price it got
from its partners. The result is a balance between cooperation and price
maximization.

The rest of the section explains the implementation of these solutions in
detail.

1

1.1 Threshold of Acceptance and Progressive Selection

Our agent’s goal is to minimize the sum of the shortfall penalty and disposal
cost. To meet that goal, we started by setting an ambitious sub-goal for our
agent, aiming for almost zero penalty until it gets the 60th percent of the steps
during the negotiation. Then, it voluntarily accepts a certain penalty level by
accepting a mismatch threshold between the needed and the agreed quantity.
This threshold value increases from 0.6 relative time until the deadline in an
exponential form.

Figure 1: Allowed Mismatch % over time

Our initial threshold function concedes later but faster than the EqualDist
agent’s threshold function. The initially tighter model provided us with an
improvement over the default model. However, we tested further increasing the
starting point of the increase in the threshold and found that a value closer to
zero from the beginning to the end works best in our case. Therefore, our final
model uses a fixed threshold value of 1 unit difference from the total need.

We should look at our agent’s decision mechanism more closely to understand
why this is the case. This threshold affects the decision to accept all offers at
once only. The agent counts all the quantities offered to it and compares that
to the total quantity it needs to fulfill. The threshold value sets the maximum
difference between the need and the offered quantity our agent can accept. This
difference will result in a shortfall or a disposal penalty.

Naturally, we would like to keep this difference as low as possible. However,
not accepting a slight difference, therefore a penalty, can cause getting a larger
penalty at the later steps if a better opportunity doesn’t arise.

Keeping the one-unit fixed threshold worked better for us because of our
progressive offer selection mechanism. When we don’t accept all offers simul-
taneously, we select the best offers (we’ll explain in the next section what we

2

mean by best) and send counter-offers to the rest of the partners. Therefore,
at each step, we partially fulfill our needs and lower our risk of penalty. On
the contrary, the EqualDist agent takes a larger risk by not accepting the given
offers since it rejects all of them at once. This mechanism requires an allowed
mismatch to be accepted for EqualDist to lower this risk.

In summary, this threshold was critical for the base agent because it accepted
or rejected all offers simultaneously. In our case, we introduced a step-by-step
progressive offer selection mechanism and an accept-all option. As a result, we
decreased the occurrence of high penalties and increased our overall score in the
competition.

1.2 Stepwise Best Offer Acceptance Mechanism

The default agent EqualDist’s behavior is to accept all offers at once if they meet
the target quantities or reject all of them until it gets the desired quantities in
one step. In the case of rejection, this agent divides its total quantity needs into
equal pieces and sends them as counteroffers to its partners (we’ll discuss the
pricing strategy later). This behavior has two significant drawbacks.

Firstly, it increases the risk of a higher loss by giving other agents more
chances to make agreements with a broader choice in the market since this
agent doesn’t block any quantity in the market by rejecting all offers.

Secondly, it makes non-optimized offers due to its equal distribution mech-
anism. The mechanism gives all partners the same amount of counteroffer re-
gardless of their prior offers. As a result, some partners get counteroffers that
are lower than their initial offer from us in terms of quantity. This offer can mo-
tivate them to give back lower quantity counteroffers, or they can accept these
lower quantity offers. As a result, this agent signs a lower quantity agreement
with a partner that offered it a higher quantity in the first place.

To solve these problems, we developed a simple acceptance mechanism:

1. We assume that the agent will act like our base agent, rejecting all offers
and sending them equal-sized offers to meet our quantity goal. As a result,
the agent gets a hypothetical offer to send to the partners. We can call
this amount the expected quantity.

2. The agent compares the offers from our partners and accepts them if they
are above the expected quantity.

3. The agent sends counteroffers to the rest of the partners.

After accepting the best offers, the counteroffers are based on the remaining
quantity agent needs. We explain the details of the distribution of these needs
in the next section.

1.3 Proportional Distribution In Counter Offers

EqualDist agent distributes its total quantity needs equally over its partners.
This approach is blind to the preferences of the partners. As an improved version

3

of this method, our agent considers the last offer it got from its partners.
The counter-offer quantity is based on need; the last partner offers, and the

accepted amount at this step.
First is the remaining need. The remaining need is simply calculated by the

total needs deducted from the amount our agent will accept at this step. The
accepted amount is calculated based on the expected value above. Simply put,
we count all offers to be accepted if they exceed the expected quantity.

Then, we find the shortage we have after accepting the top offers and con-
sidering the remaining offers. The shortage is the amount our agent will ask
from its partners in addition to what’s been offered to it in the last step. As
a result, we increased our offer by an equally distributed shortage. Finally, we
increase the offer even more by multiplying this amount with a constant value
based on the market condition. This over-ordering multiplier will be explained
in the next section.

1.4 Equal Distribution In First Offers

In the first offer, when we’re the initiator of the negotiation, we don’t make
any assumptions about the partners and distribute all needs equally among the
agents. In this case, we are experimenting with distributing randomly, too.
However, this approach is riskier due to the rare high and low occurrences in
the random distribution, and the experimental results didn’t show any improve-
ments.

1.5 Over Ordering In Counter Offers

The total extra amount we’ll ask from the partners depends on our total shortage
and the over order multiplier. The multiplier is a conditional set from 0% to 20%
based on the number of available partners left after our agent accepts the top
offers. The over-ordering amount increases as the number of available partners
increases because more partners mean a lower probability of acceptance by all
partners at the same time.

f(n partners remaining) =


0 if n partners remaining < 5

0.05 if 5 < n partners remaining < 10

0.15 if 10 < n partners remaining < 15

0.2 if 15 < n partners remaining

1.6 Over Ordering In Initial Offers

In addition to the strategy to set the quantities for counter offers, we also have a
distinct method to set the initial quantities when we are the negotiation initiator.
In this case, we divide the quantity offered equally over the partners; however,
instead of sending as much as we need, we offer 50% more than we need.

4

We hypothesized that we needed to offer more than we needed, especially at
the beginning of the negotiation, because many partners would be available, and
we could get many rejections. Also, considering the other strategies that utilize
selecting higher quantity offers early on, we are more likely to be accepted by
these agents by offering more.

Our early experimentation in the local environment showed that an increase
in the initial quantity offered by up to 50% had a visible positive effect on the
score. However, beyond this point, the results started to have higher penalties,
and we kept the initial increase at 50%.

1.7 Setting Price In Counter Offers

Our primary goal in this tournament is to match the quantity we buy and
sell. However, optimizing price still provides an improvement in the overall
score. Our pricing strategy is simple and based on experimentation in our local
environment.

We have two distinct strategies for the price. The first is for the cases in
which we are the negotiation initiators. In this case, we will offer the best price
possible. The motivation is to exploit the agents, not considering price as a
significant decision criterion.

However, assuming that no agent uses price as a decision factor is dangerous.
Therefore, after the first step, we switched rules and made a more balanced price
offer. For cases, the price offer is calculated using a simple average of the last
offer from the partner and the best possible price we can get.

As a result, in every counter-offer, we ask for a better price for us. Experi-
mentally, we found that this approach works better than always asking for the
best price, which can be explained by the partners that prefer something other
than our high-price strategy. The other alternative we considered was to give
the same price we got back from the partner. Although this seemed like a better
idea to us initially, considering its positive effect on getting more acceptance,
the experimental result of the balanced average price was slightly better than
giving the same price-back strategy.

The lack of interest in price optimization in the current Oneshot setting can
also explain these results. Since agents are more interested in the quantity than
the price, small price increases can lead to slightly higher scores because the
partners mostly ignore the price change.

1.8 Summary of Algorithm

5

Algorithm 1: Counter All()

Input :
Offers: all offers we got at this step containing Price and

Quantity information
Output: Responses

1 Partners← Get id of all partners giving the offer;
2 BestPartners← Get subset of Partners that gives the highest utility;
3 Need← Get the total number of products we need to sell or buy based

on our position;
4 Threshold← 1;
5 BestDifference← |Need−GetTotalQuantity(BestPartners)|;
6 if BestDifference < Threshold then
7 foreach Partner in Partners do
8 if Partner in BestPartners then
9 ACCEPT OFFER();

10 else
11 END NEGOTIATION();
12 end

13 end

14 end
15 N partners← len(BestPartners);
16 NeedPerPartners← Need/N partners;
17 OffersToAccept← [];
18 foreach Partner in BestPartners do
19 if GetQuantitiy(Partner) > NeedPerPartners then
20 ADD(OffersToAccept);
21 end

22 end
23 Shortage← GetRemainingNeedsAfterAccepting()−

GetTotalQuantityWillBeRecejted();
24 DistributedShortage← Shortage/GetNPartnersAfterAccepting();
25 Over ← GetOverOrderMultipler();
26 foreach Partner in BestPartners do
27 if Partner in OffersToAccept then
28 ACCEPT OFFER();
29 end
30 else
31 Quantity ← (GetLastOfferQuantitiy(Partner) +

DistributedShortage)× (1 +Over);
32 Price← (GetLastOfferPrice(Partner) + 2× BestPriceForUs)/3;
33 COUNTER OFFER(Quantity, Price);

34 end

35 end

6

