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1 Fixed Random Payoffs

A Fixed Random Payoff box, or FRP for short, is a device that does one
thing, one time: it produces a value. Once the value is produced it is fixed for all
time, but before that it is uncertain, non-deterministic, . . . random. The value
represents the promise of a payoff to the FRP’s owner, and the question of how
much an FRP is worth hinges on how well we can predict its value.

Since an FRP produces a single value by mysterious means, we need more
information to predict that value effectively. Fortunately, each FRP has a Kind,
and we have access to an unlimited supply of FRPs of each Kind. By studying
in aggregate the values of many FRPs of the same Kind, we can build a deeper
understanding of how to predict an individual FRP’s value.

An FRP Kind is a complete tree with a positive, numeric weight on each
edge and a distinct value at each node. The leaf nodes give the possible values
that the FRP can produce; each value is a list, usually a list of one or more
numbers. A path from the root to the leaf shows a sequence of items being
successively added to the list, which starts out empty at the root. The values
at every leaf node must be lists of the same length; this length is called the
dimension of the FRP and its Kind. When the dimension is 1, we have a scalar
FRP and Kind. The number of leaf nodes (and thus possible values) is called
the size of the FRP and its Kind.

Key Take Aways

An FRP is a closed box whose top face has a single button, an LED, several ports, a
touch-screen display, and a smaller metallic display. (Figure 1.) We can neither open
the box nor see what is inside it, directly or indirectly.

An FRP does one thing, one time – it produces a value. Before the button has
ever been pushed, the FRP is fresh, with both the Observed Indicator LED and the
Display off. The first time the button is pushed, the LED turns on and remains
steadily on thereafter. The Display then turns on for a few moments and shows a
value. Whenever the button is pushed thereafter, the display turns on for a few
moments and shows that same value.

Before you push the button, you do not know what that value will be, and once

1



Kind

⟨⟩

⟨−2⟩1

⟨0⟩3

⟨1⟩2

⟨−2⟩

⟨1⟩ ⟨0⟩ ⟨−2⟩ All

Button
Observed
Indicator
LED

Input Port

Output Ports

Metallic Display

Touch Screen Display

Figure 1. The top face of a typical fixed random payoff box, or FRP. The text will explain the
role of each element shown here, including Kinds in section 1.1 and the
input/output ports in Section 4 and 2.

you’ve pushed the button, the value is fixed for all time (the F in FRP). You do not
know where the value comes from or how it was produced. It could be the result of
a complex physical process or a value that a group of gnomes living inside the box
finds amusing. The FRP’s output value is random in a sense we will explore (the R
in FRP). If you own an FRP, you hold the promise of receiving its value as a payoff
(the P in FRP).

It is possible to have FRPs whose values are lists of any type, but we will almost
always use numeric FRPs that output lists of numbers. We require that all possible
values that might be output by any particular FRP are lists of the same length.
Throughout, we will use angle brackets ⟨⟩ to denote lists and tuples.1 For example, ⟨⟩

1It is common to use
parentheses for lists, tuples,
and vectors like (3, 4, 5).
This is fine, but parentheses
are so frequently used and
overloaded that it is helpful
to have a more salient
delimiter for this purpose.

is the empty list, ⟨1⟩ has a single element 1, ⟨0, 1⟩ has two elements with first element
0, ⟨−1, 2, 32⟩ has three elements with first element -1, and so forth.2 The length of

2See F.7 and F.9.2 for more
on lists, tuples, and vectors.

a list is the number of elements it has. A list of length 1 is called a scalar, and in
practice, we treat these specially by making no distinction between a list with one
element and the quantity it contains. If I give you ⟨42⟩, then for all practical purposes
I have given you the number 42, and vice versa. We say that an FRP has dimension
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n if its outputs are lists of length n. If it has dimension 1, we call it a scalar FRP.
How do we interpret an FRP’s value (fixed for all time yet randomly produced)?

As the P in FRP indicates, an FRP is a promise of a payoff. If you own a scalar
FRP with value v, you are entitled to receive $v one time. If v < 0, this entails
an obligation to pay $|v|. (For an FRP of dimension n > 1, we think of a value
⟨v1, v2, . . . , vn⟩ as a suite of n payoffs. But more on that later; for the moment,
concentrate on the scalar case.)

How much is an FRP worth? What would you pay to own the promised payoff
before seeing its value? Your answer is a prediction about the FRPs value. For
instance, you would not be willing to pay a high price if you were quite certain that
you would lose money on the deal; nor would you reject an offered price if you were
quite certain to make money. A good prediction incorporates all the information we
have about the FRP at a given time, but the accuracy of any prediction increases
with our uncertainty in the output value. Prediction. Accuracy. Uncertainty. These
are all words that we will need to define more precisely. Understanding how much an
FRP is worth – that is, how to find our best prediction of its value – is at the core of
probability theory and will be a central goal for the rest of this Chapter.

Because each FRP produces just a single value in mysterious ways, we need more
information to make good predictions about its value. This is where the Kind comes
in, as depicted on the FRP’s metallic display. We will see that FRPs with the same
Kind behave similarly in some sense, so by considering a large collection of FRPs
of the same Kind, we can learn what we need to make good predictions. Indeed, it
turns out that the Kind itself gives enough information to make any sort of prediction
about any FRP with that Kind.

The ability to assess an FRP’s worth – and thus make informed predictions about
its value – has manifold applications in the face of uncertainty. We can design FRPs
to describe and model a huge variety of random systems and processes, and our
predictions inform decisions and actions that can guide us toward desirable outcomes.

1.1 Kinds

An FRP’s Kind embodies our knowledge about the FRP’s value. Two fresh FRPs
of the same Kind are, all else being equal, interchangeable. describes the nature of
the FRP in a way that will let us make good predictions about the FRP. A Kind
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is represented by a rooted tree3 where each edge has an associated positive number. 3A connected, acyclic,
undirected graph with one
node designated as the
“root.” See Interlude G.

The root node holds the empty list ⟨⟩. The leaf nodes hold all the possible values that
an FRP with that Kind might output. Within each level of the tree, the nodes must
hold distinct values that are lists of the same type and length. A tree representing
a Kind must also be complete, meaning that every path from the root to a leaf has
the same number of steps. Along each such path, successive nodes differs from their
predecessors by appending a single item. The positive numbers associated with the
tree’s edges are called the Kind’s weights.

Figure 2 shows a few simple examples of Kinds. We display Kinds horizontally
with the root at the left and the leaves at the right rather than the more common root-
at-the-top display. This layout offers several advantages for us, including compactness,
easier comparison of values and weights, and simpler output for the programs we use.
(Figures 2 and 3 show the same Kinds with horizontal and vertical layout to help you
get used to the horizontal layout.) FRPs of the left Kind in Figure 2 can only ever
output the single value ⟨1⟩. Those of the middle Kind in Figure 2 can output either
⟨−1⟩ or ⟨1⟩, and those of the right Kind can output ⟨−1⟩, ⟨0⟩, or ⟨9⟩. Again, we do
not distinguish in practice between tuples with one number and the number itself, so
we can think of FRPs with these Kinds as outputting random numbers from the sets
{1}, {−1, 1}, and {−1, 0, 9}.

⟨⟩ ⟨1⟩1 ⟨⟩
⟨−1⟩1

⟨1⟩1
⟨⟩

⟨−1⟩1
4

⟨0⟩1
2

⟨9⟩1
4

Figure 2. Several FRP Kinds, all with dimension 1 (scalar) and with sizes 1, 2, and 3.
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Figure 3. The same Kinds as in Figure 2 but displayed with the root at the top.

Figure 4 shows a more complicated example. FRPs of this Kind can output the
possible values ⟨−1,−15⟩, ⟨−1,−5⟩, ⟨0, 10⟩, ⟨9, 12⟩, ⟨9, 20⟩, or ⟨9, 32⟩. We think of the
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values on the leaves as being generated in stages. Starting from an empty list at the
root, the FRP first generates one of -1, 0, or 9 and appends it to the list, producing
one of the lists shown at the first level. Then depending on whether -1, 0, or 9 was
appended, generates another number (-5 or -15, 10, and 12 or 20 or 32 respectively)
and appends it to the list. The list at each node contains the numbers generated in
order along the path from the root. Remember: at each level, the generated tuples
must be distinct and the weights positive.

FRPs and Kinds have several properties that we refer to frequently.

Property FRP Kind
dimension d all values have length d every leaf has length d

size s s distinct, possible output values s leaf nodes
type 0 → d has dimension d has dimension d
width w – w edges along any path

from root to leaf

(The 0 in the type will be explained later.) An FRP and its Kind always have the
same size, dimension, and type.

The Kinds in Figure 2 have, respectively: size 1, 2, and 3. They all have width 1
and dimension 1. The Kind in Figure 4 has size 6, width 2, and dimension 2. The
trivial FRP, called empty, has size 1 and dimension 0; it’s Kind, denoted by ⟨⟩ is just
a root node with an empty list, with size 1, width 0, and dimension 0. We call FRPs
(and Kinds) with dimension 1 scalar FRPs (and Kinds).

⟨⟩

⟨−1⟩
⟨−1,−15⟩0.4

⟨−1,−5⟩0.6
1

⟨0⟩ ⟨0, 10⟩13

⟨9⟩
⟨9, 12⟩1

⟨9, 20⟩4

⟨9, 32⟩5

2

Figure 4. A Kind with more than two levels and possible values of dimension 2.

For a Kind like that in Figure 4, with width is bigger than 1, the structure of
the tree gives us a picture of a random process at work “in stages”. We can think of
the FRP as generating its value sequentially, starting from the empty tuple at the
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root and appending a new number to the list at each level along a path from root
to leaves, where the number generated at each stage is contingent on the previous
numbers in the list. So, the tuple at each node shows the numbers generated so far
on the path to that node, with the last element having been generated and appended
at that level, eventually yielding a final value at a leaf node.

Because a Kind’s dimension can be bigger than its width, we can also think of an
FRP as generating its value “all at once.” Figure 5 shows a dimension 2 Kind with
width 1 and the same possible values as the Kind of Figure 4. In this view, the FRP
simply spits the whole tuple when activated.

It turns out that these two perspectives on Kinds – describing values produced “in
stages” or “all at once” – are consistent. We can view the Kind of a multi-dimensional
FRP in either way. Section 3 will show that the Kinds in Figures 4 and 5 are in fact
equivalent : they give the same predictions and we can convert seamlessly between
them.

⟨⟩

⟨−1,−15⟩1
15

⟨−1,−5⟩1
10

⟨0, 10⟩1
2

⟨9, 12⟩1
30

⟨9, 20⟩2
15

⟨9, 32⟩1
6

Figure 5. A Kind with dimension 2 and width 1.

Puzzle 1. Draw the Kind of an FRP of dimension 2 in which knowing the second
component of the value gives you no information about the first component.

Puzzle 2. Draw the Kind of an FRP of dimension 3 (and size bigger than 3) in
which the values generated are all lists whose elements sum to zero.

We usually give FRPs names that start with a capital letter, often using only a
single capital letter, possibly adorned with subscripts or labels.
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1.2 Overview of frplib

Talking about FRPs and Kinds is useful, but we get even more by building FRPs and
Kinds, manipulating them, and using them to compute predictions for interesting
random systems. For this purpose, we will use software: frplib is a package built on
the Python programming language that can be used both as an interactive laboratory
for working with FRPs and Kinds or as a library within a standalone program. This
system encourages you to play with the examples, check your understanding against
output, and engage more deeply with the ideas.

Instructions for downloading and installing frplib are available at https://

github.com/genovese/frplib.4 When the package has been installed, two things 4Mac OS, Windows, and
Linux are all supported.happen: from within your Python programs, you will be able to import functions and

data from frplib, and the application frp will be installed on your system. The frp

application is run from your terminal command line and opens an interactive session
for computing with FRPs, Kinds, and related quantities.

Within a Python program, you can load modules from the frplib library. For
example:

from frplib.frps import FRP, frp

from frplib.kinds import Kind, kind, constant, uniform

from frplib.statistics import statistic

The library documentation describes the available modules, functions, and data,
along with shortcuts for importing some commonly used configurations. Modules
within the sub-package frplib.examples include functions and data used in examples
within this book. You will see such modules loaded or mentioned in the text and are
encouraged to follow along in frplib as you read.

The terminal application frp is invoked with various sub-commands that open
different interactive environments. The two we will focus on are the market and
playground sub-commands. To invoke these sub-commands, enter frp market and
frp playground at the terminal command line prompt. (There are several ways to
start the application, as described in the instructions on the GitHub page, including
frp and python3 -m frplib, but here, we will use the former as a placeholder.)

When you enter frp market, you will see a prompt market> at which you can
enter tasks for the market to perform. These can span multiple lines and must end
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in a period (.). After the first line of a multi-line task, the prompt will change to
...> signaling that you can continue entering information. A . at the end of a line
will complete the input. However, if the input is ill-formed in any way, the task will
not be submitted; instead, an error message will identify the problem, allowing you
to fix it. To end your session, enter “exit.” or “done.” at a fresh prompt. Enter
“help.” for assistance.

When you enter frp playground, you will see a prompt playground> at which
you can enter commands or other Python code. This code can span multiple lines;
you end a code block by hitting return on a blank line. In the playground, you can
move across the code, even multiple lines, and edit it before final submission. You
can also access and edit your interaction history. The playground pre-loads all the
most commonly used frplib functions and classes, so you can use them easily. In
addition, you can import any frplib or other installed Python package from the
playground prompt. You can use the built-in help system on any defined function
or object; in addition, the function info() gives frplib-specific help. Start with
info("overview").

The frplib library provides classes and methods relating to all the main concepts
we cover in this chapter, including FRPs, Kinds, and Statistics. For each of these,
the library defines factories, which are functions for creating objects of the specified
type with particular properties; combinators for combining several objects of a
specified type into a new one; along with various actions and utilities. See the
“Playground Overview” on page 106 and the frplib Cheatsheet for a summary, along
with the many examples in this chapter.

1.3 Predictions and Prices

You have access to the FRP Warehouse, an organization that can provide a seemingly
inexhaustible supply of FRPs. The Warehouse manager does not like other people
poking around, so you tell the manager the Kind and number of FRPs you want, and
the manager fabricates them for you. All these FRPs are fresh; their buttons have
not ever been pushed.

It is rather tiresome to go to the Warehouse and haul back tons of boxes whenever
you order some FRPs, not to mention pushing all the buttons and recording the values.
Fortunately, the Warehouse is a highly automated operation, so you can manage
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the entire transaction with software that the Warehouse makes available. With the
frp market command, you can request any number of fresh FRPs, have their buttons
pushed, and receive a record of the values from each (as a list or summary). Fast
and painless for you, though a lot of work for the Warehouse staff.5 5Many Bothans worked hard

to bring you this
information.

The Warehouse has given you a free trial, allowing you to get as many FRPs
as you like at no cost and see their values. As this is only a trial, you receive no
actual payoff in exchange for the FRPs you activate, but the free trial can help you
understand how FRPs work, what their Kinds mean, and how to price them. Later,
when the trial expires, money will change hands, so the stakes will be higher.

Some of the market tasks operate on a Kind and need you to specify the Kind
of FRP to simulate. For this, the market program uses a simple text format6 that 6Details can be seen with

the “help kinds.” task in
the market.

represents the tree. For example, the Kinds in Figures 2 and 4 are represented by
the following strings:

(<> 1 <1>)

(<> 1 <-1> 1 <1>)

(<> 0.25 <-1> 0.5 <0> 0.25 <9>)

(<> 1 (<-1> 0.4 <-1, -15> 0.6 <-1, -5>)

3 (<0> 1 <0, 10>)

2 (<9> 1 <9, 12> 4 <9, 20> 5 <9, 32>))

Each string is a ()-balanced expression with weights and values in alternating pairs at
each level and each value tuple is enclosed in <>. Subtrees are enclosed in parentheses
and start with the subtree’s root. The weight precedes its associated value or subtree
in the list. Whitespace, including any newlines, is ignored.

When displaying input to the market, we will always abbreviate the “market> ”
prompt as “mkt> ” to save space. Prompts like ...> are continuations of input over
multiple lines. Output follows the task that generates it.

We use the show task to check that our input string gives the Kind we expect.

mkt> show kind (<> 1 <-1> 1 <1>).

,----- 1 ---- <-1>

<> -|

`----- 1 ---- <1>
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mkt> show kind (<> 1 (<0> 1 <0, 0> 2 <0, 1> 3 <0, 2>)

...> 2 (<1> 1 <1,1> 1 <-1, -1>)).

,------- 1 ------- <0, 0>

,----- 1 ---- <0> +------- 2 ------- <0, 1>

| `------- 3 ------- <0, 2>

<> +

| ,------- 1 ------- <-1, -1>

`----- 2 ---- <1> |

`------- 1 ------- <1, 1>

The market will detect ill-formed syntax and give you a chance to fix it:

mkt> show kind (<> 1)

The input '(<> 1)' is not a valid kind; it appears to be missing a value.

mkt> show kind (<> 1 <1> 2 <1>)

The input '(<> 1 <1> 2 <1>)' is not a valid kind; its values are not unique.

mkt> show kind (<> 1 <1> 2 <1, 2, 3>)

The input '(<> 1 <1> 2 <1, 2, 3>)' is not a valid kind; its values do not

have the same dimension.

These error messages might show up in a highlight color at the bottom of the window.
Now let’s begin by examining the simplest, non-empty FRP, which always outputs

the same value. This has Kind ⟨⟩ ⟨1⟩1 . To examine 10,000 FRPs with this
Kind, we enter a task in the market:

mkt> demo 10000 with kind (<> 1 <1>).

Activated 10000 FRPs with kind

<> -+----- 1 ---- <1>

Summary of Output Values

|------------+-------+------------|

| Values | Count | Proportion |

|------------+-------+------------|
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| <1> | 10000 | 100% |

|------------+-------+------------|

This tells us that all 10000 of the FRPs of this Kind gave value 1, which makes
sense as that is the only possible value they can give. Try this again with a different
number of FRPs in the demo.

Next, let’s vary the weight. For instance, try:

mkt> demo 10000 with kind (<> 0.001 <1>).

What do you get? Try it with a variety of different weights. Formulate a hypothesis
to answer the following question.

Puzzle 3. For a Kind of size 1, what can you say about the output of a demo of
FRPs with that Kind? How do the weights influence the results?

The Kind ⟨⟩ ⟨v⟩w is named constant(v). An FRP with that Kind is
called a constant FRP with value v because it always outputs the value v. For all
weights w, it can be completely identified with the constant v itself; whether I gave
you the value v or an FRP that produces that value, you should be indifferent. For
all practical purposes, they are the same. Indeed, in this special case, we can abuse
our notation a bit and display the Kind constant(v) without the (irrelevant) weight,
which we will implicitly take to be 1: ⟨⟩ ⟨v⟩

Let us look at Kinds with more structure, restricting our attention for the moment
to Kinds of width 1. The next simplest case is size 2. Consider the Kind

⟨⟩
⟨0⟩1

⟨1⟩1

and run a demo where you examine the values of 10,000 FRPs of this Kind. Here’s
the command and an output similar to what you will see:

mkt> demo 10000 with kind (<> 1 <0> 1 <1>).

Activated 10000 FRPs with kind

,----- 1 ---- <0>

<> -|

`----- 1 ---- <1>
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Summary of Output Values

|------------+-------+------------|

| Values | Count | Proportion |

|------------+-------+------------|

| <0> | 5031 | 50.31% |

| <1> | 4969 | 49.69% |

|------------+-------+------------|

The numbers of 0’s and 1’s are almost equal. Trying it with a larger number of
FRPs, say one million,7 yields 7In the market, numbers can

contain _ to separate blocks
of three digits and make the
numbers more readable.

mkt> demo 1_000_000 with kind (<> 1 <0> 1 <1>).

Activated 1000000 FRPs with kind

,----- 1 ---- <0>

<> -|

`----- 1 ---- <1>

Summary of Output Values

|------------+--------+------------|

| Values | Count | Proportion |

|------------+--------+------------|

| <0> | 499895 | 49.99% |

| <1> | 500105 | 50.01% |

|------------+--------+------------|

The counts in these tables will vary slightly with each demo because they are based
on a sample of FRPs, each with its particular value, and the specific contents of
a sample determine the proportions we see. As a demo gets larger, this “sampling”
variation gets smaller.

Now vary the weights over a wide range of possibilities, for instance:

mkt> demo 1_000_000 with kind (<> 2 <0> 2 <1>).

mkt> demo 1_000_000 with kind (<> 100 <0> 100 <1>).

mkt> demo 1_000_000 with kind (<> 0.5 <0> 0.5 <1>).

mkt> demo 1_000_000 with kind (<> 0.01 <0> 0.01 <1>).

mkt> demo 1_000_000 with kind (<> 1 <0> 4 <1>).

mkt> demo 1_000_000 with kind (<> 1 <0> 9 <1>).
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mkt> demo 1_000_000 with kind (<> 19 <0> 1 <1>).

mkt> demo 1_000_000 with kind (<> 2 <0> 8 <1>).

mkt> demo 1_000_000 with kind (<> 1900 <0> 100 <1>).

mkt> demo 1_000_000 with kind (<> 400 <0> 100 <1>).

mkt> demo 1_000_000 with kind (<> 0.38 <0> 0.02 <1>).

mkt> demo 1_000_000 with kind (<> 3 <0> 27 <1>).

mkt> demo 1_000_000 with kind (<> 0.2 <0> 0.8 <1>).

mkt> demo 1_000_000 with kind (<> 0.01 <0> 0.04 <1>).

and so on. You need not use 1,000,000 if you want quicker response, but keep the
number of FRPs large like 100,000.

8Example F.5.9 and the
discussion around equation
(F.5.15) in Interlude F are
relevant here.

Puzzle 4. Based on the results of these explorations, formulate a hypothesis about
the relationship between the weights in a size 2 Kind and the proportions you see
in the demo of FRPs with that Kind.

As you try to formulate a hypothesis here, a geometric approach may help.
View each set of weights you demo as a point ⟨w0, w1⟩ in the plane. Running
the demo gives a pair of proportions ⟨1 − p1, p1⟩ that sum to 1, where p1 is the
proportion of 1s in the table. Try plotting each point ⟨w0, w1⟩ with a color indexed
by the p1 from the demo. When you run many demos with varied weights, what
does this plot look like?8 What does it suggest about the relationship between the
weights and the proportions in a demo with a very large number of FRPs?

For the following two puzzles, use the market to explore the relationship using
what you have learned in the size-2 case.

Puzzle 5. If I give you a choice between two FRPs, with actual payoff, with
Kinds (<> 10 <-1> 30 <0> 20 <10>) and (<> 100 <-1> 300 <0> 200 <10>),
which do you prefer and why? Back up your preferences with evidence from the
frp market.

Puzzle 6. If you demo a large number of FRPs with Kind (<> a <0> b <1> c <2>),
where a, b, and c are arbitrary positive weights, what relative frequencies of the
values 0, 1, and 2 do you expect to see?
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Try it for various values of a, b, and c. Did your intuition match the results?
What happens if you increase or decrease the number of FRPs you sampled?

Now, formulate a general hypothesis about what the weights mean. What is
the relationship between the weights that you specify in the demo and the (ideal)
proportions you see in the table? Use the market to test your hypothesis with a
variety of Kinds of dimension and width 1, including those with size bigger than 3.

Puzzle 7. After formulating, possibly revising, and confirming your hypothesis
about the meaning of the weights in a (width 1) Kind, write down your conclusion
in sentence or two.

If we run a demo of n FRPs of size s whose Kind has weights w1, w2, . . . , ws and
values v1, v2, . . . , vs, we will get a table of associated proportions p1, p2, . . . , ps that
sum to 1. Across repeated runs of this demo, these proportions will vary slightly
because different FRPs are being activated, even if though the FRPs have the same
Kind. As we make n larger, this “sampling variability” gets ever smaller, and the
proportions pi get closer to “ideal” proportions pi that are determined by the Kind’s
weights. In fact,

pi =
wi

w1 + w2 + · · ·+ ws
, (1.1)

or put another way, pi/pj = wi/wj . The proportions we see in the table are thus
determined by the weights normalized to sum to 1, and the relative proportions of any
two values are determined by the relative magnitudes of the corresponding weights.

The market’s buy task can be useful for leveraging this insight to find what we will
call the “risk-neutral price” of an FRP. It allows one to purchase FRPs of specified
Kinds and numbers at specified prices. It is like demo except it also computes the net
payoff – the difference between the total payoff from all the purchased FRPs and the
total payment we made for those FRPs – and the net payoff per FRP purchased for
the entire demo. For example:

mkt> buy 1_000_000 @ 1 with kind (<> 2 <-5> 3 <0> 5 <4>).

Buying 1,000,000 FRPs with kind (<> 2 <-5> 3 <0> 5 <4>) at each price

Price/Unit ($) Net Payoff ($) Net Payoff/Unit ($)

1.00 -1,319.00 -0.001319
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Suppose we run a buy task with price c for each of n FRPs of size s whose Kind
has weights w1, w2, . . . , ws and values v1, v2, . . . , vs, and the underlying demo has
proportions p1, p2, . . . , ps for those values. Then our net payoff per unit is

np1v1 + np2v2 + · · ·+ npsvs − nc

n
= p1v1 + p2v2 + · · ·+ psvs − c.

For large n, the pi’s will be close to the “ideal” proportions pi derived from the weights.
When we choose c =

∑s
i=1 pivi as the price per FRP, the net payoff will be close to

0. This is the risk-neutral price of FRPs with that Kind, as we will discuss in detail
in Section 7.

So far in this subsection, we have restricted our attention to Kinds of width and
dimension 1 because these are simpler. Changing the dimension does not really affect
our conclusions as the proportions are associated with values, whatever they are.

mkt> demo 1_000_000 with kind (<> 1 <1, 2, 3> 1 <9,11,16>).

Activated 1000000 FRPs with kind

,----- 1 ---- <1, 2, 3>

<> -|

`----- 1 ---- <9, 11, 16>

Summary of Output Values

|-------------+--------+------------|

| Values | Count | Proportion |

|-------------+--------+------------|

| <1, 2, 3> | 499893 | 49.99% |

| <9, 11, 16> | 500107 | 50.01% |

|-------------+--------+------------|

And similarly with the Kind from Figure 5,

mkt> demo 1_000_000 with kind

...> (<> 1/15 <-1, -15> 1/10 <-1,-5> 1/2 <0,10>

...> 1/30 <9,12> 2/15 <9,20> 1/6 <9,32>).

Activated 1000000 FRPs with kind

,------- 2/30 ------- <-1, -15>

|------- 3/30 ------- <-1, -5>

|------- 15/30 ------ <0, 10>
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<> -|

|------- 1/30 ------- <9, 12>

|------- 4/30 ------- <9, 20>

`------- 5/30 ------- <9, 32>

Summary of Output Values

|-------------+--------+------------|

| Values | Count | Proportion |

|-------------+--------+------------|

| <-1, -15> | 66903 | 6.69% |

| <-1, -5> | 99555 | 9.96% |

| <0, 10> | 500256 | 50.03% |

| <9, 12> | 33545 | 3.55% |

| <9, 20> | 133086 | 13.31% |

| <9, 32> | 166655 | 16.67% |

|-------------+--------+------------|

The market tries to show the weighs with a common denominator to make comparison
easier, when the denominators are not too large.

With width bigger than 1, the connection between the weights and the proportions
of values we get in the table requires a bit more thought. Using the Kind in Figure 4,

mkt> demo 1_000_000 with kind

...> (<> 1 (<-1> 0.4 <-1, -15> 0.6 <-1, -5>)

...> 3 (<0> 1 <0, 10>)

...> 2 (<9> 1 <9, 12> 4 <9, 20> 5 <9, 32>)).

Activated 1000000 FRPs with kind

,----- 2/5 ---- <-1, -15>

,----- 1 ---- <-1> -|

| `----- 3/5 ---- <-1, -5>

|

<> -+----- 3 ---- <0> -+----- 1 ------ <0, 10>

|

| ,----- 1 ------ <9, 12>

`----- 2 ---- <9> -+----- 4 ------ <9, 20>

`----- 5 ------ <9, 32>
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Summary of Output Values

|-------------+--------+------------|

| Values | Count | Proportion |

|-------------+--------+------------|

| <-1, -15> | 67182 | 6.72% |

| <-1, -5> | 100190 | 10.02% |

| <0, 10> | 499985 | 50.00% |

| <9, 12> | 33438 | 3.34% |

| <9, 20> | 133213 | 13.32% |

| <9, 32> | 165992 | 16.60% |

|-------------+--------+------------|

we see that these proportions are essentially the same as what we got above for the
Kind in Figure 5, consistent with our claimed equivalence of the two Kinds. Try
varying the weights at different stages to get a feel for the relationship between the
weights of a higher-width Kind and the demo proportions.

Our work in this subsection provided support for the following claim.9 9The increment [1 . . s] is the
set of integers from 1 to s,
as described in Section
F.1.2.Let K be a Kind of width 1 with weights w1, w2, . . . , ws and corresponding values

v1, v2, . . . , vs, and let K ′ be the Kind (of width 1) with the same values and
corresponding weights w′

1, w
′
2, . . . , w

′
s where

w′
i = cwi, (1.2)

for all i ∈ [1 . . s] and some c > 0. Then, we cannot distinguish a demo of n FRPs
with Kind K from a demo of n FRPs with Kind K ′.

This claim means that two Kinds whose weights differ by a constant multiplicative
factor are in practice interchangeable. We will define a formal notion of Kind
equivalence in Section 3.

Puzzle 8. We have seen empirically that a demo of n FRPs with Kind

⟨⟩
⟨0⟩1

⟨1⟩1
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will produce roughly even proportion of 0’s and 1’s. Let p1, p2, . . . , pk be the
proportion of 1s in k repeated demos of n FRPs with this Kind. These are all
approximately 50%, but they vary around it by a bit from the randomness in the
FRPs. How does the variation around 50% depend on n?

To investigate this, start with several demos of 100 FRPs of this Kind. About
how close are is the frequency of 1’s to 50%? Look at this as you increase n several
times. How big does n need to be so that the frequencies are within about one
decimal point of 50%? Within two decimal points? Within three? What can you
conclude?

1.4 Kinds as Models

Having seen what FRPs are and gotten some sense of what their Kinds mean. we now
turn to the story of how we use them. We will develop this story fully throughout
this chapter, and here we lay the groundwork.

Let’s start with a simple example, flips of a coin, the first refuge of the probability
theorist. We have a random process of interest: we will flip a coin twice in succession.
We have a question about this process whose answer we would like to predict: how
many times does heads come up? First, the data we measure from this process is
an ordered pair listing the results of the successive flips, and we build an FRP to
represent these data. This FRP has a Kind that looks like:

⟨⟩

⟨ T ⟩
⟨ T , T ⟩1

⟨ T , H ⟩1

1

⟨ H ⟩
⟨ H , T ⟩1

⟨ H , H ⟩1

1

Here the tree describes how the process unfolds in stages. We make the first flip,
getting either tails T or heads H . Then we flip again, collecting the results
in order with four possibilities. Based on what we saw in the last subsection, the
weights here tell us that in a demo of many of these FRPs we will get approximately
an even proportion of heads and tails. Thus, the FRP represents the data we get
from observing the system, and its Kind is a model for the system.
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While it is fine to have FRPs with arbitrary values (like H or T or even pictures
of coins), it is usually more convenient to encode all the outcomes of the system as
numbers. Sometimes, as when the data itself is a numeric measurement, there is
a “natural” way to do this; sometimes, as with the coins, it is arbitrary. Here, for
instance, we would typically assign the value 0 to tails T and the value 1 to heads
H . We also want to allow models of coins for which heads and tails do not show

up in even proportions when the coin is flipped. With these tweaks, the Kind for the
FRP becomes

⟨⟩

⟨0⟩
⟨0, 0⟩1

⟨0, 1⟩w
1

⟨1⟩
⟨1, 0⟩1

⟨1, 1⟩w
w

in two stages: the first coin flipped and then the second. The same weights are used
for every flip, reflecting an assumption that the flips are interchangeable. Indeed, we
can see that the Kind of the data FRP is actually built by combining two simpler
FRPs – one for each flip – both of Kind

⟨⟩
⟨0⟩1

⟨1⟩w

The Kind for the data is thus specified by assumptions about the Kinds for the
component FRPs representing the individual flips and how those FRPs are combined.
We call this set of assumptions a model . Finally, we have the question motivating our
analysis. We want to predict the number of heads in the two flips. From the data we
collect, namely the outcome of the two flips, we can compute the number of heads.
The function that maps the data we observe to the value that addresses our question
(i.e., the number of heads) is called a statistic.10 By mapping the output of the data 10Statistics are discussed in

detail in Section 2.FRP with this statistic, we get a new FRP that describes the particular feature of
the data captured by the statistic. The value of this “feature” FRP represents an
answer to our question, and it is this value we want to predict. Importantly: we do
not know its value until we push the button on the data FRP, and our prediction
lets us act before we see the data. For reasons we will see, this FRP has Kind:
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⟨⟩
⟨0⟩1

⟨1⟩2w

⟨2⟩w2

and what we will call the “risk-neutral” price for this FRP is

0 · 1 + 1 · 2w + 2 · 22

1 + 2w + w2
= 2

w

1 + w
,

which is our prediction of its value in a sense to be discussed.
If this seems like a lot of work to handle two coin flips, worry not; we will

streamline these steps significantly. Still, this breakdown exposes the key pieces in
modeling random systems as illustrated in Figure 6.

Data FRP

Feature FRP 1

Feature FRP 2

. . .

Feature FRP n

Component FRP 1 Component FRP 2 . . . Component FRP m

Combine

Derive

Figure 6. Schematic of how FRPs are used. The value of the data FRP represents all the data
we measure or observe from a random system or process. This is typically built by
combining simpler component FRPs whose Kinds and interaction are determined by
our knowledge of and assumptions about the system/process. From the data, we
derive feature FRPs whose values represent features of the data that answer the
questions motivating our analysis and are the target of our predictions.

We build an FRP whose value represents the observed output or measured data
from a random process or system whose behavior we want to understand or predict.
Call this the data FRP. For a process of any complexity, we build the data FRP by
combining component FRPs that represent parts of the random process or system
that are easier to understand and reason about. We have questions motivating our
study of the random process and particular features of the data that we would like to
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⟨⟩

⟨�,�,� ⟩1

⟨�,�,� ⟩1

⟨�,�,� ⟩1

. . .

⟨�,�,� ⟩1

⟨�,�,	 ⟩1

. . .

⟨
,
,� ⟩1

⟨
,
,	 ⟩1

⟨
,
,
 ⟩1

Figure 7. The Kind of the FRP representing a roll of three, distinct, balanced dice.

explain and predict. To this end, we derive from the data FRP, one or more feature
FRPs whose values represent the features of the data that answer our questions.
These are the FRPs whose values we most want to predict, and predictions of these
values will guide our decisions or actions.

The Kind of the data FRP determines the Kinds of the feature FRPs and thus
determine our predictions. The Kind of the data FRP is determined by the Kinds of
the component FRPs from which it is built, and the Kinds of the component FRPs –
which represent more understandable components of the random process or system –
are selected based on our knowledge of and assumptions about the system/process.
In that way, the Kinds and predictions that we use to answer our questions are based
on a model, a collection of assumptions about the Kinds of the component FRPs
and the relationships through which they are combined and interact.

Let’s look at two other classic examples. In each of these, we will do some simple
computations using the frp playground for the Combine and Derive steps from
Figure 6 while eliding over the details of how those computations work until the
following sections.

For the first example, suppose we have three balanced, six-sided dice � � �,
one red, one green, and one blue. We shake the dice together and roll The data we
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observe from this process are the numbers on the three dice, where we distinguish
the individual dice. The FRP representing these data has size 216, with values all
possible patterns of three rolls. Because the dice are balanced, the Kind of this FRP
looks like that shown in Figure 7.

We can see directly that the value of the FRP is composed from the values of
three FRPs, one for each of the three dice. Each component FRPs has Kind

⟨⟩

⟨� ⟩1

⟨� ⟩1

⟨� ⟩1

⟨� ⟩1

⟨	 ⟩1

⟨
 ⟩1

As is our habit and preference, we encode the values of these FRPs as numbers, and
here the mapping to numbers is direct – the number showing up on the dice. The
data then are three-dimensional tuples like ⟨1, 1, 1⟩ for ⟨�, �, � ⟩ and ⟨3, 2, 4⟩ for
⟨�, �, � ⟩.

Enter the playground by invoking frp playground at the terminal prompt, and
follow along.11 We start by constructing and viewing the Kind of a single roll, the 11When showing playground

input, text from # to the
end of a line is a comment
for your benefit. You should
not type or enter that.
Playground output is
sometimes omitted after
commands to indicate that
you should try the
command yourself.

components from which the data are built. Here, uniform returns a Kind with equal
weights on the specified values.

pgd> single_roll_kind = uniform(1, 2, ..., 6)

pgd> single_roll_kind # Will print the Kind above, output omitted

We then construct the FRPs for the three individual dice and combine them into the
data FRP Roll using the playground’s * operator, which is what we will call the
independent mixture12 of R, G, and B. 12Mixtures are discussed in

detail in Section 4.
pgd> R = frp(single_roll_kind)

pgd> G = frp(single_roll_kind)

pgd> B = frp(single_roll_kind)

pgd> Roll = R * G * B
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You can examine the Kind of this FRP

pgd> kind(Roll)

This is the Kind in Figure 7 with the dice rolls encoded as numbers.
Suppose we want to predict (i) the sum of the numbers on the three dice, and (ii) if

we see a sum bigger than 10, the minimum of the numbers on the three dice, Notice
that the second prediction target is conditional : it applies only when the particular
condition that the sum of dice is bigger than 10 is true. We need to build the feature
FRPs from the data FRP to express these quantities before we see the value of the
data, so our predictions of these values can guide our actions and decisions.

The playground pre-defines a variety of statistics, functions that take values
(tuples of numbers) as input and return to values (tuples of numbers) as output. In
particular, Sum and Min return the one-dimensional tuples (scalar) that compute the
sum and minimum of their input tuples:

pgd> Sum(1, 2, 3)

<6>

pgd> Min(4, 7, 2)

<2>

Transforming the FRP Roll with the statistic Sum gives a new FRP whose value is
the sum of the components in Roll’s value. In the playground, we write this as

pgd> DiceSum = Roll ^ Sum

where we think of ^ as an arrow connoting that the value of Roll is passed through
the statistic Sum to produce the new FRP DiceSum.

Our predictions of the sum of the dice are determined by kind(DiceSum), and
we compute our prediction of its value – its “risk-neutral price” or expectation13 – 13Both terms are discussed

in detail in Section 7.with the E operator:

pgd> kind(DiceSum)

,---- 0.0046296 ---- 3

|---- 0.013889 ----- 4

|---- 0.027778 ----- 5

|---- 0.046296 ----- 6
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|---- 0.069444 ----- 7

|---- 0.097222 ----- 8

|---- 0.11574 ------ 9

|---- 0.12500 ------ 10

<> -|

|---- 0.12500 ------ 11

|---- 0.11574 ------ 12

|---- 0.097222 ----- 13

|---- 0.069444 ----- 14

|---- 0.046296 ----- 15

|---- 0.027778 ----- 16

|---- 0.013889 ----- 17

`---- 0.0046296 ---- 18

pgd> E(DiceSum)

21/2

We can see from the Kind that the weights are symmetric around the midpoint of
the possible values, and the expectation is equal to that midpoint: 10.5.

Look also at the values of the FRPs themselves to see how Roll’s value is built
from R, G, and B and how DiceSum’s value is derived from Roll’s.

pgd> R

An FRP with value <4>

pgd> G

An FRP with value <6>

pgd> B

An FRP with value <6>

pgd> Roll

An FRP with value <4, 6, 6>

pgd> DiceSum

An FRP with value <16>

These are the values for the FRP that I drew from the Warehouse; your values will
likely be different.

We can draw new FRPs from the Warehouse of the same Kind as any FRP we
have using the clone function. (You may not get the same values in your output
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because you are obtaining a different FRP with the same Kind.) We can also draw
multiple such copies (like a demo in the market) with the FRP.sample function.

pgd> clone(Roll)

An FRP with value <6, 3, 2>

pgd> FRP.sample(10000, DiceSum)

|--------+-------+------------|

| Values | Count | Proportion |

|--------+-------+------------|

| 3 | 41 | 0.41% |

| 4 | 135 | 1.35% |

| 5 | 285 | 2.85% |

| 6 | 431 | 4.31% |

| 7 | 661 | 6.61% |

| 8 | 938 | 9.38% |

| 9 | 1198 | 11.98% |

| 10 | 1265 | 12.65% |

| 11 | 1267 | 12.67% |

| 12 | 1145 | 11.45% |

| 13 | 1027 | 10.27% |

| 14 | 712 | 7.12% |

| 15 | 452 | 4.52% |

| 16 | 279 | 2.79% |

| 17 | 116 | 1.16% |

| 18 | 48 | 0.48% |

|--------+-------+------------|

Compare these proportions withe Kind of DiceSum above, and try several (perhaps
larger) demos with FRP.sample.

For prediction target (ii), we want to compute the minimum of DiceSum’s compo-
nents but only on the condition that the sum is bigger than 10. For this, we use a
conditional constraint.14 In the playground, we specify a conditional constraint 14Conditional constraints are

discussed in detail in
Section 5.

with a | which is read as “given.” We express our constraint with

pgd> Roll | (Sum(__) > 10)
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where (Sum(__) > 10) is the condition (the parentheses are needed) and __ stands
for the value of the FRP on the left side of |. What you see when you enter this will
depend on whether your copy of Roll has value with sum bigger than 10. If it does,
you will see the same value as that of Roll; if not, you will see the empty FRP. Try
repeating clone(Roll) | (Sum(__) > 10) until you see both possibilities. Now, for
Roll – or a clone with sum bigger than 10 –

pgd> kind(Roll | (Sum(__) > 10))

and observe that the leaf nodes all satisfy the condition, i.e., all the values have sum
bigger than 10. Our feature FRP for (ii) is

pgd> M10 = Min(Roll | (Sum(__) > 10))

pgd> M10

pgd> kind(M10)

pgd> E(M10)

2.722

(Again, it is more interesting to use a clone of Roll that satisfies the condition;
otherwise, you just get the empty FRP and empty Kind.) Look at this Kind. Try
comparing it to Min(Roll | (Sum(__) > 16)) and Min(Roll | (Sum(__) > 5)).

Our second example is the (in)famous Monty Hall game, which goes as follows:

1. You are faced with three doors: left, middle, right.
2. Monty has selected a door at random and placed a prize behind it; the other

two doors have nothing behind them.
3. You choose a door.
4. Monty – the MC of our game – opens one of the other doors revealing that it

does not hide the prize.
5. He offers you a chance to switch doors.
6. You indicate whether you will switch your choice.
7. Your final door is opened. If you picked the prize, you win; otherwise, you lose.

Should you take Monty’s offer to switch?
To begin, consider the strategies available to you in this game. Each strategy

specifies: i. how you pick your initial door, and ii. whether you accept Monty’s offer
to switch from your initial door choice. For example, one strategy is (Pick the Left
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Door, Do not switch); another is (Pick the Door based on a size 3 FRP with equal
weights, Switch). We will analyze each distinct strategy separately, using one FRP
per strategy to represent the game’s outcome.

Once your strategy has been specified, the data from the game is the sequence
of decisions made at each stage. We build an FRP to represent these data. Those
decisions are:

1. Monty hides the prize behind the left, middle, or right door.

2. You select either the left, middle, or right door according to your strategy.

These are illustrated in Figure 8.

Monty hides
prize behind

Left Door, and you choose
Left Door

Middle Door
Right Door

Middle Door, and you choose
Left Door

Middle Door
Right Door

Right Door, and you choose
Left Door

Middle Door
Right Door

Figure 8. The decision tree leading to your initial door choice in the Monty Hall game. For
any given strategy, these are the choices that determine the outcome of the game.

We model this process with an FRP. First, we assign numeric values to the
outcome at each stage, with Left Door as 1, the Middle Door as 2, and the Right
Door as 3. Second, we assign weights based on the description of the problem. Note
that Monty has placed the prize behind a door picked at random with equal weight
on each door, and then you pick a initial door according to your particular strategy.
An FRP reflecting this interpretation thus has Kind shown in Figure 9. Here, we
have quantified your strategy as an arbitrary choice of positive weights ℓ,m, r and a
choice of whether to switch.

It turns out, as we will see later, that the choice of weights has no impact on our
analysis, so we will focus on comparing the “Don’t Switch” and “Switch” strategies.
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⟨⟩

⟨1⟩
⟨1, 1⟩ℓ

⟨1, 2⟩m

⟨1, 3⟩r

1

⟨2⟩
⟨2, 1⟩ℓ

⟨2, 2⟩m

⟨2, 3⟩r

1

⟨3⟩
⟨3, 1⟩ℓ

⟨3, 2⟩m

⟨3, 3⟩r

1

Figure 9. The Kind for the FRPs modeling the Monty Hall game. In each value list, the first
element is Monty’s door choice and the second element is your door choice. The
weights ℓ, m, and r are discussed in the text.

Puzzle 9. What does it say about your strategy if ℓ, m, and r are all equal? What
does it say about your strategy if ℓ = 1 = r but m is very, very, very large?

By the game’s structure, if you do not switch, then you only win if you chose the
prize initially; if you do switch, then you only win if you did not choose the prize
initially.

Puzzle 10. (Important!)
For each leaf node in Figure 9, fill in the table below indicating whether you

Win or Lose under the Don’t Switch and the Switch strategies.

Value Don’t Switch Switch

⟨1, 1⟩
⟨1, 2⟩
⟨1, 3⟩
⟨2, 1⟩
⟨2, 2⟩
⟨2, 3⟩
⟨3, 1⟩
⟨3, 2⟩
⟨3, 3⟩

This means that if the FRP’s value is denoted by ⟨dMonty, dYou⟩, then
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• If you do not switch, you win if and only if dMonty = dYou.

• If you do switch, you win if and only if dMonty ̸= dYou.

We can now transform the output of each FRP – one for Switch and one for Don’t

Switch using a statistic that gives a value 1 if you win and 0 if you lose in either
case. This gives us new FRPs with Kinds shown in Figure 10 for the no switch case We will see how to do this

in Section 2.(top) and the switch (bottom).

Don’t Switch: ⟨⟩

⟨0⟩2

⟨1⟩1

Switch: ⟨⟩

⟨0⟩1

⟨1⟩2

Figure 10. The Kind for the transformed FRPs in the no-switch and switch cases, respectively.
Notice that the weights in the two cases are different and that they do not depend
at all on ℓ, m, or r.

In the playground,15 we first load the module frplib.examples.monty_hall 15Here and later, text from #
to the end of a line is a
comment for your benefit.
You should not type that.

from frplib. This imports two pre-defined Kinds and a predefined statistic:

pgd> from frplib.examples.monty_hall import (

...> door_with_prize, chosen_door, got_prize_door_initially

...> )

The first two are Kinds, described as follows:

• door_with_prize models which door has the prize, giving equal weight to 1, 2,
and 3; and

• chosen_door models your initial door choice. It has arbitrary weights ℓ,m, r
on the three doors.

We can combine these with an independent mixture (the * operator) to get the Kind
in Figure 9:
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pgd> game_outcome = door_with_prize * chosen_door # Kind in Fig 9

This is the Kind of the FRP that represents the measured data in this game. We can
build the FRP in the playground that represents a game outcome, but we first need to
specify at least our strategy for choice of doors because those are given symbolically
in game_outcome. For instance:

pgd> Game = frp(outcome_by_strategy(left='1/3', middle='1/3', right='1/3'))

pgd> Game

An FRP with value <2, 3>

where outcome_by_strategy returns a version of game_outcome with the values of ℓ,
m, and r as specified. (We will see from the Kinds that this choice does not actually
impact our decision.)

The statistic got_prize_door_initially takes a pair ⟨dMonty, dYou⟩, where dMonty

is the door with the prize and dYou is the door you chose initially, and returns 1 (for
true) if dMonty = dYou or 0 (for false) otherwise. Transforming the data FRP for the
game with this statistic gives a feature FRP whose value represents whether you win
under the Don’t Switch strategy (or lose under the Switch strategy).

pgd> Game ^ got_prize_door_initially

An FRP with value <0>

which has Kind

pgd> dont_switch_win = game_outcome ^ got_prize_door_initially

pgd> dont_switch_win

,---- 2/3 ---- 0

<> -+

`---- 1/3 ---- 1

which is consistent with the Don’t Switch Kind in Figure 10 in that losing has
twice the weight of winning. Observe that we can transform a Kind with a statistic
in the same way that we can transform an FRP, and the results are consistent: the
Kind of a transformed FRP is the same as the transform of the FRPs Kind. So,
dont_switch_win equals kind(Game ^ got_door_prize_initially).

From got_prize_door_initially, we can define the complementary statistic
didnt_get_prize_door_initially
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pgd> didnt_get_door_prize_initially = Not(got_prize_door_initially)

This returns 1 when got_prize_door_initially returns 0 and vice versa. Trans-
forming Game (and its kind) with this statistic gives

pgd> Game ^ didnt_get_prize_door_initially

An FRP with value <1>

pgd> switch_win = game_output ^ didnt_get_prize_door_initially

pgd> switch_win

,---- 1/3 ---- 0

<> -+

`---- 2/3 ---- 1

which is consistent with the Switch Kind in Figure 10 Notice that both dont_switch_win

and switch_win are independent of your choice of ℓ, m, and r.
We can also activate FRPs of each Kind to simulate the outcome of many games.

pgd> FRP.sample( 12_000, dont_switch_win )

Summary of output values:

0 7929 (66.1%)

1 4071 (33.9%)

pgd> FRP.sample( 12_000, switch_win )

Summary of output values:

0 3954 (32.9%)

1 8046 (67.1%)

Here, we pushed the buttons on 12,000 FRPs of each Kind dont_switch and switch.
The results are clear cut: switching is the best choice.

1.5 The Big 3+1!

Almost everything we will do with probability theory – simulation, modeling, inference,
decision making, prediction – is built on four principle operations, which we call the
Big 3+1. Three of these operate on FRPs to produce new FRPs by connecting
output ports to input ports in several ways: (1) transforming the output of an
FRP by some algorithm (statistics), (2) generating random outcomes contingent on
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earlier outcomes (mixtures), and (3) accounting for partially observed information
(conditionals). The fourth operation takes an FRP and yields a prediction of the
FRP’s value (expectation). All these operations on FRPs all have directly analogous
operations on Kinds, and all of them are fundamental tools for building and analyzing
models of real systems.

1. Transforming with Statistics (Section 2)

A statistic is just a function that maps values (i.e., tuples of numbers) to values
(tuples of numbers). Whenever we want to transform, summarize, or extract a
feature from our data, we define a statistic that does the job. Whenever we
apply an algorithm to process or analyze our data, we are using a statistic.

Although it is a function from values to values, we can use a statistic to transform
an FRP or a Kind. We transform an FRP by applying the statistic to the FRPs
value, producing a new but related FRP. We transform a Kind by applying
the statistic to each possible value of the kind (i.e., the leaf nodes) and then
combining branches that map to the same value in the transformed tree, adding
their weights.

We use statistics to express and answer questions. The “Derive” step in
Figure 6 uses statistics (and conditionals) to build feature FRPs whose values
answer our questions. The statistic describes the steps we will take to extract
the desired information from the data, before those data are available. Each
feature FRP is derived by transforming the FRP representing the data using a
statistic that represents one of our questions. The values of these FRPs answer
those questions, and our goal is to predict those values (or compute the Kind)
as accurately as possible to guide our decisions and actions.

2. Building with Mixtures (Section 4)

We use mixtures to build a model by combining simpler components.
When a system can most easily be described in terms of its parts and how
they combine and interact, think about using a mixture. The “Combine” step
in Figure 6 uses mixtures (and statistics) to build the FRP for the data we
measure from FRPs that represent the simpler parts of the process or system.

In the Monty Hall example, we have seen one type of mixture, where the
different stages of the process do not interact (Monty chooses a door, you choose
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a door). This is called an independent mixture. More generally, though, the
different components will interact. For instance, what happens at one stage
will influence the outcomes of later stages. A general mixture reflects this by
passing the values produced at one stage into the next and collecting that entire
history.

3. Constraining with Conditionals (Section 5)

We use conditionals to update our knowledge and predictions with
new information. A conditional is a constraint telling us that some specific
observable condition is known to be true, either because we directly observed
that condition or because we are considering the hypothetical in which we
observe it.

When we constrain a Kind with a conditional, we simply erase all the branches
that are inconsistent with the condition. This gives us a new Kind, which in
canonical form simply re-normalizes the weights of the remaining branches by
the total weight of branches that are consistent with the condition.

If you want to update your knowledge or predictions for some known information,
use a conditional.

4. Predicting with Expectations (Section 7)

We use the risk-neutral price to compute our best prediction of an FRP’s
value, which we call its expectation. The expectation of an FRP reflects a
“typical” value that is “close” in some sense to what the FRP will produce.

From their definition as risk-neutral prices, expectations inherit many useful
properties, and from these properties, we can deduce how to compute the
expectation of an FRP from its Kind. Computing expectations is often the
target of our analysis because predictions can guide our behavior and decisions
in the context of the system we are studying.

By understanding how the Big 3+1 operate – transforming values, erasing branches,
combining stages, weighted averages – we can recognize and exploit these operations
even in more complicated calculations and contexts.
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After reading this section you should be able to:

• Describe what an FRP is and what each of the words fixed, random, and
payoff in the name refers to.

• Explain the structure of a valid FRP Kind.

• Invoke frp market and frp playground from the terminal prompt and
get basic help.

• Use the frp market to examine the values of FRPs of a given Kind.

• Guess to within a reasonable margin of error the proportions of each value
observed in a large demo of FRPs of a specified Kind.

• Explain in rough terms what the weights on an FRP’s Kind indicate.

• Explain in broad strokes how FRPs might be useful for modeling real
systems.

• List the Big 3+1 operations on FRPs and Kinds.

Checkpoints
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2 Transforming with Statistics

The data we collect from observing random processes is often high dimensional,
but our interest is usually in specific information derived from that data. A
statistic is a data processing algorithm, a function that takes tuples as input and
returns tuples as output. A statistic that accepts tuples of dimension n as input
and returns tuples of dimension n′ as output has type n→ n′, codimension n,
and dimension n′.

An FRP is transformed with a statistic by connecting the All output port of
the FRP to the input port of an empty FRP with an adapter that represents the
statistic. When the FRP is activated, its value is passed to the adapter which
applies the statistic to the value and activates the empty FRP with the result
as its value. This produces a new FRP whose value is obtained by applying the
statistic to the value of the original FRP.

We can also transform a Kind with a statistic: we first apply the statistic
to each value (leaf node) of the Kind and then combine branches that
map to the same value, adding their weights. For any compatible statistic,
the Kind of a transformed FRP is the transformed Kind of the FRP.

Key Take Aways

When we make observations or collect data of any sort for learning or discovery,
we usually do something with it – process it, analyze it, summarize it. We might
transform the data into a more useful form, compute summaries to help us understand
it, or extract features that answer our questions. The data-processing algorithms
that do this are collectively called statistics. A statistic is a function that takes a
value (tuple of numbers) as input and returns a value (tuple of numbers) as output.

An FRP represents data measured from some random system, and we can apply
a statistic to its value once it is activated to produce a transformed value. The result
is a transformed FRP whose value is the output from the statistic when given the
original FRP’s value as input.

We create a transformed FRP by connecting the All output port of the original
FRP to the input port of an empty FRP using an adapter like that shown in Figure
11. The adapter has circuitry to compute a specific statistic with the value of the
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Sum

Figure 11. An adapter used to transform an FRP by the Sum statistic in the playground,
which computes the sum of its input’s components. The value comes from the
original FRPs All output port through the bottom port on the adapter, is
transformed by the statistic, and is emitted through the top center port. The other
two ports on top simply copy the original value, allowing us to construct multiple
transforms or mixtures at the same time. Different statistics’ adapters look the
same but have different names and internal circuitry. That the adapter resembles
the letter ψ will be a useful mnemonic.

original FRP, when it is produced, as input. The original FRP’s output port is
connected to the bottom of the adapter and the transformed value is emitted from
the central output port on top, which is connected to the Input port of an empty FRP.
(The adapter’s other two output ports simply copy its input so that we can create
multiple transforms of the same original FRP.) When this connection is made, the
empty FRP is automatically reconfigured: its output ports are relabeled accordingly,
and its Kind display recomputed. The transformed FRP will be activated when the
original FRP is, making the original data available to the statistic. This process only
works with an adapter for a statistic that is compatible with the original FRP in the
sense that the statistic can accept all possible values produced by the original FRP.

In this section, we consider in detail the operation of transforming an FRP and its
Kind with a statistic. We will formally define what statistics are, their key properties,
and how we specify them. With many examples, we will illustrate how we use
statistics to express and answer questions, to transform FRPs and Kinds. And in
the playground, we will explore the many built-in statistics along with how to create
custom statistics, and we will learn how to build transformed FRPs and Kinds.

2.1 Statistics and Data Processing

Consider an FRP that represents five flips of a balanced coin. The values of this FRP
are 5-tuples like ⟨1, 0, 0, 1, 1⟩ or ⟨0, 1, 0, 0, 1⟩, where 0 and 1 stand for tails and heads.
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Suppose we are interested in the number of heads in those five flips. To answer this
question, we use the statistic Sum that takes a tuple as input and returns the sum
of its components. Sum(⟨1, 0, 0, 1, 1⟩) = 3 and Sum(⟨0, 1, 0, 0, 1⟩) = 2. Transforming
this FRP by Sum gives a new FRP with possible values 0, 1, 2, 3, 4, and 5. But
these two FRPs are connected. For instance, when the original FRP produces value
⟨1, 0, 0, 1, 1⟩, the transformed FRP produces value 3.

Puzzle 11. What are two more questions we might want to ask about this sequence
of five coin flips? Describe statistics that answer these questions. They should
accept a 5-tuple as input and return a tuple that answers the corresponding question
for the input.
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1st 12 2nd 12 3rd 12

1-to-18 Even Red Black Odd 19-to-36

2-to-1

2-to-1

2-to-1
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00
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F

G
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J
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Figure 12. Betting table for roulette. The pocket numbers are oriented with top to the left, so
what are called “columns” go from left to right. The labeled disks represent chip
placements corresponding to plays in Table 1.

Example 2.1 Roulette
A Nevada roulette wheel has 38 pockets along its edge that can catch and hold a
small metal ball. Each pocket has a color and a unique number: two pockets are
colored green with numbers 0 and 00 and the remaining pockets are numbered 1
through 36, with half colored black and half colored red.

A game of roulette begins with players making their bets by placing chips
worth some amount of money on a betting table that displays an array of
numbered, colored squares and surrounding, labeled tabs, as shown in Figure 12.
Each chip placed specifies a set of pockets (based on where the chip is placed)
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Play Winning Pockets Payoff Sample

Even Money A set of eighteen numbers: red, black, 1 to 1 A, B

even, odd, 1–18, 19–36

Dozen One of 1–12, 13–24, 25–36 2 to 1 C

Column Twelve numbers in one “column” 2 to 1 D

Six Line Six consecutive numbers (two “rows”) 5 to 1 E

Top Line 00, 0, 1, 2, 3 6 to 1 F

Corner Four numbers that share a corner 8 to 1 G

Street Three consecutive numbers in a “row” 11 to 1 H

Split A pair of adjacent numbers 17 to 1 J

Straight A single number 35 to 1 K

Table 1. Common bets in roulette. Each such bet wins when the ball lands in a particular set
of pockets. If a player loses a play, the amount bet is forfeit to the “house.” If the
player wins, then the casino returns the bet plus a payoff that is a multiple of the
amount bet. The last column gives the labels of chip placements in Figure 12 that
exemplify the play.

and an amount bet (based on the value of the chip). A roulette bet is called a
“play” in the official lingo. The players bet and then the ball is released into the
spinning wheel. The ball rolls around the wheel and eventually comes to rest in
one of the pockets. A play whose set of pockets includes the one with the ball
wins; the player keeps the amount bet and receives a payoff that is a multiple of
the amount bet, depending on the play. A play whose set of pockets does not
include the one with the ball loses, and the player forfeits the amount bet.

On the betting table in Figure 12, squares numbered 1 through 36 are colored
red or black and the tabs 0 and 00 are colored green, matching the wheel. The
remaining regions specify a set of pockets like “Red” for all the red pockets or
“2nd 12” for pockets 13–24. The basic plays are described in Table 1 in order of
increasing payoff. For instance, a $1 Top Line play will win $6 if the ball stops
in pockets 00, 0, 1, 2, or 3 or will lose $1 otherwise. As the number of winning
pockets for a play decreases, the payoff increases. The Sample column in the
table indicates which chip placements in Figure 12 match that play.

In the playground, load the example code from frplib as follows:
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pgd> from frplib.examples.roulette import roulette

This imports an object roulette that has everything we will need for this
example. First, calling roulette as a function with no arguments returns a fresh
FRP representing a single spin of the roulette wheel.

pgd> roulette()

An FRP with value <21>

As usual, we assign a number to each of the possible values, using the pocket
number except for pocket 00 to which we assign the value -1. The Kind of this
FRP – the Kind for a single spin of the wheel – is available as roulette.kind.

pgd> roulette.kind

Looking at the weights, this Kind assumes that the wheel is symmetric, with no
preference given to any pocket over another.

To model a bet on a single spin of the wheel, we build and name one such
FRP:

pgd> R = roulette()

This FRP is fresh, and before we activate it (by examining its value), it value
– the pocket in which the ball stops – is uncertain. R represents the data we
measure for a single spin, all the outcomes we care about in the game are derived
from it. So R is what we called the “data FRP” in the previous section. We
can use the function Kind.equal to check that roulette.kind is the same as
kind(R):

pgd> Kind.equal(roulette.kind, kind(R))

True

The questions driving our analysis are not about the value of R itself but
about the outcome of various plays. What is our return from a bet on Red? On
Top Line? Which of the standard plays, if any, is best? Worst? (We might also
wonder what our best betting strategy is for choosing plays on multiple spins, a
question we take up later.) We can represent each such question with a statistic
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that takes as input a value of R and returns an answer. For instance, all of the
standard plays are available through the roulette object in the playground, e.g.,

pgd> roulette.red

A Statistic 'red' that expects 1 argument (or a tuple of that

dimension) and returns a scalar.

pgd> roulette.top_line

A Statistic 'top_line' that expects 1 argument (or a tuple of that

dimension) and returns a scalar.

pgd> roulette.straight(16) # 16 is the number you're betting on

A Statistic 'straight_16' that expects 1 argument (or a tuple of that

dimension) and returns a scalar.

All of these act as functions that take a pocket number and return the value of a
$1 bet if the ball stops in the given pocket.

pgd> roulette.red(3)

<1>

pgd> roulette.red(4)

<-1>

pgd> roulette.top_line(-1)

<6>

pgd> roulette.top_line(17)

<-1>

pgd> s16 = roulette.straight(16)

pgd> s16(16)

<35>

pgd> s16(17)

<-1>

For the straight play, we could call it directly roulette.straight(16)(17), but
for clarity, we instead name and store the statistic in a variable s16 and use that.

If we are interested in a bet of a different amount, we can scale the statistics.
When we multiply a statistic by a number, we get a new statistic. For example:
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pgd> r25 = 25 * roulette.red

pgd> s16_10 = 10 * s16 # == 10 * roulette.straight(16)

pgd> r25(3)

<25>

pgd> r25(4)

<-25>

pgd> s16_10(16)

<350>

pgd> s16_10(17)

<-10>

Notice that 10 * s16(16) is the same value as (10 * s16)(16) and as s16_10(16),
but s16(16) is a value that we scale, whereas 10 * s16 is a statistic that we
evaluate at 16.

The statistic s16_10 encapsulates the question: what is the return of a $10
straight play on pocket 16. We can use this statistic to transform the FRP R.

pgd> W16_10 = R ^ s16_10

The value of this FRP is the return on a $10 straight play on 16 with the
spin represented by the value of R. Notice how the values of R and W16_10 are
connected by the statistic s16_10.

pgd> R

An FRP with value <23>

pgd> W16_10

An FRP with value <-10>

pgd> s16_10(23)

-10

Note that in the playground, there are two equivalent and interchangeable ways
to transform an FRP:

pgd> W16_10 = R ^ s16_10

pgd> W16_10 = s16_10(R)
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The second matches the mathematical notation we will use downstream; it
captures the idea that we are taking the value of R as input to the statistic.
Although s16_10(R) looks like we are calling the function with R as the argument,
that is just a metaphor for a higher-level operation.

For each of the transformed FRPs representing the value of a play, we can
compute its Kind, e.g.,

pgd> kind(W16_10)

,---- 37/38 ---- -10

<> -|

`---- 1/38 ----- 350

How much is this FRP worth? We compute its “risk-neutral price” with the E

operator:

pgd> E(W16_10)

-0.5263157894736842

which equals −10/19. Thus, our predictions tell us that owning this FRP is a
loss; someone would have to pay you $10/19 (about 53 cents) to accept this.

Puzzle 12. Compute a transformed FRP for one of each of the standard plays
listed in Table 1, look at its Kind and expectation. What do you conclude?

Note that for plays like Column and Corner, we specify the particular play
by giving the lowest numbered pocket. For example, the following are statistics
for a $1 play: roulette.column(2) for the middle column starting with pocket
2, roulette.corner(8) for the four pockets 8, 9, 11, 12. For Split, you need
to specify the adjacent positions in order, e.g., roulette.split(24,27) or
roulette.split(23,24). Call help(roulette.split) etc. for details.

What if we want to model a bet that combines multiple standard plays? For
instance, a combined $10 even play, a $5 corner play on (25, 26, 28, 29), a $20
straight play on 4, and a $50 column play on the second column corresponds to
the following statistic:

pgd> comb = 10 * roulette.even + 5 * roulette.corner(25) +

20 * roulette.straight(4) + 50 * roulette.column(2)
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pgd> comb(26)

<130>

The corresponding feature FRP is comb(R). Look at its value and relate it to
your value of R. It has Kind

pgd> kind(comb(R))

,---- 13/38 ---- -85

|---- 10/38 ---- -65

|---- 1/38 ----- -40

|---- 1/38 ----- -20

<> -+---- 5/38 ----- 65

|---- 5/38 ----- 85

|---- 1/38 ----- 110

|---- 1/38 ----- 130

`---- 1/38 ----- 655

and risk-neutral price E(comb(R)) ≈ −4.47, so we predict that on average you
would lose about $4.47 per attempt on this combined play.

The previous example is illustrative in several ways. First, it shows how we
observe data from a system and extract information from it to answer our questions.
Each statistic, like roulette.even or roulette.straight(16), takes the data as
input and computes an answer to one question.

Second, it shows how we do our analysis while the FRPs are still fresh. If we had
the data in hand, we could simply apply the statistic to compute an answer, and there
would be nothing to predict. This is why we transform the data FRP. A feature FRP
like roulette.even(R) is only activated when R is activated, but we can compute its
Kind and thus predict its value. If we are choosing among various plays, it does us
no good to answer the question after betting is closed. These predictions are made
before all the data is observed – and the answers to our questions determined – so
that we can make decisions or take actions before it is too late.

Third, it reveals how our model drives our conclusions. A model is a collection of
assumptions about the system under study. For roulette, our model is that a spin
of the wheel gives no preference to any pocket over any other. This assumption is
empirically checkable, and it is aligned with casinos’ incentives, else gamblers could
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seek out and exploit any systematic deviation from symmetry.16 The assumption 16This has indeed happened.
gives us the Kind of R which in turn determines the Kind of the feature FRPs
like roulette.even(R). If the assumption were poor, we could update our model
accordingly with no other changes in our procedure. Why not just focus on modeling
the outcome of a particular bet? One reason is that we often have multiple questions
to answer. A more important reason is that we usually understand better how to
model the data – or the components that constitute it – than we do the derived
features.

Data FRP

Questions

Feature FRPs

AnswersModel Component FRPs

PredictCombine

Derive

Figure 13. Update to Figure 6 that shows the role of the model, motivating questions, and
predictions of their answers. The dashed arrow indicates that some feature FRPs
may be defined in terms of selected components and thus may be activated before
the data FRP is.

Figure 13 updates the schematic in Figure 6 to show the role of the model, our
motivating questions, and prediction of the answers to those questions. The Model is
a collection of assumptions that we use to build the Component FRPs by specifying
their Kinds. Using statistics and mixtures, we Combine the components into an FRP
that represents all the data that will be observed from the system, the Data FRP.
The Questions we want to answer with these data focus our attention on specific
features of the data, and we transform the Data FRP with statistics (along with
conditionals) to build the FRPs that represent these features. In many cases, we
observe partial information about the features as the system evolves. The dashed
arrow in the Figure indicates that some Feature FRPs may also be expressed as
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transforms of selected Component FRPs and thus can activate before the Data FRP
does. We then use expectations to predict the values of the Feature FRPs and so
predict the Answers to our Questions.

The Roulette example illustrates most of these pieces, except the data are simple
enough that there is only a single Component FRP, which equals the Data FRP.
Our model is that all 38 pockets have an equal weight, from which we derive the
component’s Kind. Our questions center on the performance of various plays, so our
statistics map the pocket number to the return on those plays. The Feature FRPs
represent the value of those plays on the actual bet, and we predict their value by
finding their Kind and expectation (“risk-neutral price”).

If instead we had studied two spins of the Roulette wheel, we would use our earlier
model to describe each spin’s Kind but would extend the model with an assumption
about how the two spins are related. (Does the first spin give you information to
predict the second spin?) There would be two Component FRPs, one per spin, and
our questions would focus on overall performance for pairs of plays on the two spins
(including not betting). With even more spins, there are more components (one per
spin), more interactions among them, more possible betting strategies reflected in a
broader range of statistics and Feature FRPs to consider.

Definition 1. A statistic is a function that takes values in some set as inputs
and returns a value as output. We require that the dimension of the output value
depends only on the dimension of the input value.

If a statistic accepts values of dimension n and given such returns a value
of dimension n′, we say that the statistic has type n → n′. We call n the
codimension∗ and n′ the dimension. If a statistic has dimension 1 for all valid

∗Pronounced “ko-dimension”.
Some call this arity.

inputs, we say that it is a scalar statistic. It is possible for a statistic to have
more than one distinct type if it can accept input tuples of various lengths, but a
statistic must have at most one type for each codimension.

We will typically use Greek letters to denote statistics, especially ψ (“psi”,
pronounced like sigh), φ (“phi” pronounced fee or fi), ξ (“xi”, pronounced zigh or
ksee), and ζ (“zeta”).

Here, the word value has a specific meaning: a tuple (aka list). We almost always
use numeric values – tuples of numbers – but from time to time we will consider
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alternative types, like Booleans.17 If a value is a list of dimension 1, we elide any 17To avoid repeating this
qualification, we will often
focus on the leading case in
the text and refer to values
as tuples of numbers.

distinction between the tuple and the item it holds.
A particular statistic may or may not have a single unique codimension. For

example, a statistic that takes a point in the plane ⟨x, y⟩ and returns its distance
from the origin

√
x2 + y2 has codimension 2 and dimension 1, so is of type 2 → 1. A

statistic that maps two points in space ⟨x1, y1, z1, x2, y2, z2⟩, encoded as a 6-tuple, to
the midpoint between them

〈
x1+x2

2 , y1+y22 , z1+z22

〉
has type 6 → 3. However, many

statistics naturally accept tuples of various lengths. For instance, the statistic that
reverses a list, mapping ⟨x1, x2, . . . , xn⟩ to ⟨xn, xn−1, . . . , x1⟩, has type n → n for
every integer n ≥ 0, and the statistic that computes the maximum of the components,
mapping ⟨x1, x2, . . . , xn⟩ to max(x1, x2, . . . , xn), has type n → 1 for every integer
n ≥ 0.18 18We define the maximum of

an empty tuple to be −∞.

Notational Convention. For a function ψ that takes an n-tuple as input, it is
convenient to be flexible with how we write its arguments when evaluating the
function.

If v = ⟨v1, . . . , vn⟩, we treat the following as equivalent and interchangeable:

ψ(⟨v1, . . . , vn⟩) ψ(v) ψ(v1, . . . , vn)

using whichever form is clearest and most convenient at any moment. This is
discussed in detail in Section F.7 of Interlude F.

When a statistic with codimension n is given as input an n-tuple, we require
that it always return a tuple of some common dimension n′. This ensures that all
the values of an FRP of dimension n, when passed to the statistic, give tuples of a
fixed dimension, which can be the output of an FRP of dimension n′. Sometimes in
practice, we meet this requirement by “padding” the output tuple with items that
bring it to the right length without changing our interpretation of the value.

Definition 2. An FRP X and a statistic ψ are compatible if
1. the dimension of X is a codimension of ψ, and
2. every possible value of X is a valid input to ψ.

This means that the value of X can be used as input to ψ.
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If an FRP and a statistic are compatible, it means that we can attach the All
output port of the FRP to the statistic’s adapter like that illustrated in Figure 11.
(If they are not compatible, the connecting cables will not fit, making attachment
physically impossible.) We can then plug the output of the adapter to an empty
FRP, creating a new transformed FRP.

Definition 3. If X is an FRP and ψ is a compatible statistic, then X transformed
by ψ – denoted by ψ(X) – is the FRP that produces value ψ(⟨v1, . . . , vn⟩) when
X produces value ⟨v1, . . . , vn⟩.

If X has dimension n and ψ has type n→ n′, then ψ(X) has dimension n′.

Observe that the types compose. If X has type 0 → n and ψ has type n→ n′, then
ψ(X) has type 0 → n′.

The notation ψ(X) is intended to evoke the physical transformation we are
making on the FRP, passing the value produced by X through ψ. We are not literally
evaluating the function ψ with argument X but rather co-opting the notation of
evaluation to operate on the FRP using the function. Think of X in this expression
as a “hole” that we will fill with X’s value when it becomes available, passing that
value to ψ. In the playground, you can use this notation psi(X) or the ^ operator,
X ^ psi, as you prefer.

For simple functions like ψ(x) = x2, φ(x) = 4x − 3, ζ(x1, x2) = −x1x2, or
ξ(x) = e−2x, we often write the transformed FRPs with the statistic directly inlined,
just writing the expression for the statistic in terms of the FRP itself, e.g., X2, 4X−3,
−X1X2, or e−2X . This is used for simple arithmetic, projections, and conditions19 19For projections, see

subsection 2.4 below and
Section F.7. For conditions
and indicators, see Sections
5 and F.4. Anonymous
functions in Section F.3 are
also relevant.

and is convenient because we use such transformations so frequently.

Inlined Statistics. When working with a transform of an FRP X by a simple
statistic, we often inline the statistic, writing the expression for the statistic in
terms of X instead of an input parameter. This obviates the need to name the
simple statistics we use.

We have already seen several examples of transformed FRPs. In Example 2.1,
each roulette play is a statistic ψ of type 1 → 1 that takes a pocket and returns the
monetary value of the play (negative for a loss). If R is the FRP representing the
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pocket the ball lands in, then ψ(R) represents the value of the play. Of course, once
R is activated – that is, the ball lands – we know the value of the play, so our goal is
to predict the value while R is still fresh, that is, before the spin.

In the previous section, we constructed the transformed FRP DiceSum that
represents the sum of the values on three rolled dice. This is the transform of the
3-dimensional FRP Roll, representing the values of the three dice, by the statistic
Sum of type 3 → 1. (Sum is built in to the playground, so we give it a name rather
than using a generic variable like ψ or φ.) Here are a couple more examples.

Example 2.2. C is a cube with side length 2, aligned with the coordinate axes,
and centered on the origin. Let P be the FRP of dimension 3 whose value
represents a random point from among the corners of C, the midpoints of C’s
edges, the centers of C’s faces, or the center of C (the origin). How far is the
point from the origin? For this question, we define the statistic φ of type 3 → 1

that computes the distance in space from its input to the origin:

φ(x, y, z) =
√
x2 + y2 + z2.

The FRP φ(P ) has dimension 1 and size 4, with possible values
√
3,

√
2, 1, and

0. Its value answers our question.

Example 2.3. An Olympic archery target has 10 equal width rings (two in each
of five colors: white, black, blue, red, gold). Any shot outside those rings counts
as a miss, scoring 0 points. Otherwise, a shot is scored 1, 2, . . . , 10 by the region
it hits, with 1 for the outermost white ring and increasing towards the center
(gold). An archer shoots 6 arrows in a round.

Let A be the 6-dimensional FRP that represents the shots of one archer
during a single round. The values of A are tuples whose entries are the archer’s
scores on the six successive shots. So, ⟨2, 4, 10, 9, 7, 10⟩ and ⟨5, 6, 0, 1, 3, 10⟩ are
two possible values of A.

We define three relevant statistics of type 6 → 1.
• ψ is the archer’s total score during the round;
• φ is the number of times the archer hits the target; and
• ζ is the number of times the archer hits the center-most “bull’s eye” region
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Here, we will define theses statistics in two ways to make their meaning clearer –
in code and mathematically. Look at both definitions for each function to see
how they are doing the same thing.

In Python, we define these statistics like ordinary functions, except apply a
decorator decorator (@scalar_statistic) before the definition so frplib knows
they are statistics, which gives them useful attributes and convenient operations.

• ψ

@scalar_statistic(codim=6)

def psi(v)

"Archer's total score in one round."

return Sum(v)

• φ

@scalar_statistic(codim=6)

def phi(v)

"Archer's number of hits in one round."

hits = 0

for shot in v:

if shot > 0:

hits += 1

return hits

• ζ

@scalar_statistic(codim=6)

def zeta(v)

"Archer's number of bull's eyes in one round."

bulls_eyes = 0

for shot in v:

if shot == 10:

bulls_eyes += 1

return bulls_eyes
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Mathematically, we use indicators, described in Section F.4, and summation
notation

∑6
i=1 xi = x1 + · · ·+ x6. Our three statistics are defined as

• ψ(v) =
∑6

i=1 vi;

• φ(v) =
∑6

i=1 {vi > 0}, where the indicator {vi > 0} equals 1 if vi > 0 or 0
otherwise; and

• ζ(v) =
∑6

i=1 {vi = 10}, where the indicator {vi = 10} equals 1 if vi = 10

or 0 otherwise.

A sum like
∑6

i=1 vi is a mathematical analogue of a loop where we accumulate
the sum one term at a time, giving v1 + v2 + · · ·+ v6. A Boolean expression in
Iverson braces, like {vi > 0}, is a mathematical analogue of an if-then-else. If
vi > 0, then return 1 else return 0.

The transformed FRPs ψ(A), φ(A), and ζ(A) represent the total score, the
number of hits, and the number of bull’s eyes the archer shoots for the round.
All three depend on the value of A and are activated as soon as A is, when the
round is complete.

In a real round of archery, the archer takes one shot at a time, so at various
points during the evolution of the random process we are observing, we have
partial information about the data. We might want to use this partial information
in practice. For instance, we might bet on the Archer’s total score having observed
the first three shots of the round.

This relates to the component FRPs in Figure 13. Here, the component
FRPs are those representing the individual shots, call them A1, A2, . . . , A6. Each
has dimension 1 and size 11, and A is a combination (specifically a mixture as
described in Section 4) of these six FRPs. The Ai’s are activated at different
times: A1 after the first shot, A2 after the second shot, and so on. And A is
activated when all six have been activated.

We can construct an FRP, call it T , that represents the archer’s first three
shots. T is built from A1, A2, A3 and activated when those three are activated.
Consider a statistic ξ of type 3 → 1 that computes the total score from three
shots. The transformed FRP ξ(T ) represents the archer’s total score after three
shots. This is a feature FRP in Figure 13 that depends on only some of the
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component FRPs; the dashed arrow in the figure highlights the possibility of
such dependence allowing some feature FRPs to be activated before all the data
is available.

Notice also that ξ(T ) = ξ̃(A) where the statistic ξ̃ of type 6 → 1 where
ξ̃(v) = ξ(v1, v2, v3). So the relationship between the data FRP and the feature
FRPs in Figure 13 still hold, but often we get partial information while the
random process is still evolving.

2.2 Transformed Kinds

When we transform an FRP with a statistic, we get a new FRP whose kind is related
to the Kind of the original FRP. Here, we define how to transform a Kind by a
statistic. If K is a Kind and ψ is a statistic, we will denote the transformed Kind by
ψ(K), analogously to our notation for a transformed FRP.

It is essential that our definition of a transformed Kind be consistent with the
definition of a transformed FRP in the sense of the following diagram:

FRPs FRPs

Kinds Kinds

kind

ψ

kind

ψ

The nodes in this graph represent the set of FRPs and the set of Kinds; the edges
represent operations that map one set into the other. The horizontal edges (labeled ψ)
represent transformation by the statistic ψ; the vertical edges (labeled kind) represent
mapping an FRP to its Kind. Every path along the direction of the arrows represents
a composition of these two operations. There are two paths in this graph20 from 20See Section F.5. We call

this graph a commutative
diagram.

the top left to the bottom right. We can first transform an FRP by a statistic ψ
then compute its kind, or we can compute the Kind of an FRP and then transform
that Kind by the statistic ψ. We require that both paths lead to the same result. In
particular, if X is an FRP then

kind(ψ(X)) = ψ(kind(X)). (2.1)

The Kind of the transformed FRP equals the transform of the original FRPs Kind.
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We can take equation (2.1) as the definition of a transformed Kind, yet it is also
helpful to have a more operational definition. The key observation is that the possible
values of a transformed FRP ψ(X) are obtained from the possible values of X by
applying ψ. So, we start by applying ψ to the value at every leaf node in kind(X).
However, it is possible that two distinct values of X map to the same value, so these
two branches in kind(X) would map to a single branch in kind(ψ(X)).

If two distinct values v and v′ of X map to the same value u = ψ(v) = ψ(v′),
then the weights of v and v′ should add into the weight of u for the Kind of ψ(X).
To see why this is true, think about our experiments in Section 1.3. If we ran a demo
with a large number of clones of X and transformed them by the statistic ψ, then
every time either v or v′ appears as a value of X, we get the value u for ψ(X). So
the proportions for v and v′ add into the proprtion for u in what we see. This gives
us a procedure for computing the transformed Kind: apply ψ to the values at the
leaf nodes of kind(X) and then combine the branches that map to the same value,
adding their weights.

Definition 4. If X is an FRP with Kind K and ψ is a compatible statistic, then
the transformed Kind, denoted ψ(K), equals the Kind of the transformed FRP
ψ(X), as in equation (2.1).

To find ψ(K), we create a tree where
1. the leaf nodes have values in the set of ψ(v) for v in the values of K; and
2. the weight associated with a value u is the sum of weights in K for all values
v with u = ψ(v).

That is, we first apply the statistic ψ to each value of K and then combine
branches that map to the same value, adding their weights.

Figures 14 and 15 show simple examples of this process, in two steps. First, we
apply the statistic to the value at each leaf node, showing the new value for each leaf
across the blue bar, which represents the action of the statistics adapter. Second, if
these transformed values are equal for any leaf nodes, we combine their branches and
add their weights, giving the transformed Kind shown on the right of each Figure. In
the first Figure, several values map to each of ⟨1⟩ and ⟨2⟩, and these branches are
combined. In the second Figure, each of the original values maps to a distinct value,
so no branches are combined.
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⟨⟩

⟨0, 0, 0⟩ ⟨0⟩1
8

⟨0, 0, 1⟩ ⟨1⟩1
8

⟨0, 1, 0⟩ ⟨1⟩1
8

⟨0, 1, 1⟩ ⟨2⟩1
8

⟨1, 0, 0⟩ ⟨1⟩1
8

⟨1, 0, 1⟩ ⟨2⟩1
8

⟨1, 1, 0⟩ ⟨2⟩1
8

⟨1, 1, 1⟩ ⟨3⟩1
8

⟨x, y, z⟩ 7→ x+ y + z

⟨⟩

⟨0⟩1
8

⟨1⟩3
8

⟨2⟩3
8

⟨3⟩1
8

Figure 14. The transform of a three-dimensional Kind by the statistic that maps input
⟨x, y, z⟩ to x+ y + z, shown in two steps. First, we apply the statistic to the
values of the original Kind. Second, we combine branches that map to the same
value, adding their weights. In this case, each original value maps to a distinct
value, so no branches are combined.

⟨⟩

⟨−1,−15⟩ ⟨−16⟩2
30

⟨−1,−5⟩ ⟨−6⟩3
30

⟨0, 10⟩ ⟨10⟩15
30

⟨9, 12⟩ ⟨21⟩1
30

⟨9, 20⟩ ⟨29⟩4
30

⟨9, 32⟩ ⟨31⟩5
30

⟨x, y⟩ 7→ x+ y

⟨⟩

⟨−16⟩2
30

⟨−6⟩3
30

⟨10⟩15
30

⟨21⟩1
30

⟨29⟩4
30

⟨32⟩5
30

Figure 15. The transform of a two-dimensional Kind by the statistic that maps input ⟨x, y⟩ to
x+ y, shown in two steps. First, we apply the statistic to the values of the original
Kind. Second, we combine branches that map to the same value, adding their
weights.
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The Kinds in both these Figures have width 1. The same idea applies to any Kind:
apply the statistic to the values and then combine branches that map to the same
value. But if the Kind has width bigger than 1, we first convert it to “canonical form”,
– which is always a width 1 tree – as described in Section 3 before transforming it.

Example 2.4. In Example 2.2, we considered an FRP that represents a random
point chosen from the corners, edge midpoints, face centers, or center of a cube of
edge-length 2 centered on the origin. We then defined the transform of this FRP
by the statistic that computes the distance of a point to the origin. Assuming
that the original FRP has a Kind with equal weights on every branch, we compute
the transformed Kind as shown in Figure 16. This takes the two steps described
earlier: apply the statistic to the values at every leaf node and then combine
branches that map to the same value, adding their weights.

The result is consistent with our intuition. There are 8 corners, 12 edges, 6
faces, and 1 center, and the Kind shows that a large demo of the FRPs with
the transformed Kind will give the distances from the origin to corner, edge
midpoint, face center, and center in just these proportions.

Example 2.5. The Kind in Figure 7 describes FRPs that represet the roll of
three, balanced, six-sided dice. Consider two questions: (i) What is the largest
value among the dice? (ii) How many of each value did we see in the roll? We
define statistics to capture these questions. Each will take a 3-tuple as input
giving the values of the red, green, and blue dice. For (i), we want to compute
the maximum of the three dice; this is a built-in statistic in the playground,
called Max, so we just use that name here with type 3 → 1.

For each leaf node in Figure 7, we compute the maximum of the dice. Because
there are only 6 possible maximums and 216 leaf nodes, multiple branches will
have the same maximum. Combining those branches and adding their weights
gives us the Kind:
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⟨⟩

⟨0, 0, 0⟩ ⟨0⟩1

⟨0, 0,−1⟩ ⟨1⟩1

⟨0, 0, 1⟩ ⟨1⟩1

⟨0,−1, 0⟩ ⟨1⟩1

⟨0, 1, 0⟩ ⟨1⟩1

⟨−1, 0, 0⟩ ⟨1⟩1

⟨1, 0, 0⟩ ⟨1⟩1

⟨0,−1,−1⟩ ⟨
√
2⟩1

⟨0,−1, 1⟩ ⟨
√
2⟩1

⟨0, 1,−1⟩ ⟨
√
2⟩1

⟨0, 1, 1⟩ ⟨
√
2⟩1

⟨−1, 0,−1⟩ ⟨
√
2⟩1

⟨−1, 0, 1⟩ ⟨
√
2⟩1

⟨1, 0,−1⟩ ⟨
√
2⟩1

⟨1, 0, 1⟩ ⟨
√
2⟩1

⟨−1,−1, 0⟩ ⟨
√
2⟩1

⟨−1, 1, 0⟩ ⟨
√
2⟩1

⟨1,−1, 0⟩ ⟨
√
2⟩1

⟨1, 1, 0⟩ ⟨
√
2⟩1

⟨−1,−1, 1⟩ ⟨
√
3⟩1

⟨−1, 1,−1⟩ ⟨
√
3⟩1

⟨−1, 1, 1⟩ ⟨
√
3⟩1

⟨1,−1,−1⟩ ⟨
√
3⟩1

⟨1,−1, 1⟩ ⟨
√
3⟩1

⟨1, 1,−1⟩ ⟨
√
3⟩1

⟨1, 1, 1⟩ ⟨
√
3⟩1

⟨−1,−1,−1⟩ ⟨
√
3⟩1

⟨x, y, z⟩ 7→
√
x2 + y2 + z2

⟨⟩

⟨0⟩1

⟨1⟩6

⟨
√
2⟩12

⟨
√
3⟩8

Figure 16. Computing the transformed Kind in Example 2.4.
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⟨⟩

⟨1⟩1

⟨2⟩7

⟨3⟩19

⟨4⟩37

⟨5⟩61

⟨6⟩91

There is one branch with maximum 1 (all three dice equal to 1), seven with
maximum 2 (three with a 2 and two 1s, three with a 1 and two 2s, and one with
three 2s), and so on up to 91 branches with a maximum of 6.

For (ii), our statistic ξ will have type 3 → 6, returning a tuple v where vi
counts the number of dice with value i. We can define ξ mathematically by

ξ(r, g, b) =
〈
{r = 1}+ {g = 1}+ {b = 1}, {r = 2}+ {g = 2}+ {b = 2},

{r = 3}+ {g = 3}+ {b = 3}, {r = 4}+ {g = 4}+ {b = 4},

{r = 5}+ {g = 5}+ {b = 5}, {r = 6}+ {g = 6}+ {b = 6}
〉
.

Here, terms like {g = 3} are indicators , as described in Section F.4. For instance,
{g = 3} is 1 when g = 3 and 0 otherwise. The term in the ith component of the
tuple returned by ξ counts the number of dice equal to i.

We can define this statistic in the playground by defining this as a Python
function. Again, we use a @statistic “decorator” to convert the function to a
Statistic object with useful properties.

@statistic(codim=3, dim=6)

def xi(r, g, b):

"Counts the number of dice (r, g, and b) with each value."

return [(r == i) + (g == i) + (b == i) for i in irange(1,6)]

We can pass xi individual values for the three dice or a single 3-tuple, and using
the FRP Roll from earlier, we can compute the transformed FRP xi(Roll) and
its Kind with either kind(xi(Roll)) or xi(kind(Roll)) by equation (2.1).
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2.3 Examples

In this section, we develop two extended examples that use statistics in interesting
ways: to express and answer questions about the objects produced by a random
process and as procedures for estimating the specification of a random system whose
specification is unknown. These examples also illustrate how we use FRPs and Kinds
to model random systems. Keep an eye out throughout for the patterns in Figure 13.

Random Graphs. A graph is a mathematical structure that describes pairwise
relationships among various entities. See Interlude F examples F.2.18 and F.2.19 for
an overview and Interlude G for a detailed discussion. A graph has a set of nodes
representing the entities and a set of edges representing the relationships between
pairs of entities. Here, we will restrict our attention undirected, simple graphs with no
loops. This means that an edge connecting a pair of nodes has no preferred direction
(undirected); that there can be at most one edge between any two nodes (simple); and
that edges can only connect distinct nodes (no loops). Our nodes here are integers
from 1 up to the total number of nodes, and so an edge can be specified by a set of
two nodes, {i, j}, indicating that an edge connects nodes i and j in the graph.

We will construct FRPs that represent random generated graphs in this family
and use statistics to interrogate and predict properties of these graphs. To load the
tools we will need into the playground, enter

pgd> from frplib.examples.random_graph import *

at the terminal prompt. The * loads all the available tools; you can also list specific
functions to import if you prefer. To get details on what is available in the module,
enter

pgd> import frplib.examples.random_graph

pgd> help(frplib.examples.random_graph)

Follow along with the computations as we proceed.
The function random_graph is an FRP factory ; given a specification, it returns an

FRP representing an appropriate random graph. In particular,21 random_graph(n, p) 21These are called
Erdös-Renyi random graphs.returns a fresh FRP for a random graph on nodes [1 . . n] for positive integer n and

0 ≤ p ≤ 1, and random_graph(n) is equivalent to random_graph(n, '1/2'). We will
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discuss the meaning of the p parameter below, but the special case random_graph(n)

(i.e., p = 1/2) gives an FRP whose Kind has equal weights on all possible random
graphs on the n nodes. A few examples:

pgd> random_graph(3)

An FRP with value
1

23

pgd> random_graph(6, '1/3')

An FRP with value
1

2

3
4

5

6

pgd> random_graph(9, '1/9')

An FRP with value

1 2
3

4
56

7

8
9

When you enter these into the playground, you will not see the pictures for these graphs
but instead will see a tuple of number representing the graph. If you wrap the call to
random_graph with the function show_graph, like show_graph(random_graph(3)),
a picture will pop up in a browser tab as well.

The FRP returned by random_graph(n) has values that are binary tuples of
dimension n(n−1)

2 =
(
n
2

)
, where a 1 indicates that there is an edge between a particular

pair of nodes. The meaning of these tuples is illustrated in Figure 17 for several
small values of n. The edges in a graph with n nodes can be described by an n× n

“adjacency” matrix22 A, where the entry in row i and column j, denoted Aji , equals 22See sections F.9.2 and
F.9.3 in Interlude F for more
on matrices.

1 if there is an edge between nodes i and j and 0 otherwise. Because our graphs
are undirected, the edge relation is symmetric, so Aji = Aij for all i and j. Because
our graphs have no loops, Aii = 0 for all i. As a consequence, the entire matrix A
is determined by the upper right triangle, strictly above the main diagonal. For
instance, in the matrix in the first row (and middle column) of Figure 17, the upper
right triangle is highlighted, with A2

1 = 1, A3
1 = 1, and A3

2 = 0. If we take these
entries row-wise, we get the tuple ⟨1, 1, 0⟩, as shown in the first column in the Figure.

In the text, we will use the graph pictures wherever possible in lieu of the tuples,
for clarity, but you will see the tuples when you play with these in the playground.
The show_graph function takes a value tuple from a random graph or a random
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⟨1, 1, 0⟩


1 2 3

1 0 1 1
2 1 0 0
3 1 0 0


1

23

〈
1, 1, 0, 0, 1,

0, 1, 1, 0, 1
〉



1 2 3 4 5
1 0 1 1 0 0
2 1 0 1 0 1
3 1 1 0 1 0
4 0 0 0 0 1
5 0 1 1 1 0


1

2

34

5

〈
1, 0, 0, 0, 1,

1, 0, 0, 0, 1,

0, 1, 1, 0, 1
〉



1 2 3 4 5 6
1 0 1 0 0 0 1
2 1 0 1 0 0 0
3 1 1 0 1 0 1
4 0 0 0 0 1 0
5 0 1 1 1 0 1
6 1 0 1 0 1 0


1

2

3
4

5

6

〈
1, 1, 1, 0, 0,

0, 0, 1, 1, 0,

0, 0, 0, 1, 0,

0, 0, 0, 0, 0,

0, 0, 1, 1, 1,

1, 1, 1
〉



1 2 3 4 5 6 7 8
1 0 1 1 1 0 0 0 0
2 1 0 1 1 0 0 0 0
3 1 1 0 1 0 0 0 0
4 1 1 1 0 0 0 0 0
5 0 0 0 0 0 1 1 1
6 0 0 0 0 1 0 1 1
7 0 0 0 0 1 1 0 1
8 0 0 0 0 1 1 1 0



1
2

3

4
5

6

7

8

Figure 17. The representation of undirected simple graphs without loops as numeric tuples.
The left column gives the tuple representation, a list of 0s and 1s. The middle
columns reveals the tuple’s meaning with an “adjacency” matrix showing which
pair of nodes have an edge between them (with a 1 in the corresponding entries).
The tuple is laid row-wise into the upper right triangle of the matrix, strictly above
the main diagonal, and reflected by symmetry column-wise in the lower left
triangle. The main diagonal entries are always zero because there are no loops.
The right column shows the corresponding graph.
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graph FRP and shows you a picture of the graph. The adjacency_matrix and
adjacency_list functions takes a tuple or FRP and show you the edges in a different
way, as illustrated below.

We start with n = 3 nodes to get a feel for the possibilities.

pgd> G_0 = random_graph(3)

pgd> G_0

An FRP with value
1

23

pgd> show_graph(G_0)

An FRP with value <1, 0, 1> # Picture shows in web browser not in terminal

pgd> adjacency_matrix(G_0)

1 2 3

1 0 1 0

2 1 0 1

3 0 1 0

pgd> adjacency_list(G_0)

{1: [2], 2: [1, 3], 3: [2]}

For each node, the adjacency list gives the nodes connected to it by an edge. Note
that each call to random_graph returns a fresh clone, so G_0 is not the same as the
earlier FRP with n = 3. Similarly,

pgd> G_1 = random_graph(3)

pgd> G_1

An FRP with value
1

23

pgd> adjacency_matrix(G_1)

1 2 3

1 0 0 0

2 0 0 1

3 0 1 0

pgd> adjacency_list(G_1)

{2: [3], 3: [2]}

Now we can ask some questions of our random graphs. We are interested in
various properties of the graphs produced by these FRPs. For instance: Are two
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particular nodes connected by an edge? How many edges are incident on each node?
How many edges are in the graph? Can any node be reached from any other by
following edges? If not, how many “connected components” does the graph have?
Are there cyclical paths? Is the graph a tree? For each such question, we formulate a
statistic that answers that question when given a graph on input. Our emphasis is
not on answering the questions for a particular graph, but rather on predicting the
answer for the types of graph we specify. In what follows, we will exemplify this for
a variety of statistics and graphs, and along the way, we will have to face some of the
computational and mathematical challenges in answering our questions.

The function has_edge is a statistic factory . Pass it two nodes, and it returns a
statistic on graphs that tests whether a graph has an edge between those two nodes.
We view the statistic’s return value as a Boolean, with 0 for false (⊥) and 1 for true
(⊤). A Boolean statistic is called a condition; it is a scalar statistic (i.e., always has
dimension 1). An FRP produced by transforming another FRP with a condition is
called an event. If the FRP has value 1, the event is said to have occurred, otherwise
not.

We can check the events that G_0 and G_1 have various edges:

pgd> G_0 ^ has_edge(1,3)

<0>

pgd> G_1 ^ has_edge(2,3)

<1>

pgd> has_edge(1,2)(G_0)

<1>

pgd> has_edge(1,2)(G_1)

<0>

pgd> psi = has_edge(1,3)

pgd> psi(G_1)

<0>

Here, we see three equivalent ways of transforming the FRP with the statistic returned
from the factory: using the ^ operator, applying it directly, and naming the statistic
and applying it. The ^ operator makes the meaning of the operation clearer in this
case, so it is particularly useful when transforming with statistic factories.

The statistics is_connected, is_acyclic, and is_tree are conditions that test,
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respectively, (i) if every node can be reached from every other node by following
edges, (ii) if the graph has no cycles,23 and (iii) if the graph is a tree – a connected, 23A cycle exists if there is a

non-trivial path along
distinct edges from some
node to itself.

acyclic graph.

pgd> is_connected(G_0)

An FRP with value <1>

pgd> is_connected(G_1)

An FRP with value <0>

pgd> is_acyclic(G_0)

An FRP with value <1>

pgd> is_tree(G_1)

An FRP with value <0>

The statistic connected_components has type
(
n
2

)
→ n; it labels each node with an

integer where two nodes have the same label if they are connected by a path in the
graph. For example:

pgd> connected_components(G_0)

An FRP with value <1, 1, 1>

pgd> connected_components(G_1)

An FRP with value <1, 2, 2>

We will see other graph statistics below.
The Kinds for random_graph(3,p) are shown in Figure 18 for p = 1/2, p = 1/3,

and p = 3/5. These have dimension 3 and size 8. If you compute these Kinds in the
playground, it will show weights with the same relative size but normalized so that
they sum to 1. As we saw in subsection 1.3, Kinds whose weights differ by a constant
scaling factor will produce the same demos and so are in practice equivalent.

As p increases, the weights with more edges increase in these Kinds. To understand
this, let us look at the Kind of an FRP that indicates whether a particular edge
(say {2, 3}) is in the graph. We can compute the Kind of the random graph FRP
transformed by has_edge(2,3) or transform the Kind of the random graph FRP. By
equation (2.1), both give the same result. As in Figure 18, we will compute thes
Kinds for p equal to 1/2, 1/3, and 3/5.

pgd> kind(random_graph(3,1/2) ^ has_edge(2,3))

,---- 1/2 ---- 0
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Figure 18. The Kinds of random_graph(3) (left), random_graph(3, 1/3) (center), and
random_graph(3, 3/5) (right).
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<> -|

`---- 1/2 ---- 1

pgd> kind(random_graph(3,1/2)) ^ has_edge(2,3)

,---- 1/2 ---- 0

<> -|

`---- 1/2 ---- 1

pgd> kind(random_graph(3,1/3)) ^ has_edge(2,3)

,---- 2/3 ---- 0

<> -|

`---- 1/3 ---- 1

pgd> kind(random_graph(3,3/5)) ^ has_edge(2,3)

,---- 2/5 ---- 0

<> -|

`---- 3/5 ---- 1

To understand these computations, recall our steps for transforming a Kind: we apply
the statistic to the value at every leaf node then combine branches by adding the
weights. Referring to Figure 18, we see that the first three and the fifth branches have
values without a {2, 3} edge, and the others have values with a {2, 3} edge. Adding
the weights: when p = 1/2, we get 4 without the edge and 4 with; when p = 1/3, we
get 18 without and 9 with; when p = 3/5, we get 50 without and 75 with. This gives
respective Kinds

⟨⟩
⟨0⟩4

⟨1⟩4
⟨⟩

⟨0⟩18

⟨1⟩9
⟨⟩

⟨0⟩50

⟨1⟩75

where the weights on 0 and 1 have ratios 1 to 1, 2 to 1, and 2 to 3. Renormalizing
the weights to sum to 1, we get the same Kind the playground computes.

It seems that for these random_graph(3,p) Kinds, the ratio of the weight on ⟨1⟩
to the weight on ⟨0⟩ is p/(1− p). Let’s think about what this means in terms of the
demos we ran in subsection 1.3. If we obtain a large number of random_graph(3,p)
FRPs, check if they have a {2, 3} edge (i.e., transform them with has_edge(2,3)),
and tabulate the results, we will see approximately a proportion p of them have such
an edge and a proportion 1− p will not.
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Puzzle 13. Do this test yourself for a variety of 0 ≤ p ≤ 1. Use

FRP.sample(random_graph(3,p) ^ has_edge(2,3), 1_000_000)

to compute a demo for each p you choose.
Are the results consistent with the Kind? Do the results depend on which edge

you choose?

The vast, apparently infinite number of FRPs stored at the Warehouse are
not arranged in any systematic way; when you obtain one from the market, it is
an arbitrary clone of the FRPs of its Kind. The demo tells us that if we take
all the FRPs whose Kind is kind(random_graph(3,p)), activate them, and apply
has_edge(2,3) to their value, the average of the results will be p. So p is the
proportion of random_graph(3,p) FRPs for which the event that it has an edge
{2, 3} occurs. In that sense, p quantifies the chance that you receive an FRP that
represents a graph with such an edge. This is one way to think about the idea
of probability : the probability of an event is the average value of the condition, a
proportion, over all FRPs in the Warehouse of the same Kind.

An important observation for the future:

pgd> E(random_graph(3,1/2) ^ has_edge(2,3))

1/2

pgd> E(random_graph(3,1/3) ^ has_edge(2,3))

1/3

pgd> E(random_graph(3,3/5) ^ has_edge(2,3))

3/5

The expectation – the risk-neutral price, our prediction of the FRP’s value – is exactly
that average! The probability that an event occurs is just our best prediction of
whether its defining condition is true.

Puzzle 14. In the playground, compute the transformed Kind of random_graph(3,p)
by the statistic is_connected, for p equal to 1/2, 1/3, and 3/5. What is the prob-
ability that you obtain a connected graph in these three cases?

Answers: 1/2,7/27,81/125
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Aside. We might ask another type of question about the presence of edges: if we
have a random_graph(3,p) FRP X and we have observed that the value of the
transformed FRP X ^ has_edge(1,2) is 1 – that is, we know that X’s value
has an edge {1, 2} – what can we say about whether X has an edge {2, 3}? To
incorporate our partial knowledge of X’s value, we use a conditional constraint
as discussed in detail in Section 5. For instance,

pgd> X = random_graph(3, '1/3')

pgd> kind(X | has_edge(1,2) ) ^ has_edge(2,3)

,---- 2/3 ---- 0

<> -|

`---- 1/3 ---- 1

The | is read as “given”; it takes an FRP or Kind on the left and a condition
on the right and applies the constraint that the condition is true. We see here
that the partial information about edge {1, 2} does not change the Kind of
X ^ has_edge(2,3). We will explore this more later.

As will become clearer in Section 4, for each p, the events

random_graph(3,p) ^ has_edge(i,j)

over all edges {i, j} are the component FRPs of Figure 13 from which
random_graph(3,p) is built.

In particular, for any p of your choosing such as 3/5, try

pgd> edge_kind = weighted_as(0, 1, weights=[1 - p, p])

pgd> K_p = edge_kind * edge_kind * edge_kind

pgd> Kind.equal(K_p, kind(random_graph(3,p)))

True

pgd> frp(edge_kind) * frp(edge_kind) * frp(edge_kind)

An FRP with value <1, 0, 1>

Here, the function weighted_as is a Kind factory ; look at edge_kind and see
that it is Kind of the has_edge(i,j) transformed FRP that we saw above. The
independent mixture (with operator *) builds a three-dimensional Kind that
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equals our random graph Kind. The last line builds the corresponding FRP,
whose value is of the right type.

We can ask other questions as well and define statistics to represent them.
How many edges does the graph have? (edge_count) How many connected com-
ponents does the graph have? (connected_component_count) What are they?
(connected_components) How many neighbors does each node have? (degrees)
Is the graph free of cycles? (is_acyclic) It is useful to compute these first for
random graphs with 3 nodes because the Kinds have small enough size that we can
easily see how the transformation steps are working.

pgd> kind(random_graph(3,1/2)) ^ edge_count

,---- 1/8 ---- 0

|---- 3/8 ---- 1

<> -|

|---- 3/8 ---- 2

`---- 1/8 ---- 3

pgd> kind(random_graph(3,1/3)) ^ edge_count

,---- 8/27 ----- 0

|---- 12/27 ---- 1

<> -|

|---- 6/27 ----- 2

`---- 1/27 ----- 3

pgd> kind(random_graph(3,3/5)) ^ edge_count

,---- 8/125 ---- 0

|---- 36/125 --- 1

<> -|

|---- 54/125 --- 2

`---- 27/125 --- 3

Calculate these Kinds by hand from Figure 18 and compare your results.

pgd> K_G3h = kind(random_graph(3))

pgd> connected_components(K_G3h)

,---- 4/8 ---- <1, 1, 1>

|---- 1/8 ---- <1, 1, 2>
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<> -+---- 1/8 ---- <1, 2, 1>

|---- 1/8 ---- <1, 2, 2>

`---- 1/8 ---- <1, 2, 3>

This Kind describes the connected components of random_graph(3)’s; the values give
a label for each node (with labels starting from 1) where two nodes with the same label
belong to the same connected component. Observe that from this information we can
also answer other questions. Is the graph connected? It is if all components’ labels are
equal to 1. How many connected components are there? It is the largest component
label. What is the pattern of component sizes? List the sizes of the components in
decreasing order. We can answer these questions in two ways, either directly from
the Kind K_G3h or by further transforming connected_components(K_G3h). For
instance,

pgd> all_ones = condition(lambda v: all(vi == 1 for vi in v))

pgd> K_G3h ^ connected_components ^ all_ones

,---- 1/2 ---- 0

<> -|

`---- 1/2 ---- 1

pgd> is_connected(K_G3h)

,---- 1/2 ---- 0

<> -|

`---- 1/2 ---- 1

The statistic all_ones is a condition that returns true when all components of its
input equal 1. (The lambda syntax in Python defines anonymous functions, which
are discussed in Section F.3. The term lambda args : expr is a function taking
args as arguments and returning the value of expression expr, which may involve the
given arguments.) Here, we use the ability of the ^ operator to chain several statistics
together,24 transforming first by connected_components then by all_ones. The 24See Section F.5 for a

detailed discussion of
function composition.

statistic is_connected is equal to the statistic connected_components ^ all_ones

that first applies connected_components and then applies all_ones to the returned
result. We can visualize these relationships in a diagram
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X Y

Z

connected_components

is_connected
all_ones

where X, Y , and Z all stand for Kinds or for FRPs and the arrows represent
transformations by statistics, with any two distinct paths from one node to another
representing equal functions.

Similarly, using the built-in statistic Max to compute the maximum label:

pgd> K_G3h ^ connected_components ^ Max

,---- 4/8 ---- 1

<> -+---- 3/8 ---- 2

`---- 1/8 ---- 3

pgd> connected_component_count(K_G3h)

,---- 4/8 ---- 1

<> -+---- 3/8 ---- 2

`---- 1/8 ---- 3

And

pgd> K_G3h ^ connected_components ^ connected_component_sizes

,---- 1/8 ---- <1, 1, 1>

<> -+---- 3/8 ---- <2, 1, 0>

`---- 4/8 ---- <3, 0, 0>

where the statistic connected_component_sizes takes a tuple of component labels
and returns the sizes of the components in descending order. The 0’s are padded
out to n entries to ensure that our statistic has a fixed dimension as required. Thus
the <2, 1, 0> value occurs in the three labelings of compnents where there is one
component of size 2 and one component of size 1. Again, it is worth deriving these
transformed Kinds by hand where the sizes are small enough to understand the
operation clearly.

Another common question we might ask about a random graph is how many
neighbors each node has. We can use the statistic degrees to answer this question.

pgd> degrees(K_G3h)

,---- 1/8 ---- <0, 0, 0>
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|---- 1/8 ---- <0, 1, 1>

|---- 1/8 ---- <1, 0, 1>

|---- 1/8 ---- <1, 1, 0>

<> -|

|---- 1/8 ---- <1, 1, 2>

|---- 1/8 ---- <1, 2, 1>

|---- 1/8 ---- <2, 1, 1>

`---- 1/8 ---- <2, 2, 2>

But more typically we are less interested in what happens at particular nodes than
at understanding the pattern in the numbers of neighbors globally over the graph.
For this we can transform the previous Kind by the statistic ascending that sorts
the tuple in increasing order:25 25There is also an analogous

descending statistic.
pgd> K_G3h ^ degrees ^ ascending

,---- 1/8 ---- <0, 0, 0>

|---- 3/8 ---- <0, 1, 1>

<> -|

|---- 3/8 ---- <1, 1, 2>

`---- 1/8 ---- <2, 2, 2>

This elides the distinction between degree profiles that differ only by labeling of the
nodes. Observe how such profiles are combined into a single pattern and their weights
added by the Kind transformation.

Puzzle 15. Explain the following computations with reference to Figure 18.

pgd> is_acyclic(K_G3h)

,---- 1/8 ---- 0

<> -|

`---- 7/8 ---- 1

pgd> kind(random_graph(3, 3/5)) ^ is_acyclic

,---- 27/125 ---- 0

<> -|

`---- 98/125 ---- 1

For n = 4 nodes, random_graph(4,p) has dimension 6 and size 64.
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pgd> G = random_graph(4)

pgd> G

An FRP with value
1

2

3

4

pgd> clone(G)

An FRP with value
1

2

3

4

pgd> clone(G)

An FRP with value
1

2

3

4

The Kind of these FRPs is awkward to fit on the page but viewable, if somewhat compli-
cated, in the playground; look at kind(random_graph(4)), kind(random_graph(4, 1/3)),
and kind(random_graph(4, 3/5)) in the playground. We can now ask some ques-
tions about random graphs with 4 nodes with

pgd> K_G = kind(G)

which equals kind(random_graph(4)).
How many edges does the graph have?

pgd> edge_count(K_G)

,---- 1/16 ---- 0

|---- 4/16 ---- 1

<> -+---- 6/16 ---- 2

|---- 4/16 ---- 3

`---- 1/16 ---- 4

Try answering this same question with random_graph(4,1/3) and random_graph(4,3/5)

and compare the resulting Kinds.
How many connected components does the graph have?

pgd> connected_component_count(K_G)

,---- 38/64 ----- 1

|---- 19/64 ----- 2
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<> -|

|---- 6/64 ------ 3

`---- 1/64 ------ 4

Notice how the weights shift towards larger values when p is larger and towards
smaller values when p is smaller.

pgd> kind(random_graph(4, '3/5')) ^ connected_component_count

,---- 0.76550 ----- 1

|---- 0.19354 ----- 2

<> -|

|---- 0.036864 ---- 3

`---- 0.004096 ---- 4

pgd> kind(random_graph(4, '1/3')) ^ connected_component_count

,---- 0.27572 ----- 1

|---- 0.37311 ----- 2

<> -|

|---- 0.26337 ----- 3

`---- 0.087791 ---- 4

pgd> kind(random_graph(4, '1/20')) ^ connected_component_count

,---- 0.0018012 ---- 1

|---- 0.030973 ----- 2

<> -|

|---- 0.23213 ------ 3

`---- 0.73509 ------ 4

Is the graph a tree? Is it connected? Is it free of cycles?

pgd> is_tree(G)

An FRP with value <1>

pgd> is_tree(K_G)

,---- 11/16 ---- 0

<> -|

`---- 5/16 ----- 1

pgd> is_connected(G)

An FRP with value <1>
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pgd> is_connected(K_G)

,---- 13/32 ---- 0

<> -|

`---- 19/32 ---- 1

pgd> is_acyclic(G)

An FRP with value <1>

pgd> is_acyclic(K_G)

,---- 13/32 ---- 0

<> -|

`---- 19/32 ---- 1

For small p, we saw that the graph is likely to have many connected components and

pgd> kind(random_graph(4, '1/20')) ^ is_acyclic

,---- 0.00051509 ---- 0

<> -|

`---- 0.99948 ------- 1

suggesting that the graph is very likely to be a forest of small trees.
Does the graph have edges {1, 2} and {3, 4}? For this question, we create a

statistic using a combinator : a function that takes two or more statistics and returns
a new one. In this case we use the And combinator.

pgd> has_12_34 = And(has_edge(1,2), has_edge(3,4))

pgd> has_12_34(G)

An FRP with value 0

pgd> has_12_34(K_G)

,---- 3/4 ---- 0

<> -|

`---- 1/4 ---- 1

In all these cases, transforming the FRP with the statistic gives us an answer to
the corresponding question for that graph, and transforming the Kind tells us how
the answer varies over all FRPs of the original Kind. The transformed Kind lets us
predict the answer to the question.

Generating random graphs is a relatively fast operation, so we can generate
random graphs of substantial size and interrogate their properties.

73



pgd> G6 = random_graph(6)

An FRP with value
1

2

3
4

5

6

pgd> G6 ^ Fork(is_connected, is_acyclic, is_tree)

An FRP with value <1, 0, 0>

Here, Fork is a statistic combinator that applies the listed statistics in parallel to
the same values and concatenates the results in order into one tuple. We see, for
example, that G6 is connected but has cycles and is not a tree.

pgd> G12 = random_graph(12, '1/3')

An FRP with value

1
2

3

4

5

6
7

8

9

10

11

12

pgd> is_tree(G12)

An FRP with value <0>

pgd> connected_components(G12)

An FRP with value <1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>.

(It may be slow to evaluate its kind.)

pgd> G12 ^ connected_components ^ connected_component_sizes

An FRP with value <12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>.

(It may be slow to evaluate its kind.)

pgd> G12 ^ degrees ^ ascending

An FRP with value <2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 6, 8>.

(It may be slow to evaluate its kind.)

pgd> G64 = random_graph(64, '1/128')
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An FRP with value

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

pgd> is_forest(G64)

An FRP with value <1>

The transformed FRPs here describe the properties of the graphs represented by
G6 and G12. Though we can generate FRPs easily, the playground is warning us
that computing the Kind of G12, which has size 266, might be . . . time consuming.
Because p is small for G64, most of the nodes of this graph are isolated, leaving a
forest of small trees. The condition is_forest tests whether a graph’s connected
components are all trees. It is defined using the function ForEachComponent, from
frplib.examples.random_graphs, that takes a graph statistic (here is_tree) and
applies it to the subgraph of each connected component.

As discussed earlier, our main goal is not just to interrogate the properties of
particular graphs but to predict the properties of the random graphs before we
activate the FRPs. Our basic approach to doing this is to compute the transformed
Kinds with the statistics that represent our questions. When n = 6, the Kind of
random_graph(n,p) has size 215 = 32, 768. We can compute its Kind directly, but
we can see that the size is growing fast. Indeed, for random_graph(8,p) the Kind
has size 228 = 268, 435, 456, which is within the range of computational feasibility
to compute but rather inconvenient. For general n, we get 2n(n−1)/2 – exponential
growth! Directly computing the Kinds is not always computationally feasible, so we
need to bring other strategies to bear.
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First, if we can compute directly with reasonable efficiency, we do, and for many
problems this is enough. When that gets difficult – such as when the Kind of the
data FRP has a large size – we can focus our attention on computing the Kinds of
the feature FRPs (transforms of the data FRP relevent to our questions, cf. Figure
13), which usually have much smaller size and dimension. We can try to devise
computational methods and algorithms that allow us to efficiently compute answers
to our questions. And where possible and necessary, we apply mathematical reasoning
to derive those answers, or approximate those answers to specified accuracy if an
exact answer is elusive, or if necessary, put useful bounds on the answers. Ideally, we
could answer our questions in full generality, but often we face a trade-off between the
precision of our answers and the specificity of the assumptions we need to make. As
such we often tailor our reasoning and analysis to specific questions or special cases
that are amenable to analysis. The combination and interaction of computational and
mathematical reasoning offers us a diverse and powerful range of tools for answering
probabilistic questions. We will see this theme reprised many times as we proceed.

As an example, suppose we want to predict the number of edges in a graph like G64.
The Kind of the FRP G64 has size 22015, so direct computation is quite out of reach.
We want the Kind of the transformed FRP, kind(G64) ^ edge_count, but computing
it that way is consequently infeasible. However, using a computational technique we
will describe in Section 6.1, we can find the Kind quickly to use in practice. The
function fast_edge_count in frplib.examples.random_graphs computes the Kind
of random_graph(n,p) ^ edge_count for a specified n and p. For instance:

pgd> E64 = fast_edge_count(64, '1/128')

pgd> is_kind(E64)

True

pgd> clean(E64, '1e-6')

,---- 1.3583E-7 ------- 0

|---- 0.0000021562 ---- 1

|---- 0.000017105 ----- 2

|---- 0.000090420 ----- 3

|---- 0.00035830 ------ 4

|---- 0.0011353 ------- 5

|---- 0.0029961 ------- 6
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|---- 0.0067741 ------- 7

|---- 0.013395 -------- 8

|---- 0.023532 -------- 9

|---- 0.037188 -------- 10

|---- 0.053399 -------- 11

|---- 0.070253 -------- 12

|---- 0.085273 -------- 13

|---- 0.096064 -------- 14

|---- 0.10096 --------- 15

|---- 0.099416 -------- 16

|---- 0.092094 -------- 17

|---- 0.080532 -------- 18

|---- 0.066682 -------- 19

<> -+---- 0.052427 -------- 20

|---- 0.039236 -------- 21

|---- 0.028016 -------- 22

|---- 0.019125 -------- 23

|---- 0.012505 -------- 24

|---- 0.0078458 ------- 25

|---- 0.0047308 ------- 26

|---- 0.0027455 ------- 27

|---- 0.0015356 ------- 28

|---- 0.00082890 ------ 29

|---- 0.00043229 ------ 30

|---- 0.00021807 ------ 31

|---- 0.00010651 ------ 32

|---- 0.000050422 ----- 33

|---- 0.000023156 ----- 34

|---- 0.000010325 ----- 35

|---- 0.0000044738 ---- 36

`---- 0.0000018851 ---- 37

The clean function here trims off branches with weights less than the given threshold
10−6 to make it easier to view and interpret the Kind. (You can just view E64 to
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compare.) We see that the largest weights are in the range 12 to 19, and

pgd> E(E64)

63/4

is our best prediction of the number of edges.
With some mathematical reasoning that we will derive later, we can go further and

derive the exact Kind for edge_count(random_graph(n, p)) for any n and p. Try
exact_edge_count(n,p) to see this Kind, e.g., compare exact_edge_count(64,'1/128')
For very large n and very small p, we can also get an excellent approximation to
exact_edge_count(n,p) that is quite fast.

Another approach we can use get results for large Kinds is sampling. We can
compute transformed FRPs fairly easily, so by running demos of the transformed
FRP, we get an empirical approximation of the Kind. As an example, compare the
following demo with the exact Kind:

pgd> FRP.sample(1_000_000, is_connected(random_graph(6)))

Summary of Output Values

+------------------------------+

| Values | Count | Proportion |

+========+========+============+

| 0 | 185191 | 18.52% |

| 1 | 814809 | 81.48% |

+--------+--------+------------+

pgd> kind(random_graph(6)) ^ is_connected

,---- 0.18506 ---- 0

<> -|

`---- 0.81494 ---- 1

Sampling gives us a numeric approximation of the Kind. The sample will always be
somewhat inaccurate, but we can quantify that inaccuracy enough to make it useful.

We can answer the question of whether a graph is a tree even for very large n in
the special case where p = 1/2. The function exact_is_tree computes that Kind
for each n.
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These examples offer just a taste of the possibilities, and we will see other
computational and mathematical approaches as we proceed.

Random Images. Our next example illustrates how we can use statistics to
infer from observed data measured from a random system which of a set of models
best describes the system. We use statistics here as procedures for reconstructing an
uncertain object from data related to that object.

We will consider FRPs that generate random binary images. Such an image is a
rectangular grid of “pixels” whose value can be either 0 or 1. We will focus on 32× 32

images, though the logic of the example works with any size. In the playground, load
the tools needed for this example with

pgd> from frplib.examples.random_images import (

...> random_image, as_image, add_images, show_image,

...> image_distance, closest_image_to,

...> erode, dilate, max_likelihood_image,

...> ImageModels, pixel0, pixel1

...> )

or if you prefer to avoid typing, just do

pgd> from frplib.examples.random_images import *

As with the random graphs example, we will show the values of our FRPs as images,
but in the playground you will see tuples, as described below. You can use the
show_image function on a tuple or image FRP to pop up a view of the image in a
browser window.

The function random_image is an FRP factory that returns an FRP representing
a random binary image. (The default is a 32× 32 image.)

pgd> random_image()

An FRP with value

pgd> random_image(p='1/8')

An FRP with value
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pgd> random_image(p='1/6', base=ImageModels.image('P'))

An FRP with value

pgd> random_image(p='1/8', base=ImageModels.image('minus'))

An FRP with value

pgd> random_image(p='1/8', base=ImageModels.image('E'))

An FRP with value

pgd> random_image(p='1/8', base=ImageModels.image('blocks'))

An FRP with value

pgd> my_image = as_image(pixel0 * 416 + pixel1 * 64 + pixel0 * 64 +

...> pixel1 * 64 + pixel0 * 416)

pgd> random_image(p='1/4', base=my_image)

An FRP with value

pgd> ImageModels.register_image('my_image', my_image) # save image

These FRPs represent binary images with a random scattering of black pixels super-
imposed on a base image. Black pixels have a value 1 and white pixels a value 0. We
can think of the images as pixelwise sum of a base image and random “noise”, where
pixels add with an exclusive-or: 1 ⊕ 0 = 1 = 0 ⊕ 1 and 0 ⊕ 0 = 0 = 1 ⊕ 1. (Note
the last equality.) The base argument to random_image sets the base image (by
default all white). You can use pre-defined images in the ImageModels object, define
your own with as_image, or add custom images to ImageModels. The p argument
to random_image determines the intensity of the noise, with larger p making noisy
pixels more prevalent.26 26Remember that you can

use help in the playground
to get full documentation
on all these functions.

These FRP’s values are tuples of dimension 2+1024, with the first two components
the image width and height followed by 1024 0s and 1s arranged row-wise from the top
left to the bottom right of the image. The Kinds of these FRPs have size 21024, so we
will not be computing them directly. But we can use mathematical and computational
reasoning to operate on the Kinds that we need. (As all the images here have Kinds
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of large size, I will elide the “It may be slow to evaluate its kind” warnings for output
shown in this example.)

The example code defines a variety of statistics that operate on images.

pgd> black_pixels(random_image())

An FRP with value <489>

pgd> clockwise(ImageModels.image('F'))

pgd> noisyF = random_image(p='2/15', base=ImageModels.image('F'))

An FRP with value

pgd> reflect_image_vertically(noisyF)

An FRP with value

pgd> largest_cluster_size(random_image(p='1/3'))

An FRP with value <489>

where ImageModels.image('F') returns a pre-defined image that happens to look
like an F.

Our goal in the remainder of this example is to develop a way to reconstruct an
underlying image from a noisy observed image. We will build an FRP that represents a
random image with an unknown base image drawn from a “model” that contains several
known possibilities. We define statistics of type 2+width∗height → 2+width∗height
(e.g., 1026 → 1026) that map an observed, noisy image to an image that is an estimated
reconstruction of the unknown base image. We transform these “reconstruction”
statistics to our random image FRP to infer which base image actually produced our
observed data.

The ImageModels object has various methods for working with random image
models. A model is specified by a set of candidate base images and a parameter
0 ≤ p ≤ 1 that determines noise prevalence. When we observe an image generated
under a particular model, one of the candidate bases images is selected and noise
with the specified prevalence is superimposed. The function ImageModels.observe

returns an FRP representing a random image with a specified model. Several sets
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of candidate base images have been pre-defined with short identifiers. You can
list the identifiers with ImageModels.models() and list a model’s base images with
ImageModels.model(id). ImageModels.observe accepts a model identifier or a list
of images in the first argument. It uses p = 1/8 by default, but you can override
this with the named p argument. You can also register new sets of base images with
ImageModels.register_model.

pgd> ImageModels.model('efh') # Pre-defined model #3

[ , , ]

pgd> data, truth = ImageModels.observe('efh', p='1/4')

pgd> data

An FRP with value

We first see the three base images that might underlie our data, but we do not
know which one it is. ImageModels.observe returns both an FRP representing the
observed data – a random image that superimposes noisy pixels on an unknown base
image from the models – and the true base image on which the data is based. In
practice, truth would be unknown, but for our purposes here, it is convenient to have
access to it so that we can evaluate our procedure. Our goal is to devise a statistic
that transforms the FRP data to an FRP whose value is an image as close as possible
to the unknown truth.

From the image shown here, you can probably guess the unknown truth, but
that’s ok. The methods described here apply even when it hard to distinguish between
the model images. Using an easier problem like this will clarify the ideas.

Puzzle 16. Create two or more images with as_image and use them to register
a new model in ImageModels. Generate data from this model and look at the
images.

Our first reconstruction statistic will be an algorithm to “de-noise” the image. It
operates on the image by eliminating pixes that look like noise but retaining those
that do not. This procedure does neither accounts for nor requires knowledge of the
possible base images. To define our statistic, we need to define two operations on
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images: image dilation and image erosion. For both these functions, we think of an
image’s pixels as lying on the grid of points in the plane with integer coordinates. If
I is a binary image, we can think of it as a set of integer coordinates at which there
is a black/1 pixel. The dilation of an image I with respect to a dilation element D –
a small set of integer coordinates – has black/1 pixels at coordinates27 27In defining a set, the

∣∣ is
read “such that” or “given”
and the ∧ is logical-and.
The condition after the

∣∣
constrains the elements of
the set.

dilateD(I) =
{
⟨x+ i, y + j⟩

∣∣ ⟨x, y⟩ ∈ I ∧ ⟨i, j⟩ ∈ D
}
. (2.2)

Put another way, we overlay a copy of the dilation element at every black pixel in the
image. For example, using the default dilation element D0 =

{
⟨i, j⟩

∣∣ i, j ∈ {−1, 0, 1}
}
,

a small square centered at 0, we have

dilate

where the dilated image is 34× 34. Dilation spreads out every black pixel in an image
with a copy of the dilation element.

Erosion is the dual operation to dilation. We specify an erosion element E – again,
a small set of integer coordinates – and the resulting image has black/1 pixels at
coordinates

erodeE(I) =
{
⟨x, y⟩

∣∣ ⟨x+ i, y + j⟩ ∈ I for all ⟨i, j⟩ ∈ E
}
. (2.3)

We include all the pixels at which a copy of the erosion element is completely
contained in the image. For example, using the default erosion element D0 ={
⟨i, j⟩

∣∣ i, j ∈ {−1, 0, 1}
}
, a small square centered at 0, we have

erode

where the eroded image is 30× 30. Try eroding and dilating a few of the pre-defined
images to get a feel for these do.
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Our statistic for reconstructing the base image from the data is to first ap-
ply erode (with the default erosion element) and then to apply dilate (with the
default dilation element). In the playground, erode and dilate are statistic fac-
tories that take the erosion and dilation elements28 and return the corresponding 28Both accept instead an

integer s, indicating a
square element with each
coordinate in −s..s.

statistics. So, using the default elements, we write our “de-noising” statistic as
denoise = erode() ^ dilate(). First we erode and then we dilate.

erode then dilate

Notice that this statistic keeps the resulting image the same size as the original. It
eliminates the small blocks of black pixels but keeps the larger central block as is.

The idea is that the de-noising statistic will preferentially remove the scattered
blocks from noise while retaining significant structure from the base image. Let’s try
it on a random image.

pgd> data

An FRP with value

pgd> denoised = denoise(data)

An FRP with value

pgd> reconstructed = closest_image_to(denoised.value, ImageModels.model('efh'))

pgd> reconstructed

An FRP with value

pgd> image_distance(reconstructed, truth)

0

Here, image_distance counts the number of pixels in which reconstructed and
truth differ. In denoised, we have successfully eliminated the noise pixels and only
slightly degraded the base image. Our guess of the unknown base image is the image
in our model that is closest to the value of denoised. This image, reconstructed,
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turns out to be correct in this case, so we have successfully reconstructed the unknown
image.

The denoised image in this case loses significant structure in the F, but keep
in mind the image is 32× 32 and the dilation and erosion elements are 3× 3 with
substantial noise. If we increase the resolution of the image and reduce the noise a
bit, the denoising shows the structure of the F clearly.

pgd> hires, _ = ImageModels.observe([ImageModels.image('F#')])

An FRP with value

pgd> denoised = denoise(hires)

An FRP with value

pgd> denoise2 = erode() ^ dilate(2)

pgd> denoised2 = denoise2(hires)

An FRP with value

In the last image, we dilate with a larger element to “fill in the holes.”

Puzzle 17. In denoise, we first erode then dilate. What happens if we first dilate
then erode? Try it on a few noisy images.

We can encapsulate this procedure into a single statistic. Because the procedure
depends on the models and the value of p, we write this as a statistic factory.

def reconstruct_image(model_id, denoiser=erode() ^ dilate()):

"""A statistics factory for reconstructing an unknown image from noisy data.

Parameters

----------

model_id: int | str - an identifier for the model holding candidate base images

denoiser: Statistic - a denoising statistic mapping image to image

"""
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model_images = ImageModels.model(model_id)

@statistic

def reconstruct(observed_image):

denoised_image = denoiser(observed_image)

return closest_image_to(denoised_image, model_images)

return reconstruct

This might seem odd at first because we have a function that returns another function
(a statistic), but all it does is let us set up the context in which the desired statistic
can be defined based on the parameter (model) that we pass. (The statistic has
access to all the local variables defined in the outer function.) Above, we used the
equivalent of the statistic reconstruct_image('efh').

To evaluate how well this procedure reconstructs the unknown image, we can re-
peatedly clone the data FRP, apply our statistic, and see how close our reconstruction
is to the truth. We embody this with a single function:

def simulate_denoise(

model_id, denoiser,

p='1/8', observations=10_000

):

"""Evaluates denoising statistic on repeated observations from a model.

Parameters:

+ model_id - identifier of pre-defined model in ImageModels

+ denoiser: Statistic - a denoising statistic mapping image to image

+ p: ScalarQ - noise prevalance (0 <= p <= 1), numeric or string

+ observations: int - number of observed images to generate

Returns a pair of numbers giving (i) the proportion of incorrect

reconstructions over all observations, and (ii) the average

distance between truth and reconstruction over all observations.

"""
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propi = 0

score = 0

for _ in range(observations):

data, truth = ImageModels.observe(model_id, p=p)

reconstructed = denoiser(data)

distance = image_distance(reconstructed.value, truth)

score += distance

propi += (distance > 0) # 0 if correct, 1 if not

return (propi / observations, score / observations)

Now, we can evaluate our procedure with different models and different noise specifi-
cations. We want a smaller number for both criteria. For instance:

pgd> reconstruct = reconstruct_image('efh')

pgd> simulate_denoise('efh', reconstruct)

(0.1831, 8.3244)

pgd> simulate_denoise('efh', reconstruct, p='1/32')

(0.008, 0.24)

pgd> simulate_denoise('efh', reconstruct, p='1/4')

(ATTN, ATTN)

In the first case, reconstruction is correct about 82% of the time and even when they
are not, it differs by on about 45 ≈ 8.3244/0.1831 pixels on average from the true
image. As the noise level gets smaller or larger, the reconstruction performance gets
better or worse as we would expect. Try it yourself with several different possibilities.

Puzzle 18. Briefly explain what you take from these simulation results.

Our second statistic for reconstructing the unknown base image uses a different
approach: over all candidate base images and all values of p, we choose that which
makes the image we observed as likely as possible using the Kind of the data FRP.
If we look at the difference between the observed image and a particular candidate
base image, what should we see? If the candidate image is the true base image – the
one used to generate the data – what is left should look like noise produced with
some value of p. But if the candidate image differs from the true base image, we
will see noise pixels plus excess black/1 pixels from the difference of the base images.
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Combining two binary images with a pixelwise exclusive-or sets only pixels where the
two images differ. If we combine a candidate base image with the observed image in
this way, we will see a purely noise-like image when we have the right candidate and
noise plus something more otherwise. So, we use the Kind of the noise FRP to assess
how well each candidate base image “fits” the observed data, and pick the best fitting
choice. Although these Kinds have large size, we can use mathematical reasoning to
compute this efficiently.

= ⊕

⊕ =

⊕ =

Figure 19. (Top) The observed image can be expressed as a combination (pixelwise
exclusive-or) of the (unknown) base image and a noise image. (Middle) Combining
the correct base image with the observed image gives us noise. (Bottom) But using
the wrong base image gives us noise plus an excess of pixels where the candidate
base image differs from the truth, which is visible in the rightmost image.

It will be helpful to formalize this one step further. For any base image J , define
the statistic ψJ that maps an image Z (of the same size as J ) to the image that
has a 1 at any pixel where J and Z disagree and a 0 at any pixel where they agree.
This is just the pixelwise exclusive-or of the two images, J ⊕Z; it shows us where Z
differs from J .

Let Y be the data FRP that represents the observed image and suppose that
it was generated with base image I and noise parameter 0 ≤ p ≤ 1. Then, the
FRP Z = ψI(Y ) represents an image of purely noise, as would be produced by
random_image(p). That is, if Y is the value of Y and Z is the value of Z, then
Y = I ⊕ Z. This relationship is illustrated in the top panel of Figure 19.

Because I ⊕ I is the empty image, it follows as well that Z = ψI(Y ). That is,
if we take the difference of Y and I, we get I ⊕ Y = Z, the noise image. This is
illustrated in the middle panel of Figure 19.
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However, if we use the wrong base image J ̸= I for the latter operation, we get
noise plus parts of the base images. Specifically, the value of ψJ (Y ) is (J ⊕ I)⊕Z.
The J ⊕ I part is the difference between the base image we used and the true base
image that generated the data. This will add “excess” pixels to the result. This is
illustrated in the bottom panel of Figure 19.

We can use these relationships to choose a based image and a value of p. Assume
that p ≤ 1/2; this is not essential but it makes sense in practice. For candidate base
image J to be the true base image, then Z would need to have the same value as
ψJ (Y ). The weight of this value in the Kind of Z quantifies how likely we
are to see that value. The Kind of Z depends on p, so for each J and each p, we
get a score – the weight on the branch for value ψJ (Y) in the Kind of Z. We choose
the J and p pair that maximizes this weight.

Formally, we define our reconstruction procedure as a statistic φ. Let Kp(z) be
the weight associated with value z in kind(random_image(p)), the Kind of noise
generated with parameter 0 ≤ p ≤ 1/2. The statistic φ takes an image Y and chooses
candidate base image J and noise parameter p to maximize Kp(ϕJ (Y)), the weight
associated with the “noise” that we see. This reconstructs the image by making the
data we observed maximally likely.

In the playground module frplib.examples.random_images, the statistic φ is
defined with max_likelihood_image. Like reconstruct_image earlier, this is a
statistic factory that returns a statistic for the given model identifier (and an optional
indication of whether to include the estimated p at the end of the returned tuple).
Using data and truth generated earlier, we have

pgd> ml_image = max_likelihood_image('efh', return_p = True)

pgd> *max_liked, p_hat = ml_image(data).value

pgd> image_distance(max_liked, truth)

0

pgd> p_hat

0.131 # true value is 0.125

Remember that this method does not know the value of p; it estimates it purely
from the data. We can use the same type of simulations as earlier to evaluate this
procedure.

pgd> ml_recon = max_likelihood_image('efh')
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pgd> simulate_denoise('efh', ml_recon)

(0.0, 0.0)

pgd> simulate_denoise('efh', ml_recon, p='1/32')

(0.0, 0.0)

pgd> simulate_denoise(3, ml_recon, p='1/4')

(0.002, 0.06)

This performs very well, perfectly reconstructing in this simple model with low to
moderate noise level p. This works because we have the excess pixels from the
differences among the three candidate images are very unlikely to occur by chance.
Try it yourself with several different possibilities.

2.4 Projections and Marginals

If you have an FRP representing a random graph, you might focus on a subgraph.
For an FRP representing a random image, you might have questions about one or
more particular pixels. When modeling repeated roulette spins, you might analyze
the outcome of bets on only some of those spins. This operation – extracting selected
parts of a value – is so common and useful that it merits special attention. Statistics
that extract one or more components from a tuple are called projections.

Definition 5. A projection is a statistic that maps a tuple to a tuple of smaller
dimension containing only specified components of the original tuple.

A projection ψ of type n→ m, with m ≤ n, has the form

ψ(⟨x1, x2, . . . , xn⟩) = ⟨xi1 , xi2 , . . . , xim⟩ (2.4)

where 1 ≤ i1 < i2 < · · · < im ≤ m are the indices of the selected components.
Remember that we elide the distinction between lists of length 1 and scalars,

so we can write a projection of type n→ 1 as ψ(x) = xi for 1 ≤ i ≤ n.

Mathematically, we denote projection statistics specially: using the name proj
with the selected indices in the subscript, as described in detail Section F.7. For
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instance,

proj3(⟨10, 20, 30, 40, 50⟩) = 30

proj3,5(⟨10, 20, 30, 40, 50⟩) = ⟨30, 50⟩

proj1,3,5(⟨10, 20, 30, 40, 50⟩) = ⟨10, 30, 50⟩.

If we want to project onto a range of components, say all the components from index
i up to and including index j, we write the range as i..j in the subscript. If either
endpoint is missing, the range extends all the way to the corresponding end.

proj1..3(⟨10, 20, 30, 40, 50⟩) = ⟨10, 20, 30⟩

proj3..(⟨10, 20, 30, 40, 50⟩) = ⟨30, 40, 50⟩

proj..3(⟨10, 20, 30, 40, 50⟩) = ⟨10, 20, 30⟩.

We also use the functions with base name proj to indicate a projection that excludes
the listed components. For instance,

proj3(⟨10, 20, 30, 40, 50⟩) = ⟨10, 20, 40, 50⟩

proj3,5(⟨10, 20, 30, 40, 50⟩) = ⟨10, 20, 40⟩

proj1,3,5(⟨10, 20, 30, 40, 50⟩) = ⟨20, 40⟩

proj1,2,3,5(⟨10, 20, 30, 40, 50⟩) = 40.

In frplib, we access projections using the pre-defined statistics Proj[indices...],
where the indices start counting from 1 . For example:

pgd> x = vec_tuple(10, 20, 30, 40, 50)

pgd> x

<10, 20, 30, 40, 50>

playground> Proj[3](x)

30

playground> Proj[3,5](x)

<30, 50>

playground> Proj[1,3,5](x)

<10, 30, 50>
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(We can pass ordinary Python tuples to these statistics, but we use the function
vec_tuple to obtain the more flexible tuples that are used for the values of FRPs
and Kinds.) Between the brackets, Proj can accept multiple individual indices or a
sequence of indices, like Proj[(1,3,5)] or Proj[range(2,5)]. Note that range(a,b)
includes a but not b. These also accept Python “slices”, where i : j consists of indices
from i up to but not including j (or to the end if j is excluded) and i : j : k consists
of indices from i up to but not including j skipping by k. So, Proj[1:5:3] is the
same as Proj[1,4] and Proj[1:6:2] is the same as Proj[1,3,5].

For convenience, we can use negative indices to indicate component indices starting
from the end, with −1 the last component, −2 the second to last, and so forth.

pgd> Proj[-1](x)

50

pgd> Proj[-4,-3](x)

<20, 30>

pgd> Proj[2,-1](x)

<20, 50>

The family Projbar is also defined to mimic the proj functions:

pgd> Projbar[3](x)

<10,20,40,50>

pgd> Projbar[3,5](x)

<10,20,40>

pgd> Projbar[1,3,5](x)

<20, 40>

pgd> Projbar[1,2,3,5](x)

40

These also accept negative indices to count from the end.
As with any other statistic, we can use projections to transform FRPs and Kinds.

But frplib also supports a shorthand using the [] operator with indices directly on
the FRP or Kind. For example, if we make the following definitions

pgd> bits = uniform(0,1) ** 7

pgd> B = frp(bits)
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pgd> first_bit = Proj[1]

pgd> odd_bits = Proj[1:8:2]

pgd> even_bits = Proj[2:8:2]

pgd> last_bit = Proj[-1]

pgd> last_two_bits = Proj[6:]

then we can apply the statistics in several equivalent ways

pgd> B

An FRP with value <0, 1, 1, 1, 1, 0, 1>

pgd> # Equivalent ways to apply first_bit (common value at end)

pgd> B ^ first_bit

pgd> first_bit(B)

pgd> B ^ Proj[1]

pgd> Proj[1](B)

pgd> B[1]

An FRP with value <0>

pgd> # Equivalent ways to apply odd_bits (common value at end)

pgd> B ^ odd_bits

pgd> odd_bits(B)

pgd> B ^ Proj[1:8:2]

pgd> Proj[1:8:2](B)

pgd> B[1:8:2]

An FRP with value <0, 1, 1, 1>

pgd> # Equivalent ways to apply last_bit (common value at end)

pgd> B ^ last_bit

pgd> last_bit(B)

pgd> Proj[-1](B)

pgd> Proj[7](B)

pgd> B[-1]

pgd> B[7]

An FRP with value <1>

Try these out yourself, and examine the results.
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Puzzle 19. In the playground, demonstrate as many equivalent ways as you can
to transform the FRP B by the statistics even_bits and last_two_bits.

The same approaches work with Kinds as well as FRPs. For instance, bits above
is the Kind of B, and the following expresssions are equivalent for producing the
transformed Kind with last_two_bits:

pgd> bits ^ last_two_bits

pgd> last_two_bits(bits)

pgd> bits ^ Proj[6:]

pgd> Proj[6:](bits)

pgd> Proj[6,7](bits)

pgd> Proj[-2:](bits)

pgd> Proj[-2,-1](bits)

pgd> ProjBar[1:6](bits)

pgd> bits[6:]

pgd> bits[-2,-1]

pgd> bits[6,7]

,---- 1/4 ---- <0, 0>

|---- 1/4 ---- <0, 1>

<> -|

|---- 1/4 ---- <1, 0>

`---- 1/4 ---- <1, 1>

While this may initially seem like a lot of choices, there are just a few shorthands
to keep in mind. The ^ operator (think arrow) transforms an object (FRP, Kind,
statistic) on the left side by a statistic on the right side. This is convenient to use when
the statistic is derived from a factory or from a statistic expression (as described in
the next subsection). A shorthand for this looks like a function call, where we pass the
object to be transformed to the statistic. We tend to use this form when statistics have
names because it matches our our mathematical notation (e.g., ψ(B)) and captures
the spirit of what the transform means. Because statistics are objects, they can be
stored in variables and thus given names; when we use two expressions for the same
statistic, the results are interchangeable. Thus for instance, last_two_bits(bits)
and Proj[6:](bits) are the same because Proj[6:] is the statistic that we named
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last_two_bits. And finally for convenience, we allow direct application of the []

indexing operator to FRPs and Kinds, equivalent to the correspondinng Proj, to
make this common operation easier. Note that the indexing scheme – based on
Python – provides multiple ways to generate the same set of indices, with lists or
slices or counting from the end and so forth.

As Figure 13 suggests, we often build FRPs (and Kinds) that embody complicated
information in high-dimensional tuples, so it is very common to work with transforms
by projection. To express the relation between an FRP and Kind and another derived
by projection, we use the specific label marginal.

Definition 6. If X is an FRP and X ′ = proji1,i2,...,im(X) is an FRP obtained by
applying a projection statistic to X, then we call X ′ a marginal (FRP) of X. It
is specifically identified by the indices i1, i2, . . . , im.

If k is a Kind and k′ = proji1,i2,...,im(k) is Kind obtained by applying a projection
statistic to k, then we call k′ a marginal (kind) of k′. It is specifically identified
by the indices i1, i2, . . . , im.

The process of transforming an FRP or Kind by a projection is sometimes called
marginalization. The process of collecting the marginal FRPs for the projections
onto every scalar component is called is decomposing an FRP into its components.

Suppose X is an FRP of dimension n. We know that X produces a value that
is a list of n numbers. The ith component of X, for i ∈ [1 . . n],29 is just the FRP 29[1 . . n] is an increment, the

set of integers from 1 to n.
See Section F.1.2.

that gives us the ith element of the list that X produces, which is exactly the value
of the transformed FRP proji(X). If we define Xi = proji(X) for i ∈ [1 . . n], we call
⟨X1, X2, . . . , Xn⟩ the components of X.

Definition 7. If an FRP X has dimension n, then we can decompose it into
components, scalar FRPs X1, . . . , Xn with Xi = proji(X) for each i ∈ [1 . . n].
We call X1, . . . , Xn the components FRPs of X, or just the components of X for
short.

Puzzle 20. What are the components of the FRP B in the illustration on page 92?
What are their Kinds?
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2.5 frplib Statistics: Builtins, Factories, and Combinators

In this section, we examine some of the built-in tools for working with statistics
in the playground. The playground defines a wide array of statistics and statistic
factories to represent commonly-used operations and algorithms. It also offers tools,
called statistic combinators, that combine statistics into new statistics in useful ways.
Statistic expressions are a frequently used combinator that allows us to build custom
statistics dynamically. We will also discuss how to define statistics with Python
code, following up on the examples of this we have seen so far. Remember that you
can type help(s) for any statistic s to learn about that statistic and call info()
with argument 'statistics', 'statistics-builtin', 'statistic-factories', or
'statistic-combinators' for documentation on various aspects of statistics in the
playground. The frplib cheatsheet may also be helpful.

For these illustrations, we will define two FRPs: D represents the roll of five,
balanced six-sided dice and X represents a random point in space as in Example 2.2.
Do not worry about the definitions here; just enter them and follow along from there.

pgd> D = frp(uniform(1, 2, ..., 6)) ** 5

pgd> X = frp(uniform(-1,0,1)) ** 3

pgd> D

An FRP with value <5, 3, 1, 3, 5>. (It may be slow to evaluate its kind.)

pgd> X

An FRP with value <-1, 1, 0>

Look at your values of D and X, which will likely be different than those shown here,
in preparation for looking at various transformed FRPs derived from them as you
follow along. (The playground will warn you that D’s Kind may be slow to evaluate,
though it’s not bad at all; I will elide such warnings in the output below.)

The first group of built-in statistics are commonly used “summary statistics” that
reduce a tuple to a scalar summary. Examples include Sum, Product, Max, Min,
and Mean that compute, respectively, the sum, product, maximum, minimum, or
arithmetic average of a tuple’s components. Look at the sum of the five dice, the
maximum of the five dice, and the product of the five dice:

pgd> Sum(D)

An FRP with value <17>.
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pgd> Max(D)

An FRP with value <5>.

pdd> Product(D)

An FRP with value <225>.

The FRP representing the value of the first roll is a scalar

pgd> D1 = D[1] # Or equivalently: Proj[1](D), D ^ Proj[1]

pgd> D1

An FRP with value <5>

The playground also defines scalar statistics for common numerical functions. The
names of these statistics are all capitalized, for instance: Abs for the absolute value,
Sqrt for square root, Exp for the exponential, Log/Log2/Log10 for natural/base 2/base
10 logarithm, Sin/Cos/Tan for trigonometric functions, and more.

pgd> Sqrt(D1)

An FRP with value <2.236067977499789696409173669>

pgd> Log2(D1)

An FRP with value <2.321928094887362347870319429>

pgd> Sqrt(Product(D)) # Or equivalently: D ^ Product ^ Sqrt

An FRP with value <15>

The last example shows that we can compose or chain transformations directly.
Two simple but useful statistics are the identity function, which returns its input

as is, and the constant function, which returns the same output for all inputs.30 The 30See Table F.2.
former is the statistic Id, and the latter is produced by the statistic factory Constantly,
where Constantly(v) is the statistic that always returns value v.

pgd> Id(D)

An FRP with value <5, 3, 1, 3, 5>

pgd> D ^ Constantly(1, 2, 3)

An FRP with value <1, 2, 3>

We frequently want to use statistics that are built from simpler functions, and
while we can define custom statistics as a Python function, it is often far easier to
write a statistic expression. A key ingredient is the special statistic __. This acts
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as a “hole” in the expression to be filled by the argument to the statistic. Ordinary
operations on statistics, including __, produce new statistics. Examples will clarify:

pgd> __

A Statistic '__' that represents the value given to the statistic.

It expects a tuple.

pgd> D1 ^ (6 * __)

An FRP with value <30>

pgd> D1 ^ Sin(FromDegrees(6 * __))

An FRP with value <0.5>

pgd> X ^ (2 * __ + 1)

An FRP with value <-1, 3, 1>

pgd> X ^ (2 * __ + (2, 0, 4))

An FRP with value <0, 2, 4>

pgd> X ^ (10 * __ + 2 ** __ + __ ** 2 + Abs(__))

An FRP with value <-7.5, 14, 2>

Here, FromDegrees is a statistic that converts degrees to radians, which is what
the trigonometric statistics accept. Notice also in the several examples, the tuples
add componentwise with the + 1 extending to a tuple of all 1’s. The last example
shows that __ can be used multiple times in one expression (here in a product, as an
exponent, as a base, and as an argument to another statistic). We would typically
write just Abs instead of Abs(__) in the last example, but both work. Both built-in
and custom statistics can be used in expressions. The use of the ^ operator in these
examples is primarily for readability, but direct evaluation is also valid, e.g.,

pgd> (2 * __ + 1)(X)

An FRP with value <-1, 3, 1>

Expressions can use all the standard arithmetic and conditional operators. This does
not include Python’s Boolean operators and, or, and not, because these cannot be
extended to handle custom objects. For these, we instead use the statistic combinators
And, Or, and Not, as described below.

We have already seen the Proj factories for generating projection statistics. Permute
is a similar factory that generates statistics that permute the tuples components. For
instance, Permute(2,1) is the permutation that swaps the first two components of
the tuple
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pgd> Permute(2,1)(100,200)

<200, 100>

pgd> D ^ Permute(2,1)

An FRP with value <3, 5, 1, 3, 5>

The arguments to Permute use the cycle notation described in Section F.7 and in the
Permute documentation. The related built-in statistics Ascending and Descending sort
the tuple in increasing and decreasing order.

Three general statistic factories are used for converting a general function into a
statistic: statistic, scalar_statistic, and condition.31 The factories statistic 31All three of these can be

used as decorators as well,
as we will see.

and scalar_statistic wrap a Python function in a Statistic object, with the second
distinguished only by configuring the statistic to have dimension 1.

pgd> range_of = scalar_statistic(lambda v: max(v) - min(v))

pgd> ascending = statistic(sorted)

pgd> range_of(7, 2, 0, 10)

<10>

pgd> ascending(7, 2, 0, 10)

<0, 2, 7, 10>

pgd> range_of(D)

An FRP with value <4>

pgd> ascending(D)

An FRP with value <1, 3, 3, 5, 5>

The condition factory converts a Python function or other statistic into a condition
– a Boolean statistic; the return value of the function is treated as a Boolean and
converted to 0 (false) or 1 (true). The predefined conditions bottom and top always
return false and true, respectively.

pgd> isInteger = condition(lambda v: len(v) == 1 and isinstance(v[0], int))

pgd> isIntegerAlt = condition(lambda v: isinstance(v, int), codim=1)

pgd> isEven = condition(__ % 2 == 0)

pgd> isPositive = condition(Scalar > 0)

pgd> isEven(4)

<1>

pgd> isEven(0)
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<0>

pgd> isPositive(-1)

<0>

pgd> isPositive(17.42)

<1>

pgd> isInteger(-4)

<1>

pgd> isInteger(4.2)

<0>

For isInteger and isIntegerAlt, we pass an ordinary (anonymous) Boolean function to
condition. These are two alternative versions of the same condition. In the first
case, the argument can be an arbitrary tuple, and we test its length and type; in the
second case, we tell condition that the codimension must be 1, which ensures we
get a scalar. Calling isInteger with a tuple of dimension > 1 will return false; calling
isIntegerAlt with such a tuple will raise an error message. You can define the condition
to get the behavior you want. The definitions of isEven and isPositive pass a Boolean
statistic to condition. In the definition of isPositive, the use of Scalar in place of __
makes the condition more robust by raising an error if a non-scalar is passed to the
condition. (Otherwise, Python will gladly compare (0,0,0) > 0 and return true.)
This is not an issue for Even as the modulus operator % itself already requires a scalar.
Often, conditions are combinations of Boolean statements with logical-and/or/not,
and for this we use the And, Or, and Not combinators, all of which return conditions.

pgd> isDivisibleBy6 = And(__ % 2 == 0, __ % 3 == 0)

pgd> pos2_or_3 = And(Scalar > 0, Or(__ % 2 == 0, __ % 3 == 0))

pgd> isOdd = Not(isEven)

Try evaluating these statistics on various values to make sure you understand their
meaning. We can also use the combinators Every and Some that take a (scalar)
condition and return a condition that is true if the given condition is true for every
component or for some component of the value, respectively.

pgd> X ^ Every(isPositive)

An FRP with value <0>

pgd> D ^ Some(Scalar >= 5)

An FRP with value <1>
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Like And/Or/Not, Every and Some return conditions, so they do not need to be
wrapped in a call to condition.

The playground defines several other useful combinators, including the commonly
used ForEach, IfThenElse, and Fork. ForEach takes a statistic and applies that statistic
to each component of the given value, producing a new tuple. IfThenElse takes a
condition and two statistics; if the condition is true for the given value it applies the
first statistic else the second. (If a value v is given instead of a statistic in the second
or third argument, it is equivalent to passing Constantly(v).) Fork takes one or more
statistics and applies them all to the given value, concatenating their results into a
tuple.32 For example: 32See the fork operator � in

Section F.7.
pgd> X ^ ForEach(5 * __ + 5)

An FRP with value <0, 10, 5>

pgd> X ^ IfThenElse(Sum >= 2, Max, Min)

An FRP with value <-1>

pgd> D ^ ForEach(IfThenElse(Scalar <= 3 , 0, 2 * __ - 6))

An FRP with value <4, 0, 0, 0, 4>

pgd> D ^ IfThenElse(Proj[2] < 4, Proj[5], Proj[2])

An FRP with value <5>

pgd> D ^ Fork(Min, Mean, Max)

An FRP with value <1, 3.4, 5>

In the first case, the statistic transforms each component x to 5x+ 5, taking -1, 0, 1
to 0, 5, 10, respectively. In the second case, we take the maximum for points whose
component sum is ≥ 2 else the minimum. In the third case, any components (die
rolls) ≤ 3 are replaced by 0 and others x map to 2x− 6, taking 4, 5, and 6 to 2, 4,
and 6. In the fourth case, we use the fifth roll if the second is smaller than 4 and
otherwise the second roll. And in the last case, we collect the minimum, mean, and
maximum of the five dice rolls. Notice how we use statistics (like Sum or Proj[5] or
__ above) as part of the expressions to express complicated logic.

Keep in mind that the statistics created with these tools can be used in all the
ways shown earlier. In particular, we can give them names, evaluate them as functions
on values, and use them to transform Kinds. For example:

pgd> psi = IfThenElse(Proj[2] < 4, Proj[5], Proj[2])

pgd> psi(1,6,3,2,1)
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<6>

pgd> kind(psi(D))

,---- 1/12 ---- 1

|---- 1/12 ---- 2

|---- 1/12 ---- 3

<> -|

|---- 3/12 ---- 4

|---- 3/12 ---- 5

`---- 3/12 ---- 6

These dynamic statistics are useful and convenient, but if the algorithm for com-
puting a statistic is complicated, it can be easier to write custom, named statistics. To
do this, we define ordinary Python functions and precede them with one of the decora-
tors @statistic(), @scalar_statistic(), or @condition. If the Python function
has multiple arguments without default values, that will specify the codimension of
the statistic; if it has a single argument, it will accept an arbitrary tuple. The codim

and dim arguments to the decorators can be used to specify the statistic’s type as
well. For numeric FRPs, as we usually use, the functions should return a number (for
dimension 1) or tuples of numbers. Regular Python tuples that are returned will be
converted to the playground’s VecTuples which offer some extra utility. Numbers
returned can include ±∞, written as infinity and -infinity.

For example, consider two questions about D, which represents five dice rolls:
How many rolls does it take until we see the first 6? How many rolls have the most
common value seen among the five? We can define statistics to answer both questions.
For the first question:

pgd> @scalar_statistic(description='counts rolls until a 6, or infinity if none')

...> def when_first_6(rolls):

...> try: # This will fail unless there is a roll of 6

...> return 1 + rolls.index(6) # .index() of first 6 from 0

...> except: # There is no roll with value 6, do this

...> return infinity

pgd> when_first_6

A Statistic 'when_first_6' that counts rolls until a 6, or infinity if none.

It expects a tuple and returns a scalar.
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pgd> when_first_6(D)

An FRP with value infinity

pgd> when_first_6(clone(D))

An FRP with value <3>

For the second question:

pgd> @statistic

...> def most_common_count(rolls):

...> "returns number of rolls with most common value"

...> counts = [0] * len(rolls)

...> for roll in rolls:

...> counts[roll] += 1

...> return max(counts)

pgd> most_common_roll

A Statistic 'most_common_count' that returns number of rolls with most common value.

It expects a tuple.

pgd> most_common_roll(D)

An FRP with value 2.

The description is optional and is taken from the function’s docstring if provided.
As another example, X represents a point inside a cube, and we might ask whether

the points is a corner, edge, face, or center. (See Example 2.2.)

pgd> @statistic

...> def classify_point(x):

...> "determines type of cube point (0=corner,1=edge,2=face,3=center)"

...> distance_from_origin, = Norm(x)

...> if distance_from_origin >= numeric_sqrt(3):

...> return 0 # corner

...> if distance_from_origin >= numeric_sqrt(2):

...> return 1 # edge

...> if distance_from_origin >= 1:

...> return 2 # face

...> return 0 # center

pgd> classify_point(X)

An FRP with value <1>
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Here we use the built-in statistic Norm to compute the distance of the point from the
origin and deconstruct the tuple to extract the first value.

As an example showing how to use arguments in custom statistics, consider

pgd> @statistic(arg_convert=as_real)

pgd> def quadratic_roots(a, b, c):

...> "returns roots of quadratic a x^2 + b x + c"

...> if is_zero(a):

...> root = -b/c

...> return (root, root)

...> center = -b / (2 * a)

...> disc = numeric_sqrt(center * center - c / a)

...> return (center - disc, center + disc)

pgd> quadratic_roots(1, 0, -1)

<-1, 1>

pgd> quadratic_roots(1, 2, 1)

<1, 1>

Here, the arg_convert argument ensures that all the arguments are converted to
high-precision real quantities, and the function is_zero checks if a quantity is zero
within numerical precision.

Puzzle 21. Create a statistic like most_common_count that produces the value of
the most common roll and the count of how many times it appeared.

Puzzle 22. Create a statistic that answers the question of whether either pattern
1, 2, 3 or pattern 4, 5, 6 occurs in three successive rolls.

In addition to the playground’s help/info system and documentation, the “Play-
ground Overview” on page 106 summarizes the most commonly used built-in statistics,
factories, and combinators. A Playground Cheatsheet is also available.
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After reading this section you should be able to:

• Define a statistic and give several examples of useful statistics.

• Explain how to transform an FRP or Kind using a statistic.

• Explain what it means for a statistic and FRP/Kind to be compatible.

• Use the playgroud to construct statistics.

• Use the playground to transform an FRP or Kind using a statistic.

• Define the components of an FRP.

• Use projection statistics (via Proj) to find the Kind of an FRP component
and to construct the FRP for a component.

• Find help and documentation on built-in statistics, factories, and combina-
tors in the playground.

• Use built-in statistics, factories, and combinators in the playground.

Checkpoints
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Playground Overview

Most operations in the playground can be categorized as either factories, combinators,
or actions. Factories create things, combinators combine existing things into a new
thing, and actions use things to produce an effect. Here we list some of the most
commonly used of these; see the frplib help and cheatsheet for more.

Kind Factories

kind – constructs a Kind from a string, an FRP, or another Kind.

conditional_kind – constructs a conditional Kind from a dict or function

fast_mixture_pow – computes mstat(k ** n) efficiently

constant – the Kind of a constant FRP with specified value

uniform – the Kind with specified values and equal weights

either – either(a,b,w=1) has values a and b with weights w and 1

weighted_as – specified weights on arbitrary values

weighted_by – weights on values determined by a general function

evenly_spaced, integers, symmetric, linear, geometric – kinds on specified
values with patterns of weights

subsets, without_replacement, permutations_of, ordered_samples

arbitrary – the Kind with specified values and symbolic (unspecified) weights

FRP Factories

frp – constructs an FRP from a Kind or clones another FRP.

conditional_frp – constructs a conditional FRP from a dict or function

shuffle – an FRP that shuffles a given sequence

Kind and FRP Combinators

^ operator – a ^ stat and stat(a), transform a with statistic

* operator – a * b is the independent mixture of a and b

** operator – a ** n is the independent mixture of a with itself n times

>> operator – a >> b is the mixture with mixer a and target b

| operator – a | c is the conditional of a given the condition c

// operator – b // a (read “b conditioning on a”) is equivalent to
a >> b ^ Proj[-b.dim, -b.dim+1,...,-1]
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Playground Overview (cont’d)
Statistic Factories

statistic, condition, scalar_statistics – convert a function into a statistic
Constantly – a statistic that always returns the same value
Proj – produces a projection statistic on the given indices
Permute – produces a permutation statistic with the given permutation

Statistics
__, Scalar – stands for the value passed in, the latter forces a scalar
Sum, Product, Min, Max, Count – arithmetic operations on value’s components
Mean, StandardDeviation – statistical summaries of a value’s components
Abs, Dot – absolute value/norm and dot product with a specified vector
Diff and Diffs – successive differences of the values components
Exp, Log, Log2, Log10, Sin, Cos, Tan, Sqrt, Floor, Ceil, NormalCDF – scalar
mathematical functions
top, bottom – statistics that always return true and false

Statistic Combinators
^ – s1 ^ s2 (“s1 then s2”), equivalent to s2(s1)

@ – stat @ X is like stat(X) but passes X to a following conditional
And, Or, Xor, Not – logic operators
Fork - Fork(f1,f2,...,fn) applies each fi to its corresponding component
ForEach – apply a statistic to each component of a value
IfThenElse – if a condition is true, apply one statistic else another.

Actions
symbol, symbols – create symbolic quantitys with given names
clone – create copy of an FRP or conditional FRP with its own value
unfold – unfold a canonical Kind tree
clean – remove branches with numerically negligible weights
FRP.sample – activate clones of a given FRP

Utilities
dim, codim, size, values – get properties
irange, index_of – inclusive integer ranges and index finding
identity, const, compose – useful functions
frequencies – compute frequencies of values in a sequence
as_quantity, qvec – convert to quantity (numeric/symbolic) or quantity vector
numeric_abs, numeric_log, numeric_exp, numeric_sqrt – scalar ops

Help
info – frplib specific help
help – built-in python help
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3 Equivalent Kinds and Canonical Forms

Kinds are described by complete trees, with values at the nodes and weights on
the edges. In our empirical study of FRPs and Kinds, we saw that structurally
different trees can produce the same predictions. Here, we explore conditions in
which two distinct Kinds give equivalent descriptions of an FRP.

Two Kinds k and k′ are equivalent when (i) they have the same sets of values
on their leaves, and (ii) FRPs with Kind ψ(k) and ψ(k′) have the same risk-
neutral price for any compatible, scalar statistic ψ. Given FRPs with equivalent
Kinds k and k′, one cannot distinguish whether the FRP has Kind k or k′ just
by observing the FRPs values, even in the aggregate. The bottom line is that
FRPs with equivalent Kinds are completely interchangeable.

Kinds that differ only in the order of branches at a node are equivalent.
Kinds that differ only in a constant scaling of the weights branching from any
node are equivalent. And any Kind can be reduced to an equivalent Kind in
compact form (i.e., width 1) using Algorithm Compact.

Every Kind tree has a canonical form, which can be obtained (Algorithm
Canonical) by

1. Ordering the leaves from top to bottom in increasing lexicographic order.
2. At each non-leaf node of the tree, normalizing the weights on the edges

branching from that node so that they sum to 1.
3. Reducing the tree to compact form using Algorithm Compact.

Every Kind is equivalent to its canonical form. Two Kinds are equiva-
lent if they have the same canonical form.

Algorithms Compact and Unfold can be used to convert between a single-
level compact form and a multi-level (in general) unfolded form.

Key Take Aways

An FRP produces a single value, fixed for all time once the button is first pushed.
So how can we predict anything about its value? Fortunately, we have seen in our
empirical investigations that we can make predictions in the aggregate by demoing
many FRPs of the same Kind. The Kind represents an “ideal” version of the demo
where we include all FRPs of the that Kind. What we see in a demo with a finite
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number of FRPs will vary somewhat, but as we demo more and more FRPs of that
Kind, the relative frequencies of the values we see in the demo will more closely match
the weights in the Kind.

Kinds are described by weighted, complete trees, with values of the same dimension
on the leaves and positive numbers for the weights. As we intuited in our explorations
earlier, it is possible to have different trees that are equivalent in terms of the
predictions they make about an FRP of that Kind. In this section, we take a closer
look at when two Kind trees are equivalent and see how to convert among different
representations of equivalent Kinds.

To illustrate equivalence, let us return to the market and use the compare task to
run demos for two different Kinds in parallel.

mkt> compare 1_000_000 with kinds (<> 1 <0> 1 <1>) (<> 0.5 <0> 0.5 <1>).

Kind A

,----- 1 ---- <0>

<> -|

`----- 1 ---- <1>

Kind B

,----- 1/2 ---- <0>

<> -|

`----- 1/2 ---- <1>

Summary of Demo for Kind A

+--------+--------+------------+

| Values | Count | Proportion |

+========+========+============+

| 0 | 499687 | 49.97% |

| 1 | 500313 | 50.03% |

+--------+--------+------------+

Summary of Demo for Kind B

+--------+--------+------------+

| Values | Count | Proportion |

+========+========+============+
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| 0 | 499629 | 49.96% |

| 1 | 500371 | 50.04% |

+--------+--------+------------+

The proportions here are not exactly the same, but the small differences are variations
between the finite samples of FRPs in the two demos. The more demos we run, the
closer the results for the two Kinds will become. These two Kinds are equivalent.

Consider also:

mkt> compare 1_000_000 with kinds

...> (<> 1 (<-1> 0.4 <-1, -15> 0.6 <-1, -5>)

...> 3 (<0> 1 <0, 10>)

...> 2 (<9> 1 <9, 12> 4 <9, 20> 5 <9, 32>))

...> (<> 1/15 <-1, -15> 1/10 <-1,-5> 1/2 <0,10>

...> 1/30 <9,12> 2/15 <9,20> 1/6 <9,32>).

Kind A

,----- 2/5 ---- <-1, -15>

,----- 1 ---- <-1> -|

| `----- 3/5 ---- <-1, -5>

|

|

<> -+----- 3 ---- <0> -+----- 1 ------ <0, 10>

|

|

| ,----- 1 ------ <9, 12>

`----- 2 ---- <9> -+----- 4 ------ <9, 20>

`----- 5 ------ <9, 32>

Kind B

,------- 2/30 ------- <-1, -15>

|

|------- 3/30 ------- <-1, -5>

|

|------- 15/30 ------ <0, 10>
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<> -|

|------- 1/30 ------- <9, 12>

|

|------- 4/30 ------- <9, 20>

|

`------- 5/30 ------- <9, 32>

Summary of Demo for Kind A

+-----------+--------+------------+

| Values | Count | Proportion |

+===========+========+============+

| <-1, -15> | 66311 | 6.631% |

| <-1, -5> | 100016 | 10% |

| <0, 10> | 500824 | 50.08% |

| <9, 12> | 33216 | 3.322% |

| <9, 20> | 133040 | 13.3% |

| <9, 32> | 166593 | 16.66% |

+-----------+--------+------------+

Summary of Demo for Kind B

+-----------+--------+------------+

| Values | Count | Proportion |

+===========+========+============+

| <-1, -15> | 66741 | 6.674% |

| <-1, -5> | 99935 | 9.993% |

| <0, 10> | 499578 | 49.96% |

| <9, 12> | 33170 | 3.317% |

| <9, 20> | 133211 | 13.32% |

| <9, 32> | 167365 | 16.74% |

+-----------+--------+------------+

Again, there are small variations between finite samples of FRPs, but these two Kinds
are also equivalent.

We define the equivalence of two Kinds in terms of the risk-neutral prices of
transformed FRPs with those Kinds. As discussed earlier, the risk-neutral price is
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how much we would pay – ignoring our personal aversion or attraction to risk – for
the value produced by an FRP and as such represents our best prediction of that
FRP’s value.33 33We will see how to find

these prices in Section 7; for
now, we only need the idea.

Two Kinds K and K ′ are equivalent if two conditions hold:
1. every scalar statistic compatible with K is compatible with K ′, and vice versa;
2. for every compatible scalar statistic ψ, we are indifferent to exchanging a fresh

FRP with Kind ψ(K) for a fresh FRP with Kind ψ(K ′) with no money changing
hands.

The first condition holds if and only if the two Kinds have the same set of values
on their leaves. The second condition tells us that FRPs with Kind ψ(K) and Kind
ψ(K ′) have the same risk-neutral price. That is, our predictions of these FRPs’ values
are the same.

To understand the role of the statistics ψ here, think of the perspective from the
last section: where each statistic corresponds to a question we might ask about the
unknown value of the FRP with the transformed value answering that question. A
scalar statistic corresponds to a question with a numerical answer. If we have FRPs
X and X ′ with respective Kinds K and K ′, then for any scalar statistic ψ, the values
of ψ(X) and ψ(X ′) are the answers to the question for the values of X and X ′. When
K and K ′ are equivalent, it means that our predicted answers to the question are the
same for any meaningful question we might ask.

Loosely speaking, two Kinds k and k′ are equivalent when, before observing any
FRPs’ values, we are indifferent to replacing any FRP of Kind k with an FRP of
Kind k′ and vice versa no matter what transformation rule our adversary chooses. If
one Kind were easier to predict or tended to produce bigger payoffs or if we could
distinguish the Kinds based on the values we see, then we would not be indifferent
between them. Equivalent Kinds lead to FRPs that are interchangeable.

Definition 8. Two Kinds K and K ′ are equivalent, which we denote by K ∼= K ′,
if both the following conditions hold:

1. K and K ′ have the same sets of values on their leaves.

2. For any compatible, scalar statistic ψ, FRPs with Kinds ψ(K) and ψ(K ′)

have the same risk-neutral price.
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Another way to think about this is that if you have a large demo of FRPs that
all have either Kind K or K ′, then you cannot distinguish between equivalent Kinds
by looking at the values of these FRPs, even in the aggregate. Fresh FRPs with
equivalent Kinds are thus interchangeable; we are indifferent to which we have as all
our predictions about their values are the same.

Puzzle 23. A Kind k of the form

⟨⟩
⟨u⟩a

⟨v⟩b

with a, b > 0 and u ̸= v has risk-neutral price au+bv
a+b , as we will see in Section 7.

Use this and the definition of equivalence to show that the following two Kinds
are equivalent:

⟨⟩
⟨0⟩6

⟨12⟩18
⟨⟩

⟨0⟩1
4

⟨12⟩3
4

As a first step, write the tree for the transformed Kind ψ(k) for an arbitrary,
compatible scalar statistic ψ. You can do this without having a concrete expression
for ψ; the answer depends only on ψ(u), ψ(v), a, and b.

Equivalence (∼=) gives a binary relation on the set of Kinds, and in fact it is
what we call an equivalence relation:34 any Kind is equivalent to itself (K ∼= K), the 34The notions of relation and

equivalence relation are
defined formally and
discussed in Section F.8.

relation is symmetric (K ∼= K ′ if and only if K ′ ∼= K), and the relation is transitive
(K ∼= K ′ and K ′ ∼= K ′′ implies K ∼= K ′′). The relation ∼= partitions the set of all
Kinds into disjoint subsets of equivalent Kinds called equivalence classes. All Kinds
in an equivalence class are equivalent to each other and are not equivalent to any
Kind outside the equivalence class.

Condition 1 in the definition of equivalence is easy to check just by inspecting the
trees for two Kinds. We look at the leaves and see if the sets of possible values are
the same. Condition 2, however, seems harder to check, even with the formula for
the risk-neutral price that we will derive later. How do we check it for all compatible,
scalar statistics? Fortunately, because we have an equivalence relation, there is an
easier way. We systematically choose one representative Kind for each equivalence
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class, called the canonical form for Kinds in the equivalence class, and convert any
Kind to its canonical form. Every Kind is equivalent to its canonical form, and thus
by transitivity, any two Kinds with the same canonical form are equivalent.

Given a Kind tree, there is a simple algorithm to produce its canonical form.
To motivate this, we consider three arbitrary choices we make in specifying a Kind:
the order of branches at each node, the scaling of the weighs, and the width of the
tree. Different choices in these dimensions lead to equivalent Kinds, so if we make a
canonical choice in each, we get the canonical form.

First, when we display a Kind, we must specify the order of branches at each
node, but this choice is arbitrary. For example, in Figure 20, the two Kinds differ
only in branch order. They have the same values and for each value, the same weights
along the path from root to leaf. If we run demos of both Kinds and tabulate the
values in the market, the results do not depend on the branch order.35 FRPs with 35Try this yourself, using

compare in the market.these Kinds are indistinguishable in their behavior. So: Kinds that differ only in the
order of branches at a node are equivalent.

⟨⟩

⟨−1⟩
⟨−1,−15⟩0.4

⟨−1,−5⟩0.6
1

⟨0⟩ ⟨0, 10⟩13

⟨9⟩
⟨9, 12⟩1

⟨9, 20⟩4

⟨9, 32⟩5

2

⟨⟩

⟨0⟩ ⟨0, 10⟩13

⟨9⟩
⟨9, 32⟩5

⟨9, 12⟩1

⟨9, 20⟩4

2

⟨−1⟩
⟨−1,−5⟩0.6

⟨−1,−15⟩0.4
1

Figure 20. Two Kinds that differ only in the order of branches at some nodes.

114



We can choose a canonical branch order. Any choice will do, but it helps to
be systematic. At each branching, order the nodes in increasing order of the last
component in the value. Equivalently, we order the branches so that the leaf tuples
are sorted from bottom to top in increasing lexicographic order (sort first by the first
component, then by the second, and so forth). We are not required to use this order,
but it provides a standard for comparison, as we will see below. For example, the top
Kind in Figure 20 is in canonical branch order.

Another choice we have to make in specifying a Kind is the scaling of the weights.
That is, we can multiply the weights at any branching by the same constant. Consider
the Kinds in Figure 21. Are these distinguishable? Try this in the market using the
compare task, as shown earlier. Can you tell these apart?

⟨⟩
⟨0⟩1

⟨1⟩1
⟨⟩

⟨0⟩100

⟨1⟩100
⟨⟩

⟨0⟩1
2

⟨1⟩1
2

Figure 21. Three Kinds whose weights differ only by a constant multiplicative factor.

Short answer: no. If we scale all the weights branching from any node in a
Kind tree by the same multiplicative factor, we get a new Kind whose demos will be
indistinguishable from the original. Two Kinds are related in this way if the weights
on the edges branching from some node , w1, . . . , wm and w′

1, . . . , w
′
m, satisfy: there

is a c > 0 where wi/w′
i = c for every i. The constant can be different at each node,

but all the branches emerging from a node must be scaled alike. So: Kinds that
differ only in a constant scaling of the weights weights branching from any node are
equivalent.

We make a canonical choice of scalings: the sum of the weights emanating from
any node should equal 1. Again, we are not required to use this scaling, and it is
sometimes convenient not to, but it serves as a standard to make comparison – and
some other calculations – easier.

The last choice we make in presenting Kinds is the width of the tree (i.e., the
number of levels) for Kinds of dimension > 1. Having multiple levels in the tree
emphasizes the sequential nature of the values generated and highlights the contingent
choices made for each component of the generated value. This is often conceptually
useful when building a model of a random process. At the same time, however,
there is redundant information in the multi-level presentation. Figure 22 shows two
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equivalent Kinds with different widths. The Kind shown on the left has the same
width as its dimension; we call this the unfolded form. The Kind shown on the right
has the same size, dimension, and values but has width 1; we call this the compact
form. It might not seem obvious at first but the two are equivalent, and we can easily
convert between them using Algorithms Unfolded and Compact below. So: A
Kind in unfolded form is equivalent to its compact form, and vice versa.

⟨⟩

⟨10⟩
⟨10, 40⟩1

⟨10, 50⟩2

⟨10, 60⟩3

1

⟨20⟩
⟨20, 70⟩1

⟨20, 80⟩3
1

⟨30⟩ ⟨30, 90⟩11

⟨⟩

⟨10, 40⟩1
18

⟨10, 50⟩1
9

⟨10, 60⟩1
6

⟨20, 70⟩1
12

⟨20, 80⟩1
4

⟨30, 90⟩1
3

Figure 22. A Kind in two forms: unfolded and compact. Can you go from one to the other?

Our canonical choice is to show Kinds in compact form. Again, we are not required
to use this choice – unfolded form can be illuminating – but it will be our default.

Combining these three transformations gives us a simple algorithm for converting
any Kind to its canonical form. This is described by the following algorithm.

Algorithm Canonical

Given as input a Kind K, returns the canonical form of that Kind in three
steps:

1. Order the leaves from top to bottom in increasing lexicographic order.

2. At each non-leaf node of the tree, normalize the weights on the edges branching
from that node so that they sum to 1.

3. Reduce the tree to compact form using Algorithm Compact.

The result is the canonical form of Kind K.

The canonical form is a simple standard that makes it easy to compare and
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manipulate Kinds and to identify equivalence. Other equivalent forms can also be
useful, giving us insights about the random process or helping with calculations.

Every Kind is equivalent to its canonical form. Two Kinds are equivalent if they
have the same canonical form.

So from here on, when we consider a Kind, we will effectively identify it with
the class of Kinds that are equivalent to that tree. We treat the canonical form as a
representative of this class and freely translate to other forms as needed.

Puzzle 24. Apply Algorithm Canonical to the left Kind in Figure 22. You
should get the right Kind in that Figure.

Naming Convention.
This is a good point to establish a naming convention for FRPs and Kinds,

to make it easier to reference them.
For FRPs, we will name them with capital Roman letters (like X,Y , and

Z), sometimes with subscripts to indicate FRPs that are related in some way.
Thus, we can name FRPs X, Y1, Y2, R, M , DT and so forth. We often use
integer subscripts to identify component FRPs of a multi-dimensional FRP. If we
want to emphasize that a group of FRPs represent distinct FRPs with the same
Kind, we will use the same base letter and wrap the subscripts with the index in
brackets. For instance, a collection of four like-kinded FRPs X[1], X[2], X[3], X[4].

If X is an FRP, kind(X) is its Kind, dim(X) is its dimension, size(X) is its
size, and its set of values is values(X).

For Kinds, we will name them with adorned letters like K, k, k′, k1, . . .,
preferring to use the base letter k/K whenever possible.

Remember that, formally, kind(X) refers to an equivalence class of trees, and we
can display it with any of the equivalent trees in the class, with the canonical form
by default.

Finally, we turn to the algorithms for compactifying and unfolding a Kind tree.
Consider first the Kind at the left of Figure 22. We will carry out Algorithm Compact
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in three steps. First, we normalize the weights so that for each non-leaf node, the
branches coming from that node have weights that sum to 1. The tree becomes

⟨⟩

⟨10⟩
⟨10, 40⟩1

6

⟨10, 50⟩1
3

⟨10, 60⟩1
2

1
3

⟨20⟩
⟨20, 70⟩1

4

⟨20, 80⟩3
4

1
3

⟨30⟩ ⟨30, 90⟩11
3

We work one non-leaf node at a time, including the root. Typically, we would reduce
fractions to lowest terms, but that is not always necessary or clarifying. Then, for
each leaf node, we multiply the normalized weights along the path from root to leaf,
recording the result. For instance, for the ⟨10, 40⟩ leaf node, we get 1

3 · 1
6 = 1

18 ; for
the ⟨20, 80⟩ leaf node, we get 1

3 ·
3
4 = 1

4 ; and so on. Creating a one level tree with the
same leaf nodes and the weights corresponding to these products yields the compact
form at the bottom of the Figure.

Algorithm Compact

Input: a Kind as an unfolded tree
Returns: the Kind in equivalent compact form.

Step 1. At each non-leaf node of the tree, normalize the weights on the edges
branching from that node so that they sum to 1.

Step 2. For each leaf node of the tree, multiply together the weights along the
path from the root to that leaf. Record the resulting product for that leaf.

Step 3. Create a single level tree with the same leaf nodes and set the weight for
each leaf node to be the product you computed for that node in Step 2.

The resulting Kind tree is the compact form.

In the playground,36 we can view and manipulate Kinds to understand this 36When showing playground
input and output, text from
# to the end of a line is a
comment for your benefit.
You should not type or enter
that.

transformation. FRPs and Kinds can be assigned to variables for easy reference. Pick
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a Kind, apply the algorithms, and then use commands like the following to see both
forms.

pgd> practice_1 = '(<> 10 (<3> 1 <3, 2> 7 <3,3>)

...> 11 (<30> 4 <30,0> 8 <30,2>))'

pgd> k1 = kind(practice_1) # The kind specified by practice_1

pgd> unfold(k1) # shows the unfolded form

pgd> k1 # shows the k1's canonical form

The playground can do much more, as we will see in the next section.
Now let’s go the other way, starting from the right tree Figure 22 and producing

the left. The key to making this work is that each value generated at each level must
be distinct. First, we normalize the weights as in the previous two algorithms, then
we build the unfolded form from the leaves up.

The leaf nodes in the unfolded form will be the same as in the compact form. To
get the nodes at the next higher level, we remove the last value in the list. When
we do this, we get three ⟨10⟩’s and two ⟨20⟩’s, and because values must be distinct,
we need to combine each of these sets into a subtree. Let’s focus on the ⟨10⟩’s and
the three nodes from which they come. These nodes will be grouped in a subtree
with ⟨10⟩ at the branch. Add together the weights for these three nodes, yielding
1
18 + 1

9 + 1
6 = 1

3 . We carry the 1/3 forward and divide each of the nodes’ weights
by 1

3 to renormalize the sum to 1. Our subtree weights then become 1
6 ,

1
3 , and 1

2

respectively. Now we repeat the process with the node ⟨10⟩. We remove the last item
from the list which gives the empty node; there are no repeats here. The 1

3 that we
carried over becomes the weight for that edge.

For completeness, let’s do the other two cases. The leaf nodes that start with 20
have weights 1

12 and 1
4 ; adding these gives 1

3 . Renormalizing gives weights 1
4 and 3

4

for the subtree with nodes ⟨20, 70⟩ and ⟨20, 80⟩, carrying 1
3 forward. Repeating for

⟨20⟩ brings us to the root, so that edge has weight 1
3 .

The node is ⟨30, 90⟩. We remove the 90, but there no duplicates and the weight
is 1

3 , which normalizes to 1, carrying 1
3 forward. Removing 30 brings us to the root

with a weight of 1
3 . The result is as in the earlier Figure.

Algorithm Unfolded carries out these same operations for arbitrary Kinds.

119



Algorithm Unfolded

Input: a Kind as a compact (single level) tree
Returns: the Kind in equivalent unfolded form.

Step 1. Convert the compact tree to canonical form; in particular, normalize the
weights in the input Kind so that they sum to 1. Call this T0.

Step 2. Define two kind-valued variables S and T . Initialize both to T0

Step 3. While Kind S has dimension > 1, do the following:

i. Partition the leaf nodes S into disjoint sets L1, . . . ,Lm (for some m ≥ 1)
of leaf nodes whose values are equal excluding the last element.

ii. For Lj with j ∈ [1 . .m], do the following:

a. Let n1, . . . , nk be the leaf nodes in Lj , with values of the form
⟨v1, . . . , vd−1, xi⟩ d = dim(S) and i ∈ [1 . . k], where v1, . . . , vd are
the same for all k nodes and x1, . . . , xk are distinct.

b. Modify T by removing the edges from the common parent of the
nodes n1, . . . , nk and replacing them with an edge from that common
parent to a new node bj and with edges from bj to each node
n1, . . . , nk.

c. Set the value for node bj to ⟨v1, . . . , vn−1⟩.
d. If w1, . . . , wk are the weights on the edges from n1, . . . , nk to their

original parent in T , set the new weight on the branch from bj to
each ni to wi/(w1 + · · ·+ wk) and the weight on the branch from
bj to its parent to be w1 + · · ·+ wk.

iii. Set S to the (upper) subtree of T consisting of all nodes from the root
up to and including the new nodes (i.e., b1, . . . , bm) added in step ii.

Step 4. Return T .

This algorithm is rather easier to do than to precisely describe, so try it out on some
examples with the following activity.
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Activity. Generate several Kinds in a mixture of unfolded and compact forms.
Apply the algoritms to convert each to the other form. Use the playground to
view each Kind in both forms and check your answers.

After reading this section you should be able to:

• Explain what it means for two Kinds to be equivalent.

• Determine if two Kind trees are equivalent.

• Convert a Kind tree into canonical form via Algorithm Canonical

• Apply Algorithms Compact and Unfolded to convert back and forth
between the compact and unfolded views of a Kind.

Checkpoints
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4 Building with Mixtures

A mixture builds a higher-dimensional FRP from two or more lower-dimensional
FRPs. It selects one of several FRPs of the equal dimension (the targets) to
activate contingent on the output value of another FRP (the mixer). We hook
each of the output ports of the mixer to an input port of one of the targets,
and when the mixer is activated, it triggers the rest, producing a value that
concatenates the value produced by the mixer and the activated target. Mixtures
capture a common feature of many random processes: contingent evolution.

An independent mixture is a special case where the value of the mixer
does not influence the values of the target. The ⋆ operator denotes independent
mixture for FRPs and for Kinds. The independent mixture of FRPs X ⋆ Y is an
FRP with a value that concatenates the values of FRPs X and Y into a single
tuple.

The independent mixture of Kinds K1 ⋆ K2 is formed by attaching a copy of
K2 at each leaf node of K1, concatenating the corresponding values of K1 to the
values at each node of K2.

The two operations are related:

kind(X ⋆ Y ) = kind(X) ⋆ kind(Y ). (4.1)

An independent mixture of n FRPs of the same Kind, or of a Kind with
itself n times, is denoted x ⋆⋆n, an independent mixture power .

A function that maps a set of m-dimensional values to FRPs of dimension n
is called a conditional FRP of type m→ n. Every FRP of dimension n is a
conditional FRP of type 0 → n.

A function tha tmaps a set of m-dimensional values to Kinds of dimension n
is called a conditional Kind of type m→ n. Every Kind of dimension n is a
conditional Kind of type 0 → n.

If r and s are compatible conditional FRPs (or Kinds) of types m→ n and
n→ p, their mixture r ▷ s is a conditional FRP (or Kind) of type m→ p.

In the mixture R ▷ S of conditional FRPs, the value produced by R’s selected

Key Take Aways
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FRP is passed as input to S. And

kind(R ▷ S) = kind(R) ▷ kind(S) (4.2)

where kind() on a conditional FRP gives the corresponding conditional Kind.
In the mixture of conditional Kinds r ▷ s, we copy of each Kind from s at the

corresponding leaf node in r, concatenating values accordingly.
The conditioning operation C( K is a combination of the mixture K ▷ C

and a projection that extracts the value of thee second stage.

A common feature of random processes is contingent evolution: first something
happens, then something else happens that depends on what happened initially, then
something else happens that depends on what happened earlier, and so on. Mixtures
capture this idea by using the value of one FRP to contingently activate other FRPs.

Figure 23 shows an example of a mixture. The FRP on the left, which we call
the mixer, represents a random choice among three boxes corresponding to values
-1 (left), 0 (center), and 1 (right). Within each box is a random amount of money,
represented by the FRPs on the right, which we will call the targets. The targets here
have different Kinds, which is fine, but we require that they have the same dimension.
The mixer’s ⟨−1⟩ output port is connected to the top target’s input port, the mixer’s
⟨0⟩ output port to the middle target’s input port, and mixer’s the ⟨1⟩ output port to
the bottom target’s input port. These connections disable the mixer’s display and
the targets’ buttons and also reconfigure the targets’ displays. When the mixer is
activated, the mixer output port that corresponds to the FRP’s value is triggered.
This value is passed to the connected target, activating it. The activated target
displays both the received value from the mixer and its own value, concatenated into
one tuple. The Figure shows one sample outcome of this process: the mixer produces
a value of -1, which triggers the top target FRP that in turn produces a value of
⟨2, 4⟩, and the combined value ⟨−1, 2, 4⟩ is displayed.

Taken together, this construction gives us what is effectively a new FRP: we push
the button (on the mixer) and a value is displayed (on one of the target screens).
That value, once produced, is fixed for all time. The combined value tells us what
was produced by the mixer and by the activated target, thus reflecting a process
evolving contingently.
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⟨⟩
⟨−1⟩1
⟨0⟩3
⟨1⟩2

⟨1⟩ ⟨0⟩ ⟨−1⟩ All

⟨⟩
⟨1, 2⟩1
⟨2, 4⟩1
⟨3, 6⟩1

⟨−1, 2, 4⟩

⟨1, 2⟩⟨2, 4⟩⟨3, 6⟩ All

⟨⟩ ⟨0, 0⟩3
⟨9, 9⟩4

⟨0, 0⟩⟨9, 9⟩ All

⟨⟩
⟨1, 7⟩6
⟨2, 4⟩2
⟨3, 3⟩1
⟨5, 8⟩1

⟨1, 7⟩⟨2, 4⟩⟨3, 3⟩⟨5, 8⟩ All

⟨1⟩ ⟨0⟩ ⟨−1⟩

Figure 23. An FRP mixture, with the mixer on the left and the targets on the right. In this
case, the activated mixer has value ⟨−1⟩, which activates (green wire) the top
target which has value ⟨2, 4⟩. The combined value ⟨−1, 2, 4⟩ is displayed.
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In general, a mixture builds a higher-dimensional FRP from several lower-
dimensional FRPs. One of these is called the mixer, and the rest are called targets.
The targets can have different Kinds but must all have the same dimension. The
mixture FRP selects one of the targets to activate contingent on the output value of
the mixer. We connect the mixer’s output ports to the targets’ input ports, with the
output port for each possible value of the mixer connecting to a potentially distinct
target. These connections disable the mixer’s display and the targets’ buttons. When
the mixer is activated, its value is passed through the output port associated with
that value and activates the target connected to it. The activated target displays a
value that combines the mixer’s value and its own.

To understand the structure of a mixture, we only need to know the Kinds of the
FRPs involved and how they are connected. So if we need to illustrate mixtures, we
can use a more stylized format than in Figure 23, a wiring diagram, with the FRPs
as boxes labeled by their Kinds (as needed) and the wires emitting from the boxes
ordered the same way as the leaves of the Kind. Figure 24 reproduces the mixture
of Figure 23 as a wiring diagram. This mixture forms an FRP with Kind given in
unfolded and canonical forms by

⟨⟩

⟨−1⟩

⟨−1, 1, 2⟩1

⟨−1, 2, 4⟩1

⟨−1, 3, 6⟩1

1

⟨0⟩
⟨0, 0, 0⟩3

⟨0, 9, 9⟩4
3

⟨1⟩

⟨1, 1, 7⟩6

⟨1, 2, 4⟩2

⟨1, 3, 3⟩1

⟨1, 5, 8⟩1

2

⟨⟩

⟨−1, 1, 2⟩1
18

⟨−1, 2, 4⟩1
18

⟨−1, 3, 6⟩1
18

⟨0, 0, 0⟩3
14

⟨0, 9, 9⟩2
7

⟨1, 1, 7⟩1
5

⟨1, 2, 4⟩2
30

⟨1, 3, 3⟩1
30

⟨1, 5, 8⟩1
30

The mixture FRP has dimension 3 and size 9.
Figure 25 gives an even simpler example where all of the FRPs involved have the

same Kind, which is shown once and indicates the order of wires for all the FRPs.
This example illustrates repeated mixtures, where the FRP produced by the mixture
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⟨⟩
⟨−1⟩1
⟨0⟩3
⟨1⟩2

⟨⟩
⟨1, 2⟩1
⟨2, 4⟩1
⟨3, 6⟩1

⟨⟩ ⟨0, 0⟩3
⟨9, 9⟩4

⟨⟩
⟨1, 7⟩6
⟨2, 4⟩2
⟨3, 3⟩1
⟨5, 8⟩1

Figure 24. A leaner depiction of the mixture in Figure 23 as a wiring diagram. Each box is an
FRP, labeled by its Kind. The wires connected to the output ports emerge from
the right of the box in the same order as the Kind’s leaves.

becomes the mixer for a new mixture and so on. Equivalently, each of the targets of
the original mixture become the mixers for a new mixture, and in turn their targets
become the mixers for yet another mixer, and so on.

Our goal in this section is to understand the mixture operation: what it means,
how to use it, how to find the Kind of a mixture, and how to build mixtures in the
playground. We think of a mixture as proceeding in stages, with the value of the
mixer FRP being the initial stage, the value of the activated target FRP the second
stage, the value of the FRP activated as by that target the third stage, and so on
through however many mixtures we have. The simplest mixtures are those where the
Kinds of the targets do not depend on the value of the mixture. These are called
independent mixtures. We start with these.

4.1 Independent Mixtures

Think back to the Monty Hall game in Section 1.4. For any given strategy, the
outcome is determined by two stages: Monty’s choice of a door and your choice of
a door. However, those two choices do not interact : you choose a door in exactly
the same way whatever Monty does. You do not know what his choice was and are
completely uninfluenced by it.

To reflect that with an FRP, we start with two FRPs, M (for Monty) representing
Monty’s choice and Y for your choice. We combine these to form a new two-
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⟨⟩
⟨0⟩1

2

⟨1⟩1
2

⟨0, 0, 0, 0⟩
⟨0, 0, 0, 1⟩

⟨0, 0, 1, 0⟩
⟨0, 0, 1, 1⟩

⟨0, 1, 0, 0⟩
⟨0, 1, 0, 1⟩

⟨0, 1, 1, 0⟩
⟨0, 1, 1, 1⟩

⟨1, 0, 0, 0⟩
⟨1, 0, 0, 1⟩

⟨1, 0, 1, 0⟩
⟨1, 0, 1, 1⟩

⟨1, 1, 0, 0⟩
⟨1, 1, 0, 1⟩

⟨1, 1, 1, 0⟩
⟨1, 1, 1, 1⟩

Figure 25. A mixture where all the FRPs (blue boxes) have the same Kind, which is shown at
left. The wire connections are in the same order as the leaves of the Kind. This is
a repeated mixture composed of three mixture operations. The resulting FRP has
dimension 4 and size 16; its values are all 4-tuples whose components are 0 or 1.
These values are listed to the right of the wiring diagram for reference, with a pair
of values adjacent to the ultimate target FRP on which they will be displayed.
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dimensional FRP whose first component is the value of M and the second component
is the value of Y . This is a mixture, with wiring diagram:

⟨⟩

⟨1⟩1

⟨2⟩1

⟨3⟩1

M ⟨⟩

⟨1⟩ℓ

⟨2⟩m

⟨3⟩r

Y

Because Monty’s and your choices do not interact, the bahavior of Y does not depend
on the value of M , so we can form this mixture by simply connecting the All output
port of M to the input port of Y . This has several effects:

• Y ’s button is disabled, and Y is instead activated when M produces a value.

• M ’s display is disabled, and when M ’s button is pushed, Y ’s display shows the
combined value, and

• Y ’s output ports reconfigure (and relabel) automatically to give access to the
combined value.

This FRP is called the independent mixture of M and Y ; it has Kind, in unfolded
and canonical forms, with t = ℓ+m+ r,

⟨⟩

⟨1⟩

⟨1⟩ℓ

⟨2⟩m

⟨3⟩r

1

⟨2⟩

⟨1⟩ℓ

⟨2⟩m

⟨3⟩r

1

⟨3⟩

⟨1⟩ℓ

⟨2⟩m

⟨3⟩r

1

⟨⟩

⟨1, 1⟩ℓ
3t

⟨1, 2⟩m
3t

⟨1, 3⟩r
3t

⟨2, 1⟩ℓ
3t

⟨2, 2⟩m
3t

⟨2, 3⟩r
3t

⟨3, 1⟩ℓ
3t

⟨3, 2⟩m
3t

⟨3, 3⟩r
3t

Notice how the unfolded Kind reflects the structure of the process. Monty picks a
door (stage one), then you pick a door (stage 2). But your choice does not use any
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information about Monty’s choice, so the Kinds at every branch in the second level
of the tree are the same.

We can form this mixture in different but equivalent way. Suppose that we have
three clones of Y , i.e., FRPs with the same Kind as Y . Y[1], Y[2], Y[3], and we connect
the ⟨i⟩ output port of M , for each i ∈ [1 . . 3], to the input port of Y[i]. This has the
wiring diagram:

M

Y[1]

Y[2]

Y[3]

While this mixture is wired differently than the earlier mixture, it behaves in the
same way. As we have seen, the clones Y[1], Y[2], Y[3] have the same kind and are in
practice interchangeable. Whichever one is activated, it will behave just like Y . Both
constructions of an independent mixture are equivalent, and we can use whichever is
convenient at any point. We call the former the “flat” construction, where we connect
the All port of the mixer to the input port of the target, and the latter the “clone”
construction, where we connect each output port of the mixer to the input port on a
clone of the target.

The mixture FRP depicted in Figure 25 is also an independent mixture. The
FRPs at each stage produce a value 0 or 1, regardless of what happens at any earlier
stage. With four stages, we get 24 = 16 possible values, each a four-dimensional tuple,
as shown in the Figure. The “flat” construction for this mixture has wiring diagram

where each FRP has the same Kind as shown in Figure 25. Each FRP produces
either 0 or 1 and passes that value forward in the mixture, where we get a get the
tuple of four random 0s or 1s, each chosen independently of each other.

The independent mixture of two FRPs X and Y takes the value x produced by
X and the value y produced by Y and outputs the concatenated tuple x :: y joining
both values. (We use x :: y to denote the concatenation of tuples x and y as described
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in Section F.7.) Independent mixture is a combinator that combines several FRPs to
build a new, related FRP. We use the ⋆ operator to denote this combinator.

If X and Y are FRPs, their independent mixture is the FRP denoted by X ⋆Y .
If X has dimension d1 and size s1 and Y has dimension d2 and size s2, then

X ⋆ Y has dimension d1 + d2 and size s1s2. The values of X ⋆ Y are all the values
x :: y where x is a value of X and y is a value of Y .

The wiring diagram for this mixture is

X Y

though it can be written equivalently as the “clone” version.

Let us construct the mixture M ⋆ Y for the Monty Hall game in the playground.
To get an FRP for Y , we need to set ℓ,m, r to specific values, here ℓ = m = r = 1.
The substitution function replaces symbolic variables with alternate values.

pgd> door_with_prize = uniform(1, 2, 3)

pgd> chosen_door = arbitrary(1, 2, 3, names=['l', 'm', 'r'])

pgd> M = frp(door_with_prize)

pgd> Y = frp(substitution(chosen_door, l=1, m=1, r=1))

pgd> M * Y

An FRP with value <3, 1>

pgd> M

An FRP with value <3>

pgd> Y

An FRP with value <1>

pgd> clone(M * Y)

An FRP with value <2, 2>

pgd> FRP.sample(10_000, M * Y)

+--------+-------+------------+

| Values | Count | Proportion |

+========+=======+============+

| <1, 1> | 1104 | 11.04% |

| <1, 2> | 1113 | 11.13% |
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| <1, 3> | 1127 | 11.27% |

| <2, 1> | 1121 | 11.21% |

| <2, 2> | 1101 | 11.01% |

| <2, 3> | 1088 | 10.88% |

| <3, 1> | 1089 | 10.89% |

| <3, 2> | 1124 | 11.24% |

| <3, 3> | 1133 | 11.33% |

+--------+-------+------------+

We create the two FRPs from their Kinds using the frp funcction. The * operator
is the playground version of the independent mixture operator ⋆. The value of the
mixture FRP M * Y combines the values of M and Y as shown. The clone functions
creates a clone of the given FRP, a fresh FRP with the same Kind. The sample
includes all nine possible values, which occur with roughly the same frequency.

As we have seen, we can wire mixtures of FRPs over any number of stages, and
indeed the independent mixture operation can be applied to any number of FRPs.
For instance, we write X ⋆ Y ⋆ Z for the three stage mixture of the FRPs X,Y, Z. In
general, X1 ⋆X2 ⋆ · · · ⋆Xn is an independent mixture of n stages with wiring diagram

X1 X2 . . . Xn

Example 4.1. In the classic game Dungeons & Dragons, each player has a
character with six attributes (Strength, Intelligence, Wisdom, Constitution,
Dexterity, Charisma) determined by an integer score in [3 . . 18]. Each attribute’s
score is determined by rolling three six-side dice and summing their values.

If D1, D2, D3 are FRPs each representing a roll of a balanced six-sided die, the
independent mixture D1⋆D2⋆D3 represents the three rolls. Using an independent
mixture means that the value of any individual roll does not influence the value
any other roll. If we observed D1’s value, say, it would not help us predict
the value of D3. Then, the FRP Sum(D1 ⋆ D2 ⋆ D3) represents the value of an
attribute.

If S, I,W,Co, D,Ch are FRPs that represent the six attributes’ scores, the
independent mixture S ⋆ I ⋆ W ⋆ Co ⋆ D ⋆ Ch represents a character. Using an
independent mixture again tells us that the processes generating the different
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attribute scores do not interact. Whatever score we roll for Strength, for instance,
does not influence (or help us predict) the score for Wisdom or Dexterity.

We can generate these in the playground. Rather than do this over and over,
we will write FRP factories to create fresh FRPs on demand. These are just
Python functions, which we can either enter directly in the playground or write
them in a separate Python source file.
def dice_roll():

"Returns an FRP representing the roll of a balanced 6-sided die."

return frp(uniform(1, 2, ..., 6))

def dnd_attribute():

"Returns an FRP representing a score for a D&D character attribute."

D_1, D_2, D_3 = dice_roll(), dice_roll(), dice_roll()

return Sum(D_1 * D_2 * D_3)

def dnd_character():

"Returns an FRP representing a D&D character's attribute scores."

S = dnd_attribute() # Strength

I = dnd_attribute() # Intelligence

W = dnd_attribute() # Wisdom

Co = dnd_attribute() # Constitution

D = dnd_attribute() # Dexterity

Ch = dnd_attribute() # Charisma

return S * I * W * Co * D * Ch

The dice_roll factory uses the Kind factory uniform to produce the Kind of a
single roll and frp to create a fresh FRP with that Kind. Note that the ... in
the call to uniform is intentional. It extends the pattern of the first two values
up to and including the value after the ..., so uniform(1, 2, ..., 6) is the
Kind
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⟨⟩

⟨1⟩1

⟨2⟩1

⟨3⟩1

⟨4⟩1

⟨5⟩1

⟨6⟩1

As above, both dnd_attribute and dnd_character use independent mixtures,
the former of dimension 3 and the latter of dimension 6.

We can use these in the playground. If we typed the definitions in at the
prompt, we can refer to them directly. If we entered the definition in a file dnd.py,
say, then we first type from dnd import dnd_attribute, dnd_character at
the playground prompt.

pgd> dnd_attribute()

An FRP with value <17>

pgd> dnd_character()

An FRP with value <13, 8, 9, 11, 8, 14>.

pgd> dnd_character()

An FRP with value <14, 7, 8, 11, 14, 16>.

If desired, we could easily define statistics that extract character’s attribute
scores by name.

pgd> Strength = Proj[1]

pgd> Intelligence = Proj[2]

pgd> Wisdom = Proj[3]

pgd> Constitution = Proj[4]

pgd> Dexterity = Proj[5]

pgd> Charisma = Proj[6]

pgd> char1 = dnd_character()

pgd> char2 = dnd_character()

pgd> char3 = dnd_character()

pgd> Strength(char1)
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An FRP with value <9>

pgd> Wisdom(char2)

An FRP with value <16>

pgd> char3 ^ Fork(Intelligence, Charisma)

An FRP with value <14, 17>

Multi-stage mixtures like D1 ⋆D2 ⋆D3 or S ⋆ I ⋆W ⋆D ⋆Ch ⋆Co, are well defined
because the ⋆ operator is associative.37 This means that for any FRPs X,Y, Z, the 37Associativity and

commutativity of operations
is discussed in detail in
Section F.9.

mixtures (X ⋆ Y ) ⋆ Z and X ⋆ (Y ⋆ Z) are the same FRPs. Any way of grouping
mixtures in a multi-stage mixture thus gives the same result.

We have created mixture FRPs by wiring together various other FRPs. This
produces a device that acts and quacks just like an FRP even if it is not in one box,
so we treat it as one. If, however, we could find the Kind of that FRP, we could
simply order an FRP with that Kind from the Warehouse and have our mixture in a
nice clean package. In the Monty Hall game discussed earlier, kind(M ⋆ Y ) is given
on page 128. Where did this come from? And how does it relate to kind(M) and
kind(Y )? This leads to a key question: can we find the Kind of an independent
mixture from the Kinds of the constituent FRPs?

The answer is yes. We will define an independent-mixture operation on Kinds,
denoted with the same operator ⋆, that makes the following identity hold:

kind(M ⋆ Y ) = kind(M) ⋆ kind(Y ). (4.3)

In words: the Kind of an independent mixture FRP is the independent mixture of
the two Kinds.

The ⋆ operation on Kinds directly follows the wiring diagram for the “clone”
construction in two steps:

1. attach a copy of the kind(Y ) tree to each leaf node in kind(M)

2. rewrite the new leaf nodes to hold the concatenated tuples of values seen on
the path from root to leaf.

Figures 26 illustrates this. On the left side of the figure, we associate a copy of
kind(Y ) at each leaf node of kind(M). We join those trees, giving new leaf nodes for
each copy of kind(Y ). We then rewrite the values of those leaf nodes to hold the
sequence of values seen as we move from the root to that leaf. For example, top-most
node is on the ⟨1⟩ branch for M and the ⟨1⟩ branch for Y ; its value becomes ⟨1, 1⟩.
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The fourth leaf node down is on the ⟨2⟩ branch for M and the ⟨1⟩ branch for Y ; its
value becomes ⟨2, 1⟩. The eighth leaf node down is on the ⟨3⟩ branch for M and the
⟨2⟩ branch for Y ; its value becomes ⟨3, 2⟩. And so on.

⟨⟩

⟨1⟩1

⟨2⟩1

⟨3⟩1

⟨⟩

⟨1⟩ℓ

⟨2⟩m

⟨3⟩r

⟨⟩

⟨1⟩ℓ

⟨2⟩m

⟨3⟩r

⟨⟩

⟨1⟩ℓ

⟨2⟩m

⟨3⟩r

⟨⟩

⟨1⟩

⟨1, 1⟩ℓ

⟨1, 2⟩m

⟨1, 3⟩r

1

⟨2⟩

⟨2, 1⟩ℓ

⟨2, 2⟩m

⟨2, 3⟩r

1

⟨3⟩

⟨3, 1⟩ℓ

⟨3, 2⟩m

⟨3, 3⟩r

1

Figure 26. Constructing the Kind mixture kind(M) ⋆ kind(Y ). For each leaf of kind(M), we
take a copy of kind(Y ) and attach it, forming the Kind tree on the right.

Puzzle 25. Convince yourself that with this definition of independent mixture of
Kinds, kind(M ⋆ Y ) = kind(M) ⋆ kind(Y ). Notice that after M generates a value,
the next stage looks the same no matter what that value is.

We can examine these Kinds in the playground. Using the Kinds door_with_prize
and chosen_door defined earlier (and in frplib.examples.monty_hall) and the
FRPs M and Y , do

pgd> door_with_prize

pgd> chosen_door

pgd> outcome = door_with_prize * chosen_door

pgd> outcome
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pgd> outcome1 = substitution(outcome, l=1, m=1, r=1)

pgd> outcome1

pgd> kind(M * Y)

pgd> Kind.equal(outcome1, kind(M * Y))

pgd> unfold(substitution(door_with_prize * chosen_door, l=1, m=1, r=1))

pgd> unfold(kind(M * Y))

The output is omitted here, but it should show the corresponding Kinds equal and
match the Figures up to the scaling of the weights.

If K1 and K2 are Kinds, their is a Kind K1 ⋆ K2, defined by the procedure:
1. attach a copy of K2 to each leaf node of K1, and
2. replace each leaf node of the combined tree from step 1 with a concatenation

of the tuples on the path from the root to the leaf.
This operation satisfies a key identity: if X and Y are FRPs, then

kind(X ⋆ Y ) = kind(X) ⋆ kind(Y ), (4.4)

so Kinds and FRPs combine in similar ways.

As with FRPs, we take independent mixtures of Kinds over any number of stages,
e.g., K1 ⋆ K2 ⋆ · · · ⋆ Kn. Again ⋆ is an associative operation. And equation (4.4) tells
us that for FRPs X1, X2, . . . , Xn we have

kind(X1 ⋆ X2 ⋆ · · · ⋆ Xn) = kind(X1) ⋆ kind(X2) ⋆ · · · ⋆ kind(Xn). (4.5)

The Kinds of independent mixtures are thus completely determined by the Kinds of
their constitutent FRPs.

Example 4.2. In a round-robin tournament, twelve players are seeded from 1
to 12. The first match pits two players, with one chosen at random from the
top six seeds and the other chosen at random from the bottom six seeds. The
two choices are made independently. Assume that players are weighted with the
the lower seeded players having lower weight, as shown in Figure 27 for the first
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⟨⟩

⟨s+ 1⟩1

⟨s+ 2⟩2

⟨s+ 3⟩3

⟨s+ 4⟩4

⟨s+ 5⟩5

⟨s+ 6⟩6

Figure 27. The Kind for the choice of player matchups in Example 4.2, with s = 0 for the first
player and s = 6 for the second player.

player (s = 0) and the second player (s = 6). Let F represent the pair of players
engaged in the first match. We want to find kind(F ).

Define first_player and second_player be the Kinds for the first and
second player chosen.
pgd> first_player = weighted_by(1, 2, ..., 6, weight_by=scalar_fn(Id))

pgd> second_player = weighted_by(7, 8, ..., 12, weight_by=scalar_fn(Id - 6))

pgd> first_player

pgd> second_player

The Kind factory weighted_by returns a Kind with the given values where the
weights are computed by a function of the value. (Here, scalar_fn converts a
scalar statistic into a simple function.) Look at these Kinds and compare to the
display above.

We have that F = frp(first_player * second_player) and kind(F) equals
first_player * second_player. Before we compute this Kind in the play-
ground, it is worth seeing how we would compute it by hand.

Let’s consider the leaf node of the independent mixture Kind with value
⟨3, 10⟩. The ⟨3⟩ node in first_player has weight 3

21 , and the ⟨10⟩ node in
second_player has weight 4

21 . So the canonical weight on node ⟨3, 10⟩ is 4
147 ≈

0.027211. Similarly, for the leaf node ⟨6, 12⟩, the first_player weight for ⟨6⟩ is
6
21 as is the second_player weight for ⟨12⟩. The weight on the leaf node ⟨6, 12⟩
is 4

49 ≈ 0.081633.
With this in mind, we can look at the Kind, in both unfolded and canonical
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form. The output is omitted here, but see Figure 28 for the unfolded form.

pgd> match_up = first_player * second_player

pgd> unfold(match_up)

pgd> match_up

Notice that

pgd> Kind.equal(Proj[1](match_up), first_player)

True

pgd> Kind.equal(Proj[2](match_up), second_player)

True

Puzzle 26. Convince yourself that the “flat” and “clone” constructions of M ⋆ Y

give FRPs with the same Kind.

Puzzle 27. In Example 4.1, sketch the Kind of

dice_roll() * dice_roll() * dice_roll()

by hand. How would you find the Kind of dnd_attribute() by hand?
Find both these Kinds in the playground to check your work.

The word independent in “independent mixture” has meaning. It tells us that
the distinct stages of the process represented by the FRPs in the mixture evolve
without interaction or influence on each other. So if you observe the value of some
FRPs in the mixture, that information does not help you predict the value of any other
FRPs in the mixture It is independence that leads to equations (4.4) and (4.5). It is
independence that gives the “flat” and “clone” constructions the equivalent outputs.
When the parts of a system are independent, we can analyze the whole system by
analyzing the parts separately. Lack of independence – dependence – means that
knowing the values of some FRPs in the mixture changes our predictions of the other
FRPs’ values. A system with dependent parts is coupled and cannot be as easily
decomposed.

Figure 28 from the previous example illustrates these ideas. Without any infor-
mation, what can we say about the second player in the match-up? Our knowledge
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⟨⟩

⟨1⟩

⟨1, 7⟩1
21

⟨1, 8⟩2
21

⟨1, 9⟩3
21

⟨1, 10⟩4
21

⟨1, 11⟩5
21

⟨1, 12⟩6
21

1
21

⟨2⟩

⟨2, 7⟩1
21

⟨2, 8⟩2
21

⟨2, 9⟩3
21

⟨2, 10⟩4
21

⟨2, 11⟩5
21

⟨2, 12⟩6
21

2
21

⟨3⟩

⟨3, 7⟩1
21

⟨3, 8⟩2
21

⟨3, 9⟩3
21

⟨3, 10⟩4
21

⟨3, 11⟩5
21

⟨3, 12⟩6
21

3
21

⟨4⟩

⟨4, 7⟩1
21

⟨4, 8⟩2
21

⟨4, 9⟩3
21

⟨4, 10⟩4
21

⟨4, 11⟩5
21

⟨4, 12⟩6
21

4
21

⟨5⟩

⟨5, 7⟩1
21

⟨5, 8⟩2
21

⟨5, 9⟩3
21

⟨5, 10⟩4
21

⟨5, 11⟩5
21

⟨5, 12⟩6
21

5
21

⟨6⟩

⟨6, 7⟩1
21

⟨6, 8⟩2
21

⟨6, 9⟩3
21

⟨6, 10⟩4
21

⟨6, 11⟩5
21

⟨6, 12⟩6
21

6
21

Figure 28. Unfolded Kind of the first tournament matchup in Example 4.2.
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(and all the predictions we might make about the second plays) is embodied in the
Kind second_player, which is just Proj[2](match_up). Now suppose I tell you
(truthfully) that I have activated and observed the display of the first player seed
FRP and its value is ⟨4⟩. How does this change your knowledge of the second player?
Picture yourself at the ⟨4⟩ node in the Kind tree, having just obtained the information
about the first player. What will happen in the next stage is represented by the
subtree at that node. But that is exactly The definition of the independent mixture
of Kinds means that for any value ⟨v⟩ of the first player FRP, the Kind we see looking
down the tree from the ⟨v⟩ node is just a copy of second_player. The knowledge of
the first player gives us no useful information about the second player. Similarly, if
observe that the second player is seeded 9 and tell you this. You know that you must
be at one of the leaf nodes that look like ⟨ , 9⟩; you do not know which one. Looking
up the tree The knowledge of the second player gives us no useful information about
the first player. The FRPs representing choices of the two players are independent.

The choice to use an independent mixture when building a system is an assumption
that the constitutent FRPs are independent in this sense. The next example shows
this idea as well, and we will return formally to the idea of independence when we
discuss conditionals and predictions in more depth. General mixtures (subsection
4.3) introduce dependence into the mix (so to speak).

Example 4.3. We want to build an FRP representing three flips of a coin where
heads and tails are equally likely and each flip is independent of the other flips.
The result will be an independent mixture F = F1 ⋆ F2 ⋆ F3 where the FRPs Fi
all have Kind

⟨⟩
⟨0⟩1

2

⟨1⟩1
2

where we use 0 to represent tails and 1 to represent heads.
In the playground, this becomes

pgd> flip = either(0, 1)

pgd> F_1, F_2, F_3 = frp(flip), frp(flip), frp(flip)

pgd> F = F_1 * F_2 * F_3
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pgd> F

An FRP with value <1, 0, 1>

pgd> flips = flip * flip * flip

pgd> Kind.equal( kind(F), flips )

True

Look at the Kind flips in the playground. (Really!) Imagine that you have
learned the value of F1 and want to assess what this information tells you about
F2 and F3. If move in the kid tree to the node representing the observed value of
F1, what you see looking down the tree is the Kind of the other two flips, but for
either value of F1, you see the same tree: flip * flip. Your predictions about
F2 and F3 have not changed. If instead you have learned the value v of F3, then
you know that you are at a node for which F3 takes that value (i.e., ⟨ , , v⟩),
but you cannot tell which one. Looking up from all such nodes gives you a tree
that again is just flip * flip, and again your predictions of the other flips
have not changed. Although it looks more complicated, the same story holds if
you learn the value of F2. This puts you at a node like ⟨ , v, ⟩ and what you
can see from all such nodes is again just the tree flip * flip.

Another way to see the latter is to transform the Kind with a permutation
so that the third flip is listed first:

pgd> flips_p = flips ^ Permute(2,1)

Now, if we have observed F3, our analysis is like that of F1 earlier, looking down
the tree from the nodes at the first level. In fact, for any permutation of the
three components, the Kind transformed by the permutation is equal to flips.

The above analysis works with various Kinds of information. For instance,
observing the values of F1 and F2, puts us at a node in the second level, and
looking down the tree, we see flip. Conditionals (Section 5) express this idea.

Puzzle 28. If K1 and K2 are Kinds, is K1 ⋆ K2 the same as K2 ⋆ K1? If so, how
do you know? If not, how are they related?
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Aside: The Algebra of Independent Mixtures. The independent mixture
operation ⋆ has a few notable properties. First, let X be an FRP. Recall that
empty is the trivial FRP with Kind ⟨⟩, just a root node with an empty list.

If we connect the All output port of empty to the input port of X, then when
we push the button on empty, we get just the output of X because the empty
list does not add anything to the value. So, empty ⋆X is the same as X.

Similarly if we connect the All output port of X to empty (or the individual
output ports of size(X) copies of empty), the result is again the same as X. So,
X ⋆ empty is the same as X. That is:

X ⋆ empty = X = empty ⋆X.

This applies to the Kinds as well:

kind(X) ⋆ ⟨⟩ = kind(X) = ⟨⟩ ⋆ kind(X),

where ⟨⟩ denotes the empty Kind (kind(empty)). For FRPs and Kinds, re-
spectively, empty and ⟨⟩ are “identity elements” for the independent mixture
operation.

Second, with three FRPs X, Y , and Z, we can take the independent mixture
of the three in two different ways: X ⋆ (Y ⋆ Z) or (X ⋆ Y ) ⋆ Z. As we are just
connecting output and input ports, it does not matter which pair we mix first,
and similarly with Kinds:

X ⋆ (Y ⋆ Z) = (X ⋆ Y ) ⋆ Z

kind(X) ⋆ (kind(Y ) ⋆ kind(Z)) = (kind(X) ⋆ kind(Y )) ⋆ kind(Z).

Thus, ⋆ is “associative” for FRPs and Kinds, and we can write the mixture
without parentheses, X ⋆ Y ⋆ Z and kind(X) ⋆ kind(Y ) ⋆ kind(Z).

A set of objects (here either FRPs or Kinds) with an associative binary
operation and an identity element is called a monoid. See Section F.9.1 for
much more on this important and ubiquitous algebraic idea.

Note that the ⋆ operator is not quite commutative, but it is close in an
important sense. X ⋆Y and Y ⋆X are not equal in general because they combine
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their constituent values in different orders within the value, and similarly for
Kinds K1 ⋆K2 and K2 ⋆K1. However, we can transform X ⋆Y to Y ⋆X and vice
versa by permuting the tuples, so they have effectively the same information. The
same goes for Kinds K1⋆K2 and K2⋆K1. Formally, this transform is an invertible

See Sections F.5 and F.6 for
details on invertible
functions.

permutation statistic ψ such that Y ⋆ X = ψ(X ⋆ Y ) and X ⋆ Y = ψ−1(Y ⋆ X)

and K2 ⋆ K1 = ψ(K1 ⋆ K2) and K1 ⋆ K2 = ψ−1(K2 ⋆ K1). Thus, the two FRPs
X ⋆ Y and Y ⋆ X and the two Kinds K1 ⋆ K2 and K2 ⋆ K1 are the same up to
ordering of the components. While not equal, we say that they are isomorphic,
which is the next best thing.

A common pattern is to build an independent mixture several of an FRP or Kind
with itself some number of times, like

dice_roll() * dice_roll() * dice_roll()

This looks and acts like a “power”, and because this is so common, we have a shorthand
for it that evokes that idea.

For any Kind k and any natural number m, we define

k ⋆⋆m =

m times︷ ︸︸ ︷
k ⋆ · · · ⋆ k, (4.6)

where k ⋆⋆ 0 = ⟨⟩, the empty Kind.

For any FRP X and any natural number m, we define

X ⋆⋆m =

m times︷ ︸︸ ︷
clone(X) ⋆ clone(X) ⋆ · · · ⋆ clone(X), (4.7)

where X ⋆⋆ 0 = empty. The clones are here to make the shorthand more useful;
simply repeating the exact value of X is not what we usually want. This ensures
that X ⋆⋆m is an independent mixture of m FRPs with the same Kind as X.

In the playground, we use the ** operator for this, so these mixtures look like
X ** m and k ** m.

The operators ⋆⋆ and ** are reminiscent of the operator for powers in several
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programming language, which is not a coincidence. Indeed, k ⋆⋆m and X ⋆⋆m are
essentially powers of the independent mixture operator.

Example 4.4 Gambler’s Fortune
A gambler places a series of identical bets of $1 on a casino game, e.g., roulette
(Example 2.1). Let B1, B2, . . . , Bn be the FRPs representing the outcomes of
individual bets. We assume that these all have Kind

⟨⟩
⟨−1⟩1− p

⟨1⟩p

We can get this Kind in the playground in several ways, though we need to set a
value for p (here 4/9) to generate concrete FRPs.

pgd> p = symbol('p')

pgd> bet_kind = weighted_as(-1, 1, weights=[1 - p, p])

pgd> bet_kind_c = substitution(bet_kind, p=as_quantity('4/9'))

pgd> bet_kind ** 3

,---- 1 + -3 p + 3 p^2 + -1 p^3 ---- <-1,-1,-1>

|---- p + -2 p^2 + p^3 ------------- <-1,-1, 1>

|---- p + -2 p^2 + p^3 ------------- <-1, 1,-1>

|---- p^2 + -1 p^3 ----------------- <-1, 1, 1>

<> -|

|---- p + -2 p^2 + p^3 ------------- <1,-1,-1>

|---- p^2 + -1 p^3 ----------------- <1,-1, 1>

|---- p^2 + -1 p^3 ----------------- <1, 1,-1>

`---- p^3 -------------------------- <1, 1, 1>

pgd> bet_kind_c ** 3

,---- 0.17147 ----- <-1,-1,-1>

|---- 0.13717 ----- <-1,-1, 1>

|---- 0.13717 ----- <-1, 1,-1>

|---- 0.10974 ----- <-1, 1, 1>

<> -|

|---- 0.13717 ----- <1,-1,-1>
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|---- 0.10974 ----- <1,-1, 1>

|---- 0.10974 ----- <1, 1,-1>

`---- 0.087791 ---- <1, 1, 1>

pgd> B_c = frp(bet_kind_c)

An FRP with value <1>

pgd> B_c ** 10

An FRP with value <1, 1, -1, -1, -1, -1, -1, -1, -1, -1>

Here, bet_kind ** 3 is the Kind for a series of three bets, and B_c ** 10

is an FRP representing a series of 10 bets. Notice that bet_kind ** n has
size 2n which grows quickly. Look at the Kind for bet_kind ** 5 up to, say,
bet_kind ** 10; beyond that, the Kind tree gets rather overwhelming and soon
slow to compute.

However, as usual, we are in practice less interested in the sequence of bets
itself and more interested in statistics that answer questions about that sequence.
For instance, what is the gambler’s net gain or loss? Or: does the gambler end
up ahead or behind?

pgd> net_gain = Sum

pgd> end_ahead = (Sum >= 0)

pgd> net_gain(B_c ** 10)

An FRP with value <-6>

pgd> end_ahead(bet_kind_c ** 5)

,---- 0.60331 ---- 0

<> -|

`---- 0.39669 ---- 1

For large n, these computations will get slow because Bc ⋆⋆ n has size exponential
in n. But there is a tool in the playground for computing statistics on these
mixture powers efficiently. (Details are in Section 6.1, but we do not care about
those details here.) With this in hand, we are in a position to answer some
interesting questions. If you could choose n, what should you choose? What do
we predict for your winnings and for whether you will at least break even?

So, consider have a $w in our wallet, and we will place n equal-sized bets
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of $w/n, on a game like the above. First, we will write a function winnings to
answer do our analysis. It wil take an FRP (like B_c) that represents a single
$1 bet along with n and w and return the Kind of the FRP that represents our
total winnings. The statistic in_the_black takes the winnings and indicates
whether we at least broke even.

def winnings(Bet, n, w=1):

"""Returns the kind of net winnings after n bets of $w/n.

Bet is an FRP representing a $1 bet on the game.

"""

stakes = w / n

bet = kind(Bet ^ (__ * stakes)) # Same game, scaled by stakes

return fast_mixture_pow(Sum, bet, n)

in_the_black = (__ >= 0)

in_the_black.__doc__ = 'Given our winnings, have we at least broken even?'

Now, we can look at some results assuming an initial wealth of $4200. We loop
over selected values of n, compute the two Kinds, and store them. This may
take a moment to run, though we could make this much faster with a little more
effort.

pgd> win_kind = {} # Dictionary keyed by n

pgd> for n in [*range(1, 11), *range(15,50,5), 50, 75, 100, 500]:

win_kind[n] = winnings(B_c, n, 4200)

pgd> in_the_black(win_kind[1])

,---- 5/9 ---- 0

<> -|

`---- 4/9 ---- 1

pgd> in_the_black(win_kind[2])

,---- 0.30864 ---- 0

<> -|
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`---- 0.69136 ---- 1

pgd> in_the_black(win_kind[10])

,---- 0.51886 ---- 0

<> -|

`---- 0.48114 ---- 1

pgd> in_the_black(win_kind[100])

,---- 0.84550 ---- 0

<> -|

`---- 0.15450 ---- 1

pgd> in_the_black(win_kind[500])

,---- 0.99283 ------ 0

<> -|

`---- 0.0071681 ---- 1

We expect there to be a difference between even and odd n here because with
even n, we have an extra way to break even. Collecting these results using E to
compute our predictions:

pgd> win_pred = { n : as_float(E(k)) for n, k in win_kind.items() }

pgd> break_even = { n : as_float(E(in_the_black(k))) for n, k in win_kind.items() }

pgd> break_even[0] = 1

Looking at win_pred which gives our predicted winnings for each n, we see that
all the values are the same −4662

3 . This happens to be 4200 · −1
9 . The game Bc

is after all against us in that we are more likely to lose than win, and note that
E(B_c) is −1/9 as you can confirm in the playground. Our best prediction is
that we will lose on average $−1

9 · wn per play.
On the other hand, break_even shows a pattern plotted in Figure 29. Even

and odd n are indeed different as predicted, and within each group, our chance
of breaking even is strictly decreasing. (Notice that the Kind

in_the_black(winnings(B, n, w))

does not depend on w at all.) In an “unfair” game like B_c, our best choice is
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not to play, and if we play, we minimize our chance of an overall loss by “bold”
play – putting it all on a few bets.

0 50 100 150 200 250 300 350 400 450 500

10−2

10−1

100

Figure 29. Predicted chance to break even in n bets in Example 4.4. Results for even n are
plotted as squares and for odd n triangles.

4.2 Conditional FRPs and Conditional Kinds

The “clone” construction for an independent mixture suggests an immediate generaliza-
tion. Instead of connecting clones of the target to the mixer, we can connect different
FRPs (of the same dimension). This creates an FRP where the value produced at the
second stage is contingent on the value produced at the first stage. This is a general
mixture.

To formally define general mixtures, it will be useful to expand our toolbox with
some new hardware. Figure 30 shows an example of a selector switch. On the input
side, the switch has a single port that can accept values from an FRP. On the output
side, the switch has a port for each of several specific values, which can be arbitrary
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tuples of the same dimension. When a signal is passed through the input port, the
switch checks which value that signal represents and passes the signal through the
corresponding output port. An input signal must represent one of the possible output
values. (If not, the input port glows red to indicate the error. Overheating or other
bad things may occur.)

Input

⟨−1, 1⟩

⟨0, 0⟩

⟨1, 1⟩

Figure 30. An example selector switch with input port on the left and labeled output ports on
the right. This switch accepts only the listed values at its input.

Let us look at a general mixture and see how we might use a selector switch.

Example 4.5.
One out of a thousand people have a particular disease. When 1000 people with

the disease are tested, roughly 950 will test positive. When 1000 people without
the disease are tested, roughly 10 will test positive. We want to (eventually)
make a good prediction on whether a patient has the disease given that they test
positive. Here, we will just build an FRP to describe this system.

The system evolves in two stages: determine whether the patient has the
disease and then, contingent on that outcome, determine the result of the test.
As before, we associate a number with each outcome:

0 ↔ No Disease 0 ↔ Test Negative

1 ↔ Disease 1 ↔ Test Positive

The first stage is represented by an FRP D with Kind

⟨⟩
⟨0⟩999

⟨1⟩1
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The second stage is represented by two FRPs, call them N and P for “negative”
and “positive,” with Kinds:

⟨⟩
⟨0⟩990

⟨1⟩10
⟨⟩

⟨0⟩50

⟨1⟩950

The system is described by a mixture with the following wiring diagram:

D ⟨⟩
⟨0⟩999
⟨1⟩1

N ⟨⟩
⟨0⟩990
⟨1⟩10

P ⟨⟩
⟨0⟩50
⟨1⟩950

As with the independent mixtures earlier, the value produced by D determines
which of N and P is activated. The only difference from those earlier cases is
that N and P have different Kinds. When we push the button on D, it activates
one of N and P , and the mixture shows the combined value on the display of
the activated FRP: a tuple that concatenates the value of D and the value of
the activated target (N or P ).

Now, let’s make one change by inserting a selector switch:

D ⟨⟩
⟨0⟩999
⟨1⟩1

N ⟨⟩
⟨0⟩990
⟨1⟩10

P ⟨⟩
⟨0⟩50
⟨1⟩950

⟨0⟩
⟨1⟩

Here, we have connected D’s All output port to the input of the switch and the
switch’s output ports to each of the target FRPs. Despite the addition of the
switch, the two wirings are completely equivalent. The switch plays the same
role as the internal circuitry in the FRP that controls its output ports. We have
simply reproduced that function in the switch.
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What we get out of the second wiring is the ability to decompose the system
differently, as in

D ⟨⟩
⟨0⟩999
⟨1⟩1

N ⟨⟩
⟨0⟩990
⟨1⟩10

P ⟨⟩
⟨0⟩50
⟨1⟩950

⟨0⟩
⟨1⟩

On the left, we have D, the mixer, as before. On the right, we have a new type
of object that associates each input in some pre-specified set with an FRP. When
connected to a mixer FRP producing only valid inputs, it acts as if we had wired
the target FRPs directly to the mixer. We call this object a conditional FRP.

The conditional FRP above acts like N with 0 prepended to the output
when ⟨0⟩ is input and like P with 1 prepended to the output when ⟨1⟩ is
input. Connecting the All output port of any FRP with values {⟨0⟩, ⟨1⟩} to the
conditional FRP’s input port gives a valid mixture.

The conditional FRP in the previous example is of the DIY38 variety. We built 38“Do it yourself”
it from existing FRPs N and P , wires, and a selector switch tailored to the chosen
input values. And that’s fine. Fortunately, conditional FRPs have proved so useful in
practice, that the FRP Warehouse offers conditional FRPs integrated into a single
device that looks like an ordinary FRP. It receives its input value through its input
port, which is labeled with the valid input values, and its button is disabled until an
input value is given. Indeed, we can see that an ordinary FRP is just a conditional
FRP that takes no input, or to put it another way, the 0-dimensional input ⟨⟩.

Before looking at conditional FRPs more formally, let us play with Example 4.5 in
the playground. Here, either(u, v, weight_u) is a Kind factory producing Kinds
with two values u and v and respective weights weight_u and 1.

pgd> D = frp(either(0, 1, 999))

pgd> N = frp(either(0, 1, 99))

pgd> P = frp(either(0, 1, 1/19))

In the playground, we can define a conditional FRP in several ways: as a dictionary
mapping input values39 to Kinds,

39In the scalar case, the
values are 1-dimensional
tuples, written (0,) and
(1,) in Python. But the
playground will accept
scalar keys and translate to
tuples for you.
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pgd> M = conditional_frp({ 0: N, 1: P })

as a named function,

pgd> @conditional_frp

...> def M(value):

...> if value == (0,): # Input values are always tuples

...> return N

...> return P

or as an anonymous function40
40In Python, anonymous
functions are written with
the lambda keyword as
lambda args : expr
taking arguments args and
returning the value of
expresssion expr.

pgd> M = conditional_frp(lambda value: N if value == (0,) else P)

conditional_frp used as a function or a decorator wraps the given mapping into a
conditional FRP object. Note that the input values are always tuples even in the
one-dimensional case. (One dimensional tuples like ⟨0⟩ are written in Python like
(0,) with a trailing comma.) When passing a dictionary, you can use scalar keys, as
here, and conditional_frp will translate them into one-dimensional tuples for you.

Note that conditional_frp can deduce the valid inputs of a conditional FRP
from a dictionary but not from a function. So the function versions of M above will
accept values outside the set {⟨0⟩, ⟨1⟩}. There are two simple ways to enforce that
constraint, if needed. First, conditional_frp accepts an optional argument domain
that indicates the valid input values, causing an error to be raised if an invalid error
is passed.

pgd> @conditional_frp(domain=value_set(0, 1))

...> def M(value):

...> if value == (0,):

...> return N

...> return P

The function value_set converts its arguments41 into a set of tuples, translating 41It accepts one or more
values or a single
iterator/generator over
values.

scalars into one-dimensional tuples and ensuring that all tuples have the same
dimension. Alternatively, one can raise an explicit error for invalid inputs:

pgd> @conditional_frp

...> def M(value):
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...> if value == (0,):

...> return N

...> if value == (1,):

...> return P

...> raise MismatchedDomain(f'Value {value} for M must be 0 or 1')

When we examine the conditional FRP M in the playground, it shows us the
mapping from input values to FRPs just like the wiring diagram does.

pgd> M

A conditional FRP with wiring:

<0>: An FRP with value 0

<1>: An FRP with value 1

However, when we evaluate a conditional FRP, we simulate the process of giving it
an input42 and activating it; the input value is passed through and prepended to the 42Recall: We treat M(⟨x⟩)

and M(x) as equivalent.
See Section F.7.

value produced by the activated FRP.

pgd> M(0)

An FRP with value <0, 0>

pgd> M(1)

An FRP with value <1, 1>

pgd> M(2)

Value <2> not in the domain of this conditional FRP.

If consc is the “prepend ⟨c⟩” statistic where consc(v) = ⟨c⟩ :: v, then

M(0) = cons0(N)

M(1) = cons1(P ).

Given any other value, M raises an error.
We form the mixture depicted in the previous example by connecting the output

of D to the input of the conditional FRP M. We denote the resulting FRP by D ▷M,
or D >> M in the playground.

pgd> D >> M

An FRP with value <0, 0>
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In this run of the playground, D has value 0 which is passed to M, giving M(0) as a
result. (Of course, your values may differ for these FRPs.)

Having gotten a feel for conditional FRPs, their wiring and evaluation, we can
now formalize the idea.

Definition 9. A conditional FRP is a function M that maps values in a finite set
V to FRPs. We call V the domain of M. When given an input value v ∈ V and
activated, M produces the concatenated value v :: w, where w is the value produced
by the FRP in M wired to v.

We require that the input values in V all have the same dimension and that
the constituent FRPs all have the same dimension. If a conditional FRP accepts
values of dimension m and if the constituent FRPs have dimension n, we say that
the conditional FRP has type m→ m+ n. We call m its codimension and call
m+ n its dimension.

Every FRP of dimension n is also a conditional FRP of type 0 → n.

The dimension is m+ n because the input value passes through and is prepended
to the value produced by the activated FRP. That a regular FRP is just a conditional
FRP of codimension 0 means that it needs no input to activate. An ordinary FRP
still accepts a connection at its input port from an output port of another FRP for
transforming with statistics and builting mixtures, but this is a distinct phenomenon.

The words “conditional” and “condition” arise in several contexts throughout this
material, which can be confusing. In this case, the word conditional is meant as in
programming: “if we get a 0 then use N , else use P .” A conditional FRP(or Kind) is
choosing an FRP (or Kind) contingently on some value. We will often express such
contingency with the word “given”: given an input v, the result looks like this; given
an input w, the result looks like that; and so on.

The conditional FRP M from Example 4.5 has type 1 → 2. Even though the
constituent FRPs, N and P have dimension 1, the value produced by M includes the
input value and so is two dimensional. This type tells us that the output of M can be
connected to the input of another conditional FRP that accepts pairs of 0s and 1s.

Puzzle 29. In the playground, build a conditional FRP whose domain contains
three values and that returns FRPs of at least two different Kinds.
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For a conditional FRP M, we take the Kind of all the FRPs comprising it, which
associates each input value to a Kind. The function m from v to kind(M(v)) returns
a Kind for each input value v in the domain of M. We call this a conditional kind .

In Example 4.5, the conditional FRP M activates N given input ⟨0⟩ and P given
input ⟨1⟩. The conditional Kind m associated with M is illustrated by the wiring
diagram in Figure 31. This shows the Kind of the activated FRP given each valid
input. Notice the direct correspondence between the wiring diagrams for m and M
here and in Example 4.5.

m ⟨0⟩
⟨1⟩

⟨⟩
⟨0⟩50

⟨1⟩950

⟨⟩
⟨0⟩990

⟨1⟩10

Figure 31. The conditional Kind m corresponding to the conditional FRP M in Example 4.5.

In the playground, we can also construct conditional Kinds directly in ways
analogous to how we constructed conditional FRPs, using conditional_kind as a
function or decorator. For instance, following up on our earlier example, we can use
a dictionary mapping values to Kinds

pgd> m = conditional_kind({

...> 0: either(0, 1, 99),

...> 1: either(0, 1, 1/19)

...> })

or a named function

pgd> @conditional_kind(domain=value_set(0, 1))

...> def m(value):

...> if value == (0,):

...> return either(0, 1, 99)

...> return either(0, 1, 1/19)

or an anonymous function
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pgd> m = conditional_kind(

...> lambda value:

...> either(0, 1, 99) if value == (0,) else either(0, 1, 1/19),

...> domain=value_set(0, 1)

...> )

The optional argument domain to conditional_kind is used as for conditional_frp.
It is useful when building a conditional Kind from a function to ensure that an error
is raised with an invalid input. Try these and look at the ms you get.

Note that just as for a conditional FRP, when you look at m in the playground, it
shows you the mapping of values to Kinds, like the wiring diagram in Figure 31.

pgd> m

A conditional Kind with wiring:

,---- 0.99000 ----- 0

<0>: <> -|

`---- 0.010000 ---- 1

,---- 0.050000 ---- 0

<1>: <> -|

`---- 0.95000 ----- 1

This shows the Kind of the FRP attached to each input wire. But when you evaluate
m, it gives the Kind of the value produced by the conditional FRP when given that
input to which the input value has been prepended.

pgd> m(0)

,---- 0.99000 ----- <0, 0>

<> -|

`---- 0.010000 ---- <0, 1>

pgd> m(1)

,---- 0.050000 ---- <1, 0>

<> -|

`---- 0.95000 ----- <1, 1>

The wiring diagram makes the construction of the system clearer, but the evaluated
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Kinds show what is actually used by the system. Observe that m(0) = kind(M(0))

and m(1) = kind(M(1)).

Definition 10. A conditional Kind is a function m that maps values in a finite
set V to Kinds. We call V the domain of m.

We require that the input values in V all have the same dimension and that
the returned Kinds all have the same dimension. If a conditional Kind accepts
values of dimension m and if the returned Kinds have dimension n, we say that the
conditional Kind has type m→ m+ n. We call m its codimension and m+ n

its dimension.
Every Kind of dimension n is also a conditional Kind of type 0 → n.

Every conditional FRP M has an associated conditional Kind m with the same
domain defined by

m(v) = kind(M(v)) (4.8)

for every v in the domain of M. Thus, m = kind ◦ M is a composition of functions,
“kind after M,” where kind maps FRPs to their Kinds. This is good, but it is
useful to extend the kind function to also accept conditional FRPs and return their
corresponding conditional Kind. So, we can write m = kind(M) to express the
relationship, and in the playground, we can use kind(M) to find the corresponding
conditional Kind.

pgd> kind(M)

A conditional Kind with wiring:

,---- 0.99000 ----- 0

<0>: <> -|

`---- 0.010000 ---- 1

,---- 0.050000 ---- 0

<1>: <> -|

`---- 0.95000 ----- 1

pgd> conditional_kind({ 0: kind(N), 1: kind(P) })

Both of these are the same object as what we got for m earlier.
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Puzzle 30. In the playground, build a conditional Kind to describe the following
system: flip three coins and take the sum of h balanced, six-sided dice, where h is
the number of heads flipped.

It will likely be easiest to define this with a named function decorated by
@conditional_kind. If you want to specify a domain, you can pass one of the
following as the domain argument:

value_set((i,j,k) for i in [0,1] for j in [0,1] for k in [0,1])

or, after first entering, import itertools,

value_set(itertools.product([0,1], repeat=3))

4.3 General Mixtures

For many random systems/processes, the evolution of the system at later stages is
contingent on what happens at earlier stages. To describe such systems and build
FRPs that represent them, it is generally easier to take a modular approach: describe
individual stages and the FRPs that represent them and connect those stages together
to describe and represent the system as a whole. This is what mixtures are for.

Mixtures allow us to build FRPs in stages where the value produced at one stage
determines the FRP used at the next. When we combine FRPs this way, the values
from earlier stages pass through and are combined with the values produced at later
stages, so the values of a mixture FRP produces records the outcomes at every stage.
Independent mixtures are a special case43 where the stages do not interact; there is 43An important special case.
no contingency. We get independent mixtures by wiring each mixer to targets with
the same kind. General mixtures come from allowing the targets to be FRPs with
different Kinds.

Conditional FRPs (and their conditional Kinds) package up all the targets of
a mixture into a single device. The input port only accepts inputs in a designated
set, and given an input value, an activated conditional FRP will display a value, the
input value combined with whatever the activated target produces. These can then
be the main ingredients in mixtures.

We say that two conditional FRPs R and S or two conditional Kinds r and s are
compatible if all possible values of R (r) belong to the domain of S (s). That is,
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all possible values of the former are valid inputs to the latter. This implies that the
dimension of R (r) equals the codimension of S (s).

We get a mixture of two compatible conditional FRPs by connecting the output
of one to the input of the other. The result is another conditional FRP.

Definition 11. If R and S are compatible conditional FRPs of respective types
m→ n and n→ p, then their mixture is the conditional FRP R▷S of type m→ p.
This is obtained by connecting the output of R to the input of S.

R S

The domain of R ▷ S equals the domain of R, and given input v, its value is the
value of S(R(v)).

In particular, if R is an ordinary FRP of dimension n (i.e., has type 0 → n)
then the mixture R ▷ S is an ordinary FRP of dimension p (i.e., has type 0 → p).

We depict a conditional FRP as in wiring diagrams, but usually dropping
the selection switch when the codimension is 0, i.e., for an ordinary FRP.

Keep in mind that the value produced by a conditional FRP that is given an
input value and activated in a mixture is the concatenation of the input value and
the value produced by the activated target. This is the value that is passed on to
the next stage of a mixture. So given input v, R ▷ S produces the value of S(R(v)).
Let’s trace this through. R(v) obtains the value w of the FRP in R wired to v and
produces the concatenated tuple v :: w. This is then passed as input to S, which
obtains the value x of its FRP wired to v :: w and produces the concatenated tuple
v :: w :: x. This value includes the input and the value produced by each constituent
FRP activated in the mixture.

If R is an ordinary FRP (i.e., has codimension m = 0), then R ▷ S is also an
ordinary FRP . Its value concatenates the value of R and the contingent value of S
given the value of R. As we saw in Example 4.5, for instance, the mixture D ▷M had
value ⟨0, 0⟩. The first component indicates that the patient does not have the disease,
and the second component indicates that the test is negative.
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Puzzle 31. You have two FRPs X and Y , and you want to construct their
independent mixture X ⋆ Y using the mixture operator ▷.

Describe a conditional FRP U that makes X ▷ U = X ⋆ Y .

Puzzle 32. Characters in Dungeons & Dragons who specialize in combat (called
“fighters”) and who roll an 18 for their Strength attribute score can make an
additional roll of a balanced 100-sided die to determine their “exceptional strength”
sub-score in the range [1 . . 100]. All other characters have exceptional strength 0.

Modify the FRP factory dnd_character in Example 4.1 to include an ex-
ceptional strength sub-score in the value. The FRP returned by this factory
will have dimension 7. The factory should be defined with an optional ar-
gument that indicates if the character is a “fighter,” False by default (e.g.,
def dnd_character(fighter=False)).

Notice that there are different Kinds of mixtures at play here because the
exceptional strength sub-score depends on the character’s Strength attribute.

A roll for exceptional strength is an FRP whose Kind can be generated in the
playground with uniform(1, 2, ..., 100).

As usual, there is a correspondence between FRPs and Kinds, and just as we can
build mixtures of conditional FRPs, we can define mixtures conditional Kinds.

Definition 12. If r and s are compatible conditional FRPs of respective types
m→ n and n→ p, then their mixture is the conditional Kind r ▷ s of type m→ p.

We form the mixture as follows: For each valid input v to r and for each leaf
node w in r(v), attach the tree s(w) to that leaf node. This gives a combined tree
for every v.

In particular, if r is an ordinary Kind of dimension n (i.e., has type 0 → n)
then the mixture r ▷ s is an ordinary Kind of dimension p (i.e., has type 0 → p).

The mixture operations on conditional FRPs and on conditional Kinds are
compatible:

kind(R ▷ S) = kind(R) ▷ kind(S). (4.9)

So to find the Kind of a mixture, we can form the mixture and take its Kind or we
can take the Kinds of the terms and form their mixture.
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In Example 4.5, let d = kind(D), the Kind of the FRP D representing whether
the patient has the disease, and let m be the conditional Kind defined earlier. Figure
32 shows the process for building the mixture Kind d ▷m. For each value v of d, we
take the Kind m(v) and attach it at the corresponding leaf node of d. On the left,
the Figure shows the component Kinds; on the right, it shows mixture Kind, which
we can convert to canonical form.

⟨⟩

⟨0⟩999

⟨1⟩1

⟨⟩
⟨0, 0⟩990

⟨0, 1⟩10

⟨⟩
⟨1, 0⟩50

⟨1, 1⟩950

⟨⟩

⟨0⟩
⟨0, 0⟩990

⟨0, 1⟩10
999

⟨1⟩
⟨1, 0⟩50

⟨1, 1⟩950
1

Figure 32. Constructing the Kind mixture d ▷m. For each value v of d, we take the Kind m(v)
and attach it at the corresponding leaf node of d, forming the Kind tree at right.

pgd> kind(D) >> kind(M)

,---- 0.98901 -------- <0, 0>

|---- 0.0099900 ------ <0, 1>

<> -|

|---- 0.000050000 ---- <1, 0>

`---- 0.00095000 ----- <1, 1>

pgd> FRP.sample( 1_000_000, D )

Summary of output values:

<0,0> 988786 (98.88%)

<0,1> 10176 ( 1.02%)

<1,0> 44 ( 0.00%)

<1,1> 994 ( 0.10%)

We are close here to answering the original question in the example, and will see a
nice way to do it exactly in the next section. But for now, we can see an approximate
answer here; 994/10176 is the proportion of positive tests among those with the
disease.

As another example of taking mixtures of Kinds, suppose we flip two balanced
coins (equal weight on heads and tails) and given h heads, take the maximum of h
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rolls of a balanced six-sided die. (If h = 0, we take the maximum to be 0.) The FRPs

representing each of the coin flips has Kind ⟨⟩
⟨0⟩1

2

⟨1⟩1
2

where 0 means tails

and 1 means heads. The FRPs reepresenting the three possible rolls have Kinds

⟨⟩ ⟨0⟩1 ⟨⟩

⟨1⟩1
6

⟨2⟩1
6

⟨3⟩1
6

⟨4⟩1
6

⟨5⟩1
6

⟨6⟩1
6

⟨⟩

⟨1⟩1
36

⟨2⟩3
36

⟨3⟩5
36

⟨4⟩7
36

⟨5⟩9
36

⟨6⟩11
36

The Kind describing the outcome of the system is a mixture: we take an independent
mixture of the coin flip Kind with itself and then mix with a conditional Kind that
gives the Kind of the roll for each outcome of the coin flips. This is easier to see in
the playground.

pgd> flip = either(0, 1) # kind of a coin flip

pgd> roll0 = constant(0) # kind of no rolls

pgd> roll1 = uniform(1, 2, ..., 6) # kind of one roll

pgd> roll2 = Max(uniform(1, 2, ..., 6) ** 2) # kind of max of two rolls

Notice that in roll2 we use an independent mixture of the single-roll Kinds before
transforming with the statistic. Look at these Kinds in the playground and compare
to the pictures above. The contingent roll is described by a conditional Kind:

pgd> roll = conditional_kind({

...> (0, 0): roll0,

...> (0, 1): roll1,

...> (1, 0): roll1,

...> (1, 1): roll2

...> })

Now we can form the mixture, two independent flips and a contingent roll:

pgd> outcome = flip ** 2 >> roll

pgd> unfold(outcome)
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⟨⟩

⟨0⟩

⟨0, 0⟩ ⟨0, 0, 0⟩11
2

⟨0, 1⟩

⟨0, 1, 1⟩1
6

⟨0, 1, 2⟩1
6

⟨0, 1, 3⟩1
6

⟨0, 1, 4⟩1
6

⟨0, 1, 5⟩1
6

⟨0, 1, 6⟩1
6

1
2

1
2

⟨1⟩

⟨1, 0⟩

⟨1, 0, 1⟩1
6

⟨1, 0, 2⟩1
6

⟨1, 0, 3⟩1
6

⟨1, 0, 4⟩1
6

⟨1, 0, 5⟩1
6

⟨1, 0, 6⟩1
6

1
2

⟨1, 1⟩

⟨1, 1, 1⟩1
36

⟨1, 1, 2⟩3
36

⟨1, 1, 3⟩5
36

⟨1, 1, 4⟩7
36

⟨1, 1, 5⟩9
36

⟨1, 1, 6⟩11
36

1
2

1
2

Figure 33. The unfolded mixture Kind representing two coin flips and a contingent dice roll.

163



Look at the canonical and unfolded trees in the playground; the latter reveals the
steps of the mixture. First, a copy of flip is attached to each leaf node of flip,
which is the independent mixture. Then, a copy of roll0, roll1, or roll2 is attached
to each leaf of the tree produced by the first stage, depending on how many values
Notice how the history of the process is recorded in the values at each node. The
unfolded Kind is shown in Figure 33.

Keep in mind that the independent mixture flip ** 2 forms the first two
stages of the whole mixture. This is in fact equivalent to the general mixture
flip >> always_kind(flip), where always_kind(k) produces a conditional Kind
that returns k for any input. So we could write outcome with just the >> operator by

flip >> always_kind(flip) >> roll

Puzzle 33. Rewrite the conditional Kind roll in terms of a named function

@conditional_kind

def roll(flips):

...

that returns a Kind. You can enforce a domain constraint by using

@conditional_kind(domain=lambda v: all(x in {0, 1} for x in v))

as the decorator above to test that the input tuple consists of only 0s and 1s.

Next, we consider several examples that illustrate these ideas. These examples
nicely illustrates the contingent evolution that mixtures capture and how we can use
mixtures to describe complicated systems.

Example 4.6 Random Point in a Circle We want to generate a point with
integer coordinates at random from a circle of radius 5, and we would like all
the points to be chosen with equal weight. We will build an FRP to do this in
two stages: X will be an FRP that represents the x-coordinate, and Y will be a
conditional FRP that chooses the y-coordinate contingent on the x-coordinate.
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X Y

We will build this directly in the playground. Let’s start with what seems like
the obvious solution (but which fails): choosing x- and y-coordinates with equal
weights subject to the constraint that the mixture value lies in the circle.

pgd> X = frp(uniform(-5, -4, ..., 5))

pgd> @conditional_frp(codim=1, domain=irange(-5, 5))

...> def Y(x):

...> y_kind = uniform(y for y in irange(-5, 5)

...> if y * y <= 5 * 5 - x * x)

...> return frp(y_kind)

pgd> kind(X >> Y)

You will notice that this Kind does not put equal weight on all the values. Why
not? Consider the two values ⟨0, 0⟩ and ⟨5, 0⟩. Look at the unfolded Kind tree
with unfold(kind(X >> Y)) and reconstruct the weights in the canonical form.
Does that suggest a better solution?

Let’s define two small helper functions:

pgd> def y_points(x, r=5):

...> return [y for y in irange(-r, r) if y * y <= r * r - x * x]

pgd> num_y_points = compose(len, y_points) # len `after` y_points

Now, we can adjust our first approach slightly to solve our problem.

pgd> X = frp(weighted_by(-5, -4, ..., 5, weight_by=num_y_points))

pgd> @conditional_frp(codim=1, domain=irange(-5, 5))

...> def Y(x):

...> return frp(uniform(y_points(x)))

pgd> XY_m = X >> Y

pgd> kind(XY_m)
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Here, we give weight to x-coordinates in proportion to the number of points at
that x-coordinate that lie inside the circle. The Kind (of size 81) has weights on
all random points equal to 1/81.

The mixture X ▷ Y is an FRP that represents a random choice of integer
points inside a circle (of radius 5), where all points are chosen with equal weight.

We could construct this in another way:

pgd> points_inside_5 = [(x, y) for x in irange(-5, 5)

...> for y in irange(-5, 5)

...> if x * x + y * y <= 25]

pgd> XY_j = frp(uniform(points_inside_5))

pgd> Kind.equal( kind(XY), kind(X >> Y) )

True

The two constructions – building with a mixture (XY_m) and specifying all com-
ponents jointly (XY_j) – give the same results, but each has practical advantages
in some circumstances. Mixtures break a problem into smaller pieces that are
easier to describe, and they often scale well computationally. These advantages
make mixtures our most common way to build more complex systems. However,
modeling components jointly allows direct specification of the weights, which is
often useful. For instance, we can easily give points weight that decreases with
their distance from the origin with

pgd> point_wgts = [numeric_exp(-(x*x + y*y)) for x,y in points_inside_5]

pgd> XY_jd = frp(weighted_as(points_inside_5, weights=point_weights_5))

pgd> kind(XY_jd)

This can be done with mixtures but takes a bit more effort.
With either construction, we can predict the answers to questions about the

random point. For instance: How far away is the point from the origin? (The
statistic Norm computes the root sum of squares of the components.)

pgd> kind(Norm(XY_m))

,---- 0.012346 ---- 0

|---- 0.049383 ---- 1
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|---- 0.049383 ---- 1.4142

|---- 0.049383 ---- 2

|---- 0.098765 ---- 2.2361

|---- 0.049383 ---- 2.8284

|---- 0.049383 ---- 3

<> -|

|---- 0.098765 ---- 3.1623

|---- 0.098765 ---- 3.6056

|---- 0.049383 ---- 4

|---- 0.098765 ---- 4.1231

|---- 0.049383 ---- 4.2426

|---- 0.098765 ---- 4.4721

`---- 0.14815 ----- 5

pgd> E(Norm(XY_m))

3.391780659838882

Or: Is X bigger than Y ?

pgd> compareXY = IfThenElse(Proj[1] > Proj[2], 1

...> IfThenElse(Proj[1] < Proj[2], -1, 0))

pgd> kind(compareXY(XY_m))

,---- 0.45679 ----- -1

<> -+---- 0.086420 ---- 0

`---- 0.45679 ----- 1

Observe that, as we might expect, X and Y are equally likely to be biggest.

You can load FRP factories for this example with

om frplib.examples.circle_points import circle_points

Then circle_points() return a clone of XY_j, and also accepts a different circle
radius. (The helpers y_points, num_y_points, and points_inside, which takes an
optional radius, are also available.) We will use circle_points in ensuing examples.
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Example 4.7 Random Lines
We now want to generate a random line formed by two random points within
the circle of radius 5 generated as in the previous example. Our only constraint
is that the two points not be the same, so the line is well defined.

pgd> First_Point = circle_points()

pgd> point_kind = kind(First_Point)

pgd> @conditional_frp(domain=points_inside_5)

...> def Second_Point(first_point):

...> not_same_point = (__ != first_point) # a statistic

...> return frp(point_kind | not_same_point)

pgd> Line = First_Point >> Second_Point

pgd> Line

An FRP with value <1, -4, -4, 3>

The conditional FRP Second_Point takes a point as input and generates a
random point with equal weight inside the circle excluding the input point. To do
this, it defines a Boolean statistic (aka. a condition) that tests whether a given
point is equal to the input point. It then uses the | operator, which is read as
“given,” to impose a constraint: point_kind | not_same_point is a Kind like
point_kind that excludes the input point. (We will discuss this in detail in the
next section.) The mixture generates the first point, passes it to the conditional
FRP to generate the second point, and the result is the concatenation of the two
points: a line from ⟨1,−4⟩ to ⟨−4, 3⟩.

What can we say about how long the generated line is?

pgd> line_length = Norm(Proj[1,2] - Proj[3,4])

pgd> kind(line_length(Line))

,---- 0.043210 ----- 1

|---- 0.040741 ----- 1.4142

|---- 0.037654 ----- 2

| ... ...

<> -|

| ... ...
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|---- 0.0024691 ---- 9.4868

|---- 0.0012346 ---- 9.8995

`---- 0.0018519 ---- 10

pgd> E(line_length(Line))

4.667555258539501

where some output has been omitted. (Look at it in the playground.) Notice
how we build the statistic line_length. We take the first two components
as a vector tuple and the last two as a vector tuple, subtract them as vectors
(componentwise), and then take the length of the result. The resulting Kind has
properties we would expect: a minimum length of 1, for adjacent points, and a
maximum length of 10 along a diameter of the circle. Roughly speaking, longer
lines are less likely because there are fewer ways to obtain them, and our best
prediction of the line length ≈ 4.67 is slightly less than half the maximum.

Example 4.8 Headphone Interface
I like my wireless headphones well enough, but they have only a single control
button: push to play, push to stop. If I want to advance or rewind a track or
episode, I need to double-click or triple-click that button. (If at the beginning of
a track, a triple click moves to the beginning of the previous track; otherwise,
it moves to the beginning of the current track.) Unfortunately, double or triple
clicking a button in one’s ear is highly unreliable because the earbud squishes
around as the button is pressed.

I am listening to a track and want to repeat it from the beginning, so I
attempt to triple click the control button. The clicks register randomly with the
headphones as either a triple click, a double click and a click, a click and a double
click, or three triple clicks. This leaves me at the beginning of the target track,
as desired, or paused at the beginning of the following track, or paused where
I was. If paused, I hit the button to continue. What is the chance that I able
to rewind the target track to the beginning within four attempts? (After four
attempts, I give up and grudgingly open my phone to restart the track directly.)

Let’s build a system to model this situation and answer my question. We
will represent the possible outcomes of an attempted triple click with 3-tuples:
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⟨3, 0, 0⟩ for a triple click, ⟨2, 1, 0⟩ for a double click then a single click, ⟨1, 2, 0⟩
for a single click then a double click, and ⟨1, 1, 1⟩ for three single clicks. The 0’s
here are just placeholders that keep the a constant dimension for the output.

Based on my experience, assume that the outcome of an attempted triple
click has Kind K1 given by

⟨⟩

⟨1, 1, 1⟩0.10

⟨1, 2, 0⟩0.35

⟨2, 1, 0⟩0.35

⟨3, 0, 0⟩0.20

We will also use the constant Kind K0

⟨⟩ ⟨0, 0, 0⟩1

for FRPs that always produce the value ⟨0, 0, 0⟩. Recall also that the empty FRP,
empty, is reconfigured to display the output of another FRP that is connected to
its input port, as described in Section 2.

Before solving this in the playground, it is worth sketching out the structure
of our system. As the system evolves, we will keep track of two numbers ⟨t, a⟩,
where t describes the current track and a counts the number of triple-click
attempts so far. The track can have value in the set T =

{
0, 12 , 1, 2, 3, 4

}
. The

values 0-4 denote the beginning of successive tracks, with 0 meaning the target
track I am listening to initially. The value 1/2 means that the target track is in
progress, but not at the very beginning. The attempts records how many times
we push the button before achieving our goal or giving up; it has value in [0 . . 4].
The tuple ⟨t, a⟩ comprises the state of the system, and each time we attempt a
triple click, the state is randomly updated. We start in state ⟨12 , 0⟩, with the
target track in progress.

For each a ∈ [0 . . 4], we define a conditional FRP Sa. For a = 0, this has
type 0 → 2 and is an FRP that always returns the initial state ⟨12 , 0⟩. The FRP
S0 represents the initial state of the system. For a ∈ [1 . . 4], Sa has type 2 → 5.
It accepts inputs ⟨0, b⟩ for 0 ≤ b < a and ⟨t, a− 1⟩ for t ∈ T and 0 < t < a, the
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former when having successfully rewound on the bth attempt and the latter all
other possible states after a − 1 attempts. Sa connects those inputs to FRPs
with Kind K0 if t = 0 or K1 if t > 0.

Sa
ψ

For a > 0, we then transform the output of Sa with the statistic ψ defined for
valid ⟨t, a⟩ with t > 0 by

ψ(0, a, x, y, z) = ⟨0, a⟩

ψ(t, a, 3, 0, 0) = ⟨⌈t⌉ − 1, a+ 1⟩

ψ(t, a, 2, 1, 0) = ⟨⌊t⌋+ 1, a+ 1⟩

ψ(t, a, 1, 2, 0) = ⟨⌊t⌋+ 1, a+ 1⟩

ψ(t, a, 1, 1, 1) = ⟨t, a+ 1⟩,

where ceiling ⌈t⌉ is the smallest integer ≥ t and floor ⌊t⌋ is the greatest integer
≤ t. The transformed conditional FRPs have type 2 → 2. If we reach t = 0, we
stop counting attempts.

Taken together, our system is wired as follows:

⟨⟩ ⟨12 , 0⟩1S0 S1 S2 S3 S4 empty

The output values ⟨t, a⟩ either have t = 0 if I am able to rewind successfully or
t > 0 and a = 4 otherwise.

Now, let’s build this in the playground. We start by defining with the Kinds
K0 and K1 and the initial state FRP S0:

pgd> K_0 = constant(0, 0, 0)

pgd> K_1 = weighted_as((3, 0, 0), (2, 1, 0), (1, 2, 0), (1, 1, 1),

...> weights=[0.2, 0.35, 0.35, 0.1])

pgd> S_0 = frp(constant('1/2', 0))
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Here, constant is the factory for the constant Kind with only the given value,
and weighted_as creates a Kind with arbitrary values and specified weights.
Note that we can give fractional quantities as strings; for some fractions (though
not 1/2), this gives a more accurate numerical representation internally.

We define the conditional FRPs Sa for a ∈ [1 . . 5] in two steps: the base
mapping common to all four conditional FRPs and a factory function that
enforces the requirements on the inputs.

pgd> def S_base(v):

...> t, a = v

...> if t == 0:

...> return frp(K_0)

...> return frp(K_1)

pgd> def S_(a):

...> "Returns the conditional FRP S_a for a in 1..4."

...> assert a in set([1, 2, 3, 4])

...> domain_S = ( [(0, b) for b in range(a)] +

...> [(t, a - 1) for t in [0.5, 1, 2, 3, 4] if t < a] )

...>

...> return conditional_frp(S_base, domain=domain_S)

pgd> S_(1)

A conditional FRP as a function with domain={(0.5, 0), (0, 0)}

pgd> S_(2)

A conditional FRP as a function with domain={(0, 1), (0.5, 1), (1, 1), (0, 0)}

We can get away without the factory, but the domain constraints do help us
avoid mistakes. And remember that either way, we need distinct conditional
FRPs for each of the four stages.

Next, we define the statistic ψ:

For Python versions before
3.10, match is unsupported,
so you can use explict
if-then-else statements.

pgd> @statistic(codim=5, dim=2)

...> def psi(v):

...> match v:
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...> case (0, a, _, _, _):

...> return (0, a)

...> case (t, a, 3, 0, 0):

...> return (numeric_ceil(t) - 1, a + 1)

...> case (t, a, 2, 1, 0) | (t, a, 1, 2, 0):

...> return (numeric_floor(t) - 1, a + 1)

...> case (t, a, 1, 1, 1):

...> return (t, a + 1)

...> raise MismatchedDomain(f'Improper input {v} to psi')

Finally, we put this all together into an FRP that represents the entire system.
We write this as a simple factory to return a fresh FRP:

pgd> def try_rewind():

...> "Returns an FRP that represents trying to rewind the current track."

...> S = S_0

...> for a in irange(1, 4):

...> S = S >> S_(a) ^ psi

...> return S

pgd> try_rewind()

An FRP with value <3, 4>

pgd> try_rewind()

An FRP with value <0, 2>

The loop in try_rewind exactly expresses our wiring diagram above. We feed
S0 into S1 and through ψ, and the value of the resulting FRP becomes the input
for the next stage. On the first try here, we give up; on the second, we succeed
on the second attempt. We can compute the Kind of this FRP to assess our
chances:

pgd> kind(try_rewind())

,---- 0.2 -------- <0, 1>

|---- 0.16 ------- <0, 2>

|---- 0.03 ------- <0, 3>

|---- 0.0240 ----- <0, 4>
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<> -+---- 0.0001 ----- <1/2, 4>

|---- 0.04200 ---- <1, 4>

|---- 0.16660 ---- <2, 4>

|---- 0.13720 ---- <3, 4>

`---- 0.24010 ---- <4, 4>

pgd> kind(try_rewind() ^ (Proj[1] == 0))

,---- 0.5860 ---- 0

<> -|

`---- 0.414 ----- 1

The statistic Proj[1] == 0 tests whether we end up at the beginning of the target
track, so the second Kind tells us we have roughly 41% chance of succeeding.
Put another way, computing our prediction:

pgd> E(try_rewind() ^ (Proj[1] == 0))

0.414

We can also ask where we will end up after this try.

pgd> kind(Proj[1](try_rewind()))

,---- 0.414 ----- 0

|---- 0.0001 ---- 1/2

|---- 0.042 ----- 1

<> -|

|---- 0.1666 ---- 2

|---- 0.1372 ---- 3

`---- 0.2401 ---- 4

So, we are likely to end up several tracks ahead.
Note that we need not write a factory like try_rewind, though it is convenient.

We could express our wiring diagram in a single expression, with a few extra
parentheses to avoid ambiguity:

pgd> (((S_0 >> S_(1) ^ psi) >> S_(2) ^ psi) >> S_(3) ^ psi) >> S_(4) ^ psi

An FRP with value <0, 4>
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The parentheses are needed because the ^ operator has lower precedence than
>>; without them, psi would group improperly with the following S_(a).

Example 4.9 The Drunken Sailor
A drunken sailor stands on a dock facing the gangway taking him to his ship. If
he moves five steps forward, he makes it onto the ramp and, however unsteadily,
to safety on the ship. If he moves five steps backward, he falls off the dock into
the ocean and ends up sleeping on the beach as his ship leaves without him.
Assume that he moves forward (1) or backward (-1) at random and independently
at each step, where his direction has Kind

⟨⟩
⟨−1⟩3

5

⟨1⟩2
5

Assume the dock is 9 steps long and that we label his positions on the dock by
integers in [−4 . . 4]. When the sailor stumbles down to the dock, he initially
moves onto a starting position randomly, with Kind

⟨⟩

⟨−2⟩0.1

⟨−1⟩0.2

⟨0⟩0.4

⟨1⟩0.2

⟨2⟩0.1

What is the probability that he makes it to the ship within 10 lurching steps?
To reasonable approximatioon, what is the probability that he eventually makes
it to the ship without falling into the ocean? We can visualize this system with
the wiring diagram

D S1 S2 S3
. . . S10
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where we can extend with more conditional FRPs as desired. Here, D is an
FRP representing the sailor’s starting position on the dock, with the Kind above.
The conditional FRPs Si all have the same structure. They map a position x in
[−4 . . 4] to an FRP with Kind

⟨⟩
⟨x− 1⟩3

5

⟨x+ 1⟩2
5

and a position x in {−5, 5} to a constant FRP with Kind

⟨⟩ ⟨x⟩1

Let’s compute the answers to our question in the playground

pgd> move_kind = either(-1, 1, '3/2')

pgd> D = frp(weighted_as(-2, -1, ..., 2, weights=[0.1, 0.2, 0.4, 0.2, 0.1]))

We define a single conditional FRP S and use clone(S) to make the copies
S1, S2, . . . , S10. We first define a Boolean function that tests for valid inputs;
giving this function as the domain argument to conditional_frp raises an error
with any input for which this function returns False.

pgd> def is_valid_path(v):

...> valid_positions = set(irange(-5, 5))

...> return all(x in valid_positions for x in v)

pgd> @conditional_frp(domain=is_valid_path)

...> def S(path):

...> x = path[-1] # most recent position

...> if x == -5 or x == 5: # boat or ocean...

...> return frp(constant(x)) # ...stay there

...> return frp(move_kind ^ (__ + x)) # move left or right

Following the wiring diagram, we start with D and successively mix with a copy
of S in a loop. The final value of W is an FRP representing the sailor’s path over
10 steps.
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pgd> W = D

pgd> for _ in range(10):

...> W = W >> clone(S)

pgd> W

An FRP with value <0, 1, 0, -1, -2, -3, -4, -5, -5, -5, -5>

pgd> clone(W)

An FRP with value <0, -1, -2, -3, -4, -5, -5, -5, -5, -5, -5>

pgd> clone(W)

An FRP with value <2, 1, 0, 1, 2, 3, 4, 3, 4, 5, 5>

pgd> clone(W)

An FRP with value <1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1>

pgd> ten_steps = kind(W)

We can see on running the system anew several times that sometimes the sailor
falls in the ocean, sometimes reaches the boat, and sometimes neither within 10
steps. We can view the Kind of W easily, but since it has size 3902, you should
look at it on your terminal rather.

More interestingly, we can predict the answer our various questions about
the sailor’s trajectory. Does the sailor reach the boat or the ocean in 10 steps?

pgd> ten_steps ^ Every(Or(__ == 5, __ == -5))

,---- 0.65354 ---- 0

<> -|

`---- 0.34646 ---- 1

pgd> which_end_point = IfThenElse(Every(__ == 5),

...> 5,

...> IfThenElse(Every(__ == -5), -5, 0))

pgd> which_end_point(ten_steps)

,---- 0.29466 ----- -5

<> -+---- 0.65354 ----- 0

`---- 0.051806 ---- 5

Here, we use the statistic combinator Or to compute the logical-or of two statistics.
(For internal Python reasons, we cannot use Python’s or keyword in this context.)
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We see that the sailor has only about a 0.35 probability of reaching an end point
in 10 steps, and is about 6 times as likely for that endpoint to be ocean rather
than boat if he does.

There is nothing magical here about 10 steps. We can extend this further,
for example to sixteen steps, but because we are tracking the sailor’s entire path,
the number of possibilities – and thus the size of the Kind – gets large quickly:

pgd> sixteen_steps = kind(W >> S >> S >> S >> S >> S >> S)

pgd> size(sixteen_steps)

185502

pgd> sixteen_steps ^ Every(Or(__ == 5, __ == -5))

,---- 0.43221 ---- 0

<> -|

`---- 0.56779 ---- 1

This leaves a relatively high probability that the situation will be unresolved.
We want to simulate enough steps that to good approximation, we can assume
he will reach one endpoint or another.

Fortunately, for many questions, we do not need the sailor’s entire path, only
selected information about it. We can follow the approach used in Example 4.8,
where we transform the output of the conditional FRP by a statistic that keeps
the dimension fixed and tracks the information we care about. (We adapt this
approach to the next example as well.)

We will keep track of the sailor’s current position x and the number of steps n
he has made. But if the sailor reaches ocean (-5) or boat (5), the value stays as is.
We tweak our conditional FRPs to take a tuple ⟨x, n⟩ as input; their values will
look like ⟨x, n, x′, n′⟩ where x′ is the sailor’s next position and n′ is an updated
count.

pgd> @conditional_frp

...> def S2(x, n):

...> if x == -5 or x == 5:

...> return frp(constant(x, n))

...> return frp(move_kind ^ Fork(__ + x, n + 1))
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We extend D’s value with an initial number of steps (0) and do the mixtures
with an extra projection to extract the last two components of the value. We
put this in a function with the maximum number of steps as a parameter:

pgd> def sailors_walk(up_to_step):

...> W2 = D ^ Fork(Id, 0)

...> for _ in range(up_to_step):

...> W2 = W2 >> clone(S2) ^ Proj[3,4]

...> return W2

pgd> kind(sailors_walk(16)) ^ Or(Proj[1] == 5, Proj[1] == -5)

,---- 0.43221 ---- 0

<> -|

`---- 0.56779 ---- 1

which is just what we got above but about a thousand times faster. We can
compute, for instance

pgd> kind(sailors_walk(128)) ^ Or(Proj[1] == 5, Proj[1] == -5)

,---- 0.00016001 ---- 0

<> -|

`---- 0.99984 ------- 1

So to good approximation, the sailor’s will reach an endpoint within the first 128
steps.

pgd> many_steps = kind(sailors_walk(128))

pgd> many_steps ^ IfThenElse(Abs(Proj[1]) < 5, 0, Proj[1])

,---- 0.86972 ------- -5

<> -+---- 0.00016001 ---- 0

`---- 0.13012 ------- 5

So to good approximation, the sailor is about 7.5 more likely to end up in the
ocean than on the boat.

We can predict how many steps it will take the sailor to reach either end:
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pgd> E(Proj[2](many_steps))

18.490817232208

Here, Proj[2](many_steps) is the Kind of the second component of the FRPs
value, the number of steps taken. This answer is a bit too high because it includes
the very small chance remaining that the situation is not resolved. In the next
section, we will see how to impose a conditional constraint on the output with
the | operator, which is read “given”.

pgd> E(Proj[2](many_steps | (Abs(Proj[1]) >= 5)))

18.47329135569119

The condition after the given | is the constraint we require. Given that the sailor
reaches the boat or the ocean, how many steps does it take? The prediction is
only very slightly different, as expected. Later, we will also see how to use these
Kinds to solve this problem exactly.

Example 4.10 Back to the Labyrinth
Theseus has awoken from a night of revelry to find himself trapped in a labyrinth
. . . again (Figure 34). With both the excess of honey mead and the lack of
Ariadne’s help, he is not at his best, and he wanders about at random from his
starting position, looking for the exit.

Because our FRPs generate lists of numbers, our first step is to assign a
number to each relevant outcome. Here, the key information is which junctures
in the labyrinth Theseus visits. So we assign a unique number to each juncture,
as shown in the Figure.

When Theseus stands at juncture 17, for example, he has three choices (move
to junctures 4, 18, 19), and in his stupor he chooses from among them randomly
with equal weight (uniform(4, 18, 19) in the playground). The same applies
at every juncture, beginning with the starting point 0.

Open the playground and follow along. We start by by creating the Kind of
the FRP for Theseus’s starting position. He begins at juncture 0 with certainty,
so this is a constant.
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Figure 34. Another labyrinth that has ensnared poor Theseus. His starting point (S=0) and
exit (E) are marked, and each juncture is assigned a number. The FRPs will
generate a number corresponding to the juncture that Theseus wanders into.
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pgd> start = constant(0)

Then, we import some data about the labyrinth so that you do not have
to type it all in. The variable labyrinth contains a dictionary mapping each
juncture to the junctures Theseus can reach from it. Take a look at its value
and see how it corresponds to the Figure.

pgd> from frplib.examples.labyrinth import *

pgd> labyrinth

Notice that juncture 33 is the exit, and even in his diminished capacity,
Theseus will take the exit when he gets there. So, labyrinth[33] = [33] to
reflect that he exits when he reaches juncture 33.

We want to use labyrinth to generate mixtures, and this is easy to do. We
start by creating the Kinds for Theseus’s moves at each juncture. For each “item”
in the labyrinth – a juncture and its list of neighbors – we associate with that
juncture a Kind that gives equal weight to every neighbor (via the uniform

factory). The call to the conditional_kind factory gives steps some useful
properties and makes it print out nicely.

In Python, this is called a
dictionary comprehension.

pgd> steps = conditional_kind({

...> juncture: uniform(neighbors)

...> for juncture, neighbors in labyrinth.items()

...> })

pgd> steps

pgd> moves = from_latest(steps)

Specifically, steps maps each juncture number to the Kind for a move out of
that juncture. The function from_latest is defined in the frplib.examples.labyrinth
module converts the conditional Kind steps that takes as input a single juncture
to a conditional Kind that accepts as input a path of any length. As the name
suggests, the latter uses only the latest juncture in path, so moves takes a tuple
describing Theseus’s path so far and uses steps to make a move based on the
last juncture in the path.
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Now, consider the FRPs that describe Theseus’s path after one, two, and
three moves. Take a moment to think about how we get the Kinds of those FRPs
from start and moves.

Puzzle 34. We could generate a table of FRPs at each juncture like

pgd> steps_at = conditional_frp({

...> juncture: frp(kind}

...> for juncture, kind in steps.items()

...> })

Why isn’t this sufficient to simulate Theseus’s trip through the maze? Hint:
Once you push the button on an FRP, can the value change?

Given a path to any juncture, moves returns the Kind for a move from that
juncture, so that will go on the right-hand side of >>. This yields

pgd> start # starting position

pgd> start >> moves # after one move

pgd> start >> moves >> moves # after two moves

pgd> start >> moves >> moves >> moves # after three moves

The >> operator is left-associative, so without parentheses, an expression like
the last line groups from the left automatically:

((start >> moves) >> moves) >> moves

Look at these Kinds. At each leaf, we see – for that particular random outcome
– Theseus’s entire path through the maze so far. The results show the Kind
trees in canonical form; you can always use unfold to see the full tree, e.g.,
unfold(start >> moves), though these can get big.

Puzzle 35. How would you find the Kind of the FRP describing Theseus’s
path through n ≥ 0 moves? Write or sketch a function n_moves that takes
an initial Kind and n and a conditional Kind like moves and returns the
corresponding Kind when you call n_moves(start, n, moves).
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For large numbers of moves, the Kind trees get large because the FRP’s value
can reflect many possible paths. Of course, in Theseus’s besotted state, he is not
thinking too clearly, and he is making moves that ignore his previous path. So,
we will use a trick to make things more manageable: we will look at the Kind
of his most recent move only. That is, we will create an FRP that answers the
question at what juncture is Theseus after 100 moves?

The function after_move_n has been loaded into your playground to help
with this. Let’s simulate Theseus’s 100th move, passing steps (not moves).

pgd> move100_kind = after_move_n(100, start, steps)

pgd> frp(move100_kind).value

pgd> FRP.sample(1000, frp(move100_kind))

The first line gives the Kind of an FRP that records just Theseus’s 100th
move. The second line gives an FRP with that Kind and pushes the button. The
third line generates 1000 FRPs with that Kind and summarizes the result.

Puzzle 36. Use a sample of FRPs to estimate how likely Theseus is to have
exited the labyrinth after 10 moves, 50 moves, 100 moves, and 1000 moves.

A key feature of a mixture is that its value includes the value of both the mixer
and the target. In the previous examples, mixtures can construct an FRP (and its
associated Kind) that represents the random process’s entire evolution up to some
point. In Example 4.10, for instance, the function n_moves forms the mixture Kind

start >> moves >> moves >> ... >> moves

that describes Theseus’s entire path from the start through a specified number of
moves. In Example 4.9,

D >> S >> clone(S) >> ... >> clone(S)

is the mixture FRP that describes the sailor’s history of lurching steps. Mixtures join
parts into a whole, describing the joint evolution of the parts as a random system.

But in many practical cases, we do not need to the entire history in our analysis,
and as will be seen in the next section, often we only need to pay attention to the
most recent state of the process to predict the next state. Indeed, this is what we
did in each of the last three examples. The statistic ψ in Example 4.8 updated
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the track and number of attempts, dropping other information. The Proj[3,4] in
sailors_walk of Example 4.9 saves only the sailor’s current position and number of
steps. And in theseus_latest, we use a projection to extract Theseus’s last position
(which is used in after_move_n) because Theseus’s next position only depends on
where he is, not on how he got there.

Suppose we wanted to know the Kind of Theseus’s second position in the labyrinth
without knowing his first position. We could do this in two steps (though one
expression in the playground) with

pgd> second_pos_kind = (start >> move)[2]

The first step forms the mixture of his first position and the conditional Kind of
his second position given his first position. The second step is to transform with a
projection that extracts only the second position, dropping the first.

If we wanted to know the Kind of Theseus’s third position in the labyrinth without
knowing his second position, we use the same operation.

pgd> third_pos_kind = (second_pos_kind >> move)[2]

Again, we form the mixture of the second position and the third position given the
second position and then use a projection to extract the third position.

Mixtures build combined FRPs/Kinds, and projection statistics extract marginals ,
the FRPs/Kinds of selected components. Thus:

pgd> combined = start >> move >> move

pgd> Kind.equal( combined[1], start )

True

pgd> Kind.equal( combined[2], second_pos_kind )

True

pgd> Kind.equal( combined[3], third_pos_kind )

True

As we have seen, this is a common pattern, a special case of the data-question pattern
of Figure 13: build a combined system as a mixture of several pieces and then extract
marginals that relate to our questions. Call this the mixture-marginal pattern.

The Kinds representing Theseus’s positions44 are instances of the mixture-marginal 44The Kind of Theseus is
something else entirely,
where we replace branches
successively with identical
looking ones over time and
ask if it is still the same
Kind.

pattern with two pieces: his current position and a description of his next position that
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depends explicitly on his current position. This special case of the mixture-marginal
pattern can be viewed in a different light that gives us the powerful conditioning
pattern.

To understanding the conditioning pattern, we start with an FRP X (or its Kind)
and a conditional FRP that we will call, for the purpose of this discussion, YgivenX
(or its conditional Kind). The unusual name for YgivenX is intended to evoke the
idea that it describes a second random quantity Y in a way that depends on the value
of X. If dim(X) = m and YgivenX has type m→ m+ n, then

Y = proj(m+1)..(m+n) (X ▷ YgivenX) (4.10)

kind(Y ) = proj(m+1)..(m+n) (kind(X) ▷ kind(YgivenX)) . (4.11)

This is just the mixture-marginal pattern, but here is where we shift perspectives, in
two steps.

First, use the right-hand sides of these equations to define the conditioning
operator( (written // in the playground) by

YgivenX( X := proj(m+1)..(m+n) (X ▷ YgivenX) (4.12)

kind(YgivenX)( kind(X) := proj(m+1)..(m+n) (kind(X) ▷ kind(YgivenX)) , (4.13)

where := emphasizes that this is a definition. Equations (4.10) and (4.11) become

Y = YgivenX( X kind(Y ) = kind(YgivenX)( kind(X).

The conditional FRP or Kind goes on the left side of the operator, and the FRP
or Kind of the quantity it depends on goes on the right side. This is the opposite
of how we write the mixture because we are emphasizing the extracted quantity
Y . In the Theseus example, second_pos_kind and third_pos_kind can be written,
respectively, as

move // start # same as second_pos_kind

move // second_pos_kind # same as third_pos_kind

We specify the update mechanism (move) first and the state to update (e.g., start
or second_pos_kind) second.

Second, if we focus on equation (4.11) above and consider how the mixture
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operation works, we can view this combination of mixture and projection as a
weighted-averaging operation: kind(Y ) is a weighted average of the Kinds produced
by kind(YgivenX) using the weights in kind(X). This is illustrated in Figure 35.
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Figure 35. The conditioning operation as a weighted-average over a conditional Kind by a
Kind. The top panel combines a conditional Kind and a Kind with the conditioning
operator( , producing the Kind at the right. The bottom shows how that Kind can
be viewed as an average of Kinds.

In the top panel of the Figure, we condition on45 the middle Kind, producing the 45We are using “condition
on” as a verb here to mean
applying the conditioning
operation.

Kind on the right-hand side. This is just mixture followed by a projection. Look at
these in the playground.

pgd> x = either(0, 1, weight_ratio=2)

pgd> y_given_x = conditional_kind({

...> 0: weighted_as(0, 2, 4, 9, weights=[3, 1, 1, 2]),

...> 1: weighted_as(1, 2, 4, weights=[1, 3, 2]),

...> })

The conditional Kind on the left of the top panel is y_given_x, and the Kind in the
middle of the top panel is x. We can compute the right-hand side in two equivalent
ways:
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pgd> (x >> y_given_x)[2]

pgd> y_given_x // x

The output is omitted here, but you should try it. In particular, compare this Kind
x >> y_given_x and make sure you see how you get the former from the latter.

The bottom panel of the Figure gives us a different view of what this operation is
doing. We first take each of the Kinds produced by y_given_x and add some fake,
zero-weight branches to each so that both have the same set of values. We then
average the weights of these Kinds, branch by branch, using the corresponding weights
from x. For instance, 1

3 ·
3
7 +

2
3 · 0 = 1

7 and 1
3 ·

1
7 +

2
3 ·

1
3 = 38

63 . This averaging of Kinds
gives us the same result.

The operation of conditioning is just an instance of the mixture-marginal pattern.
We mix, then project. But conceptually, we can view the conditioning operation as
a way of finding the Kind of a random quantity by averaging over Kinds for the
quantity that are specified conditionally on another random quantity. Each term in
the average is weighted according to the Kind of that second quantity.

In Theseus’s case, move specifies the Kind of his next position conditionally on his
current position. If you know the Kind for his current position, you can find the Kind
of his next position: next = move // current. The( (and //) operator knows the
dimension of the object on its right side and automatically tailors the projection to
the dimension of the object on the left, which makes it convenient in the playground.
For both Kinds or FRPs, the conditioning pattern looks like

y = y_given_x // x

The term on the left side is a conditional specification of y in terms of the quantity
described by x. Later, we will also dub this the “method of hypotheticals” because
we can use this to find the Kind of an FRP without actually observing the other
quantity.

Definition 13. If X and Y are FRPs of dimension m and n, respectively, that are
related by a mixture

Y = proj(m+1)..(m+n)(X ▷ YgivenX)
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for a conditional FRP YgivenX of type m → (m+ n), then equations (4.12) and
(4.13) define the conditioning operator( (written // in the playground) that
satisfies

Y = YgivenX( X (4.14)

kind(Y ) = kind(YgivenX)( kind(X). (4.15)

We say here that we have computed Y (or its Kind) by “conditioning on” X (or its
Kind). Equation (4.15) in particular says that we can compute the Kind of Y by
combining a conditional Kind for Y ’s given X with the Kind of X.

Example 4.11. We flip a balanced coin. If it comes up tails, you roll a balanced
six-sided die and take its value. If it comes up heads, you roll two balanced
six-sided dice and take their maximum. If Y is an FRP whose payoff represents
the value you take from this system, find kind(Y ) by conditioning?

Let X be the FRP representing the coin flip. We have a description of how
Y depends on X and of X, so, we can compute kind(Y ) by conditioning on X
pgd> x = either(0, 1) # kind(X)

pgd> y_given_x = conditional_kind({

...> 0: uniform(1, 2, ..., 6), 1: Max(uniform(1, 2, ..., 6) ** 2)

...> })

A conditional Kind with mapping:

,---- 1/6 ---- 1 ,---- 1/36 ----- 1

|---- 1/6 ---- 2 |---- 3/36 ----- 2

|---- 1/6 ---- 3 |---- 5/36 ----- 3

<0>: <> -| <1>: <> -|

|---- 1/6 ---- 4 |---- 7/36 ----- 4

|---- 1/6 ---- 5 |---- 9/36 ----- 5

`---- 1/6 ---- 6 `---- 11/36 ---- 6

pgd> y = y_given_x // x # kind(Y) by conditioning on x

,---- 0.097222 ---- 1

|---- 0.12500 ----- 2

|---- 0.15278 ----- 3
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<> -|

|---- 0.18056 ----- 4

|---- 0.20833 ----- 5

`---- 0.23611 ----- 6

Note for instance that the weight on 6 is 1
2 · 1

6 + 1
2 · 11

36 .

The constant function
constc(x) = c is defined and
discussed in Section F.2.

Answers to Selected Puzzles.
Puzzle 31. Independent mixtures are a special case: for any independent mixture,
we can build it using the general mixture operation with proper choice of
conditional FRP or Kind. For conditional Kinds s, we get an independent
mixture with a constant function s = constk that always returns a Kind k.
In this case, for a Kind r, r ▷ s = r ⋆ k. For conditional FRPs S, we get
an independent mixture if S always returns an FRP with the same Kind. In
particular, if S = constT for an FRP T , then for an FRP R, we have R▷S = R⋆T .
So we choose U = constY .

Puzzle 32. We make a mixture from the strength attribute that introduces the
exceptional strength, which is 0 except for a fighter with 18 strength.

@conditional_frp(codim=1, domain=irange(3, 18))

def extraStrength(strength):

"Conditional kind for a fighter's exceptional strength."

if strength == 18:

return frp(uniform(1, 2, ..., 100))

return frp(constant(0))

def dnd_character(fighter=False):

"Returns an FRP representing a D&D character's attribute scores."

# Strength with exceptional strength

if fighter:

S = dnd_attribute() >> clone(extraStrength)

else:

S = dnd_attribute() * frp(constant(0))
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I = dnd_attribute() # Intelligence

W = dnd_attribute() # Wisdom

Co = dnd_attribute() # Constitution

D = dnd_attribute() # Dexterity

Ch = dnd_attribute() # Charisma

return S * I * W * Co * D * Ch

We use clone se we get fresh FRPs each call for the exceptional strength.

Puzzle 33. We follow the template given:

@conditional_kind(domain=lambda v: all(x in {0, 1} for x in v))

def roll(flips):

heads = sum(flips)

if heads == 0:

return constant(0) # roll0

return Max(uniform(1, 2, ..., 6) ** heads) # roll1 or roll2

Try entering roll(0, 0), roll(0, 1), and roll(1, 1) to check this.

Puzzle 34. As Theseus is wandering around the labyrinth, it is possible – even
likely – that he will revisit the same juncture more than once. Each FRP has a
single fixed value but Theseus makes a separate decision each time he visits. So
more than one FRP per juncture may be needed.

Puzzle 35. We need to keep updating by mixing with moves n times, as follows:

def n_moves(start, n, moves):

current = start

for _ in range(n):

current = current >> moves

return current

Keep in mind though that the number of paths grows exponentially with n, so
the tree gets very big rather quickly. We will see a way around that later.
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Puzzle 36. For each n = 10, 50, 100, 1000, we do something like this

exit = 33

iter = 10000

nth = FRP.sample(iter, after_move_n(n, start, steps))

len([juncture for juncture in nth if juncture == exit])/iter

This computes the proportion of samples in which Theseus has reached the exit
by move n. This works because once he reaches the exit, the FRP will always
return that value.

After reading this section you should be able to:

• Explain how to construct independent mixture of FRPs and of Kinds and
what such mixtures mean.

• Describe what distinguishes an independent mixture from a more general
mixture.

• Describe conditional FRPs and conditional Kinds, how to wire them
together to form a mixture, and how to create them in the playground.

• Define the type, codimension, and dimension of a (conditional) FRP or
Kind.

• Explain why an ordinary FRP or Kind can be consider a special case of a
conditional FRP or Kind.

• Explain how to construct a general mixture between conditional FRPs or
between conditional Kinds. In particular, given the tree from a Kind and
the trees from the Kinds returned by a conditional Kind, show how to find
the mixture Kind.

• Find the dimension, size, and values of the Kind k ▷m from the properties
of k and m.

• Recover X from X ▷M or k from k ▷m by applying an appropriate statistic.

• Relate the Kind of a mixture FRP X of an FRP and conditional FRP M
to the mixture of the Kind kind(X) and conditional Kind kind ◦ M.

Checkpoints
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5 Constraining with Conditionals

A conditional applies a constraint from partial information about the value of
an FRP. The result is a new FRP or Kind that captures the remaining uncer-
tainty in the system and returns a value consistent with the partial information.
Conditionals frequently useful, including when we

• make observations during the evolution of random system and update our
predictions accordingly;

• reason hypothetically about what our predictions would be if we had some
particular knowledge;

• draw inferences from observed data to understand the structure of a random
system; and

• decompose a random system into simpler but dependent pieces.
Conditional constraints are most useful when computing Kinds and expectations.

A condition is a Boolean-valued statistic. We use ⊤ for true and ⊥ for false,
or 1 and 0, as convenient. (We also use ⊤ and ⊥ as a shorthand for the constant
conditions const⊤ and const⊥.)

An event is an FRP that has only values 0 and 1. When an event has the
value 1, we say that the event occurred, and when it has the value 0, we say that
the event did not occur.

A conditional constraint is an event on the right side of the | bar that
implies that the object or expression on the left side of the | should be interpreted
as if the event has in fact occurred. When clear from context, it is sufficient
to specify only a condition on the right side of the | bar..

Applying a conditional constraint to a Kind means erasing all branches in
the tree whose values are inconsistent with the conditional constraint.
If K is a Kind and ζ is a compatible condition, then the Kind K | ζ, read “K
given ζ” is the tree obtained by eliminating all paths in K from root to leaf for
which the leaf value v satisfies ζ(v) = ⊥.

If K is in canonical form, then K | ζ is obtained in canonical form by (i) eras-
ing the branches of K whose values v satisfy ζ(v) = ⊥, and (ii) renormalizing
the weights on the remaining branches to sum to 1.

Key Take Aways
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If X is an FRP and ζ is a compatible condition, then X | ζ is the FRP
obtained from X by forbidding any value v for which ζ(v) = ⊥. Note that if ζ
is based on actual information observed about X’s value, then X and X | ζ will
have the same value.

We have
kind(X | ζ) = kind(X) | ζ

and

K | ⊤ = K X | ⊤ = X

K | ⊥ = ⟨⟩ X | ⊥ = empty .

Bayes’s Rule uses conditional constraints and projection statistics to infer
earlier-stage components of a mixture from observations of later-stage compo-
nents.

You run into Alice and Bob at the FRP Warehouse, and Alice is agitated. It seems
that she had planned to place an order for a sizeable batch of b FRPs A[1], A[2], . . . , A[b]

with the Kind shown in Figure 36. The deal stipulates that Alice will receive payoff
from P[i] = proj3(A[i]) for i ∈ [1 . . b], paying $ − 0.825 per unit (i.e., the market
is paying her). Anticipating her likely order – she is a regular customer – the
Warehouse staff inadvertently presses the buttons on A[1], . . . , A[b] early, before she
had committed to the deal. And Bob, who is wandering about the facility, happens
to catch a glimpse of the displays. He tells Alice what he saw,46 and Alice proceeds 46Bob has a good recall, or a

fast camera!with the order at the original price – happily. When the Warehouse administrator
hears what happened, she tries to rescind the order, and then . . . let’s just say that
lawyers get involved. Why Alice was happy with the order and frustrated with the
administrator’s response?

Some specifics: from his vantage point, Bob could see only the second number in
the tuple displayed by each FRP A[i]. He quickly tabulated his observations: out of
10,000 FRPs, he saw 4850 0’s and 5150 1’s. This is the information he gave Alice.
This made Alice happy because she was convinced that the negotiated price for her
order had become a bargain.

To understand Alice’s reaction, we need to see how Bob’s observations – partial
information about the FRPs in the batch – changes Alice’s predictions of her payoff.
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⟨⟩

⟨0⟩

⟨0, 0⟩
⟨0, 0,−20⟩1

⟨0, 0,−10⟩1
1

⟨0, 1⟩
⟨0, 1,−1⟩1

⟨0, 1, 1⟩1
9

1

⟨1⟩

⟨1, 0⟩
⟨1, 0,−2⟩1

⟨1, 0, 0⟩1
9

⟨1, 1⟩
⟨1, 1, 5⟩1

⟨1, 1, 10⟩1
1

1

Figure 36. The Kind for the FRPs in Alice’s order, before she learned Bob’s information.

Once Alice obtains the knowledge of one component of an FRP’s value, the FRP
that determines her payoff has effectively been changed. Focus on a single FRP A

with the same Kind (Figure 36) as A[1], . . . , A[b], and assume that you have observed
(i.e., it’s a fact) that proj2(A) = 1. Although you do not observe the first or third
components’ values, you have nonetheless obtained information about them implicitly.
We can see this by looking at all the paths in the Kind tree that are consistent with
the information you have. The other paths are no longer relevant as they produce
values inconsistent with what we know to be true. So to get the effective Kind we
want to eliminate those paths from consideration. See Figure 37.

The situation is even clearer if we first reduce to canonical form, as shown in
Figure 38. Both figures highlight the paths that are consistent with the available
information. We simply drop the inconsistent branches of the tree to obtain the Kind
of the effective FRP Alice has given the information about the second component.

⟨⟩

⟨0, 1,−1⟩0.225

⟨0, 1, 1⟩0.225

⟨1, 1, 5⟩0.025

⟨1, 1, 10⟩0.025

A quick rescaling (useful but not required) returns us to canonical form, giving
the Kind in the top panel of Figure 39. This is the Kind of the FRP that Alice
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⟨⟩

⟨0⟩

⟨0, 0⟩
⟨0, 0,−20⟩1

⟨0, 0,−10⟩1
1

⟨0, 1⟩
⟨0, 1,−1⟩1

⟨0, 1, 1⟩1
9

1

⟨1⟩

⟨1, 0⟩
⟨1, 0,−2⟩1

⟨1, 0, 0⟩1
9

⟨1, 1⟩
⟨1, 1, 5⟩1

⟨1, 1, 10⟩1
1

1

Figure 37. The Kind from the previous Figure, highlighting the paths in the tree that are
consistent (black) and inconsistent (gray) with the observation that the second
component of the value equals 1.

effectively gets conditional on the information that the second component is 1. In
the playground, suppose kindA holds the original Kind, then we can compute our
best prediction, or risk-neutral price, for the original FRP and for the effective FRP
she is buying:

pgd> E(Proj[3]( kindA ))

-0.825

pgd> E(Proj[3]( kindA | (Proj[2] == 1) ))

3/4

The | operator here, read as “given,” introduces a conditional constraint , indicating
that we should do our remaining calculations treating as a fact that the second
component of the value equals 1. This increases the risk-neutral price by $1.575.

A similar argument helps us evaluate the situation when Bob observe that the
second component equals 0. The resulting Kind, in canonical form, is shown in the
bottom panel of Figure 39. (You can obtain it by following the same procedure with
different subtrees; just use the gray parts of the previous Figure.) Here

pgd> E(Proj[3]( kindA | (Proj[2] == 0) ))

-12/5

which is substantially below the original risk-neutral price.
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⟨⟩

⟨0, 0,−20⟩0.025

⟨0, 0,−10⟩0.025

⟨0, 1,−1⟩0.225

⟨0, 1, 1⟩0.225

⟨1, 0,−2⟩0.225

⟨1, 0, 0⟩0.225

⟨1, 1, 5⟩0.025

⟨1, 1, 10⟩0.025

Figure 38. The canonical form of the Kind in the previous Figure, highlighting the values that
are consistent (black) and inconsistent (gray) with the observation that the second
component of the value equals 1.

Notice that all the values in Figure 39’s Kinds have the second component fixed
at what it was observed to be. Only the other components of the value vary over the
original possibilities, though some values are wholly eliminated.

Alice is being paid $0.825 per FRP by the market in the original deal, but with
Bob’s information, Alice she knows she will receive 10000·0.825+4850·−12

5 +5150· 34 =

8250.00 − 7777.50 = 472.50. She gets paid the agreed price per unit plus makes
a profit in the values, yielding almost $500. By trying to cancel the order on a
technicality, the Market is trying to prevent a non-trivial payout to the client. Shady,
Market. Very shady.

You can load kindA into the playground using

pgd> from frplib.examples.alice_bob import kindA

Use this with the following puzzle.

Puzzle 37. In the playground, build a Kind kA that is equal to kindA, and use
either inspection or Kind.equal(kA, kindA) to check that you succeeded.

We can simulate Alice’s payoff from the FRPs she ordered with the FRP

P = Sum(frp(kindA[3]) ** 10_000)
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⟨⟩

⟨0, 1,−1⟩0.45

⟨0, 1, 1⟩0.45

⟨1, 1, 5⟩0.05

⟨1, 1, 10⟩0.05

⟨⟩

⟨0, 0,−20⟩0.05

⟨0, 0,−10⟩0.05

⟨1, 0,−2⟩0.45

⟨1, 0, 0⟩0.45

Figure 39. The effective Kind of Alice’s FRPs conditional on the information that the second
component of the value equals 1 (top) and 0 (bottom).

Explain briefly what this means.
In evaluating the Market manager’s motives for trying to cancel the deal, we

might wonder: “Is $472.50 an unusually large payout for the original deal?”
Use FRP.sample with P and the statistic (__ + 8250 >= 472.50) to address

the question. (One or two hundred samples should be sufficient to get an idea.)

When Bob told Alice the second component of her FRPs, that information allowed
her to update her predictions about those FRPs’ values. It is common in practice to
obtain partial information about uncertain quantities as we observe a random system
evolve, and it is often useful to determine how our predictions (and actions) would
change if we had particular information. The purpose of conditional constraints
is to account for partial information, observed or hypothetical, about the value of
FRPs. If we have an FRP and observe something about its value, our predictions may
change, and we want to adjust our calculations, decisions, and actions accordingly.
In this section, we formalize what this means, how we represent and denote the
conditional constraints, and how we use them to update our analysis. We will
introduce conditional constraints in an expression with |, the conditional operator.
This | bar is read “given” or “conditional on”. On the left side of the | is the object
that we are analyzing, on the right side is a specification of the partial information.

As mentioned earlier, the word “conditional” and its cognates get used a great

198



deal in probability theory, and at times, it might feel hard to keep track of them. We
have already seen conditional FRPs, conditional Kinds, and conditions, and there
will be more. The underlying theme is that an object is “conditional” if its value is
contingent on the value of another object being known. So, a conditional FRP is an
FRP that is contingent on the value produced by the FRP that is connected to its
input, and a conditional constraint makes our analysis contingent on the truth of the
specified partial information.

The first ingredient in a conditional constraint is a Boolean statistic that represents
what the condition we take to be true in the constraint.

Definition 14. A condition is a statistic that returns a Boolean value.

A Boolean value is either ⊤, read “true” or “top”, or ⊥, read “false” or “bottom”,
though we often use 0 and 1 as synonyms for false and true, when convenient.

We also abuse notation a little bit by letting ⊤ and ⊥ denote constant conditions.
In this case, ⊤ denotes the constant condition that returns true for any value and
⊥ denotes the constant condition that returns false for any value.

A condition describes how to determine whether the constraint is true for any
input. In our computations, we often identify ⊤ with the number 1 and ⊥ with the
number 0, but we distinguish them notationally when we need to emphasize that
Boolean and number are conceptually distinct types.

When we transform an FRP with a compatible condition, we get Boolean FRP
that, as in the playground, we usually give the value 0 for false and 1 for true. FRPs
that can have only the values 0 and 1 play a special role and have a name.

Definition 15. An event is an FRP that has only values 0 and 1.
When an event has the value 1, we say that the event occurred, and when it

has the value 0, we say that the event did not occur.

We generally interpret the values of an event as false (0) and true (1), but we
can operate on those values as numbers when convenient. Recall that we make no
distinction between scalars and 1-tuples.

If we define For every event V , there is another complementary event that has the
value false (0) when V has the value true (1) and the value true (1) when V has the
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value false (0). We can define this as not(V ) with the statistic not(v) = 1− v, but we
usually write the statistic “inline”47 as 1− V , or as !V when we want to emphasize 47See discussion of inlined

statistics on page 47.its Boolean-ness.
We frequently specify events via Boolean expressions in terms of one or more

FRPs. To understand this, we take in two steps, first we consider how to convert a
Boolean expression into a condition, and then we apply that condition to an FRP.
Recall that a Boolean expression is a mathematical statement in terms of one or more
quantities that reduces to either true or false, or several such statements combined
with logical-and (∧) or logical-or (∨). For example, the expression 3x2 − 4 > 0 in
terms of a numeric variable x will be true for some values of x and false for others. As
discussed in detail in Section F.4, we can convert a Boolean expression into a function
– called an indicator function or just indicator for short. An indicator is any function
returns either 0 or 1, and the indicator for a Boolean expression returns 1 when the
Boolean expression is true and 0 when it is false. The indicator for the expression
3x2 − 4 > 0 is a function, which we may write anonymously48 as

{
3 2 − 4 > 0

}
, that 48See Section F.3 for more

on anonymous functions.
This is just a way to define
a function without giving a
name; we show where to
put the argument in the
returned expression.

returns 1 when given an x for which 3x2 − 4 > 0 is true and returns 0 when given
an x for which 3x2 − 4 > 0 is false. We write

{
3x2 − 4 > 0

}
for the value (0 or 1)

returned when this indicator is evaluated at x. Notationally, we surround the Boolean
expression with braces, called Iverson braces, to indicate that we are extracting a
Boolean value from the expression for the specified quantities.

A condition is just a special case of an indicator that accepts tuples of numbers
as input. Each Boolean expression has an associated condition, so any Boolean
expression given in terms of FRPs, like Sum(A) = 1 or 2 proj1(A) + 7 > 10, can be
written as the transform of the FRPs by the associated condition, like ζ(A) or ξ(A),
where ζ(v) is true (1) when Sum(v) = 1 and ξ(v) is true (1) when 2v1 + 7 > 10. In
keeping with our notation for indicators, we can write the transformed FRPs inline as,
e.g., {Sum(A) = 1} or {2 proj1(A) + 7 > 10}. These are just Boolean/{0, 1}-valued
FRPs – that is, they are events. Notationally, we surround the Boolean expression
with Iverson braces to indicate that we are transforming the FRPs by the associated
condition. This is a special case of inlining a statistic as discussed on page 47. Note
that if there is more than one FRP X,Y, Z, . . . in the Boolean expression, then we
are applying the statistic to the combined FRP X :: Y :: Z :: · · · that concatenates
the values of its constituents.

In the Alice and Bob example, the information Bob learned about each of Alice’s
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FRPs A was that proj2(A) = 1, meaning that we have observed the second component
of A to be 1. We thus observed that the event {proj2(A) = 1} occurred. Keep in
mind that events are FRPs. They may or may not occur. And we can analyze
events – e.g., compute their Kinds or expectation – just like any other FRP.

We specify a conditional constraint by giving an event on the right side of the
given | bar. This tells us to consider the object on the left side of the | assuming
as a fact that the event on the right side has occurred. If the input FRP to the
event is understood, it is sufficient in practice to just use the condition to specify
the constraint. This is common for instance in applying conditional constraints to a
generic Kind and is how we specify conditional constraints in the playground.

Definition 16. A conditional constraint is an event on the right side of the |
bar that implies that the object or expression on the left side of the | should be
interpreted as if the event has in fact occurred.

When the input FRP is implicit or clear from context, it is sufficient to only
put a condition to the right of the |, with the implied event being the transform of
the input FRP by the given condition.

When an event specified in terms of a Boolean expression is given to the
right of the | bar, one can choose to omit the Iversion braces, as the expression’s
interpretation as an event is clear.

In the basic case of conditional constraints, the given event is derived directly
from the FRP or Kind being considered. If X is an FRP and ζ is a compatible
condition, then X | ζ(X) is the FRP obtained from X by requiring the event ζ(X) to
occur, i.e., that ζ(X) equals true (1). We write this as X | ζ, read “X given ζ,” and
call it an FRP given a condition. The understanding is that ζ transforms the FRP
on the left of the | to get the event that describes the conditional constraint. Think
of X | ζ as a copy of X rewired to produce only values consistent with ζ(X) being
true. If ζ is always true, then X | ζ equals X. The only case where this rewiring is
not possible is when ζ is always false, then X | ζ equals the empty FRP, representing
a logical contradiction.

In practice, we most often work directly with Kinds when computing with condi-
tional constraints, and the impact of the conditional constraint on a Kind is more
concrete. If K is a Kind and ζ is a compatible condition, K | ζ, read “K given ζ,” and
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called a Kind given a condition, is the tree obtained by eliminating all paths in K
from root to leaf for which the leaf value v satisfies ζ(v) = ⊥. That is, we eliminate
all branches in the canonical form of K that are inconsistent with the condition being
true. We then usually renormalize the resulting Kind to canonical form, making the
weights on the remaining branches sum to 1. If X is an FRP compatible with ζ, then

kind(X) | ζ = kind(X | ζ). (5.1)

So we can apply a conditional constraint and compute the Kind in either order.

Definition 17. The Kind K | ζ is obtained in canonical form by (i) converting K
to canonical form, (ii) erasing the branches of K whose values v satisfy ζ(v) = ⊥,
and (iii) renormalizing the weights on the remaining branches to sum to 1.

For the condition ⊤ that is always true, K | ⊤ = K. For the condition ⊥ that
is always false, K | ⊥ = ⟨⟩, the empty Kind, indicating a logical contradiction.

Example 5.1. An FRP representing three independent flips of a balanced coin
(with 0 for tails and 1 for heads) has Kind K = Kflip ⋆ Kflip ⋆ Kflip, where Kflip

is the Kind of a single flip. We will compute the Kind K | ζ for a variety of
conditions, in the playground.

Puzzle 38. Define conditions that test the following assertions:
1. The first flip is a heads.
2. There is exactly one heads among the three flips.
3. There is at least one tails among the three flips.
4. The first and second flips have the same result.

As an example, the condition that tests if at most one of the first two flips is a
heads can be defined as a named condition ψ by ψ(v) = {proj1(v) + proj2(v) ≤ 1}
or as an anonymous condition by {proj1( ) + proj2( ) ≤ 1}.

We start by defining the Kinds

pgd> flip = uniform(0, 1)

pgd> three_flips = flip ** 3
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pgd> three_flips

,---- 1/8 ---- <0, 0, 0>

|---- 1/8 ---- <0, 0, 1>

|---- 1/8 ---- <0, 1, 0>

|---- 1/8 ---- <0, 1, 1>

<> -|

|---- 1/8 ---- <1, 0, 0>

|---- 1/8 ---- <1, 0, 1>

|---- 1/8 ---- <1, 1, 0>

`---- 1/8 ---- <1, 1, 1>

Next, we define several conditions to study. We show equivalent definitions of
these conditions as named functions and as anonymous functions, where is a
hole to be filled by the single argument.

When writing a hole by
hand, use any consistent
mark, like dash (–) or
underscore (_).

Named Condition Anonymous Condition

ζ(v) = {proj1(v) = 1} {proj1( ) = 1}

ξ(v) = {Sum(v) = 1} {Sum( ) = 1}

φ(v) = {Min(v) = 0} {Min( ) = 0}

γ(v) = {proj1(v) = proj2(v)} {proj1( ) = proj2( )}

Using an anonymous condition, we can write K | ζ as K | proj1( ) = 1, for
instance. Notice the similarity between the anonymous functions and the form
of statistics/conditions in the playground, e.g., ζ written as {proj1( ) = 1} is
analogous to (Proj[1] == 1).

pgd> three_flips | (Proj[1] == 1)

,---- 1/4 ---- <1, 0, 0>

|---- 1/4 ---- <1, 0, 1>

<> -|

|---- 1/4 ---- <1, 1, 0>

`---- 1/4 ---- <1, 1, 1>
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In this case K | ζ, we start with the Kind of K and eliminate all the branches
v for which v1 ̸= 1. This leaves us the bottom subtree with the four branches
whose first component is 1, all with weight 1/8. Renormalizing the weights
to sum to 1 gives the Kind shown, which is in canonical form. Notice that
(three_flips | (Proj[1] == 1)) ^ Proj[2,3] is equal to flip * flip. (Try
it!) Observing the first component of an independent mixture does not change
our knowledge of the other components!

pgd> three_flips | (Sum == 1)

,---- 1/3 ---- <0, 0, 1>

<> -+---- 1/3 ---- <0, 1, 0>

`---- 1/3 ---- <1, 0, 0>

In this case K | ξ, we again start with the Kind K and eliminate all the branches
with other than one heads in three flips. This gives three branches, with the
single heads in each component, all with equal weight, whose canonical form is
as shown. Notice that

pgd> Kind.equal(kind(frp(K) | (Sum == 1)), K | (Sum == 1))

True

confirming equation (5.1).

pgd> three_flips | (Min == 0)

,---- 1/7 ---- <0, 0, 0>

|---- 1/7 ---- <0, 0, 1>

|---- 1/7 ---- <0, 1, 0>

<> -+---- 1/7 ---- <0, 1, 1>

|---- 1/7 ---- <1, 0, 0>

|---- 1/7 ---- <1, 0, 1>

`---- 1/7 ---- <1, 1, 0>

Here, the condition only eliminates the branch ⟨1, 1, 1⟩ with no tails, leaving
seven equally weighted branches.
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pgd> three_flips | (Proj[1] == Proj[2])

,---- 1/4 ---- <0, 0, 0>

|---- 1/4 ---- <0, 0, 1>

<> -|

|---- 1/4 ---- <1, 1, 0>

`---- 1/4 ---- <1, 1, 1>

And here, we eliminate the four branches in K where the first two flips disagree,
leaving four equally weighted branches remaining.

Puzzle 39. What do you expect to see when you enter

three_flips | (__ == (1, 0, 1))

in the playground? Explain why this makes sense.

In practice, we will often want to specify more general conditional constraints of
the form kind(X | V ), where V is an event that may not be a direct transformation
of X. Because the Kind given the constraint depends jointly on both X and V , to
compute kind(X | V ), we need to start with an FRP that determines49 the values of 49This is the role of the Data

FRP in Figure 13, although
we may use an FRP derived
from that as well.

both X and V . Specifically, we require that D be an FRP such that X = ψ1(D) and
V = ψ2(D) for some statistics ψ1, ψ2. We define

kind(X | V ) = ψ1(kind(D) | ψ2). (5.2)

That is, we compute the kind(D) given the conditional constraint that the event
V = ψ2(D) occurs and transform that Kind by ψ1 to focus on X, yielding the Kind
of X given the event.

Let’s see some examples in detail to make this concrete.

Example 5.2 What’s in the Box?
We have three boxes, labeled 1, 2, and 3, each of which contains a number of
colored balls. Box 1 contains 1 blue ball and 3 red balls; Box 2 contains 2 blue
balls and 4 red balls; Box 3 contains 3 blue balls and 5 red balls.

I randomly choose a box and then randomly select a ball from that box,
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without showing you which box I chose. I then show you the color of the selected
ball. Assume that all boxes are equally likely to be chosen and that all balls
within the chosen box are equally likely to selected. What have you learned
about the chosen box from the color of the selected ball?

Let B be the FRP representing the chosen box, with values 1, 2, and 3. By
our assumptions, B has Kind

⟨⟩
⟨1⟩1

3

⟨2⟩1
3

⟨3⟩1
3

Let S be the conditional FRP of the selected ball given the chosen box, assigning
arbitrary values 16 for a blue ball and 32 for a red ball. Based on the number of
balls in each box and the assumption that each ball in the chosen box is equally
likely to be selected, S has conditional Kind s given by

⟨⟩ ⟨16⟩1

⟨32⟩3

⟨⟩ ⟨16⟩2

⟨32⟩4

⟨⟩ ⟨16⟩3

⟨32⟩5

⟨1⟩
⟨2⟩
⟨3⟩

s

The outcome of this random process is represented by the mixture FRP B ▷ S,
whose value specifies the chosen box and selected ball color. The FRP C,
representing the color of the selected ball, is the second component of this
mixture: C = proj2(B ▷ S).

Observing a blue ball is represented by the event {C = 16} occuring, or
equivalently by the event {C = 32} not occurring. Observing a red ball is
represented by the event {C = 32} occuring, or equivalently by event {C = 16}
not occurring. Recall that an event is an FRP with values 0 or 1, so {C = 16}
occurring means that the FRP {C = 16} has the value 1.

Our knowledge of B having observed a blue ball is described by the Kind
kind(B) | C = 16, where we have applied a conditional constraint. The chosen
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box given this observation is represented by an FRP that we write as B | C = 16,
and kind(B | C = 16) = kind(B) | C = 16.

If we have B alone or C alone, we cannot find B | C = 16 because that
depends on the values of both FRPs B and {C = 16}. So to find its Kind, we
must work with an FRP that determines both the value of B and whether the
given event has occurred. We must start with B ▷ S.

Specifically, to find kind(B) | C = 16, we start with kind(B ▷ S).

pgd> b = uniform(1, 2, 3)

pgd> s = conditional_kind({

...> 1: either(16, 32, '1/3'),

...> 2: either(16, 32, '2/4'),

...> 3: either(16, 32, '3/5'),

...> })

pgd> B = frp(b)

pgd> S = conditional_frp(s)

pgd> BC = B >> S

pgd> kind(BC) # Equal to b >> s

which yields

⟨⟩

⟨1, 16⟩1
12

⟨1, 32⟩1
4

⟨2, 16⟩1
9

⟨2, 32⟩2
9

⟨3, 16⟩1
8

⟨3, 32⟩5
24

The FRP BC and its Kind describe the values of B and C jointly, so we can
determine which possibilities are or are not consistent with the conditional
constraint. We apply the conditional constraint by eliminating the branches that
are inconsistent with C = 16.
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⟨⟩

⟨1, 16⟩1
12

⟨1, 32⟩1
4

⟨2, 16⟩1
9

⟨2, 32⟩2
9

⟨3, 16⟩1
8

⟨3, 32⟩5
24

to produce

⟨⟩
⟨1, 16⟩1

12

⟨2, 16⟩1
9

⟨3, 16⟩1
8 (5.3)

In the playground, we get this by

pgd> kind(BC) | (Proj[2] == 16)

where the conditional constraint is specified by applying the statistic to the right
of the “given” bar to the values of the Kind or FRP to the left of the bar.

Notice that (i) applying the conditional constraint has not changed the
weights of the remaining branches, and (ii) all the branches have values where
C = 16 because of the constraint. We are interested in the Kind of B, so we
transform the Kind (5.3) by projecting onto the first component

⟨⟩
⟨1⟩1

12

⟨2⟩1
9

⟨3⟩1
8

Also, it is optional but helpful to follow our standard practice and convert this
Kind to canonical form, which yields kind(B) | C = 16:

⟨⟩
⟨1⟩6

23

⟨2⟩8
23

⟨3⟩9
23

We get this in the playground with any of
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pgd> (kind(BC) | (Proj[2] == 16))[1]

pgd> Proj[1](kind(BC) | (Proj[2] == 16))

pgd> (kind(BC) | (Proj[2] == 16)) ^ Proj[1]

pgd> Proj[1] @ kind(BC) | (Proj[2] == 16)

Pay attention to the parentheses here. The form of these and the new @ operator
will be explained below.

The playground only uses the basic form K | ζ and X | ζ for applying conditional
constraints. So, if we want to compute a more general form, such as kind(B) | C = 16

in the previous example, we need to do the translation of equation (5.2) manually.
The first three lines above

(kind(BC) | (Proj[2] == 16))[1]

Proj[1](kind(BC) | (Proj[2] == 16))

(kind(BC) | (Proj[2] == 16)) ^ Proj[1]

are variations on that, where we compute the joint Kind with the conditional constraint
and then transform it with proj1. The fourth line provides a shortcut

Proj[1] @ kind(BC) | (Proj[2] == 16)

using the @ operator. If stat is a statistic and U is a Kind, then stat @ U is the
same as stat(U) or U ^ stat, with two exceptions: @ has higher precedence than ^

or | and the result “remembers” that it came from U in conditional constraints. So:

pgd> kind_B = Proj[1] @ kind(BC)

pgd> kind_B | (Proj[2] == 16)

produces kind(B) | C = 16, where kind_B looks like the kind(B) but with some extra
information behind the scenes. If we try instead to do just kind(BC)[1] | (Proj[2] == 16),
we will get an error because kind(BC)[1] does not have that context.

Example 5.3 Points in a Circle, With Constraints In Example 4.6, we built a
two-dimensional FRP, call it P here, that represents a random point with integer
coordinates within a circle of radius 5, where all valid points have equal weight.
Express P in terms of its component FRPs, P = ⟨X,Y ⟩, where X and Y

represent the x- and y-coordinates of the random point.
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⟨⟩

⟨−5, 0⟩1/81

⟨−4,−3⟩1/81
. . .. . .

⟨−4, 2⟩1/81

⟨−4, 3⟩1/81

⟨−3,−4⟩1/81
. . .. . .

⟨−3, 2⟩1/81

⟨−3, 3⟩1/81

⟨−3, 4⟩1/81
. . .. . .

⟨−2, 2⟩1/81

⟨−2, 3⟩1/81

⟨−2, 4⟩1/81
. . .. . .

⟨−1, 2⟩1/81

⟨−1, 3⟩1/81

⟨−1, 4⟩1/81
. . .. . .

⟨0, 2⟩1/81

⟨0, 3⟩1/81

⟨0, 4⟩1/81
. . .. . .

⟨1, 2⟩1/81

⟨1, 3⟩1/81

⟨1, 4⟩1/81
. . .. . .

⟨2, 2⟩1/81

⟨2, 3⟩1/81

⟨2, 4⟩1/81
. . .. . .

⟨3, 2⟩1/81

⟨3, 3⟩1/81

⟨3, 4⟩1/81
. . .. . .

⟨4, 2⟩1/81

⟨4, 3⟩1/81

⟨5, 0⟩1/81

Figure 40. The Kind of P | Y = 3 showing the eliminated branches, in Example 5.3.
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The Kind of X embodies all our predictions about the x-coordinate alone,
and the Kind of Y embodies all our predictions about the x-coordinate alone.
Both of these have the same kind (i.e., kind(proj1(P )) = kind(proj2(P )))

⟨⟩

⟨−5⟩1
81

⟨−4⟩7
81

⟨−3⟩9
81

⟨−2⟩9
81

⟨−1⟩9
81

⟨0⟩11
81

⟨1⟩9
81

⟨2⟩9
81

⟨3⟩9
81

⟨4⟩7
81

⟨5⟩1
81

because the points in the circle are symmetric under a 90-degree rotation. Without
any information about the other coordinate, any point in the circle is possible,
and the weight on each value of the coordinate is proportional to the number of
points with that coordinate (e.g., there are 11 points with x-coordinate 0, with y
from -5 to 5.

With information about one coordinate, however, our predictions about
the other coordinate change. Suppose, for example, we observe that Y = 3.
Remember {Y = 3} is an event – an FRP that has values 0 and 1. To say that
we observe that Y = 3 means that we can take it has a fact that the event
{Y = 3} has occurred. So the event FRP has a value 1 and the FRP Y has value
3.

If we know that Y = 3, then P must be a point of the form ⟨x, 3⟩ with x

an integer with x2 ≤ 25− 9 = 16, i.e., x ∈ [−4 . . 4]. So, if we eliminate all the
branches that are inconsistent with this partial information, we get the updated
Kind for P | Y = 3 in Figure 40 where all the inconsistent branches have been
crossed out. Where before we had equal weight on each of 81 points, we now
have 9 remaining branches all with the same weight. An important observation:
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when we elimimnate branches due to the conditional constraint, the relative
sizes of the weights do not change on the remaining branches.

When we renormalize to canonical form, the Kind of P | Y = 3 becomes

⟨⟩

⟨−4, 3⟩1
9

⟨−3, 3⟩1
9

⟨−2, 3⟩1
9

⟨−1, 3⟩1
9

⟨0, 3⟩1
9

⟨1, 3⟩1
9

⟨2, 3⟩1
9

⟨3, 3⟩1
9

⟨4, 3⟩1
9

And we get the Kind of X | Y = 3 by transforming this with the statistic proj1,
yielding the Kind

⟨⟩

⟨−4⟩1
9

⟨−3⟩1
9

⟨−2⟩1
9

⟨−1⟩1
9

⟨0⟩1
9

⟨1⟩1
9

⟨2⟩1
9

⟨3⟩1
9

⟨4⟩1
9

Compare this to the Kind of X without any information about Y , shown above.
Once we know the value of Y = y, X must be one of the values in the circle
along the horizontal line of height y, and all of those values are equally likely.

In the playground, using circle_points from the earlier example, try

pgd> P = circle_points()

pgd> kind(P)

212



pgd> kind(P) | (Proj[2] == 3)

pgd> Proj[1] @ kind(P) | (Proj[2] == 3)

The output is ommitted but should match the displays above. Try it!

Example 5.4 Jockeying for a Win
The Uncertain Stakes is one of the most exclusive horse races on the world circuit
but little noted by the general public. This year’s race has eight elite contenders,
numbered as follows

1. Aldous Aboard
2. Eggs Billingsley
3. Cinlar’s Challenge
4. Feller Beast
5. Kissing Kolmogorov
6. Levy Leaving
7. Markov Mania
8. Pitman’s Pride

These horses vary strongly in their response to the track conditions. Some like
the track muddy; some like it dry; some do better in driving rain. There are
many questions we might ask, but consider two. Who will win? If we observe
that Cinlar’s Challenge wins, what can we say about the track conditions?

Let T be the FRP representing the track conditions and W is the conditional
FRP of the winning horse given the track conditions. T ’s values 0, 1, 2, 3
represent the conditions fast (dry, even resilient surface), muddy (wet without
standing watter), sloppy (saturated with water, with standing water), and slow
(wet on both surface and base layers). For each track condition, W has values
1–8 corresponding to the number of the winning horse.

Based on the horses’ histories, we can assume that kind(W) is the conditional
Kind shown in Figure 41. We can see, for instance, that fast conditions favor
Aldous Aboard and Eggs Billingsley, sloppy condition are dominated by Feller
Beast, and slow conditions disadvantage Levy Leaving.

Define FRPs R = T ▷W and H = proj2(R). The former, a two-dimensional
FRP, represents both track conditions and the winning horse, and the latter
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⟨⟩

⟨1⟩0.28

⟨2⟩0.18

⟨3⟩0.12

⟨4⟩0.11

⟨5⟩0.10

⟨6⟩0.08

⟨7⟩0.08

⟨8⟩0.05

⟨⟩

⟨1⟩0.06

⟨2⟩0.07

⟨3⟩0.12

⟨4⟩0.05

⟨5⟩0.08

⟨6⟩0.14

⟨7⟩0.24

⟨8⟩0.24

⟨⟩

⟨1⟩0.05

⟨2⟩0.03

⟨3⟩0.19

⟨4⟩0.48

⟨5⟩0.10

⟨6⟩0.04

⟨7⟩0.06

⟨8⟩0.05

⟨⟩

⟨1⟩0.14

⟨2⟩0.12

⟨3⟩0.18

⟨4⟩0.14

⟨5⟩0.10

⟨6⟩0.02

⟨7⟩0.12

⟨8⟩0.18

⟨0⟩
⟨1⟩
⟨2⟩
⟨3⟩

Figure 41. The conditional Kind of the winning horse given track condition, kind(W), in
Example 5.4. The inputs represent a fast (0), muddy (1), sloppy (2), and slow (3)
track. The value of the Kinds is the winning horse’s number.
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represents the winning horses, whose number is the second component of the
mixture R. Observe that T = proj1(R), so T and H are R’s component FRPs.

We are interested in (i) predicting who will win this year’s Uncertain Stakes,
both with and without information about the track conditions, and (ii) inferring
the track conditions given that Cinlar’s Challenge is observed to win the race.
In the first case, we want to find kind(H) and with information that the track
has condition c, kind(H) | T = c. In the second case, we apply a conditional
constraint on H to find kind(T )|H = 3. Note that in both cases, the conditional
constraint can come from real partial information that we observe or from
counterfactual partial information that we are interested in considering. In the
latter, our questions sound like “What would we predict about which horse wins
if we knew the track had condition c?” or “What would we infer about the track
condition if we knew that Cinlar’s Challenge wins?”

You can load this example in the playground by entering

pgd> from frplib.examples.horse_race import T, W

Then do

pgd> R = T >> W

pgd> H = R[2]

Look at the Kinds of these FRPs, including the assumed Kind of T , which was
not shown above. Indeed, we can immediately address the first question with

pgd> kind(H)

,---- 0.10200 ----- 1

|---- 0.080000 ---- 2

|---- 0.16600 ----- 3

|---- 0.25500 ----- 4

<> -|

|---- 0.096000 ---- 5

|---- 0.058000 ---- 6

|---- 0.11600 ----- 7

`---- 0.12700 ----- 8
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which gives the chance of winning for each of the horses, absent any other
information. Make sure you understand where this comes from. A good place
to start would be to look at unfold(kind(R)) and apply our procedure for
computing a mixture of Kinds to compute kind(R). Then apply Proj[2].

Our predictions change with additional information. For instance, if we
observe that the track is muddy, the Kind of the winning horse is instead

pgd> Proj[2] @ kind(R) | (Proj[1] == 1)

,---- 0.060000 ---- 1

|---- 0.070000 ---- 2

|---- 0.12000 ----- 3

|---- 0.050000 ---- 4

<> -|

|---- 0.080000 ---- 5

|---- 0.14000 ----- 6

|---- 0.24000 ----- 7

`---- 0.24000 ----- 8

This is kind(H) | T = 1 and can also be obtained from kind(W ).
For the second question, we apply a conditional constraint that Cinlar’s

Challenge wins, meaning that the event {H = 3} occurs. We want the Kind of
T given that constraint: kind(T ) | H = 3. We find this in three steps:

1. Start with a Kind that represents an FRP that determines both the value
of T and whether the event occured.

2. Eliminate all the branches in the Kind of R that are inconsistent with the
given event, i.e., for which H ̸= 3. All other branches remain as is.

3. Apply a projection statistic to this Kind that extracts the value of T , and
optionally, convert the resulting Kind to canonical form if desired.
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⟨⟩

⟨1, 1⟩0.028
⟨1, 2⟩0.018
⟨1, 3⟩0.012
⟨1, 4⟩0.011
⟨1, 5⟩0.010
⟨1, 6⟩0.008
⟨1, 7⟩0.008
⟨1, 8⟩0.005
⟨2, 1⟩0.012
⟨2, 2⟩0.014
⟨2, 3⟩0.024
⟨2, 4⟩0.010
⟨2, 5⟩0.016
⟨2, 6⟩0.028
⟨2, 7⟩0.048
⟨2, 8⟩0.048
⟨3, 1⟩0.020
⟨3, 2⟩0.012
⟨3, 3⟩0.076
⟨3, 4⟩0.192
⟨3, 5⟩0.040
⟨3, 6⟩0.016
⟨3, 7⟩0.024
⟨3, 8⟩0.020
⟨4, 1⟩0.042
⟨4, 2⟩0.036
⟨4, 3⟩0.054
⟨4, 4⟩0.042
⟨4, 5⟩0.030
⟨4, 6⟩0.006
⟨4, 7⟩0.036
⟨4, 8⟩0.054

The Kind of R showing branches eliminated by the constraint {H = 3}.

Let’s see these steps in action:
1. We start the Kind of R, which has T and H as components. If we know the

value of R we can find the value of T and the value of H and can therefore
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determine whether H = 3.
2. Eliminating branches with H ̸= 3 from the Kind of R looks like the Kind

shown above, with the eliminated branches grayed out.
3. Applying proj1 to the Kind in step 2 yields

⟨⟩

⟨1⟩0.012
⟨2⟩0.024
⟨3⟩0.076
⟨4⟩0.054

and following our standard practice, we convert this to canonical form

⟨⟩

⟨1⟩0.07229
⟨2⟩0.14458
⟨3⟩0.45783
⟨4⟩0.32530

where the weights are respectively 6/83, 12/83, 38/83, 27/83.
In the playground, the three steps are direct:

pgd> kind(R)

pgd> kind(R) | (Proj[2] == 3)

pgd> Proj[1] @ kind(R) | (Proj[2] == 3)

and the output should agree with the above displays.

The key takeaway about conditional constraints is: to account in our analysis
for partial information about the value of an FRP – observed or hypothetical –
we eliminate from consideration any possible values that are inconsistent with the
information. The weights on the remaining branches do not change, though we may
renormalize them into canonical form.

Keep in mind that conditions can be combined using logical operators: logical-and
(operator ∧), logical-or (operator ∨), and occasionally logical “not” (operator !). These
operators tend to be convenient when writing complicated conditions, but it’s fine to
use words (and, or, not) instead in your work. So, {proj2(A) = 1 ∧ proj1(A) = 1} is the
event that both of A’s first two components are one, {proj2(A) = 1 ∨ proj1(A) = 1}
is the event that at least one of A’s first two components are one. Note that for
multiple dimensional FRPs like A, we can use subscripts to denote components,
so A1 = proj1(A) and A2 = proj2(A). In the playground, things are a little more
awkward because of restrictions imposed by Python. We can use the combinators And,
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Or, and Not for logical and, or, and not. The first two of these take any number of
conditions and can be nested to produce arbitrary Boolean expressions. For example,

A | And(Proj[2] == 1, Proj[1] == 1)

A | Or(Proj[2] == 1, Proj[1] == 1)

A | Not( And(Proj[2] == 1, Proj[1] == 1) )

and so forth. And in the playground, we can use bracketed indexing on an FRP
or Kind as a short hand for projection, so A[2] is the same as Proj[2](A) or
A ^ Proj[2].

As we saw in the previous examples, a common situation is that we describe a
multi-stage process with a mixture, observe the value of a later stage, and use that
observation as a conditional constraint to infer the value of an earlier stage. So
for instance, we see the color of the selected ball and infer the chosen box it came
from or see the winner of the race and infer the track conditions. Suppose A is an
FRP of dimension m and M a conditional FRP of type m→ n. Let X = A ▷M and
B = proj(m+1)..(X), where A = proj..m(X).50 If we observe that B has value b, what 50Recall that proji..j , proj..j ,

and proji.. are respectively
equivalent to proji,i+1,...,j ,
proj1,2,...,j , and proji,i+1,....

do we learn about A? The answer: kind(A) | B = b. By equation (5.2), we find this
in three steps:

1. Find the joint Kind using the mixture, kind(X) = kind(A ▷M).
2. Apply the conditional constraint {B = b} to this Kind, kind(A ▷M) | B = b.
3. Project onto the components describing A, proj..m (kind(A ▷M) | B = b).

In the playground, we can write this simply as

pgd> Proj[:(m+1)] @ kind(A >> M) | (Proj[(m+1):] == b)

where the three steps correspond to
1. kind(A >> M), the Kind of both stages jointly
2. kind(A >> M) | (Proj[(m+1):] == b), applying the conditional constraint,

and
3. Proj[:(m+1)] @ kind(A >> M) | (Proj[(m+1):] == b), projecting onto the

components of interest.
(Recall that slices i:j in Python do not include the final index j.)

Taken together, these steps form an operation called Bayes’s Rule in which
we infer earlier components of a mixture from the observations of later
components. The function bayes(observed_y, x, y_given_x) carries out this
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operation in the playground, where observed_y is the observed value of a quantity,
x is the Kind of another quantity, and y_given_x is the conditional Kind of the
quantity y given a value of x. The result is the Kind51 of the value of x with the 51bayes works with FRPs as

well but we almost always
use it with Kinds.

conditional constraint that y is the observed value.
Let see this in action by revisiting Example 4.5 about disease testing. We know

the prevalence of a disease in the population (1/1000), the sensitivity of the test
(ability to correctly detect someone with the disease, 950/1000), and the specificity of
the test (ability to correctly determine someone does not have the disease, 990/1000).
We specify that information in the playground as follows.

pgd> has_disease = either(0, 1, 999) # No disease has higher weight

pgd> test_by_status = conditional_kind({

...> 0: either(0, 1, 99), # No disease, negative higher weight

...> 1: either(0, 1, 1/19) # Yes disease, positive higher weight

...> })

pgd> dStatus_and_tResult = has_disease >> test_by_status

pgd> dStatus_and_tResult

,---- 98901/100000 ---- <0, 0>

|---- 999/100000 ---- <0, 1>

<> -|

|---- 1/20000 ---- <1, 0>

`---- 19/20000 ---- <1, 1>

pgd> Disease_Status = Proj[1] # Naming this statistic

pgd> Test_Result = Proj[2] # ...and this statistic

This produces a Kind with two components that we name to aid undersanding. Our
question is: if someone tests positive how likely are they to have the disease. Think
for a moment about how you can do this in the playground. Given the value of the
Test_Result component, what can we infer about the Disease_Status component?

Puzzle 40. Try to craft a single expression in the playground to answer our main
question: if someone tests positive how likely are they to have the disease.
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We can answer our question with a conditional constraint on the observed infor-
mation of test result and a projection onto disease status.

pgd> Disease_Status @ dStatus_and_tResult | (Test_Result == 1)

,---- 999/1094 ---- 0 # No disease

<> -|

`---- 95/1094 ---- 1 # Yes disease

We restrict attention to values for which the test is positive (our condition) and then
marginalize to look only at disease status. That’s it. We can rewrite this in terms of
the bayes function with the observed value of the test as the first argument:

pgd> bayes(1, has_disease, test_by_status)

,---- 999/1094 ---- 0 # No disease

<> -|

`---- 95/1094 ---- 1 # Yes disease

The result may be surprising: despite a positive test, the probability that the patient
has the disease is small. The small weight on having the disease even with a positive
test result derives from the low baseline prevalance of the disease in the population,
i.e., the small weight on ⟨1⟩ in the Kind has_disease. Work out carefully how this
result was derived. The amazing thing is how simple it is; we just exclude branches
and renormalize. The statistic Disease_Status selects one component, and given
that the test result is known the other component is not even that interesting. (Take
a look at the tree without the marginalizing projection to see this.)

Here, test_by_status is a conditional Kind because it specifies a Kind that is
contingent on some other specified value, the patient’s disease status. The uses of
the word “conditional” in “conditional Kind” and “conditional constraint” are directly
connected. For instance, when you evaluate

dStatus_and_tResult | (Disease_Status == 0)

dStatus_and_tResult | (Disease_Status == 1)

you will see that these are just test_by_status(0) and test_by_status(1), respec-
tively. The conditional Kind gives for each input the Kind obtained by applying a
conditional constraint that that input was observed! Notice also that
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pgd> Kind.equal( Disease_Status(dStatus_and_tResult), has_disease )

True

since has_disease is just the top level of the unfolded Kind dStatus_and_tResult.
In general, if k is a Kind of dimension dk and m is a conditional Kind of type

dimension dk → dk+dm, then the Kind k ▷m has dimension dk+dm. From any value
of k ▷m, we can extract the k value with Proj[:(d_k+1)] and the corresponding m Recall that Proj[a:(b+1)]

is a statistic that extracts
components a, a+ 1, . . . , b.
In math we write this as
proja..b.

value with Proj[(d_k+1):]. Define

pgd> ks_values = Proj[:(d_k+1)]

pgd> ms_values = Proj[(d_k+1):]

Then for every value v of k:

Kind.equal( k, ks_values(k >> m) )

Kind.equal( m(v), ms_values @ k >> m | (Proj[ks_values] == v) )

are both True. In other words, for the conditional Kind m, m(v) is the Kind given
the condition that k’s value equals v. So m just packages all the conditionals given
each value of k. Mathematically, we can state this precisely in the same way.

Suppose k is a Kind of dimension dk and m is a compatible conditional Kind of
type dk → dk + dm, then

k = proj1..dk(k ▷m) (5.4)

and for every value v of k,

m(v) = proj(dk+1)..(k ▷m | proj1..dk( ) = v). (5.5)
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After reading this section you should be able to:

• Explain in broad terms how we account for partial information about the
value of an FRP, observed or hypotheticl.

• Define a condition and construct several examples, mathematically and in
the playground.

• Show how to combine conditions with logical-and and logical-or (and
logical-not).

• Define an event and explain what it means for an event to occur or not
occur.

• Show how to convert a Boolean expression to an event and how to denote
the corresonding FRP.

• Write a Kind or FRP with a conditional constraint.

• Explain what an FRP given a condition and a Kind given a condition
mean.

• Describe how to find K | ζ in canonical form when you are handed a Kind
K in canonical form and a compatible condition ζ.

• Identify the difference, if any, between K | ⊤ and K for a Kind K.

• Explain the purpose of Bayes’s Rule, and describe the steps that comprise
is.

• Apply Bayes’s Rule in the playground.

Checkpoints
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6 Three Dialogues: Computation, Systems, Simulation

In friendly interactions with clients and employees of the FRP Warehouse, you
explore practical aspects of building probabilistic systems to solve problems.

A Dialogue on Computation highlights several computational techniques that
are frequently useful, including “monoidal” parallelism, symmetry, and sampling.

A Dialogue on Systems and State examines how to build random systems
that evolve over time or space and describes the idea of a system’s state.

A Dialogue on Solutions and Simulation develops tools for computing answers
to questions about the long-term evolution of random systems as solutions to
“one-step” equations or as simulations of the system’s dynamics.

Key Take Aways

6.1 A Dialogue on Computation

Alice and Bob are clients of the FRP Warehouse whom you met during the orientation
for new users. This conversation took place during an orientation workshop.

Bob: I’m getting frustrated, Alice. This calculation is hanging.

Alice: The dice example again? What’s the problem?

Bob: I want to compute the Kind for an FRP that models the sum of 100 rolls of a
six-sided dice. So I define the Kind for one roll, d6 = uniform(1, 2, 3, 4, 5, 6),
compute the Kind for 100 rolls – d6 ** 100 – and then transform . . .

Alice: Well that’s your problem right there. What is the size of d6 ** 100?

Bob: There are 6 possibilities for each of 100 rolls, so 6100 possible values. Ah. . .that’s
a big number. No wonder it’s taking so long.

But the sum of the rolls doesn’t care about the distinction between most of those
possibilities, so it seems it should be possible to do this calculation efficiently.

Alice: It actually is. I’ve been considering that problem for another project. What
does the playground display when you print the statistic Sum?

Bob: Let’s see. It says

A Monoidal Statistic ’sum’ that returns the sum of all the components of
the given value. It expects a tuple and returns a scalar.
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What the heck is a “Monoidal Statistic?”

Alice: That threw me too, but after I dug into it, I realized it was a simple idea.

The Sum statistic takes in a value that is a list of numbers and adds up all the
components to give a number, so it takes in a list of numbers and returns a number.
What happens to the sum if you add some elements to the list, as we do when we
take mixtures?

Bob: The Sum just adds up the new elements and adds that sum to the total.

Alice: Exactly! Let’s write :: for the operation of joining two lists, so ⟨10, 20, 30⟩ ::
⟨40, 50⟩ = ⟨10, 20, 30, 40, 50⟩ and ⟨10, 20⟩ :: ⟨⟩ = ⟨10, 20⟩ and so on. What you said is

Sum(⟨10, 20, 30⟩ :: ⟨40, 50⟩) = Sum(⟨10, 20, 30⟩) + Sum(⟨40, 50⟩)

= Sum
( 〈

Sum(⟨10, 20, 30⟩), Sum(⟨40, 50⟩)
〉 )
,

Sum(⟨10, 20⟩ :: ⟨⟩) = Sum(⟨10, 20⟩) + Sum(⟨⟩)

= Sum
( 〈

Sum(⟨10, 20⟩), Sum(⟨⟩)
〉 )
,

because the sum of an empty list is 0. Make sense?

Bob: That’s a mouthful, but yes, I see. Sum(a :: b) = Sum
(〈

Sum(a), Sum(b)
〉)

. So
I can apply Sum as I go along and get the same answer. That means that the Kind
Sum(d6 ** 100) is equal what I get by doing

pgd> sum_of_4_rolls = Sum(d6 ** 4)

pgd> sum_of_100_rolls = sum_of_4_rolls # initialize

pgd> for _ in range(24): # loop to successively update

...> sum_of_100_rolls = Sum(sum_of_100_rolls * sum_of_4_rolls)

Alice: I think so, but let’s do a simpler example to make sure we understand it
correctly. Suppose we are just summing 12 rolls. The values of d6 ** 4 are lists with
four numbers in [1 . . 6] like ⟨1, 4, 3, 5⟩, ⟨3, 6, 5, 6⟩, and ⟨6, 2, 1, 1⟩. Transforming by Sum

adds these up giving values for Sum(d6 ** 4) like ⟨13⟩, ⟨20⟩, and ⟨10⟩ respectively.
Your sum_of_4_rolls looks like

,---- 1/1296 ---- 4

|---- 4/1296 ---- 5

|---- 10/1296 ---- 6
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|---- 20/1296 ---- 7

|---- 35/1296 ---- 8

|---- 56/1296 ---- 9

|---- 80/1296 ---- 10

|---- 104/1296 ---- 11

|---- 125/1296 ---- 12

|---- 140/1296 ---- 13

<> -+---- 146/1296 ---- 14

|---- 140/1296 ---- 15

|---- 125/1296 ---- 16

|---- 104/1296 ---- 17

|---- 80/1296 ---- 18

|---- 56/1296 ---- 19

|---- 35/1296 ---- 20

|---- 20/1296 ---- 21

|---- 10/1296 ---- 22

|---- 4/1296 ---- 23

`---- 1/1296 ---- 24

If we mix it with itself, sum_of_4_rolls * sum_of_4_rolls corresponds to rolling
4 dice once and then rolling 4 dice again and recording a pair of sums, with values
like ⟨13, 8⟩ and so on. Then, Sum(sum_of_4_rolls * sum_of_4_rolls) adds those
values up, giving us the sum of eight dice. And doing this yet again gives us

Sum(sum_of_4_rolls * sum_of_4_rolls * sum_of_4_rolls)

which is like rolling 4 dice three times, getting the sums for each set of 4, and then
adding up those subtotals to get the total sum. This is the Kind of the sum of 12
rolls as we wanted and is the same as:

Sum( Sum(d6 ** 4) * Sum(d6 ** 4) * Sum(d6 ** 4) )

Bob: Excellent. So “monoidal statistics” like Sum are those that let you do this
decomposition and compute the statistic in parallel. They could have called them
“parallel statistics,” eh?

226



Looking at the predefined statistics in the playground, I see that Min, Max, and Count

also have this property. I suppose that makes sense; after all,

min(⟨10, 20, 30⟩ :: ⟨40, 50⟩) = Min
(〈

Min(⟨10, 20, 30⟩),Min(⟨40, 50⟩)
〉)

min(⟨10, 20⟩ :: ⟨⟩) = Min
(〈

Min(⟨10, 20⟩),Min(⟨⟩)
〉)
,

which looks just like the formula for Sum above. (We take the minimum of an empty
list of numbers to be ∞ by convention.)

Alice: Right, so we have basically the same formula Min(a :: b) = Min
(〈

Min(a),Min(b)
〉)

.

Bob: So, we can get the Kind for the minimum of 12 rolls by

Min( Min(d6 ** 4) * Min(d6 ** 4) * Min(d6 ** 4) )

like before. That’s great, but what if I want to do something more complicated, like
the mean of the rolls or the range (difference between max and min). Those statistics
don’t have this property.

Alice: True, but we can get them both from statistics that do. For instance, if
you can find the Kind of the sum, you can transform that to get the mean with
sum_of_100_rolls ^ (__ / 100).

But let’s solve the problem more generally. Have you seen the Fork combinator in
the playground?

Bob: Yes, it combines a bunch of statistics with common dimension into a big tuple
containing all of their results. For example, Fork(s1, s2)(x) = s1(x) :: s2(x) and
Fork(s1, s2, s3)(x) = s1(x) :: s2(x) :: s3(x).

Alice: And notice that if the statistics you give to Fork are “monoidal statistics”, so
is the statistic that it returns.

Bob: Because we can just apply our formula above to each component.

Alice: Yes. So if you want to compute the range (max - min), apply our formula
above with the statistic min_max = Fork(Min, Max) and then take the difference at
the end. That is,

min_max(min_max(d6 ** 4) * min_max(d6 ** 4) * min_max(d6 ** 4)) ^ Diff

Bob: Beautiful! Complicated but beautiful.
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Alice: Yes, it’s a lot. The good news is that the playground can automate this in
many cases, but that’s a story for another day.

Bob: My problem is solved, thanks.

Alice: Well, I have a related problem. You know how much I enjoy playing poker.

Bob: You’re a shark!

Alice: Well, I though I might parlay that interest into a way to beat the Warehouse.
I’m trying to create FRPs to model shuffling a deck of cards, by drawing one card at
a time.

Bob: I see. The next card depends on which cards you’ve seen already. Sounds like a
mixture.

Alice: Exactly, but I found it a bit tricky to define. Can I show you? Fair warning,
there’s some Python here.

Bob: I’m not really fluent in Python, but I’m guessing I can follow along.

Alice: Absolutely you can, it should be clear, though I’ll explain any Python oddities.

Let’s start with a standard deck of 52 cards. We’ll arbitrarily assign the cards numbers
1 through 52; we can be more specific later if needed. At the first stage, I need an
FRP that selects each card with equal weight; that’s just

pgd> card1 = uniform(1, 2, ..., 52)

For the next card, I need a conditional Kind that picks uniformly among all but the
first card chosen. I’ll use the playground function irange that gives an inclusive
range of integers from its first to second arguments, with an option to exclude values
in a set. This looks like

pgd> card2 = conditional_kind({

...> (first_card,): uniform( irange(1,52, exclude={first_card}) )

...> for first_card in irange(1,52)

...> })

For each card, an integer from 1..52, this uses the uniform factory to make an equally
weighted kind on all the other cards.

Bob: And your code is building a mapping of key-value pairs for each value of
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first_card, where (first_card,) is the key and the Kind excluding first_card

is the value.

Alice: Right. A conditional Kind maps the values of one Kind to other Kinds of
equal dimension. Now, I could continue like this all the way to card52, but I think I
need to be more systematic. Here’s what I tried, a function that returns a conditional
Kind for a particular card draw:

def card(n):

"Returns the conditional kind for the nth card drawn."

if n == 1:

return uniform(1, 2, ..., 52) # (1)

def draw_kind(previous_cards): # (2)

next_cards = list( irange(1, 52, exclude=set(previous_cards)) ) # (3)

return uniform(next_cards) # (4)

return conditional_kind(draw_kind) # (5)

In (1), if this is the first card, we need to start things off with no previous cards,
so we return a conditional Kind of type 0 → 1, which is just an ordinary Kind. In
(2), we receive the list of n− 1 and compute a Kind for the next card, so this is a
conditional Kind of type n− 1 → n that we define as a Python function. In (3), we
create the list of valid next cards, which just excludes all the previous cards. In (4),
we use the uniform factory to produce a Kind with equal weight on all of these cards.
And finally, in (5) we convert the function draw_kind to a conditional Kind object,
using conditional_kind.

Bob: OK, there’s some hairy stuff there, but I’m generally following. How do you
use this?

Alice: Well card(1) is the Kind after one drawn card, and in succession

pgd> card(1) >> card(2)

pgd> card(1) >> card(2) >> card(3)

pgd> card(1) >> card(2) >> card(3) >> card(4)
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give the Kind of the shuffle after 2, 3, and 4 cards are picked, respectively. We could
write a loop to do it for all cards

pgd> shuffle = card(1)

pgd> for n in irange(2, 52):

...> shuffle = shuffle >> card(n)

Of course, that’s impossibly slow because there are 52! different shuffles in the tree,
another big number.

Bob: So, you’re looking for a trick like what worked for my problem.

Alice: A trick would be fine, but I’m looking for an idea for understanding this.

Bob: I have two thoughts. First, what questions are you trying to answer? In my case,
it mattered that I was interested in the Sum, for example, which made it possible to
reduce the complexity. If you want to predict your hand, say, then you don’t need to
draw all 52 cards.

Second, are you sure you need an exact answer?

Alice: It’s true that if I’m looking at what heppens in my hand it’s easier. Like if
I’ve drawn five specific cards, and I want to know the chance of getting a fifth card,
it’s easier, but I still may have to deal with 20, 25, 30 cards.

Bob: What happens if you permute the labels? Does it matter if you observe cards
1, 5, 9, 13, and 17 (in a four player game with five cards each) versus cards 1, 2, 3, 4,
and 5?

Alice: Interesting. I think that’s an important observation, and I want to come back
to that. If I had cards 1-5 in my hand and were drawing the sixth, I could predict it
like this, for example. Draw six cards and compute the Kind of the sixth card with
the conditional constraint given the specific five cards in my hand.

pgd> my_hand = card(1) >> card(2) >> card(3) >> card(4) >> card(5)

pgd> next_card = (my_hand >> card(6) | (Proj[1:5] == (16,17,18,19,4)))[6]

pgd> next_card ^ Or(__ == 20, __ == 15)

Bob: Cool, you’re assuming you got a particular four cards in a row and want to see
whether you get a straight. You could do this for any cards in your hand or write a
function that checks various combinations.
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Alice: Yes, that’s useful. I do want to come back to the other idea you had. You
were suggesting that I demo FRPs instead of computing the Kinds?

Bob: Right. The Kinds let you compute everything exactly, but if you know what
question you want to answer, you can tailor an FRP to that and demo it.

Now that I think of it, that’s not a bad approach to my problem earlier.

pgd> d6_frp = frp(d6)

pgd> FRP.sample( 10_000, Sum(d6_frp ** 100) )

It’s not as fast or exact as what we came up with earlier, but pretty good.

Alice: The key is that the playground does not have to compute the Kind of an
FRP like Sum(d6_frp ** 100) until you ask for it. It just hooks output ports to
input ports and pushes the button. I could do something similar:

def draw(n):

"Returns a conditional FRP for the nth card drawn."

return conditional_frp(card(n))

The conditional_frp turns every Kind in a conditional Kind into a new FRP of
that Kind, which is what I need.

Bob: Then just do your loop with

pgd> deck = draw(1)

pgd> for n in irange(2, 52):

...> deck = deck >> draw(n)

pgd> deck

to get the value of a random deck, or do FRP.sample to demo a bunch of them. It
won’t be fast or exact, but it will give you useful information.

Alice: That’s quite good; I can use that. But I’ve also been thinking about your
comment on permutations.

The Permute statistic factory in the playground produces statistics that just rearrange
the order of the list. For example, Permute(3,2) swaps the second and third
components in a value list.
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pgd> psi = Permute(3,2)

pgd> psi( (10,20,30) ) = (10, 30, 20)

Applying a permutation to the labels for our deck is just a relabeling of the cards,
but we don’t really care which number is assigned to which card.

Suppose I start with some Kind k on n−1 cards and compute the resulting Kind for n
cards: k >> cards(n). If do any permutation of the labels after this, it is equivalent
to doing the same permutation on the values of k. That is, for any permutation “...”
these two Kinds are equal

k >> cards(n) ^ Permute(...) (k ^ Permute(...)) >> cards(n)

Bob: That’s not obvious to me, but I’m trying it out in the playground and it does
seem to work.

Alice: Think of it this way. If I put new labels on all the cards after I’ve drawn
n− 1, then since all nth cards have equal weight, it’s the same as if we draw the nth

card before doing the relabeling.

Bob: Hmm. I think I’ve got it. And I see where you are going. Since the Kind of the
shuffled deck is

card(1) >> card(2) >> card(3) >> ... >> card(51) >> card(52)

then if we apply a permutation at the end, we can just move it up through the >>’s.

card(1) >> card(2) >> card(3) >> ... >> card(51) >> card(52) ^ Permute(...)

card(1) >> card(2) >> card(3) >> ... >> (card(51) ^ Permute(...)) >> card(52)

...

card(1) >> card(2) >> (card(3) ^ Permute(...)) >> ... >> card(51) >> card(52)

card(1) >> (card(2) ^ Permute(...)) >> card(3) >> ... >> card(51) >> card(52)

(card(1) ^ Permute(...)) >> card(2) >> card(3) >> ... >> card(51) >> card(52)

All these are the same Kind!

Alice: And here’s the punchline. We know that cards(1) is just uniform(1,2,...,52),
so cards(1) does not change when you relabel the cards.

Kind.equal( cards(1) ^ Permute(...), cards(1) )
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Bob: So, permutating the deck doesn’t change the Kind, or your analysis!

So, if you want to consider only your hand and a few cards to draw from, you can
use cards(1) >> ... >> cards(8), which is more manageable.

In fact, if the cards in your hand are c_1, c_2, c_3, c_4, and c_5, you can just do

pgd> my_hand = (c_1, c_2, c_3, c_4, c_5)

pgd> constant(my_hand) >> cards(6) >> cards(7) >> cards(8)

Alice: Nice. You used the fact that my_hand equals the Kind also_my_hand where

pgd> first_five = cards(1) >> cards(2) >> cards(3) >> cards(4) >> cards(5)

pgd> also_my_hand = first_five | (__ == (c_1, c_2, c_3, c_4, c_5))

That makes it easier to answer many interesting questions. Good team work!

Bob: Don’t risk too much money at the table. . .

Alice: Restraint is my middle name.

Bob: (Rolls eyes affectionately)

Puzzle 41. Suppose you are interested in when a specific pattern of die rolls – 4, 6,
2 – occurred during successive rolls at any point during 100 rolls of a six-sided die.
Using the same d6 that Bob did in this section, compute the Kind of the event
that the pattern occurs, i.e., an FRP that outputs 1 if the pattern occurs and 0
otherwise.

For the next puzzles, we refer to the following example.

Example 6.1. A language is a set of strings made up of symbols from a fixed
alphabet. Consider the language consisting of one or more a’s with a zero or one
commas between each sequence of a’s. Strings “a,aaa,a,aaa,a” and “a” and
“aaaaaa,a,a,a” belong to this language, but strings “a„a” and “,a,” and “,” do
not. We will describe this language by a graph whose nodes represent “states”

If you are familiar with
regular expressions, this
language is described by
a+(,a+)*.and whose edges represent “transitions.” The graph is shown in Figure 42.

We start in the blue S node – the “Start” state. We will process a string of
a’s and ,’s one character at a time, moving from state (node) to state (node).

Suppose we are in a particular state (node) at a given time. If the next
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unseen character in the string is an a, we follow the edge labeled a out of our
node. If the next unseen character in the string is an ,, we follow the edge
labeled , out of our node. This determines the next state

After seeing “a,aa”, for instance, we would be in state A; after “a,a,” in
state C; and after “a„” in state F. The green state A is “Accept” – ending there
means that the input string belongs to the language, but ending in any other
state means that it does not. The red state F is “Failure” – reaching that state
automatically means the input does not belong to the language.

S

A

C

F

a

,

,

a

a

,

a

,

Figure 42. The language described in Example 6.1.

Puzzle 42. Referring to the situation in Example 6.1, assign the number 0 to the
character a and the number 1 to the character , and the number 2 to an “end of
string” marker, which can be repeated.

Define char = uniform(0,1,2). What does char ** 80 represent?
Write (in code or pseudo-code) a function that takes a value of char ** 80

and returns the corresponding string.

Puzzle 43. We are interested in whether the string produced by char ** 80 in
the previous puzzle belongs to the language described by Example 6.1.

Assign the number 1 to the case where the string is accepted and 0 to the case
where the string is not accepted. Compute the corresponding Kind.

You will want to construct an initial Kind and a conditional Kind for each
move. Like Alice and Bob, you only need some information not the whole path.
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6.2 A Dialogue on Systems and State

Carlos and Danielle work in the research division of the FRP Warehouse. This
conversation took place when you met them during a tour.

Carlos: The FRP Warehouse has a contract with the city of Uncertain, Texas to
run all the local traffic lights, and our team is charged with devising new ways to
build dynamic, random systems like that.

Danielle: And even more complicated as well.

You: What do traffic lights have to do with FRPs?

Danielle: At each tick of the clock, you can think of a traffic light as a conditional
FRP. It gets input that represents the current traffic at the intersection and returns
an FRP that represents how the light’s state will change at the next tick of the clock.

You: Change state? Like from liquid to gas?

Carlos: Well, not exactly, but it’s a similar idea. The state of a system is information
that fully – and if possible, concisely – describes the internal configuration of a system
at any given moment.

If you know a system’s state, you can describe what you will observe from the system
and how the state can change.

Danielle: It might help to start with a simple traffic light to make this clearer.

You: The traffic light moves from green ( ) to yellow ( ) to red ( ), so the state of
the system is the current color of the light?

Danielle: It can be in simple cases. However, to allow the light to behave the way
we might want, it is useful to keep track of some extra information.

You: Ah, I see. We probably want the yellow light to be on for a shorter time than
the green or red, for instance. We would need to know not only what color the light
is but also how long it has been that color.

Carlos: Exactly! We could, for instance, define the state of the traffic light to have
the form ⟨c, n⟩ where c is the current color and n is the number of ticks of the clock
for which the light has had color c. As examples, possible states are ⟨ , 0⟩, ⟨ , 10⟩,
and ⟨ , 3⟩.

Danielle: There’s usually not just one right way to define a system’s state. We
choose how to define the state based on what we want the system to do and what
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information we need to update the state.

You: Update the state? You mean when the clock ticks and the state is ⟨ , 7⟩, the
state might change to ⟨ , 8⟩ or to ⟨ , 0⟩, depending on how long we want each color
to show for.

Carlos: Yes. We can specify a rule ⟨ng, ny, nr⟩ so the light stays for ng ticks of
the clock, then for ny ticks, and then for nr ticks.

Danielle: We would write the rule as a function:

⟨c, n⟩ 7→ ⟨c, n+ 1⟩ {n < nc}+ ⟨next(c), 0⟩ {n = nc}

where next( ) = , next( ) = , and next( ) = .

You: You are using indicator functions52 here? 52See Section F.4.

Carlos: Yes, we use the indicators like {n < nc} to select among cases. As a named
Python function, this would be

def update_state(state):

color, ticks = state

if ticks < rule[color]:

return (color, ticks + 1)

return (next(color), 0)

You: OK, I’m still getting used to indicators, but that makes sense. I do wonder
though why you need FRPs for any of this.

Danielle: That’s a good question. One answer is that other rules are possible, and
you do not always want a color to have the same fixed duration. You might want to
randomize the light a bit so people do not learn to jump the light. You might also
want to incorporate data into a guess for whether the light should stay at its current
color.

Carlos: Another answer is that this is a very simple system, and we want to build a
technology for describing this and other more complex systems.

Let’s take the next step that Danielle is suggesting and randomize the update rule we
just discussed to see how this would work. You will replace the update function with
a conditional FRP that takes as input the value of an FRP representing the current
state.
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You: That’s clearer, thanks. Let me give it a try in the playground. (thinks)

Danielle: Excellent idea. I’ve loaded some infrastructure to make this easier from
frplib.examples.traffic_light. For instance, TrafficLight.GREEN stands for
the color, and next(TrafficLight.GREEN) gives you . These colors are encoded
as integers 0, 1, and 2 for , , and .

You: Thanks. OK, here’s code I might enter into the playground:

change_on = {

TrafficLight.GREEN: 1/30,

TrafficLight.YELLOW: 1/5,

TrafficLight.RED: 1/30,

}

@conditional_frp

def tick_light(state):

color, ticks = state

change_probability = change_on[color]

next_kind = weighted_as(

(color, ticks + 1),

(next(color), 0),

weights=[1 - change_probability, change_probability]

)

return frp(next_kind)

start_any_color = uniform(change_on.keys()) ^ Fork(Id, 0)

The conditional FRP tick_light decides randomly at each tick whether to change
the color. The dictionary change_on associates with each color the weight on changing
color. The Kind start_any_color is one possible Kind for the initial state.

Carlos: Great! Now, how would you use this to “run” the traffic light if I gave you
an FRP S that represents the state of the traffic light at a particular moment.

You: I would compute a mixture S >> tick_light, but this would give me a 4-
dimensional FRP that includes the state from S and the updated state. So I would
apply Proj[3,4] to drop the old state.
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Actually, now that I think of it, that’s what the conditioning operator( is for. So I
would define

def n_ticks(n, S):

assert n >= 0, "Number of ticks must be non-negative."

State = S

for _ in range(n):

State = clone(tick_light) // State

return State

where I just successively update the state with a fresh clone of tick_light. Then I
could do, say

pgd> n_ticks(10, frp(start_any_color))

An FRP with value <2, 5>

pgd> ten_ticks = _ # _ is the last value

and I could pass this FRP to n_ticks to continue.

pgd> n_ticks(30, ten_ticks)

An FRP with value <0, 4>

Danielle: That’s great. Having the values of the FRPs is nice, but to make
predictions, we would like to be able to find the Kinds of these FRPs. Does that
work?

You: Let’s see. To understand this, it will help me to start from a known state where
we are just starting a cycle.

pgd> start_green = constant(TrafficLight.GREEN, 0)

pgd> StartGreen = frp(start_green)

pgd> kind( n_ticks(0, StartGreen) )

<> ------ 1 ---- <0, 0>

pgd> kind( n_ticks(1, StartGreen) )

,---- 29/30 ---- <0, 1>
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<> -|

`---- 1/30 ----- <1, 0>

pgd> kind( n_ticks(2, StartGreen) )

,---- 0.93444 ------ <0, 2>

|---- 0.032222 ----- <1, 0>

<> -|

|---- 0.026667 ----- <1, 1>

`---- 0.0066667 ---- <2, 0>

pgd> kind( n_ticks(3, StartGreen) )

,---- 0.00022222 ---- <0, 0>

|---- 0.90330 ------- <0, 3>

|---- 0.031148 ------ <1, 0>

<> -+---- 0.025778 ------ <1, 1>

|---- 0.021333 ------ <1, 2>

|---- 0.011778 ------ <2, 0>

`---- 0.0064444 ----- <2, 1>

pgd> kind( n_ticks(100, StartGreen) )

...output omitted

As far as I can see, this is right. Each time, there is only a small probability of the
light changing, and these accumulate so we get the chance of a yellow, then a red,
then back to green. And on the second tick, we can see that the chance of a red is
1/30 · 1/5 with two changes in a row, as it should be. That last one has size 298, but
glancing at the values, they make sense.

Carlos: If you pay attention only to the colors what do you see.

You: I can transform those Kinds with the projection statistic Proj[1] to get the
Kind of the color.

pgd> kind( n_ticks(10, StartGreen) ^ Proj[1] )

,---- 0.72831 ---- 0

<> -+---- 0.12186 ---- 1

`---- 0.14983 ---- 2

pgd> kind( n_ticks(30, StartGreen) ^ Proj[1] )

,---- 0.51840 ----- 0
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<> -+---- 0.091777 ---- 1

`---- 0.38983 ----- 2

pgd> kind( n_ticks(50, StartGreen) ^ Proj[1] )

,---- 0.47336 ----- 0

<> -+---- 0.080086 ---- 1

`---- 0.44655 ----- 2

pgd> kind( n_ticks(100, StartGreen) ^ Proj[1] )

,---- 0.46177 ----- 0

<> -+---- 0.076985 ---- 1

`---- 0.46124 ----- 2

pgd> kind( n_ticks(500, StartGreen) ^ Proj[1] )

,---- 6/13 ---- 0

<> -+---- 1/13 ---- 1

`---- 6/13 ---- 2

Interesting. We start at the beginning of a cycle, so after a few ticks, we are
much more likely to still be because the probability of changing is so low. But
as the number of ticks increases our predictions change, as though the system were
“forgetting” that started out as . I can see with a little fiddling that above, say, 300
ticks the weights do not change to numerical precision.

If we wait long enough, we will predict and each 6/13 of the time and 1/13. We
would expect to be less likely as the system is more likely to switch out of yellow at
any tick.

Danielle: So, you can make both short-term and long term predictions. If you were
observing the traffic light from the street, you would see the color but not the full
state. How would you compute your predictions in that case?

You: An interesting question. But before I answer that, something’s on my mind.

I’ve been computing the Kinds of FRPs here, and it works. But I realize I could also
compute the Kinds and then generate FRPs from them. I assume both ways would
give the same result.

Danielle: They would. How would you compute the Kinds?

You: Well, instead of a conditional FRP, I would use a conditional Kind, and in fact,
I already did that. Let me refactor my code a bit:
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@conditional_kind

def tick_light_kind(state):

color, ticks = state

change_probability = change_on[color]

return weighted_as(

(color, ticks + 1),

(next(color), 0),

weights=[1 - change_probability, change_probability]

)

@conditional_frp

def tick_light(state):

return frp(tick_light_kind(state))

def n_ticks_kind(n, initial_state):

assert n >= 0, "Number of ticks must be non-negative."

state = initial_state

for _ in range(n):

state = tick_light_kind // state

return state

def n_ticks(n, InitialState):

return frp(n_ticks_kind(n, kind(InitialState)))

As before, the conditional Kind either adds to ticks or takes the next color with
corresponding probabilities.

It’s very similar to the FRP version, but it makes it easier to work with the Kinds
to make predictions. And now n_ticks can take a Kind or an FRP in the second
argument.

Carlos: If tick_light_kind were hard to compute, then your original approach to
n_ticks would be more efficient. But here, it’s good.
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You: OK, Danielle, back to your question. If I observed only the color of the traffic
light, I would need to apply a conditional constraint to make my predictions.

Danielle: Right! Try it.

You: Using the more recent code, if I observed , I’d find the Kind of the state after,
say, 30 ticks to be:

pgd> n_ticks_kind(30, start_any_color) | (Proj[1] == TrafficLight.GREEN)

,---- 0.047580 ---- <0, 0>

|---- 0.045730 ---- <0, 1>

|---- 0.043751 ---- <0, 2>

|---- 0.041604 ---- <0, 3>

|---- 0.039242 ---- <0, 4>

<> -+---- 0.036610 ---- <0, 5>

|---- 0.033640 ---- <0, 6>

|---- 0.030255 ---- <0, 7>

|---- 0.026360 ---- <0, 8>

|---- 0.021841 ---- <0, 9>

`---- 0.63339 ----- <0, 10>

Carlos: Nice! Here’s a challenge. Your conditional FRP makes the same decision
no matter how long the light has been at its current color. Can you modify your
work so that it uses ticks in a reasonable way?

You: This only requires changing tick_light_kind.

def stay_factor(ticks):

return numeric_exp(-ticks / 2) # must be >= 0

@conditional_kind

def tick_light_kind(state): # only change is this factor ||

color, ticks = state # vv

change_probability = 1 - (1 - change_on[color]) * stay_factor(ticks)

return weighted_as(

(color, ticks + 1),
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(next(color), 0),

weights=[1 - change_probability, change_probability]

)

Now the change probability starts off as before when ticks is 0 but gets closer to
1 as ticks grows from. We can set the function stay_factor to any non-negative
function.

Carlos: That’s works, very good. It can be a bit hard to understand what the choice
of stay_factor means for how long the light will stay one color. An alternative is to
choose a Kind for how long the light will stay as the current color when the color
changes and to change the state to hold that information.

You: So the state would become ⟨c, n, ℓ⟩ where c and n are like before and ℓ is the
number of ticks remaining until the color changes.

I would need a Kind for each color representing the time that the light stays that
color. I’ll make that a dictionary duration that maps colors to Kinds.

That would give something like this:

@conditional_kind

def tick_light_kind(state):

color, ticks, remaining = state

if remaining > 0:

return constant(color, ticks + 1, remaining - 1)

return duration[color] ^ Fork(next(color), 0, Id)

The Fork makes a Kind with the next color and 0 in the first two components and
the duration in the third. I would then have to modify the initial state Kind in the
same way, but everything else should work as is.

Carlos: Excellent. You can play with these ideas more with code in the
frplib.examples.traffic_light module.

You: Thanks. That gives me a better idea of how these systems work. Danielle had
mentioned, though, that you could make the lights respond to current conditions.
How would that work?
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Danielle: Systems have a state that describes their internal configuration, which is
what you’ve been exploring here. In practice, we often also want them to respond to
external inputs to produce outputs we can use.

You: What distinguishes inputs and outputs from state?

Danielle: The inputs can influence the state, and the outputs can be derived from
the state. But in general, we think of input and output as separate parts of the
system. Let me give an example.

Our traffic light is at an intersection in which cars are arriving, stopping, and passing
through. Define two-dimensional FRPs

• T (n), representing the number of cars waiting in the direction of the light
(component T (n)

1 ) and in the other direction (component T (n)
2 ), after n ticks of

the clock.
• M (n), representing the number of cars who pass through the light in the direction

that is . (For simplicitly, assume cautious drivers who stop on .)

The T (n)’s comprise a system, which we view as inputs to the light, and M (n)’s
comprise a system, which we view as outputs,

You: If the T (n)’s are inputs, does the state just include the number of cars waiting
in each direction.

Carlos: It could, but to sharpen the ideas, assume that there are sensors on the
traffic light that estimates the number of waiting cars but max out at ten cars.

Now our state looks like ⟨c, t, w1, w2⟩ where w1 and w2 are the values recorded from
the sensors in [0 . . 10].

Danielle: Let L(n) be the conditional FRP representing the traffic light after n ticks,
which takes the number of waiting cars in each direction as input. Then we have a
6-dimensional FRP S(n) = T (n) ▷ L(n).

The update of T (n) to T (n+1) depends on three things:

1. how many cars are waiting,
2. whether the green light stays on during tick n+ 1, and
3. how many cars arrive during tick n+ 1.

At the same time, we can design the traffic light to adjust its timing based on the
estimated number of waiting cars that its sensors read. If w1 is much bigger than w2,
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then the will tend to remain on longer, and shorter in the reverse case.

You: I get it. The T and L systems are coupled; they depend on each other. So we
can write a rule that transitions S(n) to S(n+1) along the lines you just described.

Carlos: Right! And similarly, the output process M (n+1) = ψ(S(n)) for some
statistic. (Note the n+ 1 on the left and the n on the right.) The number of cars
passing through depends on how many cars are waiting and which light, if any, is .

You: By taking appropriate mixtures and transforming with well-chosen statistics,
we build the entire system. We just need to describe the Kinds of the traffic-light
transitions, the number of cars that arrive in each direction, and the number of cars
that get through during a given tick. And that breaks the problem into three separate
things that are easier to understand and specify. Very nice!

Danielle: Exactly. There are some details, but you could code it up with what
you already know. And the playground has some other tools to help, which I’m sure
you’ll encounter soon.

You: Fantastic. It occurs to me that we are making an assumption about these
systems: that to find the next state we only need to know the current state but not
the earlier history.

Carlos: You’re absolutely right about that. It is a huge assumption!

Danielle: It’s possible to make systems whose evolution depends on their earlier
history – even their whole history. Imagine if the next state is determined by a
conditional Kind that uses not only the current state but the state before that and
the state before that. Such systems can be useful, but the farther back in that history
we have to go, the harder it is to do the analysis and computations.

Carlos: For many practical problems, we can get what we need by making the
assumption you mentioned.

Danielle: That assumption is called the Markov property. A system has the
Markov property if its future evolution depends only on the current state but not on
how it got there.

Carlos: More formally, the Markov property means that if you know the current
state, then your predictions about the system’s future do not change if you also learn
its full history.
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We say that given the current state, the future and past are independent.

You: What’s an example, besides the traffic light, of a system with the Markov
property?

Danielle: Are you familiar with graphs? The graphs with nodes and edges, I mean.

You: A little bit, yes.

Carlos: A graph is a mathematical structure that describes pairwise relationships
among several entities.53 A graph has a set of nodes representing the entities and a 53The Random Graphs

example in Section 2 shows
various examples. See
Interlude F Examples F.2.18
and F.2.19 for an overview
and Interlude G for a
detailed discussion.

set of edges representing the relationships between pairs of entities.

Here’s an example with eight nodes and various edges.

1
2

3

4
5

6

7

8

We call this graph simple, because there is at most one edge connecting any two
nodes); undirected because the edges do not have a preferred direction; and without
loops because there are no edges connecting a node to itself.

Danielle: Let’s build a system that describes a “random walk” on this graph. Our
state will be the number of the current node, ⟨n⟩ for n ∈ [1 . . 8]. If we are currently
at node n, the Kind of the next state will be either constant(n) if node n has no
edges connected to it or uniform(neighbors(n)) where neighbors(n) lists all other
nodes connected to n. We call each such update a transition or step, even if the
state itself does not change.

How would you build a system like that?

You: I see that it’s not that different from what did with the traffic light. I’ll write
everything in terms of the Kinds, and we can apply frp where needed to generate
the FRPs.

The conditional Kind given that we are at a particular node n returns a Kind with
equal weight on every node connected to the input node n by an edge.
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For the random walk, we successively update the Kind of the current state (starting
from the initial state) with the conditional Kind.

@conditional_kind

def next_node(node):

adjacent = neighbors(node)

if len(adjacent) == 0:

return constant(node)

return uniform(adjacent)

def random_walk(start, n_steps=1):

assert n_steps >= 0, "Number of steps must be >= 0."

current = start

for _ in range(n_steps):

current = next_node // current

return current

Carlos: Yes, the similarity with the traffic light is not a coincidence. Your line
current = next_node // current is just an expression of the Markov property.
The next node only depends on the current state, not the history of how you got
there.

Notice also that your random_walk function works equally well when start is a Kind
or an FRP.

You: I get that this lets us describe the system, but what can we do with this.

Carlos: We can answer questions about the system like: How likely is the system
to move from one particular state to another? How long before the system visits a
specific state? How many times is the system in a particular state during the first n
steps? And many more.

You: I understand how to answer a question like “Will the system be in node 8 after
100 steps if it starts at node 1?” Just run random_walk(constant(1), 100) and
look at the weight on branch ⟨8⟩.

But I do not see how to answer those other questions.
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Danielle: That question opens some very interesting doors. You should go talk to
Erin and Fuyuan over in Building Y. They specialize in those techniques, and I think
you’ll enjoy a chat.

But in the meantime, let me illustrate a simple approach here. Consider two questions:

1. If we let the system run for a long time, does it settle down into an equilibrium
that is independent of where it started, and if so, what state will it be in?

2. If the system starts at node 1, how long (if ever) until it reaches node 8?

For the first question, you will recall that the traffic light system you built did exactly
that. After more than about 200 steps, the chance of being or or did not change
noticeably. Using your random_walk function, we can do:

pgd> random_walk(constant(1), 2500)

,---- 5/18 ---- 1

|---- 3/18 ---- 2

|---- 2/18 ---- 3

<> -+---- 2/18 ---- 4

|---- 2/18 ---- 5

|---- 2/18 ---- 6

`---- 2/18 ---- 8

pgd> random_walk(constant(3), 2500) # same for any node except 7

,---- 5/18 ---- 1

|---- 3/18 ---- 2

|---- 2/18 ---- 3

<> -+---- 2/18 ---- 4

|---- 2/18 ---- 5

|---- 2/18 ---- 6

`---- 2/18 ---- 8

pgd> random_walk(constant(7), 2500)

<> ------ 1 ---- 7

We can see that node 1 is a juncture between two parts of the graph, so we’d expect
the system to spend more time there. And that’s what we see. For any starting node
except 7, the long-term behavior of the system is the same. Indeed, the numerator
in those weights is just the number of neighbors of each node. For node 7, there’s
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nowhere to go, so we fully understand the behavior if the system starts there.

For question 2, Erin and Fuyuan will show you a beautiful answer, and you can see
from the answer to question 1 that we will eventually visit node 8 unless we start in
node 7.

Still, if we modify the state of our system, we can get an output that answers our
question. Our new state will have the form ⟨n, v, t⟩ where n is the current node as
before, v is 1 if we have ever visited node 8 or 0 otherwise, and t is the number of
steps (the “time”) until we first visit node 8.

We can modify your code as follows:

@conditional_kind

def next_node(state):

"Version of next_node that tracks whether we visited node 8."

node, visit, time = state

adjacent = neighbors(node)

if len(adjacent) == 0:

return constant(state)

node_kind = uniform(adjacent)

if visit == 1:

return node_kind ^ Fork(Id, visit, time)

if node == 8:

return node_kind ^ Fork(Id, 1, time + 1)

return uniform(adjacent) ^ Fork(Id, 0, time + 1)

All we do is keep track of whether we’ve visited 8 and either increment or freeze the
time accordingly. Now, we can look at the Kind of the time component, using −1 to
indicate that we have not visited node 8.

pgd> random_walk(constant(1, 0, 0), 360) ^ IfThenElse(Proj[2] == 1, Proj[3], -1)

... output of size 359 omitted

pgd> E(random_walk(constant(1, 0, 0), 360) ^ IfThenElse(Proj[2] == 1, Proj[3], -1))

23/2

The 360 here is arbitrary, long enough to be “long term” but short enough to be

249



computed quickly. We want this as large as possible, infinite really, but in practice it
does not need to be very large. Above 360, for instance, there is at most negligible
change. Because we know in this case that the system will eventually visit node
8, the weight on ⟨−1⟩ tells us how good our approximation is. Here, it’s about
4× 10−15, which is plenty close to zero. (Other techniques do not require even this
accommodation.)

Applying the expectation operator E, we get our best prediction of how long until we
visit node 8: 11.5 steps on average.54 54Section 7 will discuss

interpretation of this
number in detail.

You: That is very cool. So by augmenting the state, you can summarize many
different aspects of the history and make predictions about them.

Carlos: Right, we have a lot of flexibility to define the state in ways that let us
answer interesting questions. And this graph example has broad application to lots
of real problems.

You: I appreciate all your time here. I’ve got a lot to think about. I’ll certainly
wander over to Building U after the tour.

Danielle: You won’t regret it. It is a bit hard to find, so wear comfortable shoes.

6.3 A Dialogue on Solutions and Simulation

After a long walk, you arrive in the basement of Building U. Walking through dank
hallways with dripping pipes and flickering fluorescent lights, you discover a shiny,
modern lab. Inside, you see Warehouse researchers Erin and Fuyuan, who look up at
you quizzically.

Erin: Do you have the pizza?

You: Pizza? No, I’m hoping to talk with you if you have a little time.

Fuyuan: That’s another pizza delivery failure. We should put up signs.

You: Signs would help.

Erin: Why are you here?

You: Carlos and Danielle recommended that I talk to you about techniques for
answering questions about random systems.

Fuyuan: They showed you the random walk on graphs, didn’t they?

You: Yes.
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Erin: (moving toward a large display) That’s a good start. Think about this graph
for some positive integers w and b:

−w 1−w ··· −2 −1 0 1 2 ··· b−1 b

Fuyuan: Imagine that a gambler comes to a casino with $w and places a series of
identical, independent $1 bets until either losing all her money or increasing her
wealth by $b. The state of the system – the node in the graph – is the change in the
gambler’s wealth. How likely is the gambler to be ruined – lose all her money – in
this game?

You: If we had w = b and if she had the same chance of winning and losing each
bet, then she would be equally likely to be ruined and achieve her goal by the
symmetry between winning and losing. As b grows (shrinks) relative to w, her chance
of achieving her goal should get smaller (larger), I’d guess.

Erin: Good. We’ll do that case first, but we want to handle cases where the bet’s
outcomes are not evenly weighted, like real casino games for instance.

Fuyuan: We can consider three broad approaches to this problem: (i) solve for an
exact solution, (ii) solve for an approximate solution and make the approximation
error small if possible, and (iii) simulate the system to estimate the solution. Let’s
start with (ii) and (iii) to set things up.

You: From my discussion with Danielle and Carlos, I think I know how to do that.

pgd> def gamble_with(wealth, goal):

...> assert wealth >= 0 and goal >= 0

...> bet = either(-1, 1)

...>

...> @conditional_kind(codim=1)

...> def wealth_change(state):

...> if state == -wealth or state == goal:

...> return constant(state)

...> return bet ^ (__ + state)

...>

...> return wealth_change
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pgd> def gamblers_walk(next_state, start=constant(0), n_steps=1):

...> current = start

...> for _ in range(n_steps):

...> current = next_state // current

...> return current

Here, I wrapped the conditional Kind in a factory function so that we could set the
gambler’s initial wealth and goal. If the system gets to state −w or b, it stays there;
otherwise, it goes up or down according to the output of the bet. The gamblers_walk
function is like what I did earlier with the traffic lights, except I take the conditional
Kind as an argument and by default start at state 0.

Then, I think I can do both (ii) and (iii):

pgd> K = gamblers_walk(gamble_with(10, 15), n_steps=3000)

pgd> C = frp(K) ^ Cases({-10: -1, 15: 1}, 0)

pgd> FRP.sample(10_000, C)

+--------+-------+------------+

| Values | Count | Proportion |

+========+=======+============+

| -1 | 6043 | 60.43% |

| 1 | 3957 | 39.57% |

+--------+-------+------------+

pgd> K ^ Cases({-10: -1, 15: 1}, 0)

,---- 3/5 ---- -1

<> -+---- 0/5 ---- 0

`---- 2/5 ---- 1

The Cases built-in statistic converts the original values to -1 for ruin, 1 for success,
and 0 for unresolved. And we can see that after 3000 steps, there is a negligible
chance that the Gambler has not achieved her goal or ruin.

Erin: Both strategies (ii) and (iii) work well in this case as you say, and we can even
guess at the exact solution here. When w = b, we get 1/2 each for goal and ruin;
when w = 10 and b = 15, we get 2/5 and 3/5. Can you guess?

You: I think I have it, but let me try a few experiments
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pgd> def ruin_or_goal(w, b, steps=3000):

...> s = Cases({-w: -1, b: 1}, 0)

...> return s(gamblers_walk(gamble_with(w, b), n_steps=steps))

pgd> ruin_or_goal(5, 15)

,---- 3/4 ---- -1

<> -+---- 0/4 ---- 0

`---- 1/4 ---- 1

pgd> ruin_or_goal(5, 20)

,---- 4/5 ---- -1

<> -+---- 0/4 ---- 0

`---- 1/5 ---- 1

pgd> ruin_or_goal(19, 1)

,---- 0.050000 ------ -1

<> -+---- 1.4481E-17 ---- 0

`---- 0.95000 ------- 1

My guess is that the probabilities of ruin and goal are b
w+b and w

w+b .

Fuyuan: That’s right.

You: Shouldn’t this approach always work.

Fuyuan: In a sense it does work, and these are very useful techniques. However in
many cases, it requires many more runs to get a good approximation, and it can be
harder to guess the exact answer.

Two examples are worth considering: bets where winning and losing do not have
equal weight and trying to predict how many bets it takes before the gambler is ruined
or achieves her goal.

You: The first is a simple change to bet and add a parameter:

pgd> def gamble_with(wealth, goal, win_to_lose=1): # <<- added parameter

...> assert wealth >= 0 and goal >= 0

...> bet = either(1, -1, win_to_lose) # <<- only change from earlier

...>

...> @conditional_kind(codim=1)

...> def wealth_change(state):

...> if state == -wealth or state == goal:
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...> return constant(state)

...> return bet ^ (__ + state)

...>

...> return wealth_change

Then I’ll add the win-to-lose ratio to ruin_or_goal, another simple change:

pgd> def ruin_or_goal(w, b, win_to_lose=1, steps=3000):

...> s = Cases({-w: -1, b: 1}, 0)

...> return s(gamblers_walk(gamble_with(w, b, win_to_lose), n_steps=steps))

And then run the simulation, for example with a win-to-lose weight ratio of 16/17:

pgd> ruin_or_goal(5, 20, '16/17')

,---- 0.90032 ------- -1

<> -+---- 7.3879E-12 ---- 0

`---- 0.099679 ------ 1

The approximation must be pretty good because the weight on 0 is so small, but I
see what you mean though. Not easy to guess what those numbers mean.

Erin: Nice. And for the second example?

You: We have to change the state to keep track of how many steps we have taken
but stop counting when we hit either ruin or goal.

Is there a way to avoid rewriting these functions every time we change state?

Erin: For the first, you are right; try it. For the second, yes to some degree, but it
requires a little fancier programming. It’s probably best if we don’t go down that
rabbit hole right now, but an example:

def markov_transition(start, next_state):

def do_steps(n_steps=1):

current = start

for _ in range(n_steps):

current = next_state // current

return current

return do_steps
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Now, calling markov_transition with the Kind of the initial state and the conditional
Kind of the transition will return a function that computes the Kind of the state
after any number of steps.

You: Thanks, that’s encouraging. I’m guessing that works for any system with the
Markov property.

Erin: Yes

You: OK, here’s a version that tracks the time until ruin or goal.

pgd> def gamble_time(wealth, goal, win_to_lose=1): # <<- added parameter

...> assert wealth >= 0 and goal >= 0

...> bet = either(1, -1, win_to_lose) # <<- only change from earlier

...>

...> @conditional_kind

...> def wealth_change(state):

...> delta_wealth, time = state

...> if delta_wealth == -wealth or delta_wealth == goal:

...> return constant(state)

...> return bet ^ (__ + delta_wealth) ^ Fork(Id, time + 1)

...>

...> return wealth_change

pgd> go = markov_transition(constant(0,0), gamble_time(10, 15))

pgd> t3000 = Proj[2](go(3000))

Oh, that took a little while.

Erin: There are many paths, so there is a small chance of it taking a while. It
can help to use clean to eliminate the negligible branches or use E to get a simpler
prediction.

pgd> E(t3000)

149.9999999725631

which we can guess should be 150 if exact. This is our best prediction about how
long it will take the gambler to reach ruin or goal.
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Fuyuan: All this is prologue to looking at strategy (i). It’s good to see that we can
still compute good answers without an exact solution but it takes a little work and
judgment.

To find an exact solution in this problem, we are going to solve several similar
problems simultaneously. This will give us an equation that we can solve exactly.

Erin: It will help to see it in action. We’ll start with the gambler’s ruin problem and
a couple other concrete cases, but the equation we derive will work for a huge variety
of problems, as we will see.

Fuyuan: We will write GamblersRuin⟨w, b, r⟩ to denote the gambler’s ruin problem
with initial wealth w, goal b, and win-to-lose ratio r.

Our goal is to predict the number of bets it takes before the gambler gets to ruin or
her goal. At the start, her net change in wealth is 0, i.e., she starts in state 0. But to
find this prediction starting at 0, we will consider the versions of the same problem
for every starting node.

Let Ts be an FRP representing the number of bets (“time”) it takes before the gambler
gets to ruin or goal when her starting state is s ∈ [−w . . b]. We loosely call the
number of bets “time” because its easier and makes sense. Our best prediction of Ts’s
value is E(Ts).

Erin: Define a function f on [−w . . b] by

f(s) = E(Ts). (6.1)

We really want to find f(0), but to do that we will solve for the whole function.

What do we know about the function f?

You: I suppose that if we start at ruin or goal, we don’t have to place any more bets.
So, f(−w) = 0 = f(b).

Fuyuan: Good, yes. Now we come to the key idea: what does the problem look like
after one step.

You: What does the problem look like??

Fuyuan: If −w < s < b, what states can we reach after one step?

You: Either s− 1 or s+ 1 with weights 1 and r.

Erin: And from either of those states, what is the expected time until goal or ruin.
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Remember the Markov property.

You: Hmm. Once we are in state s− 1, our expected time is f(s− 1) and once we
are in s+ 1, our expected time is f(s+ 1).

Fuyuan: And it took one step to get there. So what is the Kind of the expected
time when you start in state s?

You: (excited) Wait. We start in state s, and the state we move to is represented by
an FRP, call it X1. The function 1+ f is solving our problem but it’s just a function,
so we can use it as a statistic and compute the Kind of 1 + f(X1). Damn.

This gives us the Kind, in canonical form:

⟨⟩
⟨1 + f(s− 1)⟩1

1+r

⟨1 + f(s+ 1)⟩r
1+r (6.2)

Erin: And this has expectation55
55A general formula is given
Section 7, but take this on
faith for now.

(1 + f(s− 1))
1

1 + r
+ (1 + f(s+ 1))

r

1 + r
= 1 +

f(s− 1) + rf(s+ 1)

1 + r
.

Fuyuan: This is our best prediction of the time it takes to reach ruin or goal, but
that is also the definition of f(s). So the two must be equal ! That is, for every
s ∈ (−w . . b) we have56 56(a . . b) is the set of

integers from a to b
excluding a and b. See
Section F.1.2.f(s) = 1 +

f(s− 1) + rf(s+ 1)

1 + r
(6.3)

with f(−w) = 0 = f(b).

This gives us w + b− 1 equations in w + b− 1 unknowns, so we can solve for f and
then just read off f(0), the answer to our original problem.

You: Whoa.

Erin and Fuyuan: (nods)

Erin: For instance, if r = 1 (winning and losing equally likely), this can be re-written
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as the system of equations:

f(s+ 1)− 2f(s) + f(s− 1) = −2 for s ∈ (−w . . b) (6.4)

f(b) = 0 (6.5)

f(−w) = 0. (6.6)

The expression on the left side of the first equation is called the “second difference”
of f , ∆2f , at s− 1. Differences are a discrete analogue of derivatives,57 so we have a 57The discrete calculus is

developed in the “Sequences
and Streams” examples and
puzzles in Section F.2.

“second-order difference equation” for f with values at the boundary specified. We
can solve this difference equation to find

f(s) = (b− s)(w + s). (6.7)

So, in general f(0) = bw, and when b = 15 and w = 10, f looks like

−10 −8 −6 −4 −2 0 2 4 6 8 10 12 14

50

100

150

with f(0) = 150 as you found earlier.

You: That is very cool. I do wonder how broadly applicable this approach is. For
instance, earlier we guessed the probability that the gambler is ruined. Could we find
it exactly?

Fuyuan: As with anything, there are trade-offs between what we must assume and
the tractability of the problem. But the approach is quite general.

Suppose we have a system with the Markov property that visits a finite set of states.
Whenever the system is in state s, the Kind of the next state is Ks, and these Kinds
can vary from state to state.

Now imagine there are two sets of states S0 and S1, and we want to know the chance
that the system visits a state in S1 before any state in S0.
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You: So in the GamblersRuin⟨w, b, r⟩ problem, we can take S1 = {−w} and S0 = {b}
and the Kind Ks is

⟨⟩
⟨s− 1⟩1

1+r

⟨s+ 1⟩r
1+r

Fuyuan: Exactly. And similarly to what we did earlier, define f(s) to be the
probability of visiting S1 before S0 when we start the system in state s. Then, using
exactly the same logic as earlier, we have

f(s) = 0 if s ∈ S0

f(s) = 1 if s ∈ S1

f(s) = E(f(Ks)) if s ̸∈ S0 ∪S1, (6.8)

where E(f(Ks)) is our best prediction of the value of an FRP with Kind f(Ks).

You: But we don’t know f .

Erin: True, but we can write the transformed Kind f(Ks) in terms of f ’s value, just
like you did in (6.2). And we get one equation and one unknown for each state not
in S0 ∪S1.

You: So if we try this with GamblersRuin⟨w, b, 1⟩ we get

f(b) = 0

f(−w) = 1

f(s) =
1

2
f(s− 1) +

1

2
f(s+ 1) otherwise,

so

f(s)− f(s− 1) = f(s+ 1)− f(s).

The differences of f are constant, meaning that f must shrink linearly from value 1
at −w to value 0 at b. I think this means

f(s) =
b− s

b+ w
(6.9)
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giving

f(0) =
b

b+ w
(6.10)

as we guessed earlier.

Erin: Good. Now, imagine you are in a room that looks like the one in Figure 43.
You start on a tile in the middle of the room (marked green) and move North, South,
East, or West randomly, with equal weights. The red tiles are lava – you don’t want
to touch those – and the blue tiles are cool water through which you can swim to
a pleasant beach resort. Will you end up sipping Mai Tais on the beach or doing a
Gollum lava-dive?

Figure 43. A room with lava (ouch) and a cool swim to the beach (yay).

You: So S0 contains all the lava tiles and S1 the water tiles. Put the starting tile at
⟨0, 0⟩. If we are at tile s = ⟨x, y⟩, the Kind Ks is

⟨⟩

⟨x− 1, y⟩1
4

⟨x, y − 1⟩1
4

⟨x, y + 1⟩r
4

⟨x+ 1, y⟩1
4
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So (6.8) becomes

f(x, y) =
f(x− 1, y) + f(x, y − 1) + f(x, y + 1) + f(x+ 1, y)

4
,

for points not in lava or water. And again, we have same number of unknowns as
equations, so we can in principle solve this.

Fuyuan: We can. In fact, we’ve put some of our methods for this in a playground
module. You give it a conditional Kind (built from the Ks’s), the sets on which you
know the answer, and the known answers on those sets.

pgd> from frplib.examples.dirichlet import solve_dirichlet, K_NSEW, lava_room

pgd> f = solve_dirichlet(K_NSEW, fixed=lava_room, fixed_values=(0, 1))

pgd> f[(0, 0)] # value of f(0,0)

ATTN

You can even use f(s) = 1 +E(f(Ks)) as the equation to get the expected time

pgd> end_tiles = lava_room[0].union(lava_room[1])

pgd> f_time = solve_dirichlet(K_NSEW, step_cost=1, fixed=[end_tiles], fixed_values=[0])

pgd> f_time[(0, 0)]

ATTN

Erin: Here’s a puzzle for you to try later. (We have other things to talk about now.)

Puzzle 44. Theseus is trapped in labyrinths, as is his wont, and unfortunately,
there is a fierce creature trapped inside with him. Both start at distinct locations,
and each moves randomly, moving out of their current juncture with equal weight
on all available directions.

If Theseus and the creature ever come to the same juncture, Theseus will be eaten.
But there is a small opening at one specific juncture through which Theseus (but
not the creature) can escape.

Create a small labyrinth and compute the probability that Theseus escapes.

You: Create a labyrinth?
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Erin: A labyrinth is just a graph. Each juncture is a node, and each path from a
juncture to its neighbor is an edge.

In fact, the graphs we are working here are actually directed graphs with loops. The
Kinds Ks can be different for each state, so it is possible that we can get from state
s to s′ in one step but not s′ to s. It is also possible to stay in the same state, which
is an edge from s to s. Each branch of the Kind Ks is associated with one (directed)
edge that leaves node s in the graph.

We can actually solve a somewhat more general system than Fuyuan showed in (6.8).
We have a set of states S (nodes in our graph) that is partitioned into disjoint sets
§0,S1, . . . ,Sm for some m. We have a function f on S whose value on each Si is
known to be ci for i < m and that satisfies

f(s) = ci if s ∈ Si for i ∈ [0 . .m)

f(s) = α+ βE(f(Ks)) if s ∈ S−1, (6.11)

for fixed numbers α, β.

Setting m = 2, c0 = 0, c1 = 1, α = 0, and β = 1, gives our prediction of whether
the system hits S1 before S0. Setting m = 1, c0 = 0, α = 1, and β = 1, we get
our predicted time until the system hits S0. And so on. Our solve_dirichlet will
handle all those problems.

You: That’s useful to know, thanks. I do have two questions. First, this lets us
compute specific predictions (expectations), but can I use this to find the Kind itself.
Second, Carlos and Danielle showed me a case where the system seemed to come to
an equilibrium, but there’s no “hitting” any set of states. Can we handle that?

Fuyuan: Good questions. The general answer to both is yes, but to keep things
concise-ish, let’s tackle an example of both at once.

Notice that if the system can get stuck in two distinct states, like the gambler’s ruin,
then it can’t really get to an equilibrium. It can get stuck in one or the other, we’re
not sure which. But we’ve solved problems like that, so let’s consider cases where
there is a long-run equilibrium.

What was the graph that Carlos and Danielle showed you?

You: It was this
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1
2

3

4
5

6

7

8

Fuyuan: OK, that’s a good candidate, but let’s ignore node 7. You can’t reach it
from the others and if you start there, you stay there, which is an equilibrium but a
trivial one.

Erin: Like the Hotel California

Fuyuan: (smiles) Imagine we have a system that describes a random walk on this
graph. What does it mean for the system to be in “equilibrium”?

You: It means that at some level things don’t change. Of course, they change because
if you are moving around the graph, but . . ..

Erin: That’s the idea. Think of it this way: when you look at the system at some
arbitrary time, the current node is random, and it has some Kind K. Equilibrium
means that that Kind doesn’t change. The system might move among the nodes, but
if the system is in equilibrium, your prediction about what node it will be after 100,
1000, 10000 steps will be the same.

You: That makes sense.

Fuyuan: So we do the same logic that led to our equations (6.11): we think about
what happens in a single step.

Let S be the conditional Kind of the next node given the current node. If an FRP
representing the current node has Kind K, the an FRP representing the next node
has Kind S( K, and the assumption that the system is in equilibrium means that

K = S( K. (6.12)

We just solve this equation for K.

We say that K is a fixed point of the function ⟨k⟩ 7→ S( k, because if we evaluating
this function at K, it returns K right back. The function “keeps K fixed.”
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Erin: We can usually find this K by iterating. Start with an arbitrary Kind, like
constant(0), and do the following

pgd> k0 = constant(0)

pgd> k0 = S // k0

pgd> k0 = S // k0

pgd> ...

or just do it in a loop. This k0 should convert to K.

But the graph has finitely many nodes, we can solve for K’s weights directly.

You: Solve?

Fuyuan: Sure. We know the values of K; what we don’t know are the weights. Write
out equation (6.12) in terms of those weights.

You: I see. So, to find the weight on node 1, say, in S( K, we need to add up the
contribution from all nodes leading to 1.

w1 =
1

3
w2 +

1

2
w3 +

1

2
w4 +

1

2
w5 +

1

2
w8

w2 =
1

5
w1 +

1

2
w3 +

1

2
w4

w3 =
1

5
w1 +

1

2
w2

w4 =
1

5
w1 +

1

2
w2

w5 =
1

5
w1 +

1

2
w6

w6 =
1

2
w5 +

1

2
w8

w8 =
1

5
w1 +

1

2
w6.

For instance, to get to 1, we must choose one neighbor out of three from node 2, and
one out of two from each of nodes 3, 4, 5, and 8. We ca solve these equations and we
get
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⟨⟩

⟨1⟩5
18

⟨2⟩3
18

⟨3⟩2
18

⟨4⟩2
18

⟨5⟩2
18

⟨6⟩2
18

⟨8⟩2
18

as we saw before.

Let me do this in the playground to check my ideas. The Kind factory prenormalized

is like weighted_as but assumes that weights with symbolic terms add up to 1.

pgd> S = conditional_kind({

1: uniform(2, 3, 4, 5, 8),

2: uniform(1, 3, 4),

3: uniform(1, 2),

4: uniform(1, 2),

5: uniform(1, 6),

6: uniform(5, 8),

8: uniform(1, 6)

...> })

pgd> w = symbols('w1 w2 w3 w4 w5 w6 w8')

pgd> K = prenormalized(1, 2, ..., 6, 8, weights=w)

pgd> S // K

...output omitted

Yes, the same equations. Good.

Erin: Great work!

You: If you cannot find an exact solution and have to resort to your strategies (ii)
and (iii) that we discussed earlier, do you have ways to make those more efficient.

Erin: There is not one general technique, but there are ways to speed things up a
lot. The Markov property comes in handy. Here’s a nice example.

We have an encrypted English text consisting of n characters c1c2 · · · cn that we would
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like to decrypt. Assume two things for simplicity: (i) the text consists only of the
26 letters A-Z and spaces, and (ii) the encryption is with a substitution cipher that
permutes the 27 characters and substitutes the true characters with the character
permuted to that position. For example, if ABC is permuted as CAB, then every A
in the true text will appear as C in the cipher text, every B as A, and every C as B.

Our decryption d is thus be a permutation of the same 27 characters; we want the
permutation that inverts the cipher. So, d(A) = B, d(B) = C, d(C) = A would
invert CAB, replacing every A in the cipher text with a B, every B with a C, and
every C with an A.

You: The problem is that there are 27! = 10888869450418352160768000000 possible
d’s. That’s a lot. Searching them all is practically impossible. Even searching enough
to have a chance of finding the right one would take far too long.

Fuyuan: You’re right, and that’s why we need a bit of cleverness in our simulation.
We’ve computed the frequency of character pairs b(c, c′) in a reference corpus58 of 58See comments in the code

for citations.English text, where we use special characters start and end to represent the beginning
or end of the text.

Using those frequencies, we give each d a score:

L(d) = b(start, d(c1))
n∏
i=2

b(d(ci−1), d(ci)) b(d(cn), end).

We want to find the d that (at least approximately) maximizes the score L.

You: That helps you pick good or bad d’s, but don’t you still have to search untold
numbers of orderings of the characters?

Erin: We create a system with the Markov property much like your random walk on
a graph. Like the random walk, which settled into an equilibrium Kind with weights
proportional to the number of neighbors a node has, this system will settle into an
equilibrium proportional to the score L(d).

As the system runs, we keep track of the state (d) with the largest score. As the
system approaches equilibrium, that gets closer to the maximizer.

You: Can you be more specific about how you set up this system?

Fuyuan: The algorithm is simple. First, we choose a starting state, such as the d
that is the identity permutation. Initialize the maximum score to s = L(d) and best
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decryption to m = d.

Then we repeat the following steps for as many iterations as we can:

1. If the current state is d with score L(d), generate an FRP that randomly swaps
two positions in d (e.g., ABC to CBA). Call the resulting permutation d′.

2. Compute L(d′) and let p = min(1, L(d′)/L(d)).
3. Generate an event59 with Kind 59Recall that an event is just

an FRP with possible values
0 or 1.⟨⟩

⟨0⟩1− p

⟨1⟩p

4. If that event occurs, the system moves to state d′; otherwise it stays in state d.
5. Set s to max(s, L(d′)). If s increases, set m to d′.

You: So boiled down to the details, we randomly swap letters. If that increases the
score, we move to that state; if not, we might move to that state, with a move more
likely the bigger its score.

Erin: That’s all there is to it. Do you want to see it in action?

pgd> from frplib.examples.markov_decrypt import markov_decrypt, scrambled1

pgd> scrambled1

ATTN

pgd> decrypted = markov_decrypt(scrambled1, iter=10_000)

pgd> decrypted

ATTN

You can look at the code, too. It’s pretty simple.

You: That was surprisingly fast, and it worked.

Erin: This technique works for a range of ciphers and it generalizes to many different
Kinds of problems.

You: Amazing. I really appreciate your time. The possibilities our exciting.

Pizza Person: (knocks on lab door) Did someone order a pizza?

Fuyuan: Finally!
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After reading this section you should be able to:

• Identify situations where FRP sizes grow quickly.

• Explain the useful property of a “monoidal statistic”.

• Show how to compute a transformed Kind with a monoidal statistic quickly
even when the original Kind has very large size.

• Use conditional Kinds/FRPs and mixtures to describe steps in a process.

• For some large Kinds, find an efficient way to answer targeted questions.

• Explain what the state of a system means.

• Define the state for some simple systems and use mixtures and statistics
to update the state as the system evolves.

• Explain in words what the Markov property means.

• Simulate a system with the Markov property and if possible, compute the
Kind of the state after some number of steps.

• Find simulated and approximate predictions for the time to hit some set
of states or whether one set of states will be hit before the other.

• Explain how to construct an equation for an exact solution to such problems.

• Explain how to find the Kind of the state for a system in equilibrium.

• Describe the idea behind the Markov decryption simulation.

Checkpoints
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7 Predicting with Expectations

How much is an FRP worth?
To begin to answer that question, we consider how well we can predict the

value of a scalar FRP. Following a long tradition, we express our prediction
through a price. A larger predicted payoff corresponds to a higher price and a
smaller (even negative) predicted payoff to a lower (even negative) price.

The FRP market lets us purchase any number of FRPs of the same Kind at
a fixed price per unit. We can borrow and use unlimited funds with no interest
but must pay back that loan when our FRPs’ values are revealed.

If we can purchase a large number of FRPs of the same Kind at a price $c
that essentially guarantees us a profit, we call c an arbitrage price for those
FRPs. If we have an opportunity to purchase FRPs at an arbitrage price, we
would always take it – at scale.

The set of arbitrage prices for an FRP contains every number from −∞ up
to but not including a value r, which may be a real number or ∞. This value
r is the risk-neutral price for the FRP. It is the smallest value that is bigger
than all arbitrage prices for that FRP.

No reasonable person would offer us an arbitrage price to purchase FRPs
because it would (essentially) guarantee them a loss. Nor would you accept an
offer to pay more than the risk-neutral price, for it would (essentially) guarantee
you a loss. But at the risk-neutral price, there are no guarantees; you may win
or lose, and neither buyer nor seller has the advantage.

The term risk-neutral here means that the price is not sensitive to the risk of
loss that you face or the degree of uncertainty in the FRPs value. When you
can purchase as many FRPs as you like with interest-free funding, you are not
sensitive to risk as we would be in real life. The risk-neutral price reflects a
prediction of the value produced by an FRP, it is the best prediction in some
sense and can be seen as a “typical value.”

Key Take Aways

269



If X is a scalar (1-dimensional) FRP, we denote its risk-neutral price by
E(X). If FRP X has dimension n and FRPs ⟨X1, X2, . . . , Xn⟩ are its scalar
components, then E(X) is an n-tuple of numbers defined by

E(X) = ⟨E(X1),E(X2), . . . ,E(Xn)⟩, (7.1)

In general, we call E(X) the expectation of X.
The logic of risk-neutral prices gives us several key properties of expectations

for any FRP X:

• Constancy. If X is a constant FRP, with one possible value v, then

E(X) = v. (7.2)

• Scaling. For any real number s,

E(sX) = sE(X). (7.3)

• Ordering. If all possible values of X are ≥ a and ≤ b, then

a ≤ E(X) ≤ b (7.4)

• Additivity. If X1, X2, . . . , Xn are derived from X by Xi = ψi(X) for all
i ∈ [1 . . n] with compatible statistics ψi of common dimension, then

E(X1 +X2 + · · ·+Xn) = E(X1) +E(X2) + · · ·+E(Xn). (7.5)

• Substitution. If X is an FRP and ψ and ⟨x⟩ 7→ ζ(x, ψ(x)) are compatible
statistics

E(ζ(X,ψ(X)) | ψ(X) = a) = E(ζ(X, a) | ψ(X) = a). (7.6)

E(X) is depends only on kind(X) not on X’s produced value.
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For any Kind K in canonical form with values v1, . . . , vm and corresponding
weights p1, . . . , pm, then for any FRP X with Kind K:

E(X) = p1v1 + · · ·+ pmvm. (7.7)

The risk-neutral price of a scalar FRP Y is the number that minimizes the
predicted squared prediction error

⟨c⟩ 7→ E
(
(Y − c)2

)
.

The minimum value at c = E(Y ) is called the variance of Y , denoted Var(Y ).
Two FRPs X and Y have the same Kind if and only if they have the same

set of possible values and

E(ψ(X)) = E(ψ(Y )) (7.8)

for every compatible statistic ψ. We can often find smaller collections of statistics
that determine the Kind of FRPs.

A probability is the expectation of an event. It is a number in [0 1] that
measures our prediction of whether the event will occur. If V is an event, E(V )

is called the probability of V . Events with higher probability are said to be more
likely than events with lower probability.
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The more we know about a process, the better we are able to predict its outcome.
Indeed, we can think of uncertainty as quantifying the difficulty of making predictions.
Uncertainty reflects limits to the accuracy with which we can predict an outcome.
Sometimes these limits arise from our lack of information and sometimes they are
intrinsic features of the system we are studying.

At one extreme, an outcome may be certain, and our prediction is perfect. For
example, the constant FRP with Kind ⟨⟩ ⟨100⟩ has only possible value (100
in this case), so we can predict with complete certainty that 100 is the value it
will display when we push its button. Close to that is what we can call essential
certainty. It is possible that all the air molecules in the room where you are sitting
will spontaneously organize themselves in the corner of the room, leaving you in an
effective vacuum, but for that to happen would require so many miraculous bounces
that there is no reasonable need to factor that possibility into your day.

Toward the other extreme, an outcome may be uncertain with nothing to distin-
guish the possibilities. For instance, FRPs with Kind

⟨⟩
⟨0⟩1

⟨1⟩1

can produce values 0 or 1, and in any sample of such FRPs there is no reason to
expect one more than the other. Our uncertainty increases with the number and
spread of the possible values. For instance, FRPs with Kinds

⟨⟩

⟨−3⟩1

⟨−2⟩1

⟨−1⟩1

⟨0⟩1

⟨1⟩1

⟨2⟩1

⟨3⟩1

⟨⟩

⟨−10000⟩1

⟨−100⟩1

⟨−1⟩1

⟨0⟩1

⟨1⟩1

⟨100⟩1

⟨10000⟩1

are both harder to predict than the previous case, and those on the right are harder
than those on the left because the distances between values are larger. We can further
increase that uncertainty without bound with ever more complicated Kinds.
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This raises three questions. First, how should we make predictions in the face of
uncertainty? Second, how should we quantify the degree of uncertainty that we face?
And third, how should our decisions be affected by the degree of uncertainty? Here
we will focus on the first question, touching only briefly on the other two, but rest
assured we will consider all three as we proceed.

The goal of this section is to define a baseline best prediction for the value of an
FRP. We express this prediction through the price that we would pay to receive the
FRP’s payoff. Using prices to describe a prediction has a long tradition. The price of
a stock, for instance, is (in theory) the market’s prediction of the long-run value of
each share of the company. When a sports team signs a contract for a player, they
are predicting how much revenue (explicitly and implicitly through championships,
merchandise, advertising, et cetera) that player will bring to the organization. When
an insurance company offers insurance against an event, such as damage to one’s
home, the price of the insurance premiums reflects the company’s prediction about
how much they will have to pay out.60 60And the companies have

armies of analysts, called
actuaries, whose job is to
make those predictions
based on the available data.

The last example has a resemblance to what we face with FRPs. An insurance
company makes their money in the aggregate. An individual homeowner’s policy may
or may not require a payout, but with good predictions, the company can price the
premium to make a profit on a large collection of policies.61 61This assumes that the

different policies are close to
independent; if all of the
homes are hit by the same
hurricane, the company will
lose.

Similarly, with one particular FRP, we can get any of its possible payoffs, with a
large enough collection of FRPs of the same Kind, we will see all of its possible payoffs
in proportions close to the weights. We can thus control our gains and losses in the
aggregate with the choice of price. An important implication is that our prediction
about an FRP’s value depends only on the Kind of the FRP. In effect, we are making
predictions about Kinds.62 62With a conditional

constraint c from partial
information about an FRP
X, we get a new FRP X | c
and predictions of its value
depend on its Kind
kind(X | c).

Our best prediction of an FRP’s value will be represented by the risk-neutral
price for an FRP of that Kind, to be defined below. Here is the setup.

1. We have through the FRP Warehouse an unlimited collection of FRPs of any
Kind.

2. We purchase some number of FRPs of Kind k, paying a price $ck per unit, and
our total payoff is the sum of the values of all the purchased FRPs.63 63Remember that negative

payoffs means that we have
to pay out.

3. We can borrow without interest as much money as we like to purchase FRPs,
but when their payoffs are revealed, we must immediately pay back that loan.

The first task is to understand how the choice of price ck affects what we gain or lose
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in the aggregate. To begin, we focus exclusively on scalar (1-dim) FRPs.
Consider the simplest, non-trivial FRP: constants, with Kinds of the form

⟨⟩ ⟨v⟩1 for some number v. We know with certainty that this will payoff
$v. If you pay less than $v, you will make a profit on each FRP you purchase, so you
would purchase as many as possible. Of course, the market knows this as well, so
they would not sell such an FRP for less than $v. If you pay more than $v, you will
lose money on each FRP you purchase. Of course, you know this, so you would not
buy any at such a price. For all practical purposes, this FRP is equivalent to $v.

Consider next simple FRPs with Kind

⟨⟩
⟨0⟩1

⟨2⟩1

Use the frp market application64 to purchase collections of these at different prices. 64Remember, this is still your
free trial, so no money
changes hands yet.

With the buy task, you specify how many FRPs you want to buy at each of one or
more prices, and the Kind. It shows your net payoff (total and per unit) for the batch
purchased at each price. Here are some examples with some sample output.

mkt> buy 1_000_000 each @ 0.5, 0.9, 0.99, 0.999, 0.9999, 1, 1.01

...> with kind (<> 1 <0> 1 <2>).

Buying 1,000,000 FRPs with kind (<> 1 <0> 1 <2>) at each price

Price/Unit Net Payoff Net Payoff/Unit

$0.50 $ 500,670.00 $ 0.500670

$0.90 $ 11,534.00 $ 0.011534

$0.99 $ 537.00 $ 0.000537

$0.999 $ -1,990.00 $-0.001990

$0.9999 $ 753.00 $ 0.000753

$1.00 $ -512.00 $-0.000512

$1.01 $ -8,796.00 $-0.008796

mkt> buy 10_000_000 each @ 0.5, 0.9, 0.99, 0.999, 0.9999, 1, 1.01

...> with kind (<> 1 <0> 1 <2>).

Buying 10,000,000 FRPs with kind (<> 1 <0> 1 <2>) at each price

Price/Unit Net Payoff Net Payoff/Unit

$0.50 $ 5,003,478.00 $ 0.500348
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$0.90 $ 997,792.00 $ 0.099779

$0.99 $ 102,930.00 $ 0.010293

$0.999 $ 2,311.00 $ 0.000231

$0.9999 $ 96.00 $ 0.000010

$1.00 $ -2028.00 $-0.000203

$1.01 $ -99,224.00 $-0.009922

mkt> buy 100_000_000 each @ 0.5, 0.9, 0.99, 0.999, 0.9999, 1, 1.01

...> with kind (<> 1 <0> 1 <2>).

Buying 100,000,000 FRPs with kind (<> 1 <0> 1 <2>) at each price

Price/Unit Net Payoff Net Payoff/Unit

$0.50 $49,995,392.00 $ 0.499953

$0.90 $ 9,976,452.00 $ 0.099765

$0.99 $ 1,005,452.00 $ 0.010055

$0.999 $ 103,884.00 $ 0.001039

$0.9999 $ 24,664.00 $ 0.000247

$1.00 $ 262.00 $ 0.000003

$1.01 $ -998,284.00 $-0.009983

mkt> buy 1_000_000_000 each @ 0.5, 0.9, 0.99, 0.999, 0.9999, 1, 1.01

...> with kind (<> 1 <0> 1 <2>).

Buying 1,000,000,000 FRPs with kind (<> 1 <0> 1 <2>) at each price

Price/Unit Net Payoff Net Payoff/Unit

$0.50 $499,980,344.00 $ 0.499803

$0.90 $ 99,964,150.00 $ 0.099964

$0.99 $ 9,939,632.00 $ 0.009940

$0.999 $ 1,001,286.00 $ 0.001001

$0.9999 $ 80,598.00 $ 0.000081

$1.00 $ -38,850.00 $-0.000039

$1.01 $-10,088,852.00 $-0.100889

Although it is not perfectly clearcut, there is a pattern here. When the price is low,
the net payoff tends to be large and positive. The net payoff shrinks as the price
approaches 1, becoming more and more negative beyond that. The third column
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makes it easier to see the common pattern because the numbers across runs are all
on the same “per unit scale.”

Let’s zoom in near 1 to get a closer look:

mkt> buy 1_000_000_000_000 each @

...> 0.9999, 0.99999, 1.00, 1.00001, 1.0001

...> with kind (<> 1 <0> 1 <2>).

Buying 1,000,000,000,000 FRPs with kind (<> 1 <0> 1 <2>) at each price

(Due to large numbers, the values below may be slightly approximate.)

Price/Unit Net Payoff Net Payoff/Unit

$0.9999 $ 101,695,118 $ 1.01695e-4

$0.99999 $ 8,953,455 $ 8.95346e-6

$1.00 $ 915,029 $ 9.15030e-7

$1.00001 $ -10,020,272 $-1.00203e-5

$1.0001 $ -99,822,037 $-9.9822e-05

The pattern seems similar, and it appears that 1 is the inflection point. We can guess
that $1 is the right price! And we’ll see below how this might match our intuition
that 1 is the midpoint between two evenly weighted values 0 and 2.

If you were offered a price of < 1 for FRPs of the previous two example Kinds,
the interest-free loan from the FRP Warehouse would let you make a profit. We give
such prices a name.

Definition 18. If X is a scalar FRP, an arbitrage price for X is a number c
such that if you pay $c per FRP, you can purchase a collection of FRPs of Kind
equivalent to kind(X) and guarantee a profit with essential certainty.

If we pay an arbitrage price for any particular number of FRPs, we can still lose
money. But if we buy enough FRPs of the same Kind, the possibility of losing
money becomes like the possibility of your air all gathering in the corner of the room.
A profit is essentially guaranteed. This matches the pattern we saw in the above
examples: any price less than 1 for FRPs of those Kinds is an arbitrage price. If we
were offered an arbitrage price to purchase FRPs, we would jump on the deal and
purchase as many as possible.

Arbitrage prices have an important property. If c is an arbitrage price for X and
c′ < c, then c′ is also an arbitrage price for X. When c is a price that essentially
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guarantees a profit, then paying a smaller price only makes it easier to make a profit,
and this smaller price is then also an arbitrage price. In fact, we can make a stronger
statement:

Property A. If c is an arbitrage price for X, then there is some real number ϵ > 0

so that every c′ < c+ ϵ is also an arbitrage price for X.

This looks a little more mysterious at first but is based on similar intuition. If we can
make an essentially guaranteed profit at some price c, then we can very, very slightly
increase the price and still make a profit. The increase might be tiny indeed – ϵ can
be arbitrarily small – but we can always find a higher arbitrage price.

Be careful not to conclude from Property A that we can always find arbitrage
prices that are arbitrarily large. Suppose 0.99 is an arbitrage price for a particular
FRP. Property A tells us that we can find an arbitrage price that is slightly bigger
than 0.99. Suppose then that values < 0.9901 are arbitrage prices. Then Property A
tells us that we can find a value slightly bigger than 0.9901 that is also an arbitrage
price. Suppose then that values < 0.99010001 are also arbitrage prices. We can
continue in this way getting larger arbitrage prices, but the amount of increase at
each step can get smaller and smaller. We might never reach 1, for instance. In most
cases of interest, the set of arbitrage prices is bounded from above, and that is how
we define the risk-neutral price.

Definition 19. If X is a scalar FRP, the risk-neutral price for X is the smallest
value r that is bigger than every arbitrage price for X.

If every finite c is an arbitrage price for X, the risk-neutral price is ∞. If no
finite c is an arbitrage price, the risk-neutral price is −∞.

If we pay the risk-neutral price for the FRPs, then we might make a profit or a
loss, no matter how many FRPs we purchase. There are no guarantees. Remember
that a positive price means that we pay to get the FRP; a negative price means that
we are paid to take it.

The set of arbitrage prices for an FRP contains every number from −∞ up to
but not including the risk-neutral price r. No reasonable person would offer us an
arbitrage price to purchase FRPs because it would (essentially) guarantee them a
loss. Nor would you accept an offer to pay more than the risk-neutral price, for it
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would (essentially) guarantee you a loss. But at the risk-neutral price, neither buyer
nor seller has the advantage.

The term risk-neutral here means that the price accounts only for typical payoff
not for the magnitude of the losses that we risk. Consider FRPs with Kinds shown in
Figure 44: all three have the same risk-neutral price of 10. Most of us facing a choice
among these three payoffs would not be indifferent among them. The first guarantees
a $10 payoff. The second offers the possibility of a slightly higher payoff ($11) at the
small risk of losing $1000 – a non-trivial loss. The third offers a bigger payoff with
higher risk (losing $10,000 is nothing to sneeze at). While you would pay $10 for the
first FRP, you would likely pay less for the latter two to account for the risk you
face. Real betting markets account for this risk and tend to clear at prices lower than
the risk neutral price. This risk matters in practice because you have limited funds
available.

⟨⟩ ⟨10⟩1 ⟨⟩
⟨−1000⟩1

⟨11⟩1010
⟨⟩

⟨−10000⟩1

⟨110⟩100.1

Figure 44. FRP Kinds with the same risk-neutral price. Are you indifferent to which of these
payoffs you get?

But in our setup, at any price below the risk-neutral price, risk is not a consideration
because you have unlimited funds available and can purchase an arbitrarily large
number of FRPs. As such, the risk can be hedged away, and no premium for risk is
needed. This pushes the equilibrium to the risk-neutral price.

Puzzle 45. Assuming a < b, can the risk-neutral price of the FRP with Kind

⟨⟩
⟨a⟩wa

⟨b⟩wb

be less than a? Greater than b? Why or why not?
Can it be equal to a or b? (Remember wa, wb > 0.) Why or why not?
If wb is very much bigger than wa, do you expect the risk-neutral price to be

closer to a or to b?

278



Activity. Empirically evaluate the risk-neutral price of several scalar FRPs,
using the buy command as above. As a starting point, consider FRPs with a
few simple Kinds, like:

1. For various values of v,

⟨⟩
⟨0⟩1

⟨v⟩1

2. For various values of w,

⟨⟩
⟨0⟩1

⟨1⟩w

3. For various values of −1 < c < 1 and of w, starting with w = 1,

⟨⟩

⟨−1⟩1

⟨c⟩w

⟨1⟩1

Try some other examples. Can you guess the relationship between an FRP’s
Kind and its risk-neutral price? Don’t forget the results of our earlier demos.
What do you expect to see when you tabulate the values of a large sample of
FRPs of the same Kind? What does this mean for the risk-neutral price?

7.1 Fundamental Properties of Risk-Neutral Prices

The risk-neutral price of an FRP X represents a good prediction of X’s value. This
statement requires some interpretation. For instance, we saw the FRP with Kind

⟨⟩
⟨0⟩1

⟨2⟩1

has a risk-neutral price of 1. If this is to be considered a good prediction of the
FRP’s value, shouldn’t it be a concern that 1 is not a possible value of X? If you
predict 1, you will always be wrong. This is true, but a key point is that there are
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different ways to assess the accuracy of prediction. If we require that we guess the
exact value, then it is easy to construct Kinds and “good” predictions that are almost
always wrong and almost always far from the true value. For example, with the
Kind uniform(1, 2, ..., 10_000_000_000), always guessing 10,000,000,000 does
as well as possible in guessing the exact value but is wrong and very far from the
true value the vast majority of the time. While it is sometimes sensible to prioritize
guessing the exact value, that turns out not to be the most useful criterion in practice.

The market captures a different notion of prediction: prediction accuracy in the
aggregate. By defining predictions in terms of prices, our predictions are fine-tuned
to the structure of the Kind. If you guess below the risk-neutral price, the value
will tend to be above your guess (and you can make money almost certainly in the
market). If you guess above the risk-neutral price, the value will tend to be below
your guess (and you will lose money in the market if you purchase enough). The
risk-neutral price is thus a “typical” value of X; it gives us a prediction for that value
that is as close possible to that value in a particular sense to be described below.

We can learn quite a lot about X from its risk-neutral price. If X is the constant
FRP with value v, we know its risk-neutral price is v.

If X and Y are FRPs and we know that the value of X will be ≤ the value of
Y , we write X ≤ Y . In this case, if c is an arbitrage price for X, it must also be an
arbitrage price for Y as our payoff with Y will be at least that with X. Hence, X’s
risk-neutral price is ≤ Y ’s risk-neutral price. For instance, if all the values of X are
between a and b, with a ≤ b, then X’s risk-neutral price must be between a and b by
applying this fact to X and the constant FRPs at a and b.

For a real-number s, we write sX for the transformed FRP that scales the value
of X, whatever it is, by s. Formally, this is ψs(X) where ψs is the statistic defined
by ψs(x) = sx, which just scales its argument by s. If we know the risk-neutral price
for X, can we find the risk-neutral price for sX? Consider a large batch of FRPs
with Kind equivalent to kind(X): X[1], . . . , X[m]. In the market, we can choose to
purchase the transformed batch sX[1], . . . , sX[m]. If c is any arbitrage price for X,
then for large enough m, purchasing the batch X[1], . . . , X[m] at unit price $c would
essentially guarantee us a profit. If s > 0, then we would also get a profit from the
same batch with payoffs sX[1], . . . , xX[m] at unit price $sc because the payoffs and
the profit are all just scaled by s. So, sc is an arbitrage price for sX. (If s < 0, we
just use the same argument scaling by −s, yielding the same result.) Hence, the
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risk-neutral price of sX is just s times the risk-neutral price for X.
We can (and will) go on like this, deriving properties of the risk-neutral price from

the logic of arbitrage prices. But first it will be nice to have a . . . crisper notation.

Notation. If X is an FRP, we will use E(X) to denote the risk-neutral price of
the FRP. (In the playground, this is E(X).)

Consider one more property of risk-neutral prices. Let d = dim(X) and define
Y = proji(X) and Z = projj(X) for some 1 ≤ i, j ≤ d. If ψ is that statistic of type
d→ 1 defined by ψ(x) = xi + xj , we write Y +Z to mean ψ(X). This gives us three
FRPs derived from X: Y , Z, and Y + Z.

We can find E(Y + Z) from E(Y ) and E(Z). If c1 ≤ E(Y ) and c2 < E(Z) be
arbitrage prices, then c1 + c2 is an arbitrage price for Y + Z because we can make
arbitrarily large amounts of money from the Z payoffs even if we lose a little from
the Y payoffs. Similarly, if c1 < E(Y ) and c2 ≤ E(Z), c1 + c2 is an arbitrage price
for Y + Z. But E(Y ) +E(Z) cannot be an arbitrage price for Y + Z because the
payoff at this price from any batch of Y + Z clones is equivalent to a payoff from
batches of Y ’s and Z’s at their risk-neutral price, for which a profit is not essentially
guaranteed. It follows that E(Y )+E(Z) is the risk-neutral price for Y +Z. By Bob’s
equation from Section 6 Sum(a :: b) = Sum

(〈
Sum(a), Sum(b)

〉)
, this generalizes to

any number of components.
Together, these arguments give us four key properties of risk-neutral prices.

Box 20. Key Properties of Risk-Neutral Prices. Let X,Y be FRPs.
Constancy. If X is a constant FRP with value v,

E(X) = v. (7.9)

Scaling. For any real number s,

E(sX) = sE(X). (7.10)

Ordering. If X ≤ Y ,
E(X) ≤ E(Y ). (7.11)
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Additivity. If X1, X2, . . . , Xn are FRPs of common dimension,

E(X1 +X2 + · · ·+Xn) = E(X1) +E(X2) + · · ·+E(Xn). (7.12)

In the condition for Scaling, sX = ζ(X) for statistic ζ(x) = sx. In the condition
for Ordering, X ≤ Y means that the value of X is known to be ≤ the value of Y .
In the condition for Additivity, for any FRPs X1, . . . , Xn of common dimension, we
can always build an FRP X for which X1 + · · ·+Xn = ψ(X) and Xi = φi, for some
statistics ψ and φi, i ∈ [1 . . n].

These properties provide critical tools for finding and working with risk-neutral
prices. Even with the formula for risk-neutral prices that we derive in the next
subsection, it will often more direct to solve or simplify a problem with the logic of
these properties. In practice, we often use the Constancy, Scaling, and Additivity
properties together to establish that

E(α0+α1X1+α2X2+ · · ·αnXn) = α0+α1E(X1)+α2E(X2)+ · · ·αnE(Xn), (7.13)

for constants α0, α1, . . . , αn. This derived property that is called linearity.
Up to now in this section, we have been discussing risk-neutral prices for scalar

FRPs, but we can extend our definition to higher dimensions, and all the properties
7.9, 7.10, 7.11, and 7.12 continue to hold . We can think of non-scalar FRP
as offering a portfolio of payoffs, and applying E lists the risk-neutral prices of each
payoff in the portfolio.

Definition 21. If FRP X has dimension n and FRPs ⟨X1, X2, . . . , Xn⟩ are its
scalar components, then E(X) is an n-tuple of numbers defined by

E(X) = ⟨E(X1),E(X2), . . . ,E(Xn)⟩, (7.14)

that is, the tuple containing the risk-neutral prices of the components.

We can view equations (7.10), (7.11), and (7.12) as telling us that E maps
the operations of scaling, ordering, and adding on FRPs/Kinds to the analogous
operations on values. These operations all work for numbers. For numbers x and y,
we can scale them sx, order them x ≤ y, and add them x+ y. And the operations
also work for tuples of numbers of a common dimension n;65 we can scale, order, and 65See Section F.9.3, which

discusses “vector”
operations on tuples.282



add them:

s⟨x1, x2, . . . , xn⟩ = ⟨sx1, sx2, . . . , sxn⟩ (Scaling)

⟨x1, x2, . . . , xn⟩ ≤ ⟨y1, y2, . . . , yn⟩ if and only if x1 ≤ y1 ∧ · · · ∧ xn ≤ yn (Ordering)

⟨x1, x2, . . . , xn⟩+ ⟨y1, y2, . . . , yn⟩ = ⟨x1 + y1, x2 + y2, . . . , xn + yn⟩. (Additivity)

For instance, Additivity (7.12) with ψi = proji and equation (7.14) imply that

E(Sum(X)) = Sum(E(X)) (7.15)

for the Sum statistic that sums the components of its argument.
A frequently occurring special case of Definition 21 is when X is an independent

mixture of X1, X2, . . . , Xn scalar FRPs:

E(X1 ⋆ X2 ⋆ · · · ⋆ Xn) = ⟨E(X1),E(X2), . . . ,E(Xn)⟩. (7.16)

Independence tells us that we can price the components separately.
The following examples illustrate how we can use the properties above to find

risk-neutral prices.

Example 7.1. If X has Kind of the form

⟨⟩
⟨−1⟩a

⟨1⟩b

what is E(X2)? (Recall that X2 is the “inline” notation for the transformed FRP
ψ(X) with the simple statistic ψ(x) = x2; see the discussion of inlined statistics
on page 47.)

When X produces a value v, that value is fed to the input port of X2 through
an adapter that outputs v2. Here, v can be either -1 or 1, and in both cases,
v2 = 1. This means that 1 is the only possible value of X2. It is constant.

Hence, by the Constancy property (7.9), E(X2) = 1.
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Example 7.2 Changing Units
The FRP D represents a measured distance in kilometers, and we’d like to create
an FRP X that represents the same distance in miles. This transformation is
straightforward with the statistic ψ(d) = cd for a constant c ≈ 0.621371. So,
X = ψ(D), though for such a simple transformation we most often inline the
statistic, writing it as X = cD.

The Scaling property (7.10) tells us that E(X) = E(cD) = cE(D). The
risk-neutral prices scale by the same factor.

Example 7.3. Let A be an FRP representing a random angle, measured in
degrees. Even without knowing kind(A), we know that its values must lie in the
interval [0 360) . If A′ is an FRP derived from A by converting its values to
radians, then its values must lie in the interval [0 2π) . Let X = cos(A′) and
Y = sin(A′) be the cosine and sine of this angle; their values lie in the interval
[−1 1] .

The Ordering property (7.11) of risk-neutral prices tells us that

0 ≤ E(A) ≤ 360

0 ≤ E(A′) ≤ 2π

−1 ≤ E(X) ≤ 1

−1 ≤ E(Y ) ≤ 1.

First of the “Measuring
Uncertainty” example series.

Example 7.4 Measuring Uncertainty
The risk-neutral price of an FRP is a prediction of the FRPs value. The greater
the uncertainty in the Kind of that FRP, the harder it is to accurately predict
the FRP’s value. However, even when the uncertainty is high, our prediction
might by chance be close to the actual value, a lucky guess so to speak. So how
do we quantify the uncertainty in a Kind of FRPs?

The answer is to construct a transformed FRP with a customized statistic
that describes how the value deviates from our prediction. Here, we will introduce
three ways to quantify uncertainty that are called the Mean Absolute Deviation,
the Variance, and the Entropy. We will focus here only on 1-dimensional FRPs.
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Let Y be a scalar FRP with K = kind(Y ) its Kind and µ = E(Y ) its risk-
neutral price. If v is a possible value of Y , we will write K(v) for the weight on
that value in the canonical form of Y ’s Kind.

First, define a family of statistics φc, indexed by real numbers c, where

φc(x) = |x− c|. (7.17)

This statistic measures how far its argument value is from the number c. We
define the Mean Absolute Deviation of Y , denoted MAD(Y ), to be

MAD(Y ) = E(φµ(Y )). (7.18)

This is our prediction of how far Y ’s value is from our prediction of its value.
That is, by the nature of the statistic φµ, the risk-neutral price of the FRP φµ(Y )

measures the deviation between Y ’s value and Y ’s risk-neutral price.
Because φc(x) ≥ 0 for all x, the FRP φµ(Y ) can never be negative, so by

the Ordering property (7.11), MAD(Y ) ≥ 0. The extreme case is when Y is a
constant FRP. In this case, E(Y ) equals the only possible value, so MAD(Y ) = 0.

One novel feature of this is that we use a statistic that is customized to match
the FRP we are transforming. While we could look at E(φc(Y )) for any c, we
use c = µ = E(Y ). Because φµ has a relatively simple form, we would tend to
inline this statistic and write MAD(Y ) = E(|Y −E(Y )|).

The Mean Absolute Deviation is intuitive: it predicts how far the actual
value of an FRP will be from its predicted value (risk-neutral price). The
distance between value and prediction is in the same units as Y , which is nice.
Unfortunately, the absolute value | | in the statistic makes it harder to work
with mathematically. For that reason, we introduce the Variance.

Next, define a family of statistics ψc, with one statistic for each real number
c, where

ψc(x) = (x− c)2. (7.19)

Like φc above, this statistic measures how far its argument value is from the
number c, but it measures distance in squared units. We define the Variance of
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Y , denoted Var(Y ), to be the risk-neutral price of ψµ(Y ):

Var(Y ) = E(ψµ(Y )) = E
(
(Y −E(Y ))2

)
, (7.20)

where the second form is the inlined expression of the statistic. This is our
prediction of how far Y ’s value is from our prediction of its value in squared units.
If the variance is high, we predict that Y ’s value will typically be far from its
risk-neutral price; if the variance is small, we predict that Y ’s value will typically
be close to its risk-neutral price.

The quadratic versus the absolute value is the distinction between ψc and
φc and between Var and MAD. The move to squared units makes the variance’s
numeric values a bit harder to understand, but the quadratic makes it easier to
simplify and manipulate, as we will see.

Again, because (x−c)2 ≥ 0 for all x, ψc(Y ) cannot be negative, so Var(Y ) ≥ 0.
The extreme case is when Y is a constant FRP. In this case, E(Y ) equals the
only possible value and Var(Y ) = 0. A constant FRP embodies no uncertainty.

Finally, define a family of statistics ζk, with one statistic for each canonical
Kind k, where

ζk(x) = − lg k(x), (7.21)

where lg denotes the logarithm base 2 and k(x) is the canonical weight associated
with value x in Kind k. Unlike the previous two statistics that measure distances
between values, this statistic measures the weights on each value. The statistic is
larger for values that have lower weight and smaller for values that have higher
weight. Remember that a canonical weight is ≤ 1, so the log of that weight is
negative and the negative sign makes the result non-negative. In other words,
ζk(x) ≥ 0 for any value x in a branch of Kind k.

We define the Entropy of Y , denoted H(Y ), to be

H(Y ) = E(ζK(Y )) = E (− lgK(Y )) , (7.22)

where the second form is the inlined expression of the statistic and K = kind(Y ).
Because ζK(Y ) cannot be negative and can be at most − lg pmin = lg(1/pmin)

where pmin is the smallest weight in kind(Y ), the Ordering property (7.11) implies
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that
0 ≤ H(Y ) ≤ lg(1/pmin).

If Y is a constant FRP, then pmin = 1, which implies that H(Y ) = 0. As with
the other measures, a constant – with no uncertainty – gives a minimal value of
0.

The entropy depends only on the number of values and their weights,
not on the values themselves. Its value is measured in bits. If Y has Kind
uniform(1, 2, ..., n) for some positive integer n, then all the canonical
weights in kind(Y ) equal 1/n, so ζK(Y ) is a constant FRP. In this case, H(Y ) =

lg n, which is within 1 of the number of bits used to represent the number n in
binary (base 2). We will develop the interpretation of H(Y ) later in this example
series and even further in Chapter 7.

Example 7.5 Sums
In Section 6, Alice and Bob figured out a clever way to compute the Kind for the
total of 100 die rolls, Sum(d6 ** 100) in the playground, where d6 is the Kind
for a roll of a balanced six-sided die. Fortunately, to compute the risk-neutral
price for this, we do not need such clever tricks due to the Additivity property of
equation (7.15).

In the playground, we can create the Kind d6 and an FRP D_6 that represents
the roll of a balanced six-sided die.

pgd> d6 = uniform(1, 2, ..., 6)

pgd> D_6 = frp(d6)

pgd> D_6

An FRP with value <4>

The Kinds for multiple rolls of the dice are computed with an independent mixture
power, but their sizes quickly grow large. For instance, d6 ⋆⋆ 4, d6 ⋆⋆ 8, d6 ⋆⋆ 100
have respected sizes 1296, 1679616, and 6533186235000709060966902671580578205
37143710472954871543071966369497141477376.

We can directly create FRPs, however, to simulate large number of dice rolls
without any problem:
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pgd> Rolls4 = D_6 ** 4

pgd> Rolls8 = D_6 ** 8

pgd> Rolls100 = D_6 ** 100

pgd> Rolls4

An FRP with value <2, 1, 3, 2>

(It may be slow to evaluate its kind.)

pgd> Rolls8

An FRP with value <5, 6, 3, 4, 4, 1, 4, 3>.

(It may be slow to evaluate its kind.)

pgd> Rolls100

An FRP with value <2, 1, 3, 3, 4, 1, 1, 6, 3, 5, 5, 1, 2, 1, 3,

4, 6, 2, 2, 5, 2, 1, 4, 6, 5, 6, 3, 6, 3, 2, 6, 2, 1, 1, 5, 1,

1, 6, 3, 6, 3, 3, 3, 4, 5, 4, 3, 5, 6, 5, 5, 2, 2, 6, 2, 3, 3,

6, 3, 1, 2, 4, 4, 4, 4, 3, 1, 4, 1, 3, 5, 1, 3, 2, 3, 1, 4, 4,

2, 1, 2, 6, 3, 4, 3, 1, 5, 1, 1, 2, 5, 3, 5, 2, 4, 2, 3, 6, 3,

1>. (It may be slow to evaluate its kind.)

The value of Rolls4 shows us the four rolls. This is an independent mixture, and
recall that it is equivalent to clone(D_6) * clone(D_6) * clone(D_6) * clone(D_6),
as in equation (4.7), and similarly for Rolls8 and Rolls100 The Kind of Rolls4
has not yet been computed, as the message indicates, though we could force it to
be by calling kindn(Rolls4). (Try it!) Deferring the computation of the Kind
when the size may be large allows us to construct FRPs even if the Kind is slow
to compute.

(Note that computing a repeated independent mixture of an FRP without
the clone is generally not what we want.

pgd> D_6 * D_6 * D_6 * D_6 # not quite right, all values the same

An FRP with value <4, 4, 4, 4>.

D_6 has only one value fixed for all time, so however many terms in the mixture,
they will all have the same value.)

Without Alice and Bob’s trick, if we try to compute the risk-neutral price
with the E operator, the playground detects that the Kind is hard to compute
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and approximates the answer instead.

pgd> Sum(Rolls100)

An FRP with value <322>. (It may be slow to evaluate its kind.)

pgd> E(Sum(Rolls100))

+- Computing approximation (tolerance 0.01) --+

| 350.0251 |

+---------------------------------------------|

We could force the Kind to be computed with E(Sum(Rolls100), force_kind=True)

or change the approximation tolerance with E(Sum(Rolls100), tolerance=0.001)

if we prefer, though the former calculation would not complete given the size of
the Kind.

Additivity gives us a quick and exact answer for E(Sum(Rolls100)). First,
remember that E(D_6) == E(clone(D_6)) because the risk-neutral price for an
FRP only depends on its Kind not its particular value. And we know that

pgd> E(D_6)

7/2

Second, Definition 21 tells us that E(D_6 ** 100) is equal to

<E(clone(D_6)), E(clone(D_6)), ..., E(clone(D_6))>

Indeed, we can compute it directly in the playground:

pgd> E(D_6 ** 100)

<7/2, 7/2, 7/2, ..., 7/2, 7/2>

where 95 of the values have been elided for brevity. Finally, the Additivity prop-
erty (equation 7.15) implies that E(Sum(D_6 ** 100)) == Sum(E(D_6 ** 100))

and

pgd> Sum(E(D_6 ** 100))

350
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which is the exact answer we want. More generally, the Additivity property tells
us that for any n ∈ [1 . .), E(D6 ⋆⋆ n) = nE(D6) =

7
2n.

Indeed, combining equations (7.16) and (7.15), we have that for any FRP X

E(Sum(X ⋆⋆n)) = nE(X). (7.23)

Following up on the previous example, consider the statistic Mean that computes
the arithmetic average of its input’s components. For any value v, we have that
Mean(v) = Sum(v)/ dim(v). Hence, combining equation (7.23) and the Scaling
property (7.10) yields

E(Mean(X ⋆⋆n)) = E(X). (7.24)

The average of an independent mixture power has the same risk-neutral price as each
term.

It is fairly common when taking measurements to use averages to compute a
more “representative” quantity. Surveyors average multiple measurements to estimate
distances. Baseball coaches use batting averages to assess hitters. Teachers take
averages of students’ exams to assign grades. In light of equation 7.24, we might ask
how averaging helps if the risk-neutral price – our prediction – does not change by
averaging. The next example sheds light on this question.

Part of the “Measuring
Uncertainty” series.

Example 7.6 Averaging and Uncertainty
Our uncertainty about a system increases with the difficulty of making accurate
predictions. Example 7.4 introduced several different ways to quantify the
uncertainty in a Kind. We consider multiple quantities for this purpose because
in some context, one might emphasize subtly different features or have a useful
practical interpretation or be more convenient to work with.

Here, we consider the variance of a Kind and in particular the variance of an
independent mixture power. As defined earlier: if Y is a scalar FRP with risk-
neutral price E(Y ), its variance is Var(Y ) = E(ψE(Y )(Y )) where ψc(y) = (y− c)2

is a family of statistics, one for each constant c. As this statistic is a simple
quadratic, we often “inline” it as Var(Y ) = E((Y −E(Y ))2). The variance is our

See page 47 on inlining.

best prediction of the squared distance of Y ’s value from its risk-neutral price.
When the variance is small, Y ’s value tends to be close to its risk-neutral price.
When its large, Y ’s value tends to be far from its risk-neutral price. We saw in
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Example 7.4 that Var(Y ) ≥ 0.
To get a different perspective on the variance, we write the statistic ψc by

expanding the quadratic: ψc(y) = y2 − 2cy + c2. In this form, we can apply the
Constancy, Scaling, Additivity properties to get the variance shortcut:

Var(Y ) = E(ψc(Y ))

= E(Y 2 − 2E(Y )Y + (E(Y ))2)

= E(Y 2) +E(−2E(Y )Y ) +E((E(Y ))2) (by Additivity)

= E(Y 2) +E(−2E(Y )Y ) + (E(Y ))2 (by Constancy)

= E(Y 2)−2E(Y )E(Y ) + (E(Y ))2 (by Scaling)

= E(Y 2)− (E(Y ))2. (7.25)

Remember that the risk-neutral price E(Y ) is just a number, so when we apply
the Scaling property to E(−2E(Y )Y ), we pull out the constant −2E(Y ). We
called this combined application of Constancy, Scaling, and Additivity linearity
in equation (7.13). The variance shortcut reveals the variance as the difference
between squaring after and before computing the risk-neutral price. There is
no difference if Y is a constant FRP, but as the possible values of Y become
more widely spread, squaring will spread them further, increasing the price of
Y 2 relative to the square (E(Y ))2 of the original price.

With these ideas in hand, we will investigate the question of why we average
measurements. In this setting, Y = Mean(X ⋆⋆n) for a scalar FRP X and a
positive integer n. X and its clones represent individual measurements of some
quantity (e.g., one surveyor’s distance, one batter’s at bat, one exam), and Y

is the average of n such measurements. We saw in (7.24) that E(Y ) = E(X).
The risk-neutral price of the FRP representing the average is the same as for the
FRP representing a single measurement. What can we say about the uncertainty
in kind(Y ) versus kind(X)?

In this example, we will empirically investigate this question in the playground,
using the built-in Var operator. We will start with a couple arbitrary Kinds; you

There is also a statistic
Variance that is different; it
computes the “sample
variance” of its input value’s
components.

can do these steps with other Kinds as well.

pgd> k1 = geometric(1, 2, 3, 4, 5)
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pgd> k2 = Mean(k1 ** 2)

pgd> k4 = Mean(k1 ** 4)

pgd> k6 = Mean(k1 ** 6)

pgd> k8 = Mean(k1 ** 8) # this might take a few moments

pgd> Var(k1)

0.5837669094693028

pgd> Var(k2) / Var(k1)

0.5

pgd> Var(k4) / Var(k1)

0.25

pgd> Var(k6) / Var(k1)

0.166666666666666666666666665

pgd> Var(k8) / Var(k1)

0.125

When we average 2, 4, 6, and 8 independent copies, the variance decreases by
factors of 1/2, 1/4, 1/6, and 1/8. Let’s try it with a different Kind to start

pgd> k1 = either(0, 1)

pgd> k3 = Mean(k1 ** 3)

pgd> k5 = Mean(k1 ** 5)

pgd> k10 = Mean(k1 ** 10)

pgd> k16 = Mean(k1 ** 16) # this might take a moment

pgd> Var(k1)

1/4

pgd> Var(k3) / Var(k1)

0.333333333333333333333333333

pgd> Var(k5) / Var(k1)

0.2

pgd> Var(k10) / Var(k1)

0.1

pgd> Var(k16) / Var(k1)

0.0625
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This shows the same pattern! So, we hypothesize that

Var(Mean(X ⋆⋆n)) =
1

n
Var(X). (*)

Puzzle 46. Alice and Bob’s Monoidal statistic trick is embodied in the
playground function fast_mixture_pow, and Mean is just Sum (a monoidal
statistic) divided by the number of terms. Use these facts to check our
hypothesis (*) for larger values of n, like 100, 500, or 1000 with at least the
Kind either(0,1).

It turns out that our hypothesis is true. Although our highly suggestive
evidence here does not firmly establish this claim, we will see an argument later
that proves it. For now, consider how that fact addresses our question – why
do we average? When we compute E(Mean(X ⋆⋆n)) we want to predict the
same value we are measuring in any single copy of X, so it makes sense that
E(Mean(X ⋆⋆n)) = E(X). The average measurement should be measuring the
same underlying quantity.

Var(Mean(X ⋆⋆n)) = 1
nVar(X) tells us that averaging reduces the un-

certainty in our prediction of that quantity by a factor proportional to the
number of measurements, when the repeated measurements are all independent.
Lower uncertainty means that our predictions tend to get more accurate. This is
why we average.

Example 7.7 Aces
Here we revisit Alice’s deck of cards from Section 6. Let S be the FRP of
dimension 52 (and size 52!) whose values are all 52! permutations of 1, 2, . . . , 52.
Let A = {1, 14, 27, 40} be the set of values in [1 . . 52] that correspond to the four
aces in the deck.

We can use the FRP S as a model of equally-weighted shuffles of a standard
deck of cards and model components in A to be aces. We want to use this model
to predict how many cards are between each ace in the deck.

Define a statistic ψ that takes a value of S and returns ⟨a1, a2, a3, a4, a5⟩,
where a1 is number of components of S’s value before the first ace in the deck (a
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value in A); a2 is the number of components strictly between the first two aces
in the deck (values in A); a3 is the number of components strictly between the
second and third aces in the deck (values in A); a4 is the number of components
strictly between the third and fourth aces in the deck (values in A); and a5 is
the number of components strictly after the final ace in the deck (value in A).

Puzzle 47. Show how to define the statistic ψ in the playground. Call it
between_aces.

We can use the shuffle FRP factory to create S:

pgd> S = shuffle(irange(52)) # Values are permutations of 1..52

pgd> S

An FRP with value <15, 48, 16, 41, 20, 22, 29, 4, 17, 34, 39,

14, 26, 8, 49, 1, 18, 2, 31, 32, 52, 37, 36, 42, 19, 3, 35, 28,

50, 25, 38, 33, 45, 24, 44, 46, 11, 43, 7, 23, 9, 13, 12, 40,

30, 47, 10, 21, 27, 6, 51, 5>.

We can apply the statistic you defined in the puzzle to look at the gaps
between aces in the simulated deck.

pgd> A = between_aces(S)

pgd> A

An FRP with value <11, 3, 27, 4, 3>. (It may be slow to evaluate its kind.)

The FRPA has dimension 5, and we can write its components asA1, A2, A3, A4, A5

whose values have the meaning described earlier. We can look at the components
individually, for instance

pgd> A[1]

An FRP with value <11>. (It may be slow to evaluate its kind.)

pgd> A[3]

An FRP with value <27>. (It may be slow to evaluate its kind.)

and similarly for the other aces.
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To start, we would like to compute E(A1+A2+A3+A4+A5). The FRP here
is transform of A, which is in turn a transform of S. The result is a transform of
S by statistic ζ = Sum ◦ between_aces (“Sum after between_aces”), which can be
expressed in multiple equivalent forms in the playground:

pgd> Sum(A)

pgd> Sum(between_aces(S))

pgd> S ^ Sum(between_aces)

pgd> S ^ between_aces ^ Sum

These are all the same FRP. (Make sure you understand why.)

Puzzle 48. In the playground, construct the statistic Sum(between_aces).
This is the composition of the two statistics: to apply it, we first apply
between_aces to a deck and then apply Sum to the value it returns. “Sum after
between_aces.”

Evaluate Sum(between_aces(S)). If you clone S and do this again, what
possible values might you see?

Try:

pgd> psi = Sum(between_aces)

pgd> FRP.sample(100, psi(S))

What do the results tell you? Do the result change if you demo 1000 samples?
Can you explain these tables?

The results of the previous puzzle strongly suggest that the statistic ζ is
an invariant : it gives the same value for every possible shuffle of the deck. We
can confirm that empirical result with logic: for every shuffle s, ζ(s) counts
all the cards in the deck except the aces. So ζ(s) = 48, and thus ζ(S) =

A1 + A2 + A3 + A4 + A5 = 48 is a constant FRP. By the Constancy property
(7.9), we therefore have that E(ζ(S)) = 48.

295



The Additivity property (7.12) now applies:

48 = E(ζ(S))

= E(A1 +A2 +A3 +A4 +A5)

= E(A1) +E(A2) +E(A3) +E(A4) +E(A5),

which constrains the risk-neutral prices of the counts for the individual aces.
With a bit more logic, we can go even further. We can show that A1, A2, A3,
A4, and A5 have the same Kind, and thus the same risk-neutral price. By the
Additivity property (7.12), it follows that

E(A1 +A2 +A3 +A4 +A5) = E(A1) +E(A2) +E(A3) +E(A4) +E(A5)

= 5E(A1)

so,

E(A1) = E(A2) = E(A3) = E(A4) = E(A5) = 9.6

And we have found the risk-neutral prices of Ai.
We will establish that the Ai’s have the same Kind by a direct argument and

then illustrate it in the playground with a smaller “deck” where we can see the
trees.

First, consider A1 and A4, though our argument will apply to any i ̸= j with
i, j ∈ [1 . . 5]. Let S be the set of all permutations ⟨1, 2, . . . , 52⟩, i.e., possible
values of the FRP. Define a function cut14 that maps elements of S to elements
of S (denoted cut14 : S S) that exchanges the positions of cards strictly before
the first ace in s and the cards strictly between the third and fourth aces without
changing the order of the cards within each group. Notice that if we apply cut14

to a shuffle s and then apply cut14 again, we get the original shuffle back! That
is, cut14 ◦ cut14 = id, the identity function on S. The function cut14 maps every

See Section F.5.

shuffle in S to a distinct shuffle, and every shuffle in S is the return value of
cut14 for some shuffle in S. This is what we call a bijection; see Section F.6.1.

For any possible value m of A1, we can in principle list all the shuffles among
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the 52! for which {A1 = m} occurs. If we apply cut14 to these shuffles, we get
shuffles for which {A4 = m} occurs. In fact, we get all such shuffles because if s
is a shuffle for which {A4 = m} then cut14(s) is a shuffle for which {A1 = m}.
It follows the Kinds of A1 and A4 have the same weight on m, and since m was
an arbitrary value, they have the same weight on all values, and the same Kind.

We can apply exactly the same argument with the function cutij for i, j ∈
[1 . . 5] with i < j. Hence, all the Ai’s have the same Kind. Moreover, using cutij

as a statistic swaps the values of Ai and Aj :

projij(between_aces(S)) = ⟨Ai, Aj⟩

projij(between_aces(cutij(S))) = ⟨Aj , Ai⟩.

To illustrate this more concretely, we will study shuffles of the smaller “deck”
with cards 1, 2, . . . , 5 and a statistic analogous to between_aces, which we will
call two_four_gaps, that uses {2, 4} instead of the set A.

pgd> T = shuffle(irange(5))

pgd> T

An FRP with value <2, 3, 5, 4, 1>. (It may be slow to evaluate its kind.)

With the statistic two_four_gaps defined in frplib.examples.aces, we have

pgd> G = two_four_gaps(T)

An FRP with values <0,2,1>

pgd> kind(G)

,---- 0.10000 ---- <0, 0, 3>

|---- 0.10000 ---- <0, 1, 2>

|---- 0.10000 ---- <0, 2, 1>

|---- 0.10000 ---- <0, 3, 0>

|---- 0.10000 ---- <1, 0, 2>

<> -|

|---- 0.10000 ---- <1, 1, 1>

|---- 0.10000 ---- <1, 2, 0>

|---- 0.10000 ---- <2, 0, 1>
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|---- 0.10000 ---- <2, 1, 0>

`---- 0.10000 ---- <3, 0, 0>

pgd> kind(Sum(G))

<> ------ 1 ---- 3

pgd> kind(G[1])

,---- 0.4 ---- 0

|---- 0.3 ---- 1

<> -|

|---- 0.2 ---- 2

`---- 0.1 ---- 3

pgd> E(G[1])

1

pgd> Kind.equal(kind(G[1]), kind(G[2]))

True

pgd> Kind.equal(kind(G[1]), kind(G[3]))

True

So we see that G, the analogue of A, always has sum 3 and that the Kinds of its
components G1, G2, G3 are the same.

Let’s check our argument with cutij .

pgd> kind(T)

I’m not showing the kind(T) tree here, but you should look at it. It’s still small
enough to understand and examine. Compare the Kind tree

pgd> kind(T) ^ cut(1,2, deck_size=5)

with kind(T), where cut is a statistic factory to be defined in frplib.examples.aces.
Observe that for each branch of kind(T) there is exactly one branch of kind(T) ^ cut(1,2)

that swaps the first and second segment, and vice versa. If you examine these
trees side by side and draw a line from each branch in kind(T) to the corre-
sponding branch in kind(T) ^ cut(1,2, deck_size=5), every branch in both
trees will be accounted for. This is the analogue of the bijection we constructed
in our earlier argument.
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To try with these in the playground, do

pgd> from frplib.examples.aces import between_aces, two_four_gaps, cut

You might also find it interesting to look at the code to see how these statistics
are defined.

This example shows us the power of the properties we’ve discovered about risk-
neutral prices. They let us compute the risk-neutral prices without explicitly con-
sidering every possible value. This also shows that the risk-neutral prices are often
easier to compute than the full Kinds.

Example 7.8. Let X be an FRP and let ψ, ϕ be two compatible statistics.
Consider the conditional Kind that maps a value a to the Kind of ϕ(X) | ψ(X) =

a. In other words, we observe one transformed value of X and we want to use
that information to predict a different transformed value of X. We will see how
to compute risk-neutral prices for this Kind and in the process discover a useful
general property of risk-neutral prices in the case where the two statistics are
related.

As a concrete example, consider
pgd> Z = frp(either(0,1))

pgd> X = Z >> conditional_kind({

...> 0: uniform(1, 2, 3) * either(4, 5),

...> 1: either(7, 9, 1/7) * either(4, 5)

...> })

pgd> X

An FRP of dimension 3 and size 10 with value <0, 3, 5>

pgd> kind(X)

,---- 1/12 ----- <0, 1, 4>

|---- 1/12 ----- <0, 1, 5>

|---- 1/12 ----- <0, 2, 4>

|---- 1/12 ----- <0, 2, 5>

|---- 1/12 ----- <0, 3, 4>

<> -|

|---- 1/12 ----- <0, 3, 5>
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|---- 1/32 ----- <1, 7, 4>

|---- 1/32 ----- <1, 7, 5>

|---- 7/32 ----- <1, 9, 4>

`---- 7/32 ----- <1, 9, 5>

pgd> psi = Max

pgd> phi = Max - Min

Here, the statistic ψ computes the maximum component value, and the statistic
φ computes the range of component values.

Suppose I want the risk neutral price for phi(X) having observed the fact
that psi(X) < 9. We might want to write this as as E(phi(X) | (phi < 9))

in the playground, but as mentioned earlier, this does not work because the
conditional constraint sees phi(X) but “forgets” X. We can apply phi after the
conditional constraint with

E( phi(X | (psi < 9)) )

but the @ operator gives us an equivalent expression that more closely tracks our
mathematical notation E(ϕ(X) | ψ(X) < 9):

pgd> E( phi @ X | (psi < 9) )

14/3

or if you like,

pgd> E( phi@(X) | (psi < 9))

14/3

Think of phi @ X (or equivalently phi@(X)), read “phi at X”, as evoking the idea
of evaluating a function at an argument. The only difference from phi(X) is that
it passes the value of X itself to the conditional constraint. This notation works
with Kinds too, as we will see.

Now, we want to find E(phi@X | (psi == a)) for each possible value a of
psi(X). For our concrete example this can be expressed as

E( (Max - Min) @ X | (Max == a) ).
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(The parentheses around Max == a are necessary.) This gives our prediction
of the range of X’s components given an observation of only the maximum
component of X. Try evaluating these in the playground; you should get prices
4, 5, 6, and 8 when a is 4, 5, 7, and 9, respectively.

Rather than just computing the risk-neutral prices, it makes sense to consider
the associated Kinds. In the playground, we can do

pgd> range_given_max = conditional_kind({

...> 4: phi @ kind(X) | (Max == 4),

...> 5: phi @ kind(X) | (Max == 5),

...> 7: phi @ kind(X) | (Max == 7),

...> 9: phi @ kind(X) | (Max == 9),

...> })

or with an “anonymous” function (denoted by lambda in Python):

pgd> range_given_max = conditional_kind(

...> lambda a: phi @ kind(X) | (Max == a)

...> )

We’ll stick with the first form for now. Print this conditional Kind (in the first
form) in the playground to see the results laid out nicely.

The E operator in the playground can compute all these risk-neutral prices
as a package:

pgd> f = E(range_given_max)

which returns a function from a to the risk neutral price we want.

pgd> [f(a) for a in [4, 5, 7, 9]]

[4, 5, 6, 8]

Nice.

The previous example illustrates another useful property of risk-neutral prices.
The statistic φ in the example has a special form: it can be expressed as an operation
on the value of ψ: φ(x) = ζ(x, ψ(x)) for the function ζ(x, y) = y − Min(x). Our
predictions about the value φ(X) given the knowledge that ψ(X) = a are thus the
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same as our predictions about a−Min(X) given that same knowledge. We can check
this in the playground:

pgd> E( (4 - Min)@X | (Max == 4) )

4

pgd> E( (Max - Min)@X | (Max == 4) )

4

Given that we know the value of ψ(X), we can substitute that value in to the
expression for ϕ(X) without changing our predictions.

This is one way to state the substitution property for risk-neutral prices. It
lets us use given information to simplify the expressions for the quantities we want
to predict.

Substitution Property. If X is an FRP and ψ,φ are compatible statistics where

φ(x) = ζ(x, ψ(x))

for some functions ζ, then

E(ζ(X,ψ(X)) | ψ(X) = a) = E(ζ(X, a) | ψ(X) = a). (7.26)

7.2 Computing Risk-Neutral Prices

Let us take stock of what we have so far:

1. A precise definition of risk-neutral prices that captures our “best” prediction of
an FRPs value and depends only on an FRP’s Kind.

2. A simple notation for the risk-neutral price of an FRP that extends to any
dimension.

3. A set of key properties derived from the logic of the definition that risk-neutral
prices must follow for any FRP.

These are powerful already to compute predictions, but it would be nice if there were
a direct way to express E(X) for an FRP/Kind. The good news is that there is and
that we can find it from the properties of risk-neutral prices!
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First, let’s consider an empirical to motivate the argument.

mkt> demo 10_000 with kind (<> 1 <-5> 4 <0> 3 <1> 2 <10>).

Activated 10000 FRPs with kind (<> 1 <-5> 4 <0> 3 <1> 2 <10>)

Summary of output values:

-5 1001 (10.01%)

0 4065 (40.65%)

1 3002 (30.02%)

10 1932 (19.32%)

mkt> demo 1_000_000 with kind (<> 1 <-5> 4 <0> 3 <1> 2 <10>).

Activated 10000 FRPs with kind (<> 1 <-5> 4 <0> 3 <1> 2 <10>)

Summary of output values:

-5 100466 (10.04%)

0 400263 (40.02%)

1 299594 (29.96%)

10 199677 (19.97%)

As we’ve seen earlier, the more FRPs we demo, the closer the relative frequencies in
this table will get to the relative weights in the Kind. Now, suppose we purchase these
FRPs for a price $c for a large batch, then our payoff per unit will be approximately

−5 · 0.1 + 0 · 0.4 + 1 · 0.3 + 10 · 0.2 = 1.8,

where the approximation gets better and better as we purchases a larger and larger
batch. If we choose a price c < 1.8, then for a sufficiently large batch, our payoff
per unit will be positive. So any c < 1.8 is an arbitrag price. If c > 1.8, then for a
sufficiently large batch, our payoff per unit will be negative, so no such price is an
arbitrage price. And indeed, the risk-neutral price for this Kind is 1.8.

Even simpler, do the same calculation for the Kind of an event:

⟨⟩
⟨0⟩1− p

⟨1⟩p

In a large demo FRPs with this Kind, a proportion of roughly p of them will payoff
$1, with that proportion tending closer to p as the number of FRPs in the demo
increases. If we pay more than $q per such FRP with q > p, then for any large
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enough demo with n FRPs, we are essentially certain to receive < $nq. So q is an
arbitrage price, and the risk-neutral price of this Kind is p.

If X is an FRP of size m with values v1, v2, . . . , vm and respective weights
w1, w2, . . . , wm, we can define statistics

ψi(x) = {x = vi}, for i ∈ [1 . .m] ,

that equals 1 when its input equals vi and 0 otherwise. Each transformed FRP ψi(X)

is an event – the event that X’s value is vi, and by the argument above

E(ψi(X)) =
wi

w1 + w2 + · · ·+ wm
. (7.27)

Define the statistic

ξ(x) = v1ψ1(x) + v2ψ2(x) + · · ·+ vmψm(x).

Notice that if we restrict attention to x ∈ {v1, . . . , vm}, then ξ(x) = x. Thus,

X = ξ(X) = v1ψ1(X) + v2ψ2(X) + · · ·+ vmψm(X).

So, by the Scaling and Additivity properties and (7.27)

E(X) = E (v1ψ1(X) + v2ψ2(X) + · · ·+ vmψm(X))

= E (v1ψ1(X)) +E (v2ψ2(X)) + · · ·+E (vmψm(X))

= v1E (ψ1(X)) + v2E (ψ2(X)) + · · ·+ vmE (ψm(X))

= v1
w1

w1 + w2 + · · ·+ wm
+ · · · vm

wm
w1 + w2 + · · ·+ wm

=
v1w1 + v2w2 + · · ·+ vmwm

w1 + w2 + · · ·+ wm
. (7.28)

The risk-neutral price is a weighted average of the FRP’s possible values using
the weights from its Kind . If the weights are from the canonical form of the Kind,
then the denominator in the last equality would be 1.

This gives us a formula for the risk-neutral price of an FRP. The formula applies
for FRPs of any dimension because we can scale and add tuples of common dimension.
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Definition 22. If X is an FRP of any dimension with size m and values v1, . . . , vm
and whose Kind has corresponding canonical weights p1, . . . , pm, then the risk-
neutral price of X is given by

E(X) = p1v1 + · · ·+ pmvm. (7.29)

If the Kind of X is in compact but not canonical form with corresponding weights
w1, . . . , wm, then equation 7.29 becomes

E(X) =
w1v1 + · · ·+ wdvd
w1 + · · ·+ wd

. (7.30)

Risk-neutral prices are thus weighted averages of the FRP’s values.

We tend to use p’s to indicate canonical weights (that sum to 1) and w’s when
this need not be true.

Example 7.9. If X has Kind described by (<> 1 <-1> 4 <1>),

⟨⟩
⟨−1⟩1

⟨1⟩4

what is E(X), E(X3), and E(X ⋆X)?
(Recall that X2 and X3 are “inlined” expressions for the transformed FRPs

by statistics ψ(x) = x2 and ϕ(x) = x3, respectively. See page 47.)
Applying equation 7.29 to each of these, we have

E(X) =
1

5
· (−1) +

4

5
· 1 =

3

5

E(X3) =
1

5
· (−1) +

4

5
· 1 =

3

5

E(X ⋆X) =
1

25
· ⟨−1,−1⟩+ 4

25
· ⟨−1, 1⟩

+
4

25
· ⟨1,−1⟩+ 16

25
· ⟨1, 1⟩

= ⟨3
5
,
3

5
⟩.

To see where the weights on the last two came from, compute the Kinds in the
playground. You can enter kind('(<> 1 <-1> 4 <1>)') to get the Kind of X.

Part of the “Measuring
Uncertainty” series.
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Example 7.10. I made two claims about the Kinds in Figure 44: (i) that the
three Kinds have the same risk-neutral price, and (ii) that many people would
not be indifferent between purchasing FRPs with these Kinds for $10 because
they differ in their risk of an adverse payoff. Let’s confirm them.

Claim (i). The first Kind is just a constant with value 10, so it’s risk-neutral
price is 10. The second Kind has values -1000 and 11 with weights 1 and 1010,
so its price is

−1000 · 1 + 11 · 1010
1011

=
10110

1011
= 10.

And the third Kind has values -10000 and 110 with weights 1 and 100.1, with
risk-neutral price

−10000 · 1 + 110 · 100.1
101.1

=
1011

101.1
= 10.

Claim (ii). To assess this, we will use the “variance shortcut” in equation (7.25)
to compute the variance (a measure of uncertainty from Examples 7.6 and 7.4).
If Z is an FRP with one of the three Kinds, then Var(Z) = E(Z2)− (E(Z))2 =

E(Z2)− 100. For the first Kind, which is constant, there is no uncertainty, so
the variance should be 0. And indeed: 102 − 100 = 0. If Z has the second Kind,

E(Z2) =
(−1000)2 · 1 + 112 · 1010

1011
= 1110,

so the variance is 1010. If Z has the third Kind,

E(Z2) =
(−10000)2 · 1 + 1102 · 100.1

101.1
= 1001100,

so the variance is 1001000. The uncertainty in the three Kinds increases as the
possible values become more spread.

Example 7.11.
In the revisited disease testing example on page 221, we computed the Kind

of an FRP whose outcome indicates whether someone has the disease when it is
known that they test positive, D | T == 1
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⟨⟩
⟨0⟩999/1094

⟨1⟩95/1094

where the eventsD and T represents the disease status and test result, respectively.
The FRP D | T = 1 is also an event and applying our formula, we have

E(D | T = 1) =
999

1094
· 0 + 95

1094
· 1 =

95

1094
≈ 0.0868.

This tells us that after observing a positive test result, our prediction is that the
patient has only about an 8.6% chance of having the disease.

This illustrates another common pattern. An an event66 acts as an indicator of 66Recall: FRP whose only
values are 0 and 1.whether something happens. Equation 7.29 shows that for any event I, E(I) is just

the canonical weight on its 1 branch.67 We interpret this quantity as a measure of how 67The discussion just after
Puzzle 51 also made good
use of this fact.

likely that event is to occur. In that sense, the disease-testing example is suprising in
that the disease remains unlikely after a positive test.

Example 7.12. Try these calculations; look at the weighted averages that you
get; and compare them to the risk-neutral prices that we compute. I’ve omitted
the results here.

pgd> coin = either(0, 1) # Model: 1 for heads, 0 for tails; equally weighted

pgd> flips10 = coin ** 10

pgd> num_heads_in_10 = Sum(flips10)

pgd> num_heads_in_10

pgd> E(num_heads_in_10)

pgd> E(num_heads_in_10 - 5) # We know this from Additivity and Constancy. Why?

We can see that the Kind’s canonical form shows us the weighs and values and
can confirm that the resulting weighted average is just the risk-neutral price.
Notice how the Properties we discovered earlier help us compute the last value
without actually hitting enter.

For a value like E(num_heads_in_10), there are two ways to think about
the computation. We can look at the Kind flips10 and average up the sum
of components for each value in that Kind with the given weights. Or, we can
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generate the new Kind num_heads_in_10 and take a direct weighted average.
Both ways give the same answer.

Let’s consider that in a smaller case. Look at both Kinds and do the
calculation from each tree:

pgd> coin ** 4

pgd> Sum(coin ** 4)

pgd> E(Sum(coin ** 4))

The reason these give the same answer is that we defined the transformed Kind
by passing the values through the statistic and combining equal weights.

Example 7.13. Continuing the previous example, let us ask at which of 16 flips
of our coin does the first heads occur.

pgd> flips16 = coin ** 16

We define a statistic that answers our question

pgd> @scalar_statistic(description='Index of first heads, or 1000')

...> def first_heads(x):

...> return 1 + index_of(1, x, not_found=999)

This has type n→ 1 for every n ∈ [1 . . 1000), and returns 1000 (arbitrarily) if a
heads did not occur.

pgd> when_heads = first_heads(flips16)

Look at the following Kinds:

pgd> when_heads

pgd> when_heads ^ IfThenElse(__ > 10, 1000, __)

pgd> (when_heads | (__ > 4)) ^ IfThenElse(__ == 1000, __, __ - 5)

What do each of these Kinds mean? How do they compare? Can you explain?
The first is the Kind of the number of flips to the first heads in 16 flips. The

second is a transform of the Kind when_heads, where we map every value bigger
than 10 to the arbitrary value 1000. We do this to ease comparison with the
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third Kind. The third is the Kind of an FRP that gives the number of 1’s (heads)
after having observed that there are no 1’s (heads) in the first four flips. The
statistic at the end shifts the values back to the scale of the first two Kinds.

Part of the “Measuring
Uncertainty” series.

Example 7.14 Entropy
Example 7.4 introduced the entropy of an FRP/Kind as a measure of uncertainty.
Unlike variance or mean absolute deviation, the entropy does not predict the
distance between value and risk-neutral price but rather predicts the size of the
weight on the FRP’s value. Here, we will use equation (7.29) to get an expression
for the entropy and develop a first interpretation of its meaning.

Let Z be an FRP with Kind K in canonical form. If z is a possible value
of Z, we write K(z) for the weight associated with branch z, treating K as a
function. Then, applying (7.29), we have

H(Z) = E(− lgK(Z))

=
∑

z∈values(Z)

K(z)(− lgK(z))

= −
∑

z∈values(Z)

K(z) lgK(z). (7.31)

The terms in the sum are well defined for any value of the weights: the function
⟨p⟩ 7→ −p lg p goes to 0 as p goes to 0 because − lg p grows much more slowly
than p shrinks. We can thus write H(Z) = −

∑
zK(z) lgK(z), taking K(z) = 0

for any z that is not a possible value of Z.
To start, assume that we have a large supply of balanced, independent coin

flips, i.e., events C[1], C[2], C[3], . . . with Kind F ⟨⟩
⟨0⟩1

2

⟨1⟩1
2

, where 0

represents tails and 1 represents heads. Think of a coin flip as a random bit, so
a single flip represents 1 bit of randomness.

Suppose we have another FRP X with Kind F . This has entropy

H(X) = −1

2
lg

1

2
− 1

2
lg

1

2
=

1

2
+

1

2
= 1.

Entropy is measured in bits, and this result tells us that X has 1 bit of “uncer-
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tainty.” One way to interpret this is that it takes 1 coin flip to simulate a clone
of X. For instance, we can take the value of C[1] as the value of our clone. This
has the same Kind as X.

Let Y be an FRP with Kind

⟨⟩

⟨0⟩1
4

⟨1⟩1
4

⟨2⟩1
4

⟨3⟩1
4

Then, H(Y ) = −1
4 · (−2)− 1

4 · (−2)− 1
4 · (−2)− 1

4 · (−2) = 2. We can simulate a
value of clone(Y ) with two coin flips, say C[2] and C[3], with the former’s value
determining the ones-bit of the simulated value and the latter’s value determining
the twos-bit of the simulated value: 2C[3] + C[2]. Two coin flips, two bits of
uncertainty.

The FRP Z with Kind

⟨⟩
⟨0⟩1

2

⟨1⟩1
4

⟨2⟩1
4

has entropy H(Z) = −1
2 · (−1) − 1

4 · (−2) − 1
4 · (−2) = 1.5 bits. So this Kind

embodies 1.5 bits of uncertainty.
But what does it mean to require 1.5 coin flips? Well, to simulate a value of

clone(Z), we can start with a coin flip C[4]. If its value is 0 (tails), we use 0 as
the simulated value and we are done, which requires 1 flip. If C[4]’s value is 1,
however, we pull out C[5] and give a simulated value of 1 or 2 as this flip has
value 0 (tails) or 1 (heads), which requires 2 flips. So half the time we need only
1 flip and half the time 2 flips – thus 1.5 flips.
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⟨⟩

⟨0⟩1
2

⟨1⟩1
4

⟨2⟩1
8

⟨3⟩1
16

⟨4⟩1
16

The entropy of an FRP with the Kind above is 2.375. Explain how this value
is derived, how you would use coin flips C[6], C[7], C[8], C[9] to simulate the value
of an FRP with this Kind, and how you might interpret the value of the entropy

You need not use all four
coin flips for every value.

in light of this.
The entropy function in the playground computes the entropy of a Kind or

FRP. For instance, try

pgd> entropy(uniform(1, 2, ..., 16))

One interpretation of entropy is that it measures how many bits of randomness
are used on average in generating the value of an FRP. We will see other, related
interpretations later.

7.3 Kinds, Risk-Neutral Prices, and Expectations

We derived arbitrage prices – and thus the risk-neutral price – for an FRP by
considering the an arbitrarily large collection of FRPs with the same Kind. It follows
that the risk-neutral price of an FRP is determined by its Kind not by the FRP’s
particular value.

All FRPs with the same Kind have the same risk-neutral price. The risk-neutral
price of an FRP is thus a property of the Kind and does not depend on any
particular FRPs produced value.

We can therefore talk about the risk-neutral price of an FRP or the risk-neutral price
of a Kind, as convenient.

As we have discussed, the risk-neutral price represents a prediction of an FRPs
value, a notion of “typical value” that is in some sense as close as possible to whatever
value is produced by the FRP. In some sense??
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Let X be a scalar FRP and consider a family of statistics ψc(x) = (x − c)2 for
every real number c. Define a function

L(c) = E(ψc(X)) = E
(
(X − c)2

)
,

where the second form is the inline expression of the statistic.68 This function gives 68See page 47.
the risk-neutral price of an FRP that represents the squared distance between the
value of X and the number c. Thus, L(c) measures for each c how “close” c is on
average to the value of X. The value that minimizes L(c) is E(X). To see this apply
the properties of risk-neutral prices:

L(c) = E
(
(X − c)2

)
= E

(
(X −E(X) +E(X)− c)2

)
1

= E
(
(X −E(X))2 + 2(E(X)− c)(X −E(X)) + (E(X)− c)2

)
2

= E
(
(X −E(X))2

)
+E (2(E(X)− c)(X −E(X))) +E

(
(E(X)− c)2

)
3

= E
(
(X −E(X))2

)
+ 2(E(X)− c)E(X −E(X)) + (E(X)− c)2 4

= E
(
(X −E(X))2

)
+ 2(E(X)− c)0 + (E(X)− c)2 5

= E
(
(X −E(X))2

)
+ (E(X)− c)2.

In 1 , we add 0 = E(X) − E(X) inside quadratic. In 2 , expand the quadratic in
terms of X −E(X) and E(X)− c. 3 applies Additivity. 4 applies Scaling on the
middle term with constant 2(E(X)− c) and Constancy on the last term. In 5 , the
middle term cancels by Constancy, Scaling, and Additivity because

E (X −E(X)) = E(X)−E(E(X)) = E(X)−E(X) = 0.

Finally, we are left with two terms: the first does not depend on c and the second is a
simple quadratic in c minimized at c = E(X). So, c = E(X) minimizes L(c).

If X is a scalar FRP, its risk-neutral price E(X) is the number that minimizes the
predicted squared prediction error

⟨c⟩ 7→ E
(
(X − c)2

)
.
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The minimum value at c = E(X) is called the variance of X, denoted Var(X), as
discussed in Examples 7.4 and 7.6.

This is the sense in which the risk-neutral price is an optimal prediction of an
FRP’s value. It is a “typical value” that is on average as close as possible to the value
produced by the FRP. As we proceed, we will see several different interpretations of
risk-neutral prices, and we will emphasize the idea is that risk-neutral prices serve
as a prediction for the FRP’s value. It is useful – and traditional – to use a more
general name for the risk-neutral price that emphasizes this predictive interpretation.

Definition 23. If X is an FRP (of any dimension), we call its risk-neutral price
E(X) the expectation of X.

We often write expectations in terms of FRPs, but it is fine to refer to the
expectation of a Kind because E(X) is a property of kind(X) and does not depend
on X’s specific value.

Note that when we apply a conditional constraint to an FRP X, we get another
FRP X | c with expectation E(X | c) and Kind kind(X | c) = kind(X) | c. Because
X = X | ⊤, E(X) is the same as E(X | ⊤).

Puzzle 49. Given that we observe X to have value 4, what is its expectation? We
would write this with the conditional constraint as E(X | X = 4).

We have seen that the expectation of an FRP is determined by the FRP’s Kind.
It turns out the Kind of an FRP is determined by expectations of all transforms of
the FRP by compatible statistics.

Property 24. Two FRPs X and Y have the same Kind if and only if they have
the same set of possible values and

E(ψ(X)) = E(ψ(Y )) (7.32)

for every compatible statistic ψ.

This tells us that, in aggregate, the risk-neutral prices of transformed FRPs/Kinds
contain all the information needed to determine the Kind of the original FRP. The
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word “determine” here does not necessarily mean that we can compute the Kind
directly from this information (though we often can) but rather that any computation,
analysis, or prediction that depends only on the Kind will be the same for any FRP
with that Kind. This needs a little unpacking.

In one direction, Property 24 says that two FRPs with the same Kind yield equal
risk-neutral prices when transformed by the same statistic. The other direction seems
less useful because it requires that the risk-neutral prices of transformed FRPs be the
same for all compatible statistics. (It’s hard to compute the expectation in practice
for all compatible statistics.) Fortunately, this direction also holds with smaller
collections of statistics as long as the collection is sufficiently rich. In other words,
we can “determine” the Kind of an FRP with the risk-neutral prices of a well-chosen
collection of statistics.

Definition 25. A collection of statistics S is said to determine the Kind of
compatible FRPs if for any FRPs X,Y that are compatible with all the statistics
in S

E(ψ(X)) = E(ψ(Y )) for all ψ ∈ S implies kind(Y ) = kind(X). (7.33)

That is, if X and Y have the same risk-neutral price when transformed by all
statistics in S, they have the same risk-neutral price when transformed by all
compatible statistics.

Section 2 emphasized that statistics often represent questions whose answers we
would like to predict. It is useful then to view a collection of statistics as a set of
questions we might want to answer. These determine the Kind of an FRP if the
predicted answer to these questions uniquely specify the predicted answers to all
questions we might ask.

This requirement is not trivial. For S = {id}, the singleton collection containing
only the identity function, this would require that E(X) = E(Y ) implied that X and
Y had the same Kind, but that is not true, as we saw for instance in Figure 44.

Puzzle 50. For S =
{
id,

(
2
)}

, find two distinct Kinds that give the same
expectation for all statitistics in S.
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As a positive example, let E be the collection of statistics of type 1 → 1 that
indicate a specific value:

E =
{
{ = c}

∣∣ c is a real number
}
.

(Recall that the indicator { = c} {c} is the function that returns 1 when its argument
equals c and 0 otherwise. See F.4 and F.3.) For a scalar FRP X, the transformed
FRPs by the statistics in E are all the events {X = c} for real number c. If c is
not a possible value of X, then E({X = c}) = 0. If c is a possible value of X, then
E({X = c}) is the canonical weight on value ⟨c⟩ in kind(X). Another scalar FRP Y

with E({Y = c}) = E({X = c}) for all c must have the same possible values and the
same weights – and so the same Kind. Thus, E determines the Kind of any scalar
FRP.

Another example is the collection of indicator statistics F of type 1 → 1

F =
{
{ ≤ c}

∣∣ c is a real number
}
.

For a scalar FRP X, E({X ≤ c}) adds up the weight for all values of X that are at
most c. So by varying c, we can find X’s value (where the expectation jumps) and
the weight at that value (the size of the jump). So if E({X ≤ c}) = E({Y ≤ c}) for
all c, X and Y must have the same Kind, and F determines the Kind of any scalar
FRP.

Let T be the set of three statistics
(
1
2( − 1)( − 2)

)
,
(
−1

2 ( − 2)
)
, and

(
1
2 ( − 1)

)
restricted to the domain {0, 1, 2}. For any FRP X with possible values {0, 1, 2}, the
expectations E(ψ(X)) for ψ ∈ T give the canonical weights on 0, 1, and 2. The
statistics in T thus determine the Kind of any FRPs with only those three possible
values.

Puzzle 51. If Z is an FRP of dimension 2, the collection proj1, proj2 does not
determine the Kind of Z. Find an example to demonstrate this.

Specifically, you need another FRP U with the same possible values as Z
where E(proj1(Z) = E(proj1(U)) and E(proj2(Z) = E(proj2(U)) but Z and U have
different Kinds.

Looking back to Figure 13, a useful and powerful perspective on how we use
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probability theory in practice is that we measure some data from whatever system
we are studying and try to predict the answers to a range of questions about those
data. For each question, we want a predicted answer.

If X is an FRP, like the Data FRP in the Figure, we can define an operator DX

that does exactly that: maps questions to predicted answers.

DX(ψ) = E(ψ(X)). (7.34)

This takes as input a statistic that is compatible with X – that is, a question we can
ask about our data – and returns as output a predicted answer to that question.

Property 24 tells us that the risk-neutral prices E(ψ(X)), varying over compatible
statistics ψ, determine the Kind of X. So DX embodies the same information as
kind(X) in a different form. We can say that our knowledge about some random
quantity is reflected by how well we can make predictions about the quantity. Both
kind(X) and DX thus fully describe what we know about X’s value. As the sys-
tem evolves, we may learn more information about X’s value (expressed through
conditional constraints), and our knowledge changes (to kind(X | C) and DX|C for
conditional constraint C).

The D operator is available in the playground as D_. It takes an FRP or Kind as
input and returns a function mapping every (compatible) statistic to its corresponding
prediction. If X is an FRP, D_(X) is a function that acts on statistics psi to give

D_(X)(psi) = E(psi(X)).

For example,

pgd> X = frp(uniform(1, 2, 3) * uniform(1, 2, 3))

pgd> f = D_(X)

pgd> f(Sum) # == E(Sum(X))

4

pgd> f(Max) # == E(Max(X))

22/9

pgd> f(Min) # == E(Min(X))

14/9
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7.4 Probabilities are the Expectations of Events

In practice, we are often interested in whether particular events occur. Because an
event is an FRP with possible values 0 and 1, the Ordering property (7.11) tells
us that the risk-neutral price of an event is a number between 0 and 1. This is a
prediction of how likely the event is to occur, increasing from an essential certainty
that it will not occur at 0 to an essential certainty that it will occur at 1. with value
0 meaning that it will.

Thus for any event V , the expectation E(V ) satisfies 0 ≤ E(V ) ≤ 1 and measures
in some sense our confidence that the event V will occur. Because we use such
expectations so often, we give them a distinctive name.

Definition 26. A probability is the expectation of an event. It is a number in
[0 1] that measures our prediction of whether the event will occur.

If V is an event, E(V ) is called the probability of V . Events with higher
probability are said to be more likely than events with lower probability.

Probabilities are nothing new. They are just expectations – risk-neutral prices –
for FRPs that can have particular values. They inherit all the properties of general
expectations and are computed according to the same rules.

If X is an FRP and if v is a possible value of X, then {X = v} is the event that
occurs when X produces value v and does not occur if it produces another value.
The Kind of {X = v} looks like

⟨⟩
⟨0⟩1− p

⟨1⟩p

where p is the canonical weight on v in kind(X). Applying equation (7.29), we see
that E({X = v}) = p. The canonical weight on value v in the Kind kind(X)

is the probability that X has value v.
Two events V and W are complements if V +W = 1. This means that exactly

one of the two events must occur. If V occurs, then we know W does not, and vice
versa. Applying Additivity (E(V +W ) = E(V ) +E(W )) and Constancy (E(1) = 1),
we can take expectations on both sides of this equation to find

E(V ) +E(W ) = 1.

317



Complementary events have probabilities that sum to 1.
We frequently specify events with Boolean expressions in Iverson braces,69 like 69See page 200.

{X = 4}, {Y > 10}, and {U = 4 ∧ 0 ≤ V ≤ 10}. When taking the expectations, we
typically put the FRP in parentheses after the E, like E({X = 4}), E({Y > 10}),
and E({U = 4 ∧ 0 ≤ V ≤ 10}). However, in this specific case where the FRP is a
single event in Iverson braces, the extra parentheses may seem superfluous, and we
treat them as optional. So E{X = 4} and E({X = 4}) mean the same thing.

Notational Option. When taking the expectation of a single event in Iverson
braces, the parentheses around the argument to E are optional.

Note that this convention does not apply to FRPs that are expressed as multiple
terms, such as X · {X > 2} or {Y = 2}+ {Z < 4}, we keep the parentheses.

After reading this section you should be able to:

• Define an arbitrage price and the risk-neutral price for a scalar FRP.

• Use the market to estimate risk-neutral prices for simple FRPs.

• Use the definitions to guess at some basic properties of risk-neutral prices.

• Define the expectation of an n-dimensional FRP / Kind for n > 1.

• Explain the Constancy, Scaling, Ordering, and Additivity properties of
expectations.

• Describe various measures of uncertainty.

• Explain the formula for expectations from a Kind.

• Describe briefly why the expectation depends only on the Kind and not
on the FRPs value.

• Describe how the expectations of transformed FRPs determine a Kind.

• Define probabilities in terms of expectations.

Checkpoints
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8 Patterns, Predictions, and Practice

In this section, we solve a variety of examples that shows the power of the tools
we have developed. Throughout these examples, we see that four basic operations
are combined to produce all the calculations we need. These are

• Transforming with Statistics

• Building with Mixtures

• Constraining with Conditionals

• Predicting with Expectations

Several patterns in the use of these four operations arise frequently: marginal-
ization (projecting onto selected components), conditioning (the method of
hypotheticals), Bayes’s Rule (reversing the conditionals), and solving various
iterative and recursive equations.

As we move forward to develop the mathematical parts of the theory, it
will be helpful to see how these four rather mundane operations underlie all of
our analysis, even in the more abstract settings that deal with infinities and
infinitesimals.

Key Take Aways

In this section, we will use the frplib playground to tackle a wide variety of example
problems that synthesize the ideas of the previous sections. These problems illustrate
both essential techniques of probability theory and common patterns of analysis. Focus
here on identifying the Big 3+1 operations – transformations, mixtures, conditionals,
and expectation – and studying how they are combined to solve problems. All of the
complex analyses we do and will do are built from these basic operations, and the
commentary on the examples will attempt to highlight this.

The section is loosely divided into subsections emphasizing particular techniques.
In the example playground code for this section, the prompts (like pgd> and ...>)
are sometimes omitted from the display to save space unless there is output to show.
You can load each example’s code into the playground using the name in lower case
with no punctuation and _ instead of space, but only up through the first three words,
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e.g., “from frplib.examples.six_of_one import *”. You are encouraged to follow
along with the examples in the playground as you read.

By understanding how the big 3+1 operate – transforming values, erasing branches,
combining stages, taking weighted averages – we can learn to recognize and exploit
these operations even in more complicated calculations and contexts.

8.1 Types and Operations

The examples in the following subsections make heavy use of the frplib playground
to show both how we model the situation at hand and how we use the Big 3+1 to
understand and analyze that model. To make that easier, it is helpful to keep in mind
the types of the various entities we are working with. A type is a set of objects with
a set of basic operations on those objects. Examples include the primitive types that
we use regularly: natural numbers N = [0 . .), integers Z, real numbers R, Booleans
B = {⊥,⊤}, and the unit type U = {⟨⟩}, which contains a single object.70 70See F.1 for more on all

these sets.There are four basic types in the playground:

• A Quantity is a number or a symbolic value representing a number.

• A Value is a tuple whose components are of type Quantity . We elide the
distinction between a tuple of dimension 1 and the scalar quantity it contains.
Booleans are represented as scalars with 0 for false (⊥) and 1 for true (⊤).

• A Kind is a tree in canonical form with weights that are positive quantities
and leaf nodes of type Value , where all leaves are distinct and have the same
dimension.

• An FRP is a device that produces a single Value when activated that is fixed
for all time.

For the last three types, we add a subscript (like Valued) to restrict the type to
objects of dimension d. The type Value0 is just another name for the unit type U.

We specify function types as a b as the set of functions that take input of type
a and return output of type b. We write f : a b to indicate that function f has
type a b. A function c : U b from the unit type to some other type b is for all
practical purposes equivalent to the object c(⟨⟩) of type b, and we treat it as such.
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For a binary operator op, we write a op b c to indicate that the operator takes
data of type a on the left and type b on the right and produces a result of type c.

We define three primary function types in the playground. For instance, a statistic
is a function that takes and returns a Value . Broadly speaking these are:

Statistic : Value Value

ConditionalKind : Value Kind

ConditionalFRP : Value FRP

but more precisely, we specify for each its codimension c and dimension d:

Statisticc,d : Valuec Valued

ConditionalKindc,d : Valuec Kindd

ConditionalFRPc,d : Valuec FRPd

Objects of all three types may in practice be defined on strict subsets of Valuec.
Condition is a sub-type of Statistic of statistics returning Boolean values.

Recall our observation that a Kind is just a conditional Kind of codimension 0
and similarly an FRP is just a conditional FRP of codimension 0. This relates to
the comment earlier that a function from the unit type Value0 to some other type
b is equivalent to an object of type b. So we treat Kindd as equivalent to the type
ConditionalKind0,d and FRPd as equivalent to the type ConditionalFRP0,d.

We have seen several combinators that can operate on Kinds or FRPs:

• Kindm ⋆ Kindn Kindmn

FRPm ⋆ FRPn FRPmn

• Kindm ⋆⋆ NaturalNumbern Kindmn

FRPm ⋆⋆ NaturalNumbern FRPmn

• ConditionalKindm,n ▷ ConditionalKindn,r → ConditionalKindm,r

ConditionalFRPm,n ▷ ConditionalFRPn,r → ConditionalFRPm,r

• Kind | Condition Kind

FRP | Condition FRP

• Kindm ^ Statisticm,n Kindn

FRPm ^ Statisticm,n FRPn
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• Statisticm,n(Kindm) Kindn

Statisticm,n(FRPm) FRPn

• Statisticm,n @ Kindm Kindn

Statisticm,n @ FRPm FRPn

• ConditionalKindm,n // Kindm Kindn

ConditionalFRPm,n // FRPm FRPn

Although we write stat(k) or stat(X) for a statistic stat and a Kind k or FRP X,
we think of this as an operator (equivalent to ^), not as evaluating the statistic with
an argument. A statistic does not take a Kind or FRP as input, only a Value .

Finally, the playground allows combining statistics with simple expressions to
produce new statistics.

Statistic+ Statistic Statistic

Statistic+ Value Statistic

. . .

and similarly with other arithmetic and comparison operators
(e.g., -, *, /, **, %, ==, <=).

Keeping this firmly in mind, we are ready to dive in to some examples.

8.2 Simple Finite Random Processes

In this subsection, we look at random processes with a fixed, finite number of stages.
Sometimes these stages interact, sometimes they do not. As you consider how to
model these examples, look for the parts of the process that are easier to understand
in isolation. If those parts require some knowledge of earlier stages, that’s OK – it’s
why we have mixtures. That suggests defining a conditional Kind/FRP. If we can
model a part of the process independently of any other stage, then we can combine it
with other parts with an independent mixture. Throughout, we think hard about
how to represent the quantities we are modeling. This sometimes involves assigning
meaning to arbitrary numbers, and it sometimes requires us to think about how we
describe the state of the system. Statistics are useful for building an initial state and
for transforming between different representations.
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Example 8.1 Doubled Cards
A deck of 100 cards is labeled 1, 2, . . . , 100. You choose two cards from the deck
in succession. The deck is well shuffled, so you can assume that every pair of
cards has equal weight to be selected.

Define two FRPs:
• D is the event that the second card’s number is exactly twice the first

card’s.
• T is the event that either card’s number is twice the other.

Find the expectations E(D) and E(T ).
First, becauseD and T are both events, their expectations are the probabilities

that the events occur. If D occurs, then by definition, T occurs as well, so the
value produced by D is always ≤ the value produced by T . We write this as
D ≤ T , and by the ordering property E(D) ≤ E(T ). The event T is more likely
to occur.

Second, we can recognize a mixture structure here: we first draw a card from
the deck and then draw a second card from the deck that is missing the first
card. At both stages, all cards remaining in the deck are selected with equal
weight. We define draw as the Kind of the mixture FRP that represents the pair
of card numbers drawn from the deck:

first_card = uniform(1, 2, ..., 100)

all_cards = first_card.values

second_card = conditional_kind({

first: uniform(all_cards - {first}) for first in all_cards

})

draw = first_card >> second_card

P = frp(draw)

Here, first_card.values is the set of possible values for the first card and
{first} is the singleton set with just the “current” card; the difference removes
the latter from the former. The Kind draw has dimension 2 and size 9900; its
values are pairs of distinct card numbers. Because first_card and each Kind in
second_card are uniform, the mixture Kind has the same weight, 1/9900, on
every branch. You can see this by looking at draw in the playground, though
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the large size makes that less than convenient.
P is the FRP representing the drawn pair of cards, and D and T are transforms

P by two statistics:

is_card_doubled = Proj[2] == 2 * Proj[1]

is_either_doubled = Or(is_card_doubled, Proj[1] == 2 * Proj[2])

D = is_card_doubled(P)

T = is_either_doubled(T)

The first just checks if the second component of a value is equal to twice the first
component, and the second checks that and in the reverse direction.

The Kinds D and T are transforms of draw by these statistics:

D_kind = is_card_doubled(draw) # same as kind(D)

T_kind = is_either_doubled(raw) # same as kind(T)

Think about how we find kind(D) by transforming draw. Values with doubled
cards map to ⟨1⟩; the rest map to ⟨0⟩. The weights in each branch of kind(D) add
up the weights for all branches of draw with the corresponding value. Because all
the weights of draw equal 1/9900, the weights are (9900− b1)/9900 and b1/9900
where b1 is the number of draw’s branches for which is_card_doubled equals
⟨1⟩. As D is an event, E(D) equals the weight on ⟨1⟩ in kind(D). A similar
approach works for T . Looking at the results:

pgd> D_kind

,---- 0.99495 ------ 0

<> -|

`---- 0.0050505 ---- 1

pgd> E(D_kind) # == E(D)

1/198

pgd> E(T_kind) # == E(T)

1/99

pgd> FRP.sample(10_000, D)

+--------+-------+------------+
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| Values | Count | Proportion |

+========+=======+============+

| 0 | 9946 | 99.46% |

| 1 | 54 | 0.54% |

+--------+-------+------------+

So, for 50 of the possible pairs, is_card_doubled is true and for 100 of the pairs,
is_either_doubled is true. We can reason that if the first card is bigger than
50, the second card cannot double it, and if it is in [1 . . 50] only 1 out of the 99
remaining cards that will make D occur. T occurs for these 50 possibilities and
also for the 50 pairs the second card is in [1 . . 50] and the first card doubles the
first. The probabilities of these events are thus 1/198 and 1/99, and the demo of
FRPs with Kind matching D is close to that proportion.

Our questions are answered, but it is worth looking at a few playground
variations. First, we defined the conditional Kind second_card using a dictionary,
but we could also use a function:

second_card = conditional_kind(

lambda first: uniform(all_cards - {first}),

codim=1

)

The lambda first defines a Python anonymous function that takes a single argu-
ment first, a value of first_card. The codim=1 argument to conditional_kind
tells it to expect a function of a scalar argument, so first can be a number.

Second, applying our reasoning in advance, we could define the conditional
Kind second_card by

conditional_kind(

lambda first: either(0, 1, 98) if c <= 50 else constant(0),

codim=1

)

Finally, there is a built-in factory in the playground that creates draw directly

ordered_samples(2, irange(1, 100))
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This example illustrates a common pattern: the transformed mixture. We describe
a system in stages, because the stages are usually simpler to describe and specify. We
use mixtures to combine the stages into the outcome of the process. And then we
extract an answer to our question from the full outcome through transformation by a
statistic. (See Figure 13.)

Example 8.2 Hunter’s Success
Eight hunters each get one shot at a target moving quickly through the woods.
All the hunters are “in the zone,” and so their shots are unaffected by the actions
of their friends. The hunters have different levels of experience and skill, so for
i ∈ [0 . . 8), the event Hi that hunter i hits the target has Kind

⟨⟩
⟨0⟩1− hi

⟨1⟩hi

Let the FRP H represent the number of hunters who hit the target. Find the
Kind of H and E(H), your prediction of the number who hit the target.
Also find E({H > c}) for each c ∈ {0, 2, 4}, the probability that more
than c hunters get a hit.

Here, we will show two approaches. In the first, we pick specific weights for
each hunter and solve the problem for that setting of the weights. In the second,
we allow the weights to be variables (symbolic quantities) and solve the problem
generally, obtaining answers from this solution for various settings of the weights.

Approach #1 Specific Weights. We start by assuming one expert
hunter, one good hunter, and six novices.

h = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.7, 0.9]

hits = [weighted_as(0, 1, weights=[1 - w, w]) for w in h]

For i ∈ [0 . . 8), h[i] holds the probability hi and hits[i] equals kind(Hi). Since
all the hunters take independent shots, the number of hits is just the sum of the
independent mixture of these:
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all_hits = independent_mixture(hits)

number_of_hits = Sum(all_hits)

The independent_mixture function returns the independent mixture of all the
Kinds in hits, which equal to hits[0] * hits[1] * hits[2] * hits[3] *

hits[4] * hits[5] * hits[6] * hits[7].
We apply suitable statistics and take expectations to answer our questions:

pgd> number_of_hits

,---- 0.015943 ------- 0

|---- 0.19132 -------- 1

|---- 0.45822 -------- 2

|---- 0.25710 -------- 3

<> -+---- 0.066995 ------- 4

|---- 0.0096001 ------ 5

|---- 0.00078384 ----- 6

|---- 0.000034360 ---- 7

`---- 6.3000E-7 ------ 8

pgd> E(number_of_hits)

2.2

pgd> E(number_of_hits ^ (__ > 4))

0.0104

pgd> E(number_of_hits ^ (__ > 2))

0.3345

pgd> E(number_of_hits ^ (__ > 0))

0.9841

The probability of at least one hunter getting a hit is very high; the probability
of more than half getting a hit is very low. We predict 2.2 hits, though the
probability of getting at least that many hits is substantially less than 1/2. This
happens because there is a large probability of getting 1, 2, or 3 hits.
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Approach #2 Symbolic Weights. Next, we will mimic this analysis
but more generally, letting h contain an unspecified symbolic quantity for each
hunter’s skill level. We can then define multiple different “profiles” of hunters’
skills (e.g., all the same, one expert) and solve our problem for each profile.

h = symbols('h_0 ... h_7')

hits = [weighted_as(0, 1, weights=[1 - w, w]) for w in h]

all_50_50 = substitute_with(dict(h_0=0.5, h_1=0.5, h_2=0.5, h_3=0.5,

h_4=0.5, h_5=0.5, h_6=0.5, h_7=0.5))

one_expert = substitute_with(dict(h_0=0.1, h_1=0.1, h_2=0.1, h_3=0.1,

h_4=0.1, h_5=0.1, h_6=0.1, h_7=0.9))

expert_plus = substitute_with(dict(h_0=0.1, h_1=0.1, h_2=0.1, h_3=0.1,

h_4=0.1, h_5=0.1, h_6=0.7, h_7=0.9))

some_elders = substitute_with(dict(h_0=0.1, h_1=0.1, h_2=0.1, h_3=0.1,

h_4=0.1, h_5=0.75, h_6=0.75, h_7=0.75))

random_skill = substitute_with({str(w): random() for w in h})

p = symbol('p')

all_equal = substitute_with(dict(h_0=p, h_1=p, h_2=p, h_3=p,

h_4=p, h_5=p, h_6=p, h_7=p))

The elements of h are “symbols” h_0, h_1, . . ., h_7 which can have numbers
substituted for them after we do the calculations. The other variables like
all_equal hold functions that represent hunter profiles; each function substitute
the specific numeric values for the symbols in an expression.

Now, we follow the pattern before to get symbolic results:

all_hits = independent_mixture(hits)

number_of_hits = Sum(all_hits)

We can compute the answers to our questions symbolically, then substitute each
profile after the fact.
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exp_hits = E(number_of_hits)

gt4_hits = E(number_of_hits ^ (__ > 4))

gt2_hits = E(number_of_hits ^ (__ > 2))

gt0_hits = E(number_of_hits ^ (__ > 0))

The first of these gives us particular insight; it shows us

pgd> exp_hits

h_0 + h_1 + h_2 + h_3 + h_4 + h_5 + h_6 + h_7.

The expected number of hits is just the sum of the probabilities that each hunter
hits the target. This holds for every profile by the Additivity property and
because the expectation of an independent mixture is the tuple of the component
expectations, equation (7.16):

E(H) = E(Sum(H0 ⋆ H1 ⋆ · · · ⋆ H7))

= Sum(E(H0 ⋆ H1 ⋆ · · · ⋆ H7))

= Sum(⟨E(H0),E(H1), . . . ,E(H7)⟩)

= E(H0) +E(H1) + · · ·+E(H7).

The expressions for gt4_hits and so forth are much more complicated and harder
to parse. But we can recover what we did about by substituting the values from
the profiles defined earlier. For example, the profile expert_plus matches what
we used in Approach #1.

pgd> expert_plus(exp_hits)

11/5

pgd> expert_plus(gt4_hits)

0.01041895

pgd> expert_plus(gt2_hits)

0.33451777

pgd> expert_plus(gt0_hits)

0.98405677

And as expected, we get the same answers earlier.
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For profile one_expert, we get somewhat different results

pgd> one_expert(exp_hits)

8/5

pgd> one_expert(gt4_hits)

0.00247285

pgd> one_expert(gt2_hits)

0.13729411

pgd> one_expert(gt0_hits)

0.95217031

Try computing the results for the other profiles. The one profile that is different
is all_equal, which replaces eight different symbol for the common symbol ’p’.
Look at

pgd> all_equal(exp_hits)

8 p

pgd> all_equal(gt4_hits)

56 p^5 + -1.4E+2 p^6 + 1.2E+2 p^7 + -35 p^8

pgd> all_equal(gt2_hits)

56 p^3 + -2.1E+2 p^4 + 336 p^5 + -2.8E+2 p^6 + 1.2E+2 p^7 + -21 p^8

pgd> all_equal(gt0_hits)

8 p + -28 p^2 + 56 p^3 + -7E+1 p^4 + 56 p^5 + -28 p^6 + 8 p^7 + -1 p^8

and the results are still complex but give us more insight. In fact, if we compare
exp_hits and all_equal(exp_hits) we see that latter gives 8 p. Had there
been n hunters instead of eight, we can surmise that the expected number of hits
would be n p. The probabilities gt4_hits et cetera are also simpler polynomials
in p in this case, though it takes a bit of simplification to make them digestible
(as we will see later on). Note, however, that E({H > j}) has all powers of p
from j + 1 to 8.

We can ask one more question. The expected number of hits gives our
prediction for the number of hits, but does not tell us much about the consistency
of these results. Consider the profiles all_50_50 and
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hot_and_cold = substitute_with(dict(h_0=0.05, h_1=0.05, h_2=0.05, h_3=0.05,

h_4=0.95, h_5=0.95, h_6=0.95, h_7=0.95))

Both profiles have 4 as the expected number of hits, but which would be more
consistent if the hunters tried on target after target? We define a statistic to
answer that question, which gives us the distance between number of hits and 4:

@statistic(codim=1)

def spread(num_hits):

return abs(num_hits - 4)

all_50_50( E(spread(number_of_hits)) )

hot_and_cold( E(spread(number_of_hits)) )

The expectation of spread(number_of_hits) just computes the MAD measure
of uncertainty from Example 7.4; it predicts how far H will be from E(H). The
first profile gives about 1.09 and the second 0.33. Thus, our prediction is that
if we repeat the experiment many times, the number of hits will “typically” be
about 4 ± 1.09 if all hunters are 50-50 shots but 4 ± 0.33 if half are excellent
shots and the others terrible. The consistency of the outcome is stronger in the
second case; put another way, we see more “spread” in the values on repetition
in the first case.

The pattern in the previous example is that we collect several independent random
outcomes and apply a statistic to answer a question. We took the independent mixture
of all eight hunters’ attempts and asked a question about those outcomes. (How
many hit? Did more than 4 hit?) This emphasizes the role that statistics play in our
analysis, which is to express questions that we ask of our data. The next example is
a similar instance of this pattern, except it does not entail an independent mixture.

Example 8.3 Six of One, Equilateral of the Other
On a regular hexagon with maximum width 2, we choose three distinct vertices
randomly so that all subsets of 3 vertices have equal weight.

Define two FRPs:
• A represents the area of the triangle formed by connecting the three vertices.
• T is the event that the triangle formed by the three vertices is equilateral.
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Find the Kind of T and E(T ), and find the Kind of A and E(A).

Imagine that we have labeled the vertices of the hexagon 1, 2, . . . , 6 in the
clockwise direction from one of the vertices (chosen arbitrarily). Picking three
distinct vertices means picking a subset of size three from the set {1, 2, . . . , 6}.
There are

(
6
3

)
= 20 such subsets.

In the playground, we can use the Kind factory without_replacement to
find the Kind of a randomly selected subsets where all subsets have equal weight.

vertices = without_replacement(3, irange(1, 6))

With size(vertices), we can check that there are 20 possible values. These
tuples of indices are in the original order (like ⟨1, 2, 4⟩, ⟨2, 5, 6⟩), so we have an
equilateral triangle if there is a gap of exactly 2 between between successive
numbers in that list. The built-in statistic Diff computes the differences between
successive components in its input. So:

is_equilateral = vertices ^ (Diff == (2, 2))

This is the Kind of T , and we could define T = frp(is_equilateral). The
transformed Kind combines all branches (out of 20) in vertices with the same
value of the statistic (Diff == (2, 2)), adding their weights. You might find
it useful to look at vertices and is_equilateral in the playground.

pgd> E(is_equilateral)

1/10

yielding E(T ) = 1/10. There are two choices, ⟨1, 3, 5⟩, ⟨2, 4, 6⟩, that satisfy the
required condition. To see this, enter

vertices ^ Fork(Id, Diff == (2, 2))

which will show all the values of vertices marked with an extra component that
is 1 when the condition is true.

To analyze A, it will help to use Heron’s formula: the area of a triangle
with side lengths a, b, c is

√
s(s− a)(s− b)(s− c), where s = (a+ b+ c)/2 is the
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“semi-perimeter.” This suggests a statistic which takes the three side lengths of
the triangle:

@statistic

def heron(a, b, c):

s = (a + b + c) / 2

return Sqrt(s * (s - a) * (s - b) * (s - c))

Now we need to find the side lengths of the triangle, which will come from another
statistic.

If the hexagon has width 2, it has side length 1. So, if we pick two vertices
that are separated by 1 or 5 in our label, the distance is 1; by 2 or 4, the distance
is

√
3; and by 3, the distance is 2.

vertex_dists = [0, 1, numeric_sqrt(3), 2, numeric_sqrt(3), 1]

@statistic

def side_lengths(vertices):

return [vertex_dists[numeric_abs(vertices[i] - vertices[(i - 1) % 3])]

for i in range(3)]

where the (i - 1) % 3 picks the last index when i == 0. Putting this together,
we apply both statistics and add a clean operation to eliminate round-off error
in the calculations, yielding the Kind of A:

pgd> clean( vertices ^ side_lengths ^ heron )

,---- 0.30 ---- 0.43301

<> -+---- 0.6 ----- 0.86603

`---- 0.1 ----- 1.2990

with exact values
√
3/4,

√
3/2, 3

√
3/4. Equation (7.29) gives

E(A) = 0.3

√
3

4
+ 0.6

√
3

2
+ 0.1

3
√
3

4
= 0.45

√
3.

You can confirm this in the playground.
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Example 8.4 Tournament
Eight players are ranked and play in an elimination tournament. In the first
round, player 1 (top ranked) is matched again player 8 (bottom ranked), 2 against
7, 3 against 6, and 4 against 5. The winner of each match advances to the next
round with 1 or 8 against 4 or 5 and 2 or 7 against 3 or 6. And so on until only
one player remains.

In any given match, if players of rank r1 ≤ r2 are competing, the better
seeded player (of rank r1) is 1.15r2−r1 times more likely to win.

Find the Kind of the rank of the player who wins the tournament and its
expectation. Find the probability that a player from the bottom half of the
rankings wins the tournament.

We will model this situation by keeping track of the players (by rank) who
are still in the tournament. We will arrange their numbers in a tuple such that,
at each stage in the tournament, each pair of players who are matched will be
adjacent in the tuple. Thus, for the first round, we have

first_round = constant(1, 8, 4, 5, 2, 7, 3, 6)

We can see that 1 and 8 are matched, as are 4 and 5, 2 and 7, and 3 and 6.
Moreover, who ever wins in the first round will be next to the player they are
matched against in the next round. So, 1 or 8 will play 4 or 5. And similarly in
the final round.

Next, we need a conditional Kind that takes the slate of players in the current
round and produces a Kind for the slate of players in the next round. To do this,
we move down the input tuple of players in pairs and for each pair r1, r2 produce
the Kind

⟨⟩
⟨r2⟩1

⟨r1⟩1.15r2−r1

for the winner of that matchup. (This Kind works regardless of which of r1, r2 is
smaller.) The independent mixture of these Kinds is then the output.
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The conditional Kind for the second round has type 8 → 4, for the third
round has type 4 → 2, and for the final round has type 2 → 1. We can implement
all of these conditional Kinds in a single function:

@conditional_kind

def next_round(players):

n = len(players) # Always a power of 2 here

k = Kind.empty

for i in range(0, n, 2):

r1, r2 = players[i], players[i + 1]

odds = as_quantity('1.15') ** (r2 - r1)

k = k * either(r1, r2, odds)

return k

With this in hand, we can now express the Kind of the next round by conditioning
next_round on the current round .

second_round = next_round // first_round

third_round = next_round // second_round

winner = next_round // third_round

Look at these in the playground; they act as we expect. For example, the
combination ⟨1, 4, 2, 3⟩ is most likely to come out of the first round, with ⟨1, 5, 2, 3⟩
right behind. Similarly, the top ranked players are more likely to win the
tournament in the right order. Here’s what the Kinds of the third-round match-
ups and the winner look like:

,---- 0.17270 ----- <1, 2>

|---- 0.14158 ----- <1, 3>

|---- 0.075013 ---- <1, 6>

|---- 0.060314 ---- <1, 7>

|---- 0.094949 ---- <4, 2>

|---- 0.077838 ---- <4, 3>

|---- 0.041242 ---- <4, 6>

|---- 0.033160 ---- <4, 7>
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<> -|

|---- 0.076683 ---- <5, 2>

|---- 0.062864 ---- <5, 3>

|---- 0.033308 ---- <5, 6>

|---- 0.026781 ---- <5, 7>

|---- 0.039784 ---- <8, 2>

|---- 0.032614 ---- <8, 3>

|---- 0.017280 ---- <8, 6>

`---- 0.013894 ---- <8, 7>

,---- 0.26520 ----- 1

|---- 0.20843 ----- 2

|---- 0.16017 ----- 3

|---- 0.12058 ----- 4

<> -|

|---- 0.090552 ---- 5

|---- 0.068000 ---- 6

|---- 0.050322 ---- 7

`---- 0.036742 ---- 8

We can see for instance that players seeded 1 and 2 have about a 17% probability
of meeting in the finals and player 1 has about a 26.5% probability of winning.

To remind yourself how we compute these probabilities, recall that, say,
next_round // third_round starts by computing the mixture third_round >>

next_round and then projects out the last component. Each possible slate of
players produced in the next round is derived from some slate in the current round
through particular outcomes of those match-ups. We compute the probability of
that slate by finding all the combination of current round and match-up outcome
that produce it (the mixture) and then adding up the weights on all the branches
with that slate (the projection). Look at the mixture in the playground and
track through the projection to see it.

For example, the winner ⟨1⟩ can occur from any of the match-ups ⟨1, 2⟩, ⟨1, 3⟩,
⟨1, 6⟩, or ⟨1, 7⟩ in the current round. Those match-ups happen with probabilities
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about 0.173, 0.142, 0.075, 0.060. And in those match-ups the player seeded 1
wins with probabilities 1.15

1+1.15 , 1.152

1+1.152
, 1.155

1+1.155
, and 1.156

1+1.156
, which come from the

conditional Kind next_round. The result is

0.173 · 1.15

1 + 1.15
+0.142 · 1.152

1 + 1.152
+0.075 · 1.155

1 + 1.155
+0.060 · 1.156

1 + 1.156
≈ 0.265.

The same basic story holds at each stage. See page 186.
Now, we can answer our questions

pgd> E(winner)

3.151837905582001

pgd> E(winner ^ (__ > 4))

0.2456155413215654

pgd> E(winner ^ (__ == 1))

0.2652034184779578

which give values of about 3.15 and just under 0.25, respectively. The top-seeded
player has about a 26.5% probability of winning the tournament, but the other
players – especially the 2 and 3 and 4 seeds – have a non-trivial chance of winning
as well. So our prediction for the winning seed is just over 3.

The next example illustrates the important concept of state that describes the
configuration of a random system at a given moment. (See Section 6.2.) We need
enough information in the state to understand the future evolution of the system at
any point but not so much information that it obscures the essentials. Crafting a
good description of state for a process is part art and part science, and we will get
lots of practice. As you read the next example, think about how you would describe
the state of the mouse’s process.

Example 8.5 Mouse Escape
A mouse is caught in a room with a cat and wants desperately to escape. The
room has been newly refurbished, so the usual escape routes have been plugged.
The only hope is for the mouse to climb three steps to safety.

The mouse starts on the floor (step 0) and successively attempts to climb
onto the next step. If the mouse fails it tumbles down to the previous step
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(except on step 0); if it succeeds, it moves to the next step and tries again. So for
example, if it fails to climb to step 2 from step 1, it falls to step 0; if it succeeds,
it moves to step 2.

If the mouse reaches step 3 by the 16th attempt, it escapes; otherwise the
cat eats it. On each attempt the Kind of whether it succeeds or fails has twice
the weight on failure.

Let M be the event that the mouse escapes. Find E(M), the probability
that the mouse escapes.

The process by which the mouse tries to escape from its first attempt to its
eventual escape or capture can be described by a state that evolves from attempt
to attempt. What do we need to keep track of to be able to model the evolution
of the process and answer the questions we care about?

First, at any point, we need to know which step the mouse is on, 0, 1, 2,
or 3. If we know where the mouse is, we can determine the possibilities for its
subsequent attempts. Second, we also need to know how many attempts the
mouse has made because if it takes too many the cat will catch it.

We have two choices. We can set the state as the step the mouse is on and
account for the possibility of capture by analyzing whether it escapes by the
16th attempt, or we can include the number of attempts in the state as well. We
will illustrate both approaches here.

If the state is just the step the mouse is on, then the initial state is 0, and
the mouse moves up or down (or stays at 0) with twice the weight on down.

initial_state = constant(0)

move = conditional_kind({

0: either(0, 1, 2),

1: either(0, 2, 2),

2: either(1, 3, 2),

3: constant(3)

})

The first is the Kind of the initial state, and the second is the conditional Kind
of the next state given the initial state. For instance, from step 0, the mouse
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either stays at 0 or moves to 1 with twice the chance of staying as moving up. If
the mouse is at step 3, we model it as staying there; it has escaped. If it has
reached state 3 by the 16th attempt, we know that it escaped on or before that
attempt.

We can compute this by starting in the initial state and iterating for 16
attempts:

state = initial_state

for _ in range(16):

state = move // state

escaped = E(state ^ (__ == 3))

The operation move // state is conditioning, specifically, we are finding the
Kind of the next state by conditioning on the current state. The conditional
Kind move gives the next state’s Kind for each value of the current state, but
it does not give any information about how likely any value of the state is. We
can view the conditioning operation as computing the Kind of the next state
as a weighted average of the Kinds move(s) over all values of state using its
canonical weights. (The loop above is implemented by the builtin playground
function evolve with evolve(initial_state, move, 16).)

Our question is answered by the expectation escaped, which is approximately
0.368. This is the probability that the mouse escapes before the cat catches it.
In this approach we account for the mouse’s time horizon by evolving the system
over 16 moves.

For the second approach, we use an expanded definition of state that keeps
track of the number of moves and freezes the state when either the mouse escapes
or the cat eats it. This approach is slightly more complicated, but it illustrates
how we can include contingent dynamics in our systems.

Now, the state is a tuple ⟨n, s⟩, where n is a number of attempts and s is
either a step (0, 1, 2, 3) or -1 to indicate that the mouse has been captured. The
initial state is ⟨0, 0⟩, and we have

initial_state_alt = constant(0, 0)

Our state transitions now depend on how many moves the mouse has made. If
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the mouse has escaped or been eaten, we simply keep the state unchanged. If it
is the 16th attempt, it will be captured if it doesn’t make it to step 3. Otherwise,
the mouse moves as before and the number of attempts is incremented.

@conditional_kind

def move_alt(attempts_and_step):

n_attempts, step = attempts_and_step

# If we are at the end, stay there

if step == 3 or step == -1:

return constant(attempts_and_step)

n = n_attempts + 1

# If the cat is here, last chance

if n_attempts == 16:

if step < 2:

return constant(n_attempts, -1)

else:

return either((n, -1), (n, 3), 2)

# From step 0, we either stay or move up

if step == 0:

return either((n, 0), (n, 1), 2)

# Otherwise, we move up or down

return either((n, step - 1), (n, step + 1), 2)

To answer our questions, we evolve the system and transform the resulting Kind
as we did earlier, except the mouse’s outcome is in the second component.

outcome = evolve(initial_state_alt, move_alt, 16)

escaped_alt = E(outcome ^ (Proj[2] == 3))

We evolve the system 16 steps because we need not do more, bbut evolving it for

340



longer would not change the result because the state becomes fixed.

8.3 Strategies and Representations

Despite their power, neither computation nor mathematics are fully “automatic.” We
often need to apply some creativity to get useful results, either to make a computation
feasible/efficient or to make a mathematical analysis tractable. In this subsection,
we look at examples where we bring a little flare to select our strategies or data
representations.

These examples demonstrate some common patterns in how we approach more
complicated systems. The next example illustrates the pattern of optimizing a decision
over a menu of strategies for making that decision.

Example 8.6 Assistant Assistance
You are trying to hire an assistant to help you with your work, so you place an
ad in the local paper. The next day, exactly n applicants call you to schedule an
appointment for an interview, and you schedule them at random in n time slots.
Assume that all ordering of the appointments are equally likely, i.e., have the
same weight.

You have a very particular set of criteria in mind for the position. At each
interview, you evaluate the applicant’s qualifications with respect to these criteria,
so after each interview, you can unambiguously rank the applicants you’ve seen
up to that point. However, the job market is running hot, and if you do not offer
the job to an applicant immediately after the interview, the applicant will take
another job and is lost to you.

Our task is to pick a good strategy for deciding whether to offer an applicant
the job and to assess how well that strategy performs. We will consider the
family of strategies in which you reject the first k applicants and then offer the
job to the first applicant after these that ranks better than all of those first k.
There are n different strategies here, which we call “After 0”, “After 1”, “After
2”, ..., “After n− 1”. In the “After 0” strategy you would always choose the first
applicant. With “After k” for k > 0, it is possible to make no offers. We will say
that our strategy has succeeded if we make an offer to the overall best-ranked
applicant.
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Find the probability that the “After k” strategy succeeds for each k ∈ [0 . . n).
Which of these strategies is most likely to succeed?

We start by reasoning to reduce the problem to a simpler form in two steps.
First, we only need to keep track of the positions of two applicants: the “best”
applicant who has the best rank overall and the “pre-best” applicant who has the
best rank among all the applicants who appear before the best applicant. The
“After k” strategy succeeds in finding the best applicant if the best applicant
appears in position b with b > k and the pre-best applicant appears in position s
with s ≤ k. If b = 1, there is no pre-best applicant, and we set s = 0. (If b ≤ k,
the best applicant would be skipped. If k < s < b, we would choose the pre-best
applicant who has higher rank than all those at positions [1 . . k].)

Second, because all orderings of the applicants are equally likely,
(i) the best applicant is equally likely to be in any position, and
(ii) given that the best applicant appears in position b > 1, the position of the

pre-best applicant is equally likely to be in any position in [1 . . b− 1].
Claim (i) is true because the Kind for the permutation of the n ranks has size
n! with all equal weights. So for any of the n positions of the best applicant,
there are (n− 1)! branches permuting the other weights, so the position of the
best applicant has weight 1/n on each possible value. Claim (ii) is true by a
similar argument; once we fix the position of the best applicant, the remaining
branches iterate over all orderings of ranks that fit before the best applicant, all
of which have equal weight. Using the code from this example, you can see this
in the playground by entering check_best_position() to see the Kind of the
best position when n = 7 and check_pre_best_position(b) to see the Kind of
the pre-best position (when n = 7) for each best position.

The direct but inefficient way to solve this problem would be to construct
the Kind of all orderings of the n rankings, transform this with a statistic that
extracts the best and pre-best positions, and then transform with a condition
that b > k and s ≤ k. In the playground, for specific values of n and k, this
would look like

permutations_of(irange(n)) ^ best_pre_best_of ^ is_success(k)
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using the statistics best_pre_best_of and statistic factory is_success defined
in the example code, e.g.,

def is_success(k):

"Statistic factory that checks if After-k succeeds given <b,s>."

@condition

def succeeded(b, s):

return b > k and s <= k

return succeeded

For small n, this works fine, but the size of the initial Kind grows quickly.
Instead, we will use our earlier reasoning to directly derive the Kind of the

best and pre-best positions. To allow this to work for any n, we wrap the whole
analysis in a function that takes n as a parameter:

def assistant(n):

"Returns success probabilities of After-k strategies with `n` applicants."

assert n >= 1, "at least one applicant is required"

best = uniform(irange(n))

@conditional_kind(codim=1)

def pre_best_position(m):

if m <= 1:

return constant(0)

return uniform(irange(1, m - 1))

best_pre_best = best >> pre_best_position

success_probs = [0] * n

for k in range(n):

success_probs[k] = as_scalar( E(best_pre_best ^ is_success(k)) )
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return as_vec_tuple(success_probs)

(The application of as_scalar to the expectation unwraps the number from the
tuple.) Here is how we use it:

pgd> assistant(7)

<0.14285714285714286, 0.35, 0.41428571428571423, 0.4071428571428571,

0.35238095238095238, 0.2619047619047619, 0.14285714285714286>

# The direct approach gives the same answers, compare k=2 and k=3

pgd> E(permutations_of(irange(7)) ^ best_pre_best_of ^ Fork(is_success(2), is_success(3)))

<0.4142857142857143, 0.4071428571428571>

pgd> best_k(assistant(7)) # Find k that maximizes the probability

<2, 0.4142857142857143>

The function best_k is defined in the example code; it returns the best k and its
success probability for the specified n.

Trying this for various n, we see the optimal After-k strategy, k∗, has k∗ ≈
ne−1 with a probability approaching e−1 ≈ 0.36788 for large n.

n k∗ ⌊ne ⌋ ⌈ne ⌉ Probability
10 3 3 4 0.39869
20 7 7 8 0.38421
30 11 11 12 0.37865
40 15 14 15 0.37574
50 18 18 19 0.37428
60 22 22 23 0.37321
70 26 25 26 0.37239
80 29 29 30 0.37186
90 33 33 34 0.37142

100 37 36 37 0.37104
250 92 91 92 0.36915
500 184 183 184 0.36851

1000 368 367 368 0.36820

We will see later where this comes from.
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The next example uses a carefully chosen, but somewhat elaborate, representation
of the system’s state to make it possible – in fact, straightforward – to compute the
answer we seek. The choice of representation still needs to keep track of the essential
information, but by discarding everything else, computations that would be slow
become manageable.

Example 8.7 Elevator Stops
An elevator opens on the ground floor and a random number of passengers enter
it. Each passenger selects one floor (above the ground floor), and the elevator
proceeds upward, stopping at each selected floor.

• There are n floors above the ground floor.
• The FRP N represents the number of passengers entering the elevator. Its

Kind of N is given below. It depends on numeric parameters p and µ and
and is given below.

• Each passenger’s chosen floor is represented by an FRP with Kind
uniform(1, 2, ..., n), with all floors equally likely.

• All passenger choices are independent of each other.
If no passengers enter, then the elevator makes zero stops. The FRP S represents
the number of stops the elevator makes.

For any positive integer p and µ > 0, the Kind of N is given by

⟨⟩

⟨0⟩1

⟨1⟩µ

⟨2⟩µ2/2

⟨3⟩µ3/3!

⟨4⟩µ4/4!

. . .

⟨p− 1⟩µp−1/(p− 1)!

⟨p⟩µp/p!

The parameter p is the maximum number of passengers allowed in the el-
evator, and µ determines the weights. In the example code, the function
passengers_kind(n, mu) computes this Kind in canonical form.
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Take n = 10, p = 21, and µ = 5. Find E(S).
With 20 or more passengers possible, the Kinds we need will be slow to

compute because there are 10 possible floors for each passenger. Our first insight
is that keeping track of the floor each passenger visits is not really necessary. We
only need to keep track of which floors are visited, whether they are visited by
one or many passengers is irrelevant to our needs.

Thus, the state we use for describing this system is the set of visited floors.
With n = 10, we encode this set as a 10-tuples containing only 0’s and 1s; a one
in slot i means that floor i is visited by at least one passenger and a 0 means
that floor is not visited by any passengers. The Kind for the set of visited floors
with this representation has size ≤ 1024, which is manageable. (It does grow
quickly with n, but we are keeping n fixed here.)

If we are going to use 10-tuples of bits to represent the set of visited floors,
we need two operations on these sets: (1) converting a list of requested floors
to a set in our representation, and (2) combining two sets into one, taking a
20-tuple that encodes two sets (10 components each) and returning a single
10-tuple representing their union. These operations are given, respectively, by
the statistics visited_floors(10) and union_visited(10). These are both
nice examples of how we can use statistics to convert data from one representation
to another. We implement these as statistic factories that take the index of the
top floor and return the statistic we seek for that building. Here, we will only be
using these functions with an argument of 10.

def visited_floors(top_floor: int) -> Statistic:

"Returns a statistic converting a list of floor choices to a set."

@statistic(name=f'visited_floors<{top_floor}>')

def visited_set(value):

"returns the set of unique components in a fixed range, as a bit string"

bits = [0] * top_floor

for x in value: # values are floors in 1, 2, ..., top_floor

bits[x - 1] = 1 # this floor's button has been pushed

return as_vec_tuple(bits)

return visited_set
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def union_visited(top_floor: int) -> Statistic:

"Returns a statistic that unions two `top-floor` sets as bit-strings."

@statistic(name=f'union<{top_floor}>', monoidal=as_vec_tuple([0] * top_floor))

def union(value):

"unions two `top_floor`-length bit strings into one with a bitwise-or"

return as_vec_tuple(value[i] | value[i + 10] for i in range(top_floor))

return union

max_floor = 10

as_set = visited_floors(max_floor) # Statistic: convert floors to visited sets

union = union_visited(max_floor) # Statistic: Union of two sets as 10-bit strings

Now we are ready for our analysis. First, we build a conditional Kind floors

that maps the number of passengers to the Kind of the visited floor set for that
many passengers. We do this iteratively, by mixing in the choices of one new
passenger to our previously computed Kinds.

passenger_floor = uniform(1, 2, ..., max_floor)

choice = as_set(passenger_floor) # Kind for each floor choice as set

floors = {0: constant([0] * max_floor), 1: choice, 2: union(choice * choice)}

for i in irange(2, 20):

floors[i + 1] = union(floors[i] * floors[1])

floors = conditional_kind(floors) # kind of visited floor set for each # pass.

Each element in the loop adds a new entry to the conditional Kind that accounts
for an extra passenger’s choices in the set of visited floors. You should look at a
few of these Kinds in the playground.

If we apply the Sum statistic to this conditional Kind, it transforms it to a
new conditional Kind that maps the number of passengers to the Kind of the
number of visited floors. (Make sure you see why.) All that remains is to mix
in the number of passengers. We use the conditioning operator // because we
want to average over the various numbers of passengers without retaining it in
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the result.

number_visited_floors = Sum(floors) // kind_N

The Kind number_visited_floors looks like

pgd> number_visited_floors

,---- 0.0067379 ------ 0

|---- 0.043710 ------- 1

|---- 0.12760 -------- 2

|---- 0.22074 -------- 3

|---- 0.25060 -------- 4

<> -+---- 0.19508 -------- 5

|---- 0.10546 -------- 6

|---- 0.039095 ------- 7

|---- 0.0095105 ------ 8

|---- 0.0013710 ------ 9

`---- 0.000088937 ---- 10

pgd> E(number_visited_floors)

3.934693309902328

So, E(S) ≈ 3.935.

There were a lot of moving parts in the last example, but the key feature was
changing the representation of the system from a list of floors requested/visited
by passengers in the elevator to a fixed-size set indicating which floors have been
visited. With this representation, we could account for each added passenger with
an independent mixture followed by a statistic that combines the two sets. This is a
complicated example of a common pattern.

Example 8.8 Rig at Risk
A mid-ocean oil rig accumulates damage from severe waves over time. Assume
that in a given year, the number of severe waves is given by the value of an FRP
N and that the damage caused by severe wave i is given by the output of FRP Di,
where all the Di’s have the same Kind. Assume that the Di’s are independent of
N . Let T be the FRP representing the total damage that accumulates in a year.
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Find E(T | N = n), the expectation of the total damage during the year
given that there were n severe waves, and E(T ).

There are two things to specify in this problem: the Kinds of N and D. But
we can do the analysis and get some insight by doing the analysis in terms of
these unspecified Kinds.

The first point to recognize is that the structure is simple when we know
the value of N . Specifically, given that there are n waves, the Kind of the total
damage can be expressed in two steps:

1. take an independent mixture of n copies of D1’s Kind, and
2. apply the Sum statistic.

That is,

kind(T | N = n) = Sum(kind(D1) ⋆⋆ n).

On the left, we have a conditional Kind (given the value n of N) and the right
an exact expression for it. By the Additivity property (7.12) of expectation,

E(Sum(kind(D1) ⋆⋆ n)) = E(D1) +E(D2) + · · ·+E(Dn),

and because all Di’s have the same Kind and expectation,

E(T | N = n) = nE(D1).

So viewing kind(T | N = n) as a conditional Kind, we can condition on N :

kind(T | N = n) // kind(N)

and take expectations. As we’ve seen earlier, this operation averages the Kinds
See page 186.

kind(T | N = n) over n weighting by kind(N). The expectation is therefore

E(T ) =
∑
n

pnE(T | N = n), (*)

where pn is the weight on n in kind(N).
The function rig_at_risk in the example code implements this in frplib.
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def rig_at_risk(kind_N, kind_D):

"""Computes expectation of total wave damage by mixing kinds then computing E.

Parameters `kind_N` and `kind_D` give arbitrary kinds for the number of waves

and the damage per wave.

"""

@conditional_kind(codim=1)

def damage_given_n(n):

return fast_mixture_pow(Sum, kind_D, n)

return E(damage_given_n // kind_N)

For instance:

pgd> rig_at_risk(uniform(1, 2, ..., 10), uniform(1, 2, 3))

11

You can play with different input Kinds using the example code.

8.4 Using Observations

In general, we build our model and compute our predictions before the random
process we are studying begins. But we allow for making decisions or interventions as
the process unfolds, so we need the ability to update our predictions in light of new
information about uncertain quantities. This is the role of conditional constraints.

The results of such updates can seem counter-intuitive because they balance
multiple possibilities. The easiest way to handle this is to remember that constraining
with conditionals simply eliminates the branches of the Kind that are inconsistent
with our observations. When we renormalize into canonical form, the numbers change,
but the relative sizes of the remaining branches’ weights do not change. Put more
glibly: probability does not move when we update our predictions.

The next example is gleefully counter-intuitive. We will do the calculations in the
playground and then try to understand them.
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Example 8.9 A Kid Named “Florida”
We consider two questions

(a) You know that a neighbor’s family has two children, but you cannot
remember whether the children are boys or girls. One day, you see that
one of the children is a girl.

(b) Suppose that during the previous experiment we learn that one of the
neighbor’s two children is a girl whose name is very rare, for instance
“Florida.” (Mlodinow, 2008)

What is the probability that both children are girls in each situation?

It seems strange that the rarity of the names could have much of an effect,
but we’ll see that it does. Let’s solve both parts and then regroup to understand
the results.

First, we consider the various outcomes that might occur, ignoring the
childrens’ names. The question we want to answer and the information that we
observe are represented as statistics:

at_least_one_girl = Or(Proj[1] == 1, Proj[2] == 1)

both_girls = And(Proj[1] == 1, Proj[2] == 1)

We define the Kind for an event that an individual child is a girl:

girl = either(0, 1)

Then we look at the Kinds for the various outcomes of interest: whether each of
two children are girls and whether each of two children are girls given that at
least one is.

pgd> girl * girl

,---- 1/4 ---- <0, 0>

|---- 1/4 ---- <0, 1>

<> -|

|---- 1/4 ---- <1, 0>

`---- 1/4 ---- <1, 1>
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pgd> outcome_no_names = girl * girl | at_least_one_girl

pgd> outcome_no_names

,---- 1/3 ---- <0, 1>

<> -+---- 1/3 ---- <1, 0>

`---- 1/3 ---- <1, 1>

The conditional constraint eliminates the <0, 0> branch. Note that the relative
size of the weights in the remaining branches does not change. Dropping the
branch gives three branches with weights 1/4, and when we re-normalize weights
1/3. The information that there is at least one girl has simply ruled out the
possibility that neither child is a girl. And hence:

pgd> both_girls(outcome_no_names)

,---- 2/3 ---- 0

<> -|

`---- 1/3 ---- 1

and E(both_girls(outcome_no_names)) = 1/3. is the desired probability in
situation (a).

The information we have in the second situation is somewhat different; we
know that at least one of the children is a girl with a rare name. So we need,
for each child, events that the child is a girl and that the child has a rare
name. We encode the latter events with a Kind with a symbolic weight and use
arbitrary values 10 and 11 (rather than 0 and 1) to make it easier to identify the
components in the values. A rare name means that p is a small number.

p = symbol('p')

rare = weighted_as(10, 11, weights=[1 - p, p])

neighbors = girl * girl * rare * rare

By using a independent mixture for neighbors, we are assuming that the rarity
of each child’s name is independent of whether the child is a girl, as well as
assuming that the two children’s outcomes are independent. As above, we use a
statistic to represent our conditional constraint:
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a_rare_girl = Or(

And(Proj[1] == 1, Proj[3] == 11),

And(Proj[2] == 1, Proj[4] == 11)

)

The Kind of interest then becomes

pgd> outcome = neighbors | a_rare_girl

,---- (-1 + p)/(-4 + p) ---- <0, 1, 10, 11>

|---- -1 p/(-4 + p) -------- <0, 1, 11, 11>

|---- (-1 + p)/(-4 + p) ---- <1, 0, 11, 10>

<> -+---- -1 p/(-4 + p) -------- <1, 0, 11, 11>

|---- (-1 + p)/(-4 + p) ---- <1, 1, 10, 11>

|---- (-1 + p)/(-4 + p) ---- <1, 1, 11, 10>

`---- -1 p/(-4 + p) -------- <1, 1, 11, 11>

pgd> both_girls(outcome)

,---- 1/(2 + -0.5 p) ------- 0

<> -|

`---- (-2 + p)/(-4 + p) ---- 1

Taking expectations E(both_girls(outcome)), we get 2−p
4−p . Because the name

is rare – that is, p is small – 2−p
4−p ≈ 1

2 and substantially bigger than 1/3.
This is a surprising difference! We can get insight into this result by studying

the Kind outcome. Since p is small, we can take it, for this purpose, to be so
small that we can ignore it:

pgd> clean(substitution(outcome, p = 0))

,---- 1/4 ---- <0, 1, 10, 11>

|---- 1/4 ---- <1, 0, 11, 10>

<> -|

|---- 1/4 ---- <1, 1, 10, 11>

`---- 1/4 ---- <1, 1, 11, 10>

This Kind reveals what has happened. We are very unlikely to see two rare
names, but the one rare name can be for either of the two girls. When only one
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of the children is a girl, the condition can be satisfied in just one way. Hence,
instead of one out of three possibilities, we have two out of four.

Remember that when we constrain with a conditional, we eliminate branches
that are inconsistent with the condition, but the relative sizes of the weights on
the remaining branches does not change.

Example 8.10 Buckets and Balls
We have two buckets. In the left bucket, there are three red, six blue, and one
green ball. In the right bucket, there are four red, four blue, and two green balls.
The balls in both buckets are well mixed.

I choose a bucket at random, with equal weights on both, and then from that
bucket choose a ball at random, again with equal weights on every ball. You
do not see what bucket I chose the ball from, but I show you that I picked a
green ball. What is the probability that I chose from the right bucket given this
information?
We have a system that is most easily described in two stages. First, I pick a
bucket. Second, I pick a ball from the chosen bucket. This is a mixture.

Let’s assign 0 to the left bucket and 1 to the right; and let 0 and 1 stand also
for not-green and green.

bucket = either(0, 1)

green_given_bucket = conditional_kind({

0: either(0, 1, 9),

1: either(0, 1, 4)

})

For the latter Kinds, the left bucket has 9 not-green balls and 1 green ball, a
ratio of 9, and the right bucket has 8 not-green balls and 2 green balls, a ratio
of 4. This explains the third argument to either in both cases. The FRP that
represents the chosen bucket given that we have observed a green ball has Kind

which_bucket_g = Proj[1]( bucket >> green_given_bucket | (Proj[2] == 1) )

We get this in three stages: 1. use a mixture to build the combined Kind of
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bucket and chosen ball, 2. apply the constraint that we observed a green ball
with a conditional, and 3. extract the first component (the bucket). We can
write this more concisely as

which_bucket_g = bayes(observed_y=1, x=bucket, y_given_x=green_given_bucket)

We get E(which_bucket_g) = 2/3, the probability that we chose the right bucket
given that we observe a green ball. Interestingly, we can also find

which_bucket_n = bayes(observed_y=0, x=bucket, y_given_x=green_given_bucket)

and E(which_bucket_n) = 8/17, the probability that we chose the right bucket
given that we observe a not-green ball.

The previous example is a demonstration of Bayes’s Rule, a common and
important pattern we also saw earlier. We have two FRPs X and Y of arbitrary
dimension. We know the Kind of X, and we know the conditional Kind of Y given
X. We then observe Y and want to infer X. In the previous example, X represents
to the bucket we choose the ball from, and Y is the event that we pick a green ball.
We build our model for this system with a mixture because it is easier to specify the
Kind of ball we pick once we know the bucket.

We know kind(X), and for any possible value u of X; we know kind(Y | X = u);
and we have observed a value v of Y . Note that the mapping from u to kind(Y | X = u)

is a conditional kind that we can denote by kind(Y | X).
Bayes’s Rule is equivalent to three steps:
1. Build with a mixture the Kind of the combined outcome ⟨X,Y ⟩:

kind(⟨X,Y ⟩) = kind(X) ▷ kind(Y | X).

2. Constrain this with a conditional using the observation that Y = v:

kind(⟨X,Y ⟩) | Y = v

3. Transform with a projection statistic to extract theX components 1, . . . , dim(X):

proj1.. dim(X) (kind(⟨X,Y ⟩) | Y = v) .
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The first step gives the combined Kind for X and Y ; the second applies the constraint
from our observation; and the third isolates the Kind of X, since that is what we
want to know (and we have already observed Y ’s value).

In the playground, we can implement these same steps easily. Letting x and
y_given_x stand for kind(X) and kind(Y | X), the built-in bayes method looks like

def bayes(observed_y, x, y_given_x):

i = dim(x) + 1

return (x >> y_given_x | (Proj[i:] == observed_y)) ^ Proj[1:i]

The bayes function will work just as well with FRPs as with Kinds; in that case, x
would be the FRP X, and y_given_x would be the conditional FRP Y_given_X.

Let’s use this again, generalizing an earlier example.

Example 8.11 Disease Testing Redux
A disease is prevalent in the population where in any large sample of people, a
proportion around d will have the disease. A test has been developed to detect
the disease. If a tested patient does not have the disease, the test will indicate
they are negative with probability n. If a tested patient does have the disease,
the test will indicate they are positive with probability p.

If a doctor sees that a patient has tested positive, what is the probability
that the patient has the disease?

Let D be the event that the patient has the disease and T be the event that
they tested positive. First, let’s use the information provided to create kind(D)

and kind(T | D), the conditional Kind of T given the observed value of D. These
derive directly from the described assumptions.

d = symbol('d')

n = symbol('n')

p = symbol('p')

has_disease = weighted_as(0, 1, weights=[1 - d, d])

test_by_status = conditional_kind({

0: weighted_as(0, 1, weights=[n, 1 - n]),

1: weighted_as(0, 1, weights=[1 - p, p])
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})

To find the probability that D occurs, we apply Bayes’s Rule and take expecta-
tions:

E(bayes(1, has_disease, test_by_status))

The result is
pd

pd+ (1− n)(1− d)
. (*)

We can understand this by looking at the combined Kind of ⟨D,T ⟩:

pgd> has_disease >> test_by_status

,---- n (1 - d) --------------- <0, 0>

|---- (1 - d) (1 - n) --------- <0, 1>

<> -|

|---- (1 - p) d --------------- <1, 0>

`---- p d --------------------- <1, 1>

The conditional constraint that the test is positive eliminates the first and third
branch of this Kind, giving (non-canonical) Kind

,---- (1 - d) (1 - n) --------- <0, 1>

<> -|

`---- p d --------------------- <1, 1>

The remaining branches represent the possibilities that the patient tests positive
and has the disease or that the patient tests positive and does not have the
disease. The probability in (*) is just the normalized weight on the second
branch.

We can examine these probabilities for various specific values to get a feel
for how Bayes’s Rule balances the prevalence – or base rate – of the disease in
the population and the information about the sensitivity and specificity of the
diagnostic test.

substitution(E(bayes(1, has_disease, test_by_status)),

d='1/1000', n='99/100', p='95/100')
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# is 0.0868

substitution(E(bayes(1, has_disease, test_by_status)),

d='1/10_000', n='99/100', p='95/100')

# is 0.0094

substitution(E(bayes(1, has_disease, test_by_status)),

d='1/10_000', n='999/1000', p='999/1000')

# is 0.0908

substitution(E(bayes(1, has_disease, test_by_status)),

d='1/10_000', n='95/100', p='9/10')

# is 0.0018

substitution(E(bayes(1, has_disease, test_by_status)),

d='1/100', n='95/100', p='9/100')

# is 0.1538

substitution(E(bayes(1, has_disease, test_by_status)),

d='1/100', n='999/1000', p='999/1000')

# is 0.9098

The first thing to notice is that, except in the last case, the probability of the
patient having the disease is quite low, even with a positive test and even when
the test is highly accurate. The reason is that in these cases the base rate of
the disease is low, and as we saw above, the probability accounts for the two
possibilities: patient has the disease and tests positive versus does not have the
disease and tests positive. Only when the disease is somewhat common and the
tests accurate do we get a high probability.

8.5 Touching Infinity

FRPs are particularly suited as models of finite random processes: a finite number of
possibilities, finite dimension, and a finite horizon of time and space. But in some
cases, we can push beyond the finite and get exact results for more general processes.

Example 8.12 Waiting for Heads
We flip a coin repeatedly up to and including the first flip on which a heads
comes up. How many flips will it take?
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Let H be the FRP representing the number of flips required up to and
including the first heads. We can ask several questions about H:

• What is a typical number of flips, E(H)?

• How likely are we to need more than n flips, E({H > n})?

• How likely are we to need exactly n flips, E({H = n})?

• How likely are all the different possibilities, kind(H)?

As we did earlier, we use {H > n} and {H = n} to denote the events (0-1-valued
FRPs) that H is bigger than n and equal to n.

We model 0 as “tails” and 1 as “heads.” We will assume that the coin has the
same chance q of coming up tails on any flip and that the outcome of any flip
has no influence on the outcome of any other, i.e., they flips are independent.

Think of this as a random system like we discussed in Section 6 At any point,
we can be in one of two states: we’ve seen a heads or we have not. Call these
states Heads and No Heads. The system starts in state No Heads. On any
flip, if we get a heads, we have made one flip and transition to state Heads,
and if we get a tails, we have made one flip and remain in the same No Heads

state as before the flip. Here’s the key insight: if we get a tails, the Kind of our
remaining number of flips until we see a heads is the same as kind(H).

We can make this idea precise with a conditional Kind. Suppose remaining_flips
is the Kind of the number additional of flips until a heads after the current flip.
Then, the Kind of the total number of flips given the current flip is

conditional_kind({

0: remaining_flips ^ (__ + 1),

1: constant(1)

})

It takes one flip if we get a heads on the current flip, or one flip – for the current
flip – plus the remaining flips required if we get a tails on the current flip.
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We write a function wait_for_heads that gives the Kind of total number of
flips when we have specified the Kind of the remaining number of flips after the
current flip.

def wait_for_heads(remaining_flips, q=symbol('q')):

"""Returns the Kind of the total number of flips to get a head.

`remaining_flips` is the kind of the additional number of flips

required after seeing a tails

`q` is the probability of getting a tails. [Default: symbol('q')]

"""

# Make sure q is a symbol or high-precision number

q = as_quantity(q)

# The kind of the current flip

flip = weighted_as(0, 1, weights=[q, 1 - q])

# the kind of the total number of flips given the current flip

flips_given_current = conditional_kind({

0: remaining_flips ^ (__ + 1),

1: constant(1)

})

total_flips = flips_given_current // flip

return total_flips

We do not know remaining_flips, which is what we want to find, but we
have a trick up our sleeve. The solution (kind(H)) is the Kind K that equals
wait_for_heads(K). It is a “fixed point” of the function wait_for_heads.

We can solve for that fixed point as in Section 6, and will below, but first we
will compute an approximation. We start with a guess K0 for kind(H) and set
K_1 = wait_for_heads(K_0). Then we use K1 as our next guess, and continue
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to iterate until the Kinds we get stop changing to numerical precision. The result
will be kind(H) to good approximation. even though that Kind will have an
infinite number of possible values.

In the playground, this looks like

guess = constant(1)

guess = wait_for_heads(guess)

guess = wait_for_heads(guess)

guess = wait_for_heads(guess)

guess = wait_for_heads(guess)

guess = wait_for_heads(guess)

Each time, we enhance the tree by accounting for an extra possible flip to get
what we want, and but only the two branches with the highest values change at
each iteration. Look at the guesses to see how the trees grow.

The sequence of Kinds produced above is what we get using the iterate

utility in frplib. For instance, the third and sixth values of guess above equal,
respectively, iterate(wait_for_heads, 2, constant(1)) and
iterate(wait_for_heads, 5, constant(1)). We can iterate as long as we like:
try iterate(wait_for_heads, 20, constant(1)). At each iteration, only the
largest two branches change.

Using this, we can compute exact probabilities of waiting more than n flips
and of waiting exactly n flips. We iterate a little more than n times, and the
part of the tree we need is exact.

def wait_more_than(n, q=symbol('q')):

"Returns probability of waiting more than n flips for heads; q is the weight on tails."

wait = iterate(wait_for_heads, n + 1, constant(1), q=q)

probability = E(wait ^ (__ > n))

return as_scalar( probability )

def wait_exactly(n, q=symbol('q')):

"Returns probability of waiting more than n flips for heads; q is the weight on tails."

wait = iterate(wait_for_heads, n + 2, constant(1), q=q)
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probability = E(wait ^ (__ == n))

return as_scalar(probability)

Try calling each of these for a few values, like wait_more_than(4), wait_more_than(10),
wait_exactly(3), wait_exactly(7) and so forth. You will see that for any n
wait_more_than(n) returns qn and wait_exactly(n) returns qn−1(1− q). The
latter makes immediate intuitive sense: to first get a heads on the nth flip, we
need to get n− 1 tails followed by a heads. And because we have an independent
mixture of flips, the probabilities multiply.

When we iterate to find the expectation of the waiting time, it will necessarily
be approximate because in principle one can wait an arbitrarily long time to see
the first heads. However, the approximation will be very good for reasonable heads
because as we’ve seen, the probability of waiting longer than n flips is qn which de-
creases very quickly. For example, E(iterate(wait_for_heads, 11, constant(1)))

gives

1 + q + q^2 + q^3 + q^4 + q^5 + q^6 + q^7 + q^8 + q^9 + q^10 + q^11

which is close to 1/(1 − q). Indeed, trying it for a few values of n shows the
same form suggesting that the exact expectation is

∑∞
j=0 q

j = 1/(1− q), which
is 1 over the probability of heads. So if heads come up with probability 1/2, we
expect to wait 2 flips for a heads, if heads has probability 1/1000, we expect to
wait 1000 flips, and so on.

We can find this exactly by solving for the fixed point, the Kind remaining_flips

that is unchanged by applying wait_for_heads. Hence, remaining_flips is
equal to wait_for_heads(remaining_flips). If we write down the Kind and
equate the weights for branches of the same value, we can solve for all the weights.
The fact that the Kind has an infinite number of leaves does not cause a problem.

Figures 45 and 46 show the process. In the first figure: on the left, we specify
arbitrary weights for every possible number of flips, and on the right we apply
the conditioning operator wait_for_heads using the flips Kind. The second
figure shows the same comparison, reducing the second tree to canonical form.
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Equating weights for each branch, we get

p1 = 1− q

p2 = qp1 = q(1− q)

p3 = qp2 = q2(1− q)

...
...

That is, pj = qj−1(1− q) for every integer j ≥ 1, and the Kind we seek is

⟨⟩

. . .. . .

⟨6⟩q5(1− q)

⟨5⟩q4(1− q)

⟨4⟩q3(1− q)

⟨3⟩q2(1− q)

⟨2⟩q(1− q)

⟨1⟩1− q

which does indeed have expectation 1/(1− q).

remaining_flips

⟨⟩

. . .. . .

⟨8⟩p8

⟨7⟩p7

⟨6⟩p6

⟨5⟩p5

⟨4⟩p4

⟨3⟩p3

⟨2⟩p2

⟨1⟩p1

== wait_for_heads(remaining_flips)

⟨⟩

⟨0⟩

⟨9⟩p8

⟨8⟩p7

⟨7⟩p6

⟨6⟩p5

⟨5⟩p4

⟨4⟩p3

⟨3⟩p2

⟨2⟩p1

q

⟨1⟩ ⟨1⟩11− q

Figure 45. Solving for remaining_flips. On the left is the Kind remaining_flips with
arbitrary weights assigned to each value. We want to solve for those weights in
terms of q. On the right is the value of wait_for_heads(remaining_flips)
which operates by conditioning on a single flip. (See that function earlier.)
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remaining_flips

⟨⟩

. . .. . .

⟨8⟩p8

⟨7⟩p7

⟨6⟩p6

⟨5⟩p5

⟨4⟩p4

⟨3⟩p3

⟨2⟩p2

⟨1⟩p1

== wait_for_heads(remaining_flips)

⟨⟩

. . .. . .

⟨8⟩qp7

⟨7⟩qp6

⟨6⟩qp5

⟨5⟩qp4

⟨4⟩qp3

⟨3⟩qp2

⟨2⟩qp1

⟨1⟩1− q

Figure 46. Solving for remaining_flips continued. Here, we reduce the right-hand Kind in
Figure 46 to canonical form. Making the two Kinds here equal just requires
equating the waits on the branches for each value. So, p1 = 1− q, p2 = qp1,
p3 = qp2, and so on. We can solve these equations for the pi’s as shown in the
text.

We can take this idea and run with it. The next two examples use the same
approach in slightly different situations.

Example 8.13 Double Heads and Other Patterns
What if in the previous example we were not waiting for a single heads to come
up but instead waiting for the first appearance of two consecutive heads? The
approach would be the same, except we have to account for more than two states.
In particular, we want to find the sequences that lead us back into the same
state we were in at the beginning. That will enable us to solve the equation for
the Kind of the total number of flips.

When waiting for two heads, there are three possibilities that lead us either
to success or back to the state we started in. If we get a heads-heads, then we are
done having used two flips. If get a heads-tails, we are back to our original state
having used two flips. If we get a tails, we are back to our original state using
one flip. Calling these possibilities 0 (tails), 2 (heads-tails), and 3 (heads-heads),
the conditional Kind describing this is

conditional_kind({

0: remaining_flips ^ (__ + 1),
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2: remaining_flips ^ (__ + 2),

3: constant(2)

})

which by direct analogy with wait_for_heads earlier gives us

def wait_for_2heads(remaining_flips, q=symbol('q')):

"""Returns the kind of the total number of flips to get consecutive heads.

`remaining_flips` is the kind of the additional number of flips

required after seeing a tails or heads-tails.

`q` is the probability of getting a tails. [Default: symbol('q')]

"""

# Make sure q is a symbol or high-precision number

q = as_quantity(q)

# The kind of the current prefix flips

prefix = weighted_as(0, 2, 3, weights=[q, q*(1 - q), (1 - q) * (1 - q)])

# the kind of the total number of flips given the current flip

flips_given_current = conditional_kind({

0: remaining_flips ^ (__ + 1),

2: remaining_flips ^ (__ + 2),

3: constant(2)

})

total_flips = flips_given_current // prefix

return total_flips

Again, we can compute the probability of waiting more than n flips or of waiting
exactly n flips. These are

E( iterate(wait_for_2heads, n + 1, constant(2)) ^ (__ > n) )
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E( iterate(wait_for_2heads, n + 2, constant(2)) ^ (__ == n) )

just like before.
Solving the analogous “Kind equation” as before gives us the following.

k

⟨⟩

. . .. . .

⟨8⟩p8

⟨7⟩p7

⟨6⟩p6

⟨5⟩p5

⟨4⟩p4

⟨3⟩p3

⟨2⟩p2

== wait_for_2heads(k)

⟨⟩

. . .. . .

⟨8⟩qp7 + (1− q)qp6

⟨7⟩qp6 + (1− q)qp5

⟨6⟩qp5 + (1− q)qp4

⟨5⟩qp4 + (1− q)qp3

⟨4⟩qp3 + (1− q)qp2

⟨3⟩qp2

⟨2⟩(1− q)2

Notice that p1 = 0 has been excluded here as that is not a possible number of
flips to get two heads.

Equating weights in these Kinds gives us a recurrence relation that we can
solve:

p2 = (1− q)2

p3 = q(1− q)2

p4 = q2(1− q)2 + q(1− q)3

...

for all integers j ≥ 2.
The same idea carries over to other patterns too. For some patterns, like

consecutive strings of heads, solving for the Kind reduces a single equation
between the Kind. In some cases, like heads-tails-heads-tails, we can express this
as a system of “Kind equations.” We will see a general solution in an example in
a later chapter.
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1 2

2: 5 hours

3: 7 hours

1: 3 hours

Figure 47. Graph describing the state machine for the rover.

Example 8.14 Recursive Rover
A robot exploring the Valles Marineris canyon system on Mars finds itself at the
end of a canyon with three ancient river channels leading away. If it takes the
first channel, it will reach its base site after 3 hours of rocky travel. If it takes the
second or third channel, it will travel for 5 or 7 hours respectively only to find
itself back where it started. If the robot (not a very bright one) always chooses
among the channels randomly with equal weights. How long do we predict the
rover will take until it reaches safety?

We can think of this as a machine with two states. In state 1, the robot is at
the end of the canyon, and in state 2, it has returned successfully to base. From
state 1, the robot can take any of the three channels, two return the machine to
state 1, one to state 2. These transitions are shown in Figure 47, which depicts
a graph commonly known as a Finite-State Machine. Each transition from state
1 is labeled with the time the robot requires to make that transition.

Let T and C be FRPs. T represents the # of hours until the robot reaches
base, and C’s represents the channel (1, 2, or 3) that the robot chooses initially.
We want to find E(T ).

We will use the same technique as in the previous two examples. The function
time_to_base finds the Kind of the robot’s total time to base in terms of the
Kind of the remaining time after the first choice.

def time_to_base(t):

"""Returns the conditional kind of time to base.

Here, t is the *kind* of the remaining time *after the step*.
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"""

base = conditional_kind({1: constant(3),

2: t ^ (__ + 5),

3: t ^ (__ + 7)})

channel = uniform(1, 2, 3)

return base // channel

And with this, can approximate E(T ) quite well by iterating on a guess as before:

E(iterate(time_to_base, 10, constant(3))) #== 14.792

E(iterate(time_to_base, 20, constant(3))) #== 14.996

E(iterate(time_to_base, 30, constant(3))) #== 14.9999

By increasing the number of iterations, we allow for the possibilities of longer
sequences by the robot. The expectations converge rather quickly to 15.

We suspect that E(T ) = 15. Can we solve this exactly? Yes as before, but
here things are even simpler because we only need the expectation. In particular,
the Kind of the robot’s time to base is the (infinite) Kind t such that t is equal to
time_to_base(t), which necessarily means that E(t) == E(time_to_base(t)).

But time_to_base just does a conditioning operation, conditioning on a
channel Kind. And E(base // channel) is the same as E(base) // channel,
where E(base) is a function of the initial channel, which we can view as a
conditional Kind that returns a constant Kind for each input. Hence,

E(t) = E(time_to_base(t))

=
1

3
E(constant(3)) +

1

3
(E(t) + 5) +

1

3
(E(t) + 7)

= 1 +
2

3
E(t) + 4

= 5 +
2

3
E(t).

Solving our equation E(t) = 5 + 2
3 E(t) gives us E(t) = 15 as expected.

Note that E(t ^ (__ + 5)) = E(t) + 5 by the Additivity property in equa-
tion (7.12) and similarly with 7.
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After reading this section you should be able to:

• Describe Finite Random Processes using mixtures, statistics, and condi-
tionals.

• Formulate a strategy for analyzing Finite Random Processes with FRPs
and Kinds.

• Use the Big 3+1 operations, either alone or in combination to compute
predictions.

Checkpoints
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FRP
dimension, 5
size, 5
type, 5
width, 5

arbitrage price, 269, 276
associativity, 134

Bayes’s Rule, 194, 219
Big 3+1, 31
bijection, 296
bit, 287, 309
Boolean expressions, 200

canonical form, 116
combinator

statistic, 73, 74, 96, 98, 100, 101,
177

condition, 193, 199
conditional, 66, 193, 196

constraints, 198
operator, 198

conditional FRP
mixture, 159

conditional constraint, 25, 193, 201,
201

conditional FRP, 122, 151
codimension, 154
compatibility, 158
dimension, 154
domain, 154
type, 154

conditional FRP, FRP
conditional, 154

conditional Kind, 122, 157
codimension, 157
compatibility, 158
dimension, 157
domain, 157
mixture, 160
type, 157

conditional kind, 155
conditioning, 123, 186, 189

operator, 186

data-question, 185
decorator, 49, 56
determining class, 314
dilation, 83
dimension, 5

entropy, 286, 309
erosion, 83
essential certainty, 272
event, 61, 193, 199

complementary, 199
complements, 317

expectation, 23, 33, 270, 313

factory
FRP, 57, 79, 132
kind, 66, 132, 137, 252, 265
statistic, 61, 84, 89, 96–99, 298,

346
fixed point, 263
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FRP given a condition, 201
frplib, 7

combinators, 8
factory, 8

FRP, 1
clone, 131
compatible, 46
components, 95, 95
dimension, 3
factory, 57, 79, 132
fresh, 1
marginal, 95
numeric, 2
scalar, 3, 5
transformed, 47, 47

function
anonymous, 68

graph, 57, 246
edge, 57, 246
node, 57, 246
simple, 246
undirected, 246
without loops, 246

increment, 17
independent, 138
independent mixture, 22, 122, 128
independent mixture power, 122
indicator, 200
indicators, 50, 56
Iverson braces, 50, 200, 200, 318

Kind, 1, 3
canonical form, 54, 108, 114, 116

conditional, 155, 157, 221
constant, 11
dimension, 5
equivalence, 108, 112
factory, 66, 132, 137, 252, 265
given condition, 202
marginal, 95
mixture

independent, 136
size, 5
transformed, 51
type, 5
weights, 4
width, 5

linearity, 282

marginal, 185
marginalization, 95
Markov property, 245
Mean Absolute Deviation, 285
mixture, 122, 125, 148, 159, 160

independent, 33, 126, 130, 283
clone construction, 129
flat construction, 129

independet
flat method, 129

wiring diagram, 125
mixture-marginal, 185
model, 19, 21
monoid, 142

probability, 65, 271, 317
projection, 90, 90

relation
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binary, 113
equivalence, 113
equivalence class, 113

risk-neutral price, 15, 269, 273, 277

scalar, 2
selector switch, 148
set

increment, 17
size, 5
state, 235
statistic, 19, 23, 32, 35, 39, 45

codimension, 35, 45
combinator, 73, 74, 96, 98, 100,

101, 177
condition, 61, 193
dimension, 35, 45
expression, 96, 97

factory, 61, 84, 89, 96–99, 298, 346
inline, 47, 47, 200
scalar, 45
type, 35, 45

substitution property, 302

transition, 246
tree, 62
type, 5

function, 320
unit, 320

uncertainty, 272

variance, 271, 285, 290, 313
shortcut, 291

weight, 1
width, 5
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