
ANAC 2024 SCML Automated Negotiating Coyote
Agent

Mehmet Altuğ Karataş
Computer Science
Ozyegin University
Istanbul, Turkiye

altug.karatas@ozu.edu.tr

Metin Arda Koker
Computer Science
Ozyegin University
Istanbul, Turkiye

metin.koker@ozu.edu.tr

Ahmet Utku Erşahin
Computer Science
Ozyegin University
Istanbul, Turkiye

utku.ersahin@ozu.edu.tr

Abstract—In this paper, a basic explanation is given about
agents which were used for the ANAC 2024 SCML competition.
We have designed an agent for automating the negotiation. It
is called Coyote Agent. It is making offers depending on the
opponent agent. The mathematical explanation and pseudo-code
can be found. Our outputs and comparison with several agents
that were created in SCML libraries are shown. Coyote agent
can give great results under correct circumstances and of course
there are some circumstances which is not able to give great
results.

Index Terms—Agent, SCML, ANAC, Negotiation

I. INTRODUCTION

Our main goal in relation to the Supply Chain Management
League was to improve our negotiating tactics. Our attention
was focused on creating an algorithm that made use of the
financial resources that agents had access to in order to accom-
plish this goal. Having developed a sophisticated mathematical
framework, our methodology recognized the strategic benefit
that comes with having excess cash.

Our strategy’s main component was the introduction of a dy-
namic pricing mechanism. Our algorithm was designed to take
a proactive approach to negotiations by setting greater initial
demands. This proactive strategy was carefully calibrated to
take advantage of the psychological dynamics of negotiation,
especially in the early going when agents tend to set pricing
benchmarks.

But we also understood how crucial flexibility is to the
dynamics of negotiation, particularly in times of high stress
or tension. We used a parameterized approach that allowed
for pricing strategy flexibility in order to address this. Two
crucial parameters had to be introduced in order to accomplish
this: the ”stubbornness point” and the ”fear point.” These
parameters were carefully adjusted to react to changes in the
dynamics of the negotiation over time, guaranteeing a flexible
and subtle approach to pricing.

Moreover, we added more parameters to our algorithm to
maximize offer generation and price acceptance, taking inspi-
ration from the SyncRandomStdAgent model. Our objective
in incorporating these variables was to achieve a nuanced
equilibrium between assertiveness and adaptability, thereby
augmenting the effectiveness of our algorithm in maneuvering
through the intricacies of negotiation situations.

In conclusion, we developed our negotiation strategies
within the Supply Chain Management League using a nuanced
combination of strategic foresight, adaptability, and aggres-
siveness. Our algorithm aims to maximize negotiation out-
comes and promote value generation for participating agents
by carefully calibrating parameters and integrating important
aspects.

II. LITERATURE REVIEW

When examining reward-based negotiating agent strategies
as outlined in the article ”Reward-Based Negotiating Agent
Strategies,” [1] we opted to establish a relationship between
our balance and that of our opponent as an approach. Our
approach dictated how early we would reduce prices. Rather
than employing reinforcement learning, we endeavored to
reach a similar outcome using constants and equations.

III. STRATEGY DESIGN

A. Description

Our agent’s name is coyote agent, it is taking actions
depending on the opponents’ attributes. Trying to create an
opportunity based on opponents’ weak points. Basically, if the
opponent has a shortage of products, then the coyote agent
will try to sell the product more expensively. And also in the
buying phase, the agent checks the seller’s attributes. If the
seller has plenty of products then the coyote agent will try to
buy the product more cheaply.

B. Mathematical Equations

UCoyote =


URandAgent ∗ 0.3, if t ≤ 0.2− My

My+Opponent

URandAgent ∗ 1.5, if t ≥ 0.2 + Opponent
My+Opponent

URandAgent, else

1: function GOOD2BUY(p, t,mn,mx, today)
2: return p − 0.0001 ≤

buy price(t,mn,mx, today)/ multiplier× 2
3: end function
4: function GOOD2SELL(p, t,mn,mx, today)



5: return p + 0.0001 ≥ sell price(t,mn,mx, today) ×
multiplier× 0.5

6: end function
7: function GOOD PRICE(nmi, today)
8: initial cash← 15000
9: state← nmi.state

10: my cash← awi.current balance
11: other cash← 0
12: if other report is not None then
13: other cash← other report.cash
14: end if
15: if state.relative time > (0.2 ∗

my cash/initial cash) then
16: multiplier← 0.3
17: else if state.relative time < 0.2 ∗

(other cash/initial cash) then
18: multiplier← 1.5
19: end if
20: mn← nmi.issues[UNIT PRICE].min value
21: mx← nmi.issues[UNIT PRICE].max value
22: if is supplier(partner id) then
23: return buy price(relative time,

mn,mx, today)/multiplier
24: else
25: return sell price(get nmi(relative time,

mn,mx, today×multiplier)
26: end if
27: end function

IV. EVALUATION

A. Comparison Metrics

There are several agents given to us. These are
RandomOneShotAgent, SimpleAgent, BetterAgent, Adap-
tiveAgent. Simpleagent is extending from OneShotAgent, and
other agents are extending SimpleAgent. Each agent adds a
couple of things to the previous one. BetterAgents creates a
max and min value as an addition to SimpleAgent and creates
a threshold. AdaptiveAgent changes its min and max values
in every offering stage. There are so many different ways of
implementing the max and min values, but these are the most
frequently used in graphs and tables.

In the SCML library, there are predefined agents.
The agents that we compared with the coyote agent
are EqualDistOneShotAgent, SyncRandomOneShotAgent,and
GreedySyncAgent. In every test, the output score can be
changed regarding the seed of the run.

In general coyote agents can achieve better scores against
some agents and cannot against some agents. In the next figure
1 there are 6 different graphs can be seen. The first one is for
the. In the next one, which is the storage cost, our agent has a
really high storage cost in general which has a negative effect
on the score. In the third one, because of storing too many
items, the penalty of storage is high. In the score graph at a
point the coyote agent becomes better than the greedy agent.
In general, coyote agents store too many items and sell them
in cases of getting profit.

Fig. 1. SCML world run with multiple agent outputs

In the process of developing the coyote agent, the storage
part is not improved well. That’s why it is losing too much
point in that area. However, the buying phase has improved.
So, coyote agents can beat some agents in some cases.

REFERENCES

[1] R. Higa, K. Fujita, T. Takahashi, T. Shimizu, and S. Nakadai, “Reward-
Based Negotiating agent Strategies,” Proceedings of the ... AAAI Con-
ference on Artificial Intelligence, vol. 37, no. 10, pp. 11569–11577, Jun.
2023, doi: 10.1609/aaai.v37i10.26367.

[2] Y. Mohammad, S. Nakadai, and A. Greenwald, “NegMAS: a platform
for situated negotiations,” in Studies in computational intelligence, 2021,
pp. 57–75. doi: 10.1007/978-981-16-0471-3 4.


