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1 Introduction

Python-MIP is a comprehensive collection of tools for modeling and solving
Mixed-Integer Linear Programs (MIP) using Python. The package was designed
with the following goals in mind:

(1) clarity - it should enable clear and easy high-level modeling;
(2) performance;
(3) extensibility and configurability.

Traditionally, some of these goals have been considered conflicting. On the
one hand, high-level languages languages such as AMPL [4] were usually the
best choice for the rapid development of models that didn’t require advanced
configuration. On the other hand, interaction with the solver engine and low
level languages like C were the best option for those who wanted to achieve
maximum performance. By performance gains we consider here improvements
in the model creation times but also, and most importantly, the ones that can be
obtained in solution times using features that enable a deeper integration with
the solver engine (bi-directional communication) during the solution process.
Cuts generation is an example of these features. Since state-of-the-art solvers
such as CPLEX R© are generally developed in the C language [2], the access to more
advanced features was often only available to those using this language.

Recently, frameworks like JuMP [3] showed that goals (1)-(3) are not neces-
sarily conflicting. The availability of highly expressive languages such as Julia
and fast just-in-time compilers can be used to quickly develop efficient opti-
mization codes in a convenient high-level language. Thus, JuMP scores quite
well w.r.t. goals (1)-(3). The objective of the Python-MIP project is to provide
a tool that excels in goals (1)-(3) using the Python programming language.

Python is becoming the most popular programming language according to
recent surveys [1]. Part of this success is due to the availability of a very large
number of easily accessible third-party packages (≈ 200, 000 currently) with var-
ious functionalities. Data science and machine learning are some of the promi-
nent uses of Python currently. In this context, a Python package that enables
the fast implementation of MIP models can benefit from this ecosystem rich in
data processing and analysis solutions to speedup the development of effective
decision making tools. In the next subsections we discuss some characteristics
of Python-MIP w.r.t. items (1)-(3).
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1.1 Clarity

Python naturally provides convenient data structures such as sets and dictio-
naries. In Python-MIP the expression of linear constraints can be conveniently
stated using operators over objects in these data structures. Let N be a set of
cities (nodes) and A a dictionary that maps arcs (i, j), for all i, j ∈ N , to their
respective distances. The Traveling Salesman Person (TSP) formulation [5] can
be stated in only 10 lines of code using Python-MIP:

1 m = Model("TSP")
2 n, n0 = len(N), min(N)
3 x = { (i, j): m.add_var(var_type=BINARY) for (i, j) in A }
4 y = { i: m.add_var() for i in N }
5 m.objective = minimize(xsum(A[a]*x[a] for a in A))
6 for i in N:
7 m += xsum(x[a] for a in A if a[0] == i) == 1
8 m += xsum(x[a] for a in A if a[1] == i) == 1
9 for (i, j) in [a for a in A if n0 not in [a[0], a[1]]]:

10 m += y[i] - (n+1)*x[(i, j)] >= y[j] - n

1.2 Performance

Python-MIP was written in modern, statically typed Python to be fully com-
patible with the high performance Just-In-Time compiler PyPy. To provide a
deep integration with the supported solver engines, Python-MIP uses CFFI1 to
communicate directly with native dynamic loadable libraries. Some of the ad-
vantages of this choice over alternative options like Cython are: (i) C code can
be included directly within Python modules, (ii) no recompilation is needed if a
new version of a solver is released and (iii) PyPy is specially optimized2 to work
with it. One shortcoming of this approach is that only C functions can be called.
While for Gurobi R© this was not a problem, CBC is written in C++ and only a
subset of functionalities was available in C in 2018. Therefore, in the previous
months, we expanded and improved the CBC C API adding several advanced
features such as cut callbacks, lazy constraints and an incumbent solution call-
back where the solution in terms of the original variables (not the pre-processed
ones) can be queried. Furthermore, to speedup the creation of models, we im-
plemented a module to buffer successive calls for problem modifications. Some
of these features are not available in the C++ API. With our additions, we be-
lieve that now that are many cases in which the the CBC C API is even more
convenient to use than the C++ one. As for Gurobi R©, using Python-MIP and
PyPy to create MIP models can be up to 25 times faster than using the official
Gurobi R© Python interface. Moreover, Python-MIP eases the implementation
of alternative formulations for the same combinatorial optimization problem.
This can result in dramatic performance gains, such as the one observed when
solving the TSP with branch-&-cut with the sub-tour elimination constraints
instead of using a compact formulation.

1The C Foreign Function Interface for Python
2https://pypy.org/compat.html
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1.3 Extensibility and configurability

While the performance of standalone MIP solvers is continuously improving, it is
often the case that the solution times obtained simply by feeding the MIP model
to the MIP solver and querying the results is poor. The best MIP formulations
often have an exponential number of constraints (or variables) and handling
them requires bi-directional communication with the solver engine to include
them on-demand. Python-MIP has solver-independent callbacks: cut generators
and lazy constraints are available. The integration with problem dependent
heuristics is also quite easy using MIPStarts, and the incumbent callback can
be used to improve the performance in the production of high quality, feasible
solutions.

2 Final remarks

The initial commit in Python-MIP was less than a year ago. Nevertheless, we
believe that an impressive number of well documented and tested features is
already implemented. Our plan is to keep improving Python-MIP by adding
new features and performance improvements. Furthermore, our objective is to
keep and support all these features for multiple solvers. To make this objective
feasible, we do not plan to support a large number of solvers. In fact, our priority
is the open source solver CBC and one or two state-of-the-art commercial solvers.

For more information, the complete Python-MIP code and documentation
can be accessed at the package’s website.
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