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1. Introduction 
 

Up to date most, if not all, spectrum fitting for X-ray fluorescence measurements 
at the ESRF (ID13, ID18F, ID21, ID22) has been performed using externally supplied 
software (generally based on the AXIL software developed at the University of Antwerp, 
Belgium). Whilst this software is fairly robust and reliable, we have very little influence 
over its development and consequently its direct integration into our control system and 
subsequent data analysis routines is not straightforward. A further limitation is that we 
can not distribute that software to our user community. 

 
A versatile non-linear least-squares fitting application had been already developed 

as part of the tools of the BLISS group at the ESRF and had been used among others by 
the NewPlot visualization package. That fitting application, based on the Levenberg-
Marquardt algorithm, is implemented entirely in Python, thus ensuring a high level of 
platform compatibility and straightforward integration with the ESRF control system. 
The logical step to follow was to write a dedicated function to describe the x-ray 
fluorescence spectra and feed that function to the fitting module. 

 
The need to have an easy way to setup the configuration parameters of the fit, led 

to the development of a complete visualization and data analysis tool, PyMCA, that relies 
on Qt and Qwt to build its graphical interface and plotting routines. Nevertheless, the 
fitting code can run in prompt/batch mode fully independent of any graphical package, 
and its output file, can be used by other python module (also GUI independent) to 
automatically generate a fully detailed HTML report that can be visualized by any 
browser. 
 
2. Algorithms 
2.1 Continuum/background Models 
 

The continuum is modeled in two possible ways: estimation or fitting. In the 
former the estimated background is subtracted from the experimental data prior to the 
least-squares fitting of the fluorescence peaks. In the fitting mode the continuum is 
described by an analytical function which enters into the least-squares fitting algorithm.  
 

For the time being PyMCA implements one of each of the models. Background 
can be estimated thru an iterative smoothing procedure in which the content of each 
channel is compared against the average of the content of its neighbours at a distance of i 
channels. If the content is above the average, it is replaced by the average. In order to 
speed up the procedure, i can be taken as a fraction of the peaks full-width-half-
maximum (FWHM) at the beginning of the iterative process, being one at the end of it. 
The only analytical function currently supported to describe the background is a linear 
polynomial that can also be used in conjunction with the stripping procedure. 



 
2.2 Peak Shape Model 
 

The following is drawn primarily from a description of Least-Squares fitting of 
XRF spectra in [1] 
 

The response function of most solid-state detectors is predominantly Gaussian. In 
certain instances it may be necessary to resort to more complicated models such as Voigt 
or Hypermet [2] functions. 
 

A Gaussian peak is characterized by three parameters: the position, width, and 
height or area. It is desirable to describe the peak in terms of its area rather than its height 
because the area is directly related to the number of x-ray photons detected, while the 
height depends on the spectrometer resolution. The first approximation to the profile of a 
single peak is then given by: 
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where A is the peak area (counts ), σ the width of the Gaussian expressed in channels and 
xB0 B the location of the peak maximum. The FWHM is related to σ by FWHM = 2.355 σ. 
 

In Equation (1) the peak area is a linear parameter; the width and position are 
non-linear parameters. This implies that a nonlinear least-squares procedure is required to 
find optimum values for the latter two parameters. Linear least-squares fitting method can 
be used assuming the position and width of the peak are know with high accuracy from 
calibration. 
 

To describe part of a measured spectrum, the fitting function must contain a 
number of such functions, one for each peak. For 10 elements and 2 peaks (Kα and Kβ) 
per element we would need to optimize 60 parameters. It is highly unlikely that such a 
nonlinear least-squares fit will terminate successfully at the global minimum. To 
overcome this problem the fitting function can be written in a different way as shown in 
the next paragraph. 
 
2.3 FWHM and Position of peaks 
 

The first step is to abandon the idea of optimizing peak and position of all peaks 
independently. The energies of the X-ray fluorescence lines are typically known with an 
accuracy of l eV or better. The pattern of peaks observed in the spectrum is directly 
related to the elements present in the sample. 

 
Based on these elements we can predict all of the X-ray lines that constitute the 

spectrum and their energies. The peak fitting function is therefore written in terms of 
energy rather than channel number. 



 
Defining ZERO as the energy of channel 0 and expressing the spectrum GAIN in 

eV/channel, the energy of channel i is given by: 
 

( )E i ZERO GAIN i= + ×    (2) 
 
and the normalized Gaussian peak can be written as: 
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with EBj B the energy (in eV) of the x-ray line and s the peak width given by: 
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In this equation NOISE is the electronic contribution to the peak width (typical 80-100 
eV FWHM) with the factor 2.3548 to convert to σ units, FANO is the Fano factor 
(~0.114) and 3.85 the energy required to produce an electron-hole pair in silicon.  
 

The least squares fit optimizes ZERO, GAIN, NOISE and FANO for the entire 
spectrum (fitting region), thus for all peaks simultaneously. One can, after the fit, 
calculate the position of the peak (using eq. 2) and the width of the peak using eq. 4. (s in 
sigma of the peak in eV!!!), convert to channels via the factor GAIN and to FWHM via 
the factor 2.3548.  
 
2.4 Element Line Groups 
 

A further simplification that can be applied to reduce the number of fitting 
parameters is to model entire elements rather than single peaks. Some lines can be 
considered as being grouped together such as the KαB1 B, KαB2 B doublets or even all K lines 
of an element. A single area parameter A representing the total number of counts in the 
line group can then be fitted.  
 

The spectrum of an element can then be represented by: 
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where G are the Gaussians for the various lines with energy EBj B and RBj B the relative 
intensities of the lines. The summation runs over all lines in the group (NBp B ) with ΣRBj B=1. 



The transition probabilities of all lines originating from a vacancy in the same (sub-)shell 
(K, LBIB , LBIIB ...) are constants, independent of the excitation. However, the relative 
intensities depend on the absorption in the sample and in the detector windows. To take 
this into account, the x-ray attenuation must be included in Equation (5). The relative 
intensity ratios are obtained by multiplying the transition probabilities with an absorption 
correction term:  
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The absorption correction term TBa B (E), used in the equation (6) includes the x-ray 

attenuation in all layers and windows between the sample surface and the active area of 
the detector.  
 
2.5 Sum and Escape Peaks 
 

The escape fraction f is defined as the number of counts in the escape peak NBeB 
divided by the number of detected counts (escape + parent). Assuming normal incidence 
to the detector and escape only from the front surface, the following formula can be 
derived for the escape fraction (Reed S.J.B., Ware N.G., .J. Phys. E 5 (1972) 582) 
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where µBIB and µBKB are the mass attenuation coefficients of silicon for the impinging and the 
Si K x-ray fluorescence radiation respectively.; ωBKB is the K-shell fluorescence yield and r 
the K-shell jump ratio of silicon. The calculated escape fraction is in very good 
agreement with the experimentally determined values for impinging photons up to 
15keV. The area, relative to the area of the parent peak can be calculated from the escape 
fraction:  
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Si escape peaks can be modeled by a Gaussian at energy 1.742 keV below the 

parent peak. Including the escape peaks, the description of the fluorescence of element 
becomes 
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where G represents the Gaussian fitting function and NBescB the energy of the escaped 
photon.  



 
So they are not fitted as truly independent peak, but they are part of the multiplet. 

For spectra obtained with a Ge detector one needs to account in a similar way for both the 
Ge-Kα and the Ge-Kβ  escape peaks for elements above arsenic. 
 

Summing correction is performed by using a very intuitive approach. Since any of 
the peaks can be detected simultaneously with any of the other peaks, one can calculate 
the summing contribution of channel i, simply shifting the whole calculated spectrum by i 
channels and multiplying it by the calculated content of the channel times a fitted 
parameter. This is then repeated for all the points of the spectrum. The physical meaning 
of that parameter, for a time acquisition of one second, could be interpreted as the 
minimum time, measured in seconds, needed by the acquisition system to distinguish two 
photons individually and not consider them as simultaneous. 
 
3. Conclusion 
 

Despite being at its early stages, PyMca and its fitting engine already implement 
most of the needs of x-ray fluorescence spectroscopy. It is fast (~1 second per complex 
spectrum with < 1 GHz processors), portable (it already runs on Solaris, Linux and 
Windows) and can be freely distributed. Current developments are focused on the 
implementation of alternative continuum algorithms. 
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