Sapience: The ability to know things and reason with
that knowledge

Vikash Kumar* Aravind Rajeshwaran®

University of Washington

Abstract

We introduce Sapience, a new software package and ecosystem for research in Embodied
Artificial Intelligence. Sapience consists of a set of environments that span prior work of the authors,
as well as novel environments. These include environments like dexterous hand manipulation with
a Shadow Hand, whole arm manipulation tasks with robots like Franka and Fetch, locomotion tasks
with a variety of quadrupeds, as well as environments representative of challenges in multi-task,
hierarchical, and multi-agent RL. Sapience also comes with a number of algorithms developed
and optimized by the authors including model-free Natural Policy Gradient (NPG), demonstration
augmented policy gradient (DAPG), PAL and MAL — versions of model-based NPG based on
a game theoretic formulation of MBRL, and MOReL — a model-based offline RL algorithm. By
unifying a number of algorithms into a common API, and in providing more advanced environments
that are representative of real-world challenges in robotic control, we hope to make adoption easier
and advance the field of embodied artificial intelligence.

1 Introduction

While life is unique to the planet earth, the variability of its existence within our ecosystem is over-
whelmingly diverse. Different life forms have evolved to perceive their environment in different ways.
Similar diversity is found in the way they interact with the environment as well. Such a large variance
is a testimony to the fact that no sentient being is a universal winner. Different forms have different
advantages based on the ecosystem they exist in. Additionally, changes in the ecosystem test their
adaptability and resistance — some thrive while the other perishes. The path to Artificial Embodied
intelligence is no different. Much like biological intelligence, Artificial Embodied intelligence is a
complex puzzle with multiple design principles in play. These principles that can’t be understood in
isolation. Studying these principles and their interdependence will be key to realize the promise of
Robotics. To facilitate this investigation we present Sapience with the goal of providing a flexible
and comprehensive ecosystem for the study of Embodied Intelligence.

Sapience (Noun): - Quality of being wise, or wisdom. - Ability to apply knowledge or experience or
understanding or common sense and insight - The ability to know things and reason with that knowledge.

Sapient (Adjective) - wise, or attempting to appear wise. - being capable of experiencing things
through its senses.

[Sentience vs Sapience] [1] is the distinction between being aware in the sense of being merely awake
(which we share with nondiscursive animals - those that do not grasp concepts), on the one hand, and,
on the other hand, being aware in a sense that involves knowledge either by being a kind of knowledge,
or as potentially serving to justify judgments that so qualify.

**Equal contributions

2 Philosophy and Ecosystem

Talk about our principles/approach, and the project organization

3 Algorithms

Sapience comes with an extensive set of algorithms that span multiple families (e.g. model-free,
model-based, MPC). We plan to include additional algorithms in the future. All algorithms are
based on the interaction protocol (inspired by OpenAl) followed in the Sapience environments. All
algorithms share the following components:

e Policy: The policy class parameterizes the conditional distribution P(al|s) = mg(a|s). This
class supports basic functions to sample actions from the conditional distribution, compute the
likelihood, and other distributional information like entropy.

e Critic: This class parameterizes either the value function Vy(s) or the action-value function
Q4(s,a). This class is utilized for Q-learning based algorithms, policy gradient algorithms (as a
baseline), as well as trajectory optimization algorithms (e.g. POLO [2]).

e Model: The model, broadly parameterized as P(s;41|8¢, @) = Ty (Se41]|8t, ar), is utilized in a
number of algorithms like model-based NPG [3], trajectory optimization based algoirithms like
POLO [2] and PDDM [4], as well as offline RL algorithms like MOReL |[5].

e Sampler: The sampler module supports fast sampling from: (a) simulators running in the CPU
like MuJoCo [6] through multiprocessing; (b) fast rendering in GPU for pixel based tasks; (c)
learned neural network dynamics models typically running in GPU. We utilize a common API
for sampling in all these cases to ensure algorithms are general purpose and separated from the
data collection process.

e Logger: We use a custom logger class that logs data as key-value pairs in an ordered dictionary.
The logs are periodically saved as both .pickle and .csv files. This enables the use of either
our custom visualization functions, or external packages like tensorboard.

Based on the above abstractions, we provide the following algorithms initially, with the plan of including
more algorithms in the future.

e Model-free policy gradient: In the family of model-free policy gradients, we provide an
efficient implementation of NPG (7, 8], TRPO [9], and PPO [10].

e Model-based RL: In the family of model-based RL algorithms, we provide extensions of the
above algorithms (most emphasis on NPG), to the model-based RL seting. Here, a dynamics
model is learned using data of interaction with the environment. Subsequently, policy learning
happens through synthetic trajectories from the learned model. In our prior work, through a game
theoretic formulation of MBRL [3], we point out that for such model-based RL algorithms to be
successful, a two-timescale separation between model learning and policy learning is required.
The resulting algorithms, called PAL and MAL, are provided with Sapience, which to our
knowledge are currently the most sample efficient algorithms for the OpenAl gym [11] tasks.
The model-based NPG algorithm can also be augmented with a pessimistic truncation function
resulting in MOReL [5], a state of the art offline RL algorithm.

e Trajectory optimization (MPC): We also provide the MPC algorithm presented in POLO [2],
which is closely inspired by MPPI [12] (but has subtle differences). This MPC algorithm can be
used either directly with a simulator model (useful for sim2real experiments) or with a learned
dynamics model like in PDDM [4]. The MPC algorithm can also be augmented with a learned
terminal value function resulting in the POLO algorithm [2].

4 Robot

Sapience supports a collection of robots from different domains.

e Hands: Adroit Hand, Shadow Hand, Allegro Hand, MPL hand, D’Hand

Arms: Fraka Arm, Sawyer Arm, Fetch

Bi-Manual: Sally, Bi-Franka

Quadrupeds: D’Kitty, D’'Neko, Spot Mini, MIT-Cheetah

Bipeds: Darwin

These robots are exposed via an abstract robot class that homogenizes the simulation and hardware
differences. The robot class has two backends robot-simulation and robot-hardware. The robot-simulation
class uses MuJoCo backend and exposes all details with real world constrains (delays, noise, etc). The
robot-hardware class exposes robots in the real world via respective drivers. The robot class supports
multiple control modalities — position, velocity, torque control, etc, that is easily configured via a config
file.

4.1 Simulation

Developed using MuJoCo engine with physical realism. Modular. Building Blocks. Physically realistic,
Multiple sensing modalities

4.2 Hardware

Provides base class for users to extend as per the hardware configurations they have access to.

5 Environments

Sapienceprovides a variety of physically realistic environment carefully designed to cater to various
challenges associated with embodied intelligence. The environments are exposed via the OpenAl Gym
API [13]. Environments are designed with keen attention for flexibility and extension. For example,
tasks can be spawned with different robots, rewards and observation can be flexibly chosen. Additionally
all environments support physic and visual randomization. While rewards are usually taken as a
measure of performance, its scale can be arbitrary. Additionally, we realize that reward-design and
reward-learning is also an integral component of behavior systhesis. To facilitate such endeavors and
to introduce additional rigor in measuring performance, all environments are additionally equipped
with functionality to evaluate if the task has — failed/ solved. Success percentages reported by the
environments are used as performance measures. Unlike rewards, which can take arbitrary values,
success percentages are human interpretible and lies within the range 0-100%. Task success as the
performance measure is more aptly aligned with the true objectives of successful behaviors, and
accommodates reward-learning efforts within the scope of Sapience.

Sapience environments are organized into various suites.

5.1 Classical Suite

Figure 1: Task suite of classical control problems

5.2 Hand Manipulation Suite

P

e

Figure 2: Task suite of dexterous manipulation skills such as object relocation, in-hand manipulation, tool use, and
opening doors [14]

Figure 3: Task suite of simulated and realworld dexterous manipulation: valve rotation, in-hand reorientation,
handwriting, and manipulating Baoding balls as introduced in [4]

5.3 Arm Manipulation Suite

Pointing Pouring Relocation Zipping

Figure 4: A task suite for arm manipulation skills

5.4 Bi-manual Manipulation Suite

Figure 5: Task suite for bi-manual manipulation skills

5.5 Deformable Manipulation Suite

Figure 6: Task suite for learning manipulation skills with flexible objects

5.6 Locomotion Suite

Figure 7: Task suite for agile locomotion skills

5.7 Multi-Task Suite

Figure 8: A simulated kitchen scene (left)(as introduced in [15]) and table scene (right)(as introduced in [16]) well
suited for multi-task learning

5.8 Multi-Agent Suite

5.9 Robel Suite

Pose: Conform to the shape of the environment Turn: Turn the unactuated object to a specified angle Screw: Continuously rotate the unactuated object

Figure 10: Task suite of dexterous manipulation skills such as posing, turning, rotating etc as introduced in [17]

6

:

Figure 11: Task suite of agile locomotion skills such as posing, turning, rotating etc as introduced in [17]

—V

Stand: stand upright Orient: align heading with the target Walk: get to the target

Evaluations and Benchmarks

Talk about our evaluations are done — success percentages, not rewards. Users are free to pick rewards
however they like.

7

Conclusion

Hope the ecosystem provides a firm footing for those who are getting started with the field as well as
those who are at the forefront of research and development.

References

[1]

2]

3]

4]

[5]

[6]

7]
18]

19]

Wilfrid Sellars, Richard Rorty, Robert Brandom, et al. Empiricism and the Philosophy of Mind,
volume 1. Harvard University Press, 1997.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch.
Plan Online, Learn Offline: Efficient Learning and Exploration via Model-Based Control. In
International Conference on Learning Representations (ICLR), 2019.

Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A Game Theoretic Framework for Model
Based Reinforcement Learning. In International Conference on Machine Learning (ICML), 2020.

Anusha Nagabandi, Kurt Konoglie, Sergey Levine, and Vikash Kumar. Deep Dynamics Models
for Learning Dexterous Manipulation. In Conference on Robot Learning (CoRL), 2019.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. MOReL:
Model-Based OfflineReinforcement Learning. In Advances in Neural Information Processing
Systems (NeurIPS), 2020.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IROS, 2012.

Sham M Kakade. A natural policy gradient. In NIPS, 2002.

Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, and Sham Kakade. Towards Generaliza-
tion and Simplicity in Continuous Control. In NIPS, 2017.

John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel. Trust region
policy optimization. In ICML, 2015.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv, abs/1707.06347, 2017.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M. Rehg, Byron Boots, and
Evangelos Theodorou. Information theoretic mpc for model-based reinforcement learning. 2017
IEEFE International Conference on Robotics and Automation (ICRA), pages 1714-1721, 2017.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

Aravind Rajeswaran*, Vikash Kumar*, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning Complex Dexterous Manipulation with Deep Reinforcement
Learning and Demonstrations. In Proceedings of Robotics: Science and Systems (RSS), 2018.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long horizon tasks via imitation and reinforcement learning. Conference on
Robot Learning (CoRL), 2019.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. Conference on Robot Learning (CoRL), 2019.

Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo Ponte, Abhishek Gupta, Sergey Levine, and
Vikash Kumar. ROBEL: RObotics BEnchmarks for Learning with low-cost robots. In Conference
on Robot Learning (CoRL), 2019.

10

	Introduction
	Philosophy and Ecosystem
	Algorithms
	Robot
	Simulation
	Hardware

	Environments
	Classical Suite
	Hand Manipulation Suite
	Arm Manipulation Suite
	Bi-manual Manipulation Suite
	Deformable Manipulation Suite
	Locomotion Suite
	Multi-Task Suite
	Multi-Agent Suite
	Robel Suite

	Evaluations and Benchmarks
	Conclusion

