The uunet library:
an overview

March 21, 2021

CONTENTS

1 INTRODUCTION 7
1.1 A short history of the library
1.2 An overview of the code 8

1.3 Code conventions used in this document

2 THE
2.1

2.2

2.3
2.4
2.5

3 THE

3.1

BASIC FUNCTIONALITY

CORE MODULE 13
Stores and attributes 13
2.1.1 Object stores 13

2.1.2 Attributes 15

2.1.3 Attribute stores 16
Utilities 17

2.2.1 Counterhpp 18

2.2.2 CSVReaderhpp 18
2.2.3 Namelteratorhpp 19
2.2.4 Stopwatch.hpp 20
2.2.5 math.hpp and string.hpp
2.2.6 random.hpp 20

2.2.7 vector.hpp 21

2.2.8 hashing.hpp 21
Property Matrix 22

Exceptions 23

Observers 23

OLAP MODULE (CUBES) 25
Vertex Cubes 25

3.1.1 Set functionality 26

3.1.2 Handling attributes 26
3.1.3 Dimensions and members

20

28

10

CONTENTS

3.2 Edge Cubes 29
3.3 Operators 30

II NETWORKS

4 BASIC CONCEPTS IN GRAPH THEORY 33

4.1 Graphs, vertices and edges 33
5 NETWORKS 37

5.1 Predefined models 37
5.1.1 Basic networks 37
5.1.2 Weights, times and probabilities
5.1.3 Multilayer networks 40

5.2 Construction of custom network models
5.2.1 Simple graphs 41

5.2.2 Multiplex and multirelational networks

5.2.3 General multilayer networks

5.2.4 Temporal interlayer edges 44

6 CREATING NETWORKS 47
6.1 Standard graphs 47
6.2 I/0 48

6.3 Generation 51
6.3.1 Simple graphs 51
6.3.2 Multilayer network coevolution
6.3.3 Community-based 52
7 OPERATIONS 53
7.1 Simple graph operations 53
7.1.1 Graph induction 53
7.1.2 Vertex-set operations 54
7.1.3 Edge operations 55
7.2 Flattening and projection = 55
7.3 Anonymization 56
8 MEASURES 57
8.1 Degree-based measures 57
8.1.1 Degree 57

42

CONTENTS 5

8.1.2 Multilayer degree 59
8.1.3 Neighborhood 59
8.2 Path-based 60
8.2.1 Distances 60
8.2.2 Betweenness 60
8.3 Layer relevance 60
8.4 Layer comparison 61
9 COMMUNITY DETECTION 63
9.1 Data structures 63
9.2 Algorithms 64
9.3 Evaluation 65
94 1/0 65
10 LAYOUT 67
11 FURTHER READINGS 69

1

INTRODUCTION

This document provides an overview of the uunet library,
with examples on how to use its classes and functions. It is
not aimed at explaining how the algorithms work; references
where to learn more about multilayer network theory and
methods are available in Chapter 11.

The uunet library contains code used or developed at
the Uppsala University Information Laboratory (InfoLab)
to store, manipulate and analyze data about interconnected
entities. Most of the functions provided by our multilayer
network analysis libraries for R* and Python* are imple-
mented in uunet.

While uunet provides some graph management function-
ality, it is not intended as a full-fledged graph analysis
library; several are already available. uunet focuses on more
expressive data structures, such as multilayer networks.

1.1 A SHORT HISTORY OF THE LIBRARY

In 2011 we published our first paper on multilayer networks,
where we introduced what at the time we called the ML-
Model:

1 https://cran.r-project.org/web/packages/multinet/index.html
2 https:/ /pypi.org/project/uunet/

INTRODUCTION

Matteo Magnani and Luca Rossi (2011). The
ML-Model for Multi-Layer Social Networks. In-
ternational conference on social network analysis
and mining (ASONAM). IEEE.

At the same time we also started writing code to test our re-
search contributions on multilayer networks, and a few years
later we decided to make our work more easily available.
So we wrote our book, which covers our contributions but
also research results from many other researchers working
on multilayer networks:

Mark E. Dickison, Matteo Magnani, and Luca
Rossi (2016). Multilayer Social Networks. Cam-
bridge University Press.

and we published the first version of the multinet library
on the R Archive (CRAN), at that time covering most of the
concepts presented in the book. This library was based on
C++ code not designed to be directly used by others, but
still mainly used as our research playground.

After some major restructurings of the C++ library, and
after including additional research results produced by the
multilayer network research community, we made the Python
porting and also polished and documented the C++ code to
make it usable by people outside our lab.

1.2 AN OVERVIEW OF THE CODE

Instructions to obtain, compile and install the library can
be found in the README.md file, together with additional
instructions for developers. Guidelines on how to write
code for the library are in StyleGuide.md. The main code
is contained inside src/ and organized into modules, each
corresponding to a directory:

1.2 AN OVERVIEW OF THE CODE 9

e core/ (Chapter 2), defining exceptions, basic data
structures, CSV reader, mathematical functions, ...

e olap/ (Chapter 3 and Section 5.2), defining cubes,

e objects/ (Chapter 4), defining basic objects such as
Vertex, Edge, ...

e networks/ (Chapter 5), defining basic network meta
models,

e generation/ (Chapter 6), defining functions to gener-
ate new networks,

e io/ (Chapter 6.2 and Section 9.4), defining functions
to read and write networks from/to file,

e operations/ (Chapter 7), defining functions to manip-
ulate networks,

e measures/ (Chapter 8), defining functions to measure
network properties,

e community/ (Chapter 9), defining data structures, algo-
rithms and evaluation measures for community detec-
tion,

e algorithms/, defining basic graph algorithms,

e layout/ (Chapter 10), defining functions to associate
coordinates to network vertices, and

e utils/, defining printing functions.

Other directories contain unit tests (test/), examples (examples/),
and external code (ext/).

10

INTRODUCTION

1.3 CODE CONVENTIONS USED IN THIS DOCUMENT

In the code examples presented in this document we will
omit the std: : namespace and the two namespaces defined
in the library: uu::core:: and uu::net:: when we think
they are clear from the context. Classes and functions in
uu::core:: are those declared in the core/ module and
described in Chapter 2, all other classes and functions are in
namespace uu::net::.

Part1

BASIC FUNCTIONALITY

2

THE CORE MODULE

The core module (core/) provides basic functions that are
not specific of networks. This includes storing objects, han-
dling attributes, managing exceptions, generating random
numbers, reading CSV files, etc.

2.1 STORES AND ATTRIBUTES

One main functionality provided by the core module is to
store and retrieve objects and assign attributes to them. This
is implemented in the core/stores and core/attributes
sub-modules.

2.1.1 Object stores

The class ObjectStore is defined in core/stores. It can be
used to store and retrieve objects with the following features:

1. defining a typedef key_type (the type of the key used
to identify the object in the store),

2. providing a const member function key() returning the
key value for the object, and

3. inheriting from enable_shared_from_this.

13

14

THE CORE MODULE

Notice that the key is only used to retrieve the objects from
the stores where they are indexed. Therefore, a key value
is guaranteed to be unique only inside an ObjectStore. Dif-
ferent objects can have the same key. To check if two objects
are the same, one should use the == operator (if provided
by the class) or compare their pointers.

ObjectStores are mainly used to store vertices and edges,
but in the following example we use objects representing
people, identified by their social security number (ssn) and
also having a name. The social security number is also used
as a key.

class
Person :
public enable_shared_from_this<Person>

public:

const string ssn;
const string name;

typedef string key_type;
key_type key() const {return ssn;}

Person(
const string& ssn,
const string& name
) : ssn(ssn), name(name) {};

I3

Now we can create a store and add, retrieve, and erase
objects (that is, people in this case):

ObjectStore<Person> store;

auto pl = make_shared<Person>("0001", "Alice");

2.1 STORES AND ATTRIBUTES

auto p2 = make_shared<Person>("0002", "Hatter");

store.add(pl.get());
store.add(p2.get());

store.size();
store.contains(pl.get());
store.contains("0001");
store.get("0002");
store.get_at_random();
store.at(0);
store.index_of(pl.get());
store.erase(pl.get());
store.erase("0001");

Notice that store.at(0) returns either p1 or p2 depending
on the execution: ObjectStores correspond to mathematical
sets, so there is no fixed order for the objects they contain.
However, until when an ObjectStore is modified the order
of the objects it contains is fixed, so their positions can be
used as (temporary and local) object identifiers.

2.1.2 Attributes

Attribute Stores, introduced in the next section, allow us to
associate values to objects. The sub-module core/attributes
provides basic functions to manipulate attributes. The file
AttributeType.hpp defines the supported attribute types:

e STRING (std::string)
e DOUBLE (double)
e INTEGER (int)

e TIME (uu::core::Time — currently an alias for time_t)

15

16

THE CORE MODULE

TEXT (uu::core::Text — currently an alias for string)

STRINGSET (std::set<std::string>)

DOUBLESET (std::set<double>)

INTEGERSET (std::set<int>)

TIMESET (std::set<uu::core::Time>)

The first five are simple types, and we would typically
store them wrapped into a Value object that allows us to
represent null values. For example, a Value<double> has
two fields: a flag null and a double field value. The value
in value should only be used if the null flag is not set. The
reason why we have aliased basic C++ types for time and
text is that in the future we may decide to extend them with
additional functions.

The file conversion.hpp contains various functions to
manipulate attributes. In particular, it provides the following
functions to create Time values:

e epoch_to_time, taking the number of seconds since
epoch as input (as int or string),

e to_time, taking a string and the format specifying
how to interpret the string as input. Valid formats
are described in the documentation of the get_time
function in the standard library.

One example of format specifier (the default one) is:
%Y -%m-%d %H:%M:%S %z.

2.1.3 Attribute stores

Attribute Stores allow us to associate attribute values to
objects.

2.2 UTILITIES

AttributeStore<Person> attr;
attr.add("Al", AttributeType: :DOUBLE);
attr.add("A2", AttributeType: :DOUBLESET);

The functions available to assign and retrieve attribute values
depend on the type of attribute. Simple types provide set
and get functions:

attr.set_double(pl.get(), "Al", 3.14);
attr.get_double(pl.get(), "Al");

attr.get_double(p3.get(), "Al");

While set types provide add and get functions:

attr.add_double(p2.get(), "A2", 3.14);
attr.get_doubles(p2.get(), "A2");

attr.get_doubles(p3.get(), "A2");

2.2 UTILITIES

The sub-module core/utils contains a variety of func-
tions to manipulate strings (string.hpp), perform math-
ematical operations (math.hpp), generate random numbers
(random.hpp). Some of these functions were implemented
in the library because they were not available in all the im-
plementations of the standard library on all the systems
where the library is expected to work — in particular, the R
package depending on this library is tested against several
systems and configurations. The intention is to use standard
functions when possible, and some of these can be replaced
with standard functions in time when they become (broadly)

17

18

THE CORE MODULE

available. In the following we show four utility classes that
are used in various other modules.

2.2.1 Counter.hpp

A Counter allows us to count the occurrences of any object,
either by increasing the count by 1 (inc) or by directly setting
a value (set).

Counter<char> c;
c.count('a’);
.inc(’'a’);
.set(’'a’", 3);
.inc(’'a’);
.max();

0o o o o0

2.2.2 CSVReader.hpp

CSV files can be read using a CSVReader. This works for both
Windows and Unix/Mac systems (handling the different
ways to start a new line), and provides settings to trim space
characters at the beginning and the end of each field, to
specify different separators, and to indicate which characters
at the beginning of a line indicate a comment.

CSVReader csv;
csv.trim_fields(true);
csv.set_field_separator(’\t’);

csv.set_comment("--");

csv.open(infile);

2.2 UTILITIES

We can then iterate over the lines of the file as follows, by
obtaining the full line as a string or a vector with a string
for each field:

while (csv.has_next())

{
vector<string> fields = csv.get_next();
string line = csv.get_current_raw_line();

}

csv.close();

If we know that the lines should have a given number of
fields, then we can set this property:

csv.set_expected_num_fields(8);

In this way, lines with a different number of fields will
be skipped, and at the end we can check how many, for
example to check that no lines were omitted because of
format errors:

csv.skipped_lines();

2.2.3 Namelterator.hpp

Various functions need to generate a list of names, for ex-
ample functions generating new vertices. A NameIterator
takes a prefix and the number of names to generate as input,
also guaranteeing that all names have the same length. For
example, the following code would print U606 to U16:

auto names = Namelterator("U", 11);
for (auto name: names)
{

cout << name << endl

}

19

20

THE CORE MODULE

2.2.4 Stopwatch.hpp

A Stopwatch can be used to compute execution times. We
can start it, then call the lap function multiple times. Later
we can obtain the time passed for each lap, indicating the
lap number (starting from 0)

Stopwatch clock;
clock.start();

clock.lap();

clock.lap();
clock.millis(0);
clock.sec(0);
clock.millis(1);

2.2.5 math.hpp and string.hpp

These modules provides basic mathematical functions not
available in the standard library, or not implemented in all
the systems where we need our R library to work. math.hpp
declares mean, stdev, union, intersection, while string.hpp
declares the following functions:

string s = "An_<example>_&";
to_upper_case(s);
to_xml(s);

2.2.6 random.hpp

Random number generation is another type of functionality
that was still not consolidated in the C++ standard library
when we started developing uunet. The following functions
are available:

2.2 UTILITIES

irand(10);

drand();
get_binomial(10, .3);
get_k_uniform(10, 3);

We can also run tests as follows:

test(.2);
vector<double> probs = {.2, .5, .3};
test(probs);

2.2.7 vector.hpp

This file declares functions to generate vectors, R style:

seq(2, 4)
seq(4, 2)

and to update vectors by moving the element from one
position to another:

vector<size_t> vec = {1,2,3,4,5};
move(vec, 1, 4);

2.2.8 hashing.hpp

This file specifies hash functions for custom types so that
they can be used in hash data structures, for example inside
an unordered_map. One would not normally touch this file,
except if there is a need to enable such possibility for new
types defined in the library that do not already provide it.

21

22

THE CORE MODULE

2.3 PROPERTY MATRIX

Property matrices are sparse data structures where we can
associate a value to a structure in a specific context. This
is currently used to count motifs (that is, structures: ver-
tices, edges, triangles, ...) in layers of a multilayer network
(that is, contexts) to compute layer comparison functions.
Property matrices were also defined to support the identifi-
cation of positions and roles, and in principle can be used
to implement adjacency matrices, term-document matrices,
etc.

In the following example we define an adjacency matrix:
the rows and columns of the matrix (respectively structures
and contexts) are indexed by size_t, and the value at i, is
true when there is an edge between vertex i and vertex j. In
general terms, contexts in this property matrix represent the
neighborhood of vertices, structures are also vertices, and
values indicate whether structure i is present in context j
(that is, whether the two vertices are adjacent). The three pa-
rameters of the contructor indicate the number of structures,
the number of contexts and the default value.

auto A = PropertyMatrix<size t,size _t,bool>(4,4,false);
A.set(0, 2, true);
A.set(3, 1, true);
A.get(0, 1).value;

We can also specify if a value in not known for a pair
structure/context, retrieve the number of unknown values
for a context and (for numerical matrices) replace the values
with their rank.

A.set_na(0, 3);
A.get(0, 3).null;
A.get(0, 3).value;
A.num_na(3);

2.4 EXCEPTIONS

auto P = PropertyMatrix<size_t,size_t,double>(4,4,0.0);
P.rankify();

2.4 EXCEPTIONS

The sub-module core/exceptions contains exceptions to be
thrown by library functions. For example:

throw FileNotFoundException(file_name)

The available exceptions are: DuplicateElementException,
ExternalLibException, OperationNotSupportedException,
WrongFormatException, FileNotFoundException, Wrong-
ParameterException, ElementNotFoundException, OutOf-
BoundsException, and NullPtrException. NullPtrException
is typically not used directly: assert_not_null should be
called every time another function takes a pointer as input
to check that it is not null. To provide a more useful error
message, assert_not_null takes the name of the function
and parameter as input, and throws a meaningful NullP-
trException. For example,

assert_not_null(obj, "VCube::add", "obj")

is called at the beginning of the method add of the VCube
class to check if parameter obj is null.

2.5 OBSERVERS

To keep stores synchronized, the library uses the Subject/Ob-
server pattern, with classes contained in core/observers.
One specific Observer available in the core module is used
to synchronize stores, for example to automatically update
a store so that it represents the union of others:

23

24

THE CORE MODULE

ObjectStore<Person> storel;
ObjectStore<Person> store2;
ObjectStore<Person> union_store;

UnionObserver<ObjectStore<Person>> obs(&union_store);
storel.attach(&obs);
store2.attach(&obs);

From now union_store will represent the union ofstorel
and store2. In the following code, assume that p1 and p2
are pointers to Persons.

storel.add(pl);
store2.add(pl);
store2.add(p2);
storel.erase(pl);
store2.erase(pl);

Another usage of observers is to propagate deletions from
one store to another.

THE OLAP MODULE (CUBES)

A graph is a pair (V,E) where V is a set of vertices and E
is a set of edges. The uunet library is built around multi-
layer cubes, that are generalizations of vertex and edge sets
allowing us to extend graphs into more complex data struc-
tures. In particular, a multilayer cube provides three sets
of capabilities: handling a set of objects (creation, retrieval
and deletion), storing attributes, and creating an internal
structure to organize the objects into overlapping subsets
(also known as cells, or layers in the multilayer network ter-
minology, and also related to facts in data warehousing).
Assembling different combinations of cubes allows the cre-
ation of several types of meta models for interconnected
data, from simple graphs to general multilayer networks
and beyond.

3.1 VERTEX CUBES

Let us start from the generalization of V, that we call Vertex
Cube (short: VCube).

25

26

THE OLAP MODULE (CUBES)

3.1.1 Set functionality

First, a VCube provides the functionality of a set of vertices.
This is all we need to handle the vertices in a simple or
directed graph. We can add new vertices, we can check if
the cube contains a vertex, we can get the n-th vertex from
the cube, or by name, or uniformly at random, we can check
which position a vertex occupies and we can erase a vertex:
auto V = make_unique<VCube>("V");

auto vl = V->add("v1");

V->size();

V->contains(vl);

V->contains("v1");

V->get("vl");
V->get_at_random();
V->at(0);

V->index_of(vl);
V->erase(vl);
V->erase("vl");

While a VCube allows us to create new vertices through
the add () method, we can also add already existing vertices,
e.g., vertices previously added to other VCubes or vertices
created independently of any VCube:

auto v2 = make_shared<const Vertex>("v2");
V->add(v2.get());

3.1.2 Handling attributes

Second, a VCube allows us to associate attributes to its ver-
tices. This allows us to define vertices in attributed graphs.
Here we create an attribute al of type double and set/get a
value for vertex va:

auto attr = V->attr();

3.1 VERTEX CUBES 27

attr->add("al", AttributeType::DOUBLE);
attr->set_double(v2, "al", 3.14);
attr->get_double(v2, "al");

The result of get_double() has two fields: null and value.
If nullis false, value contains the attribute value (in this ex-
ample, 3.14). One can create attributes of basic type INTEGER,
DOUBLE, STRING, TIME, and TEXT. In addition, we can also
create set attributes, where multiple values can be associ-
ated to the same vertex, using types INTEGERSET, DOUBLESET,
STRINGSET, and TIMESET.

attr->add("a2", AttributeType::TIMESET);
attr->add_time(v2, "a2", epoch_to_time("3667"));
attr->add_time(v2, "a2", epoch_to_time("3669"));
attr->add_time(v2, "a2", epoch_to_time("3695"));
attr->get_times(v2, "a2",);

When cubes are used to define known types of attributed
data structures, such as weighted graphs, the library also
provides utility functions to handle attributes directly on
the data structures without explicitly needing to access the
cubes’ attribute stores, as shown in Chapter 4.

Attributes are kept consistent with the vertices in the cube
using an Observer pattern: we cannot set/add attribute
values for vertices not in the cube, and removing a vertex
from the cube also removes its attribute values. If we ask
for values for vertices not in the cube, we get a null value
(more precisely, a Value<T> object with field null set to
true) for basic attribute types and an empty set of values
for set attributes.

28

THE OLAP MODULE (CUBES)

3.1.3 Dimensions and members

Third, a VCube provides an internal organization for its
vertices. This allows us, for example, to separate partitions
in multimode networks. VCubes support the creation of
dimensions, each of which has one or more members, and
to access the vertices in a specific dimension. When a VCube
is created we have no dimensions:

V->order();
V->dsize();
V->dimensions();
V->members();

Here we add two dimensions, one with three members and
one with two members. This results in a 3 x 2 cube, with 6
cells/layers. If no additional parameters are specified, as in
this case, existing vertices are assigned to all the new cells.
In Section 5.2.4 we show how to specify custom assignments.

V->add_dimension("d1", {"m1ll", "m1l2", "ml3"});
V->add_dimension("d2", {"m21", "m22"});
V->order();

V->dsize();

V->dimensions();

V->members();

Now we can access individual cells of the cube:

auto index = vector<string>({"m12", "m21"});
V->cell(index)->add("v3");
V->cell(index)->add("v4");

V->size();

When the cube has more than one cell, we can still add and
erase vertices to/from the cube. In this case the operation is
replicated on all cells. For example:

auto v5 = V->add("v5");

3.2 EDGE CUBES

V->cell(index)->size();
V->erase(v5);
V->cell(index)->size();

When a cube has more than one cell, the internal implemen-
tation of the cube keeps a pointer to a vertex for each cell
where it belongs, plus one pointer for the whole cube. If the
cube only has one cell (independently of its dimensionality)
or no cells then there is no duplication of pointers.

3.2 EDGE CUBES

Edge Cubes (ECubes) store edges and provide the same
three types of functionality as VCubes: set, attributes, and
internal structure. The main difference is that while a VCube
exists independently of other data structures, an ECube
must have two end VCubes from which the end vertices
of its edges are taken. In addition, an ECube must specify
whether its edges are directed or undirected, and whether
it allows loops, that is, edges between a vertex on a VCube
and the same vertex on the same VCube.

auto vcl_up = make_unique<VCube>("V1");
auto vc2_up = make_unique<VCube>("V2");
auto vcl = vcl_up.get();
auto vc2 = vc2_up.get();

auto d = EdgeDir::DIRECTED;
auto nl = LoopMode: :DISALLOWED;
auto E = make_unique<ECube>("E", vcl, vc2, d, nl);

Notice that loops are possible only if the two end VCubes
are the same, so disallowing loops is not really needed in
the example above.

29

30

THE OLAP MODULE (CUBES)

Now we can use the cube to store edges, as we did with
vertices. Here we exemplify set functionality, to demonstrate
how to add new edges.

First we have to add some vertices. In this example, we
add the same vertex to both end VCubes:

auto vl = vcl->add("vl");
vc2->add(vl);

Then we can connect these vertices with an edge. We also
exemplify the other set-based functions:

auto el = E->add(vl, vcl, vl, vc2);
E->size();

E->contains(el);

E->contains(vl, vcl, vl, vc2);
E->get(vl, vcl, vl1, vc2);
E->get_at_random();

E->at(0);

E->index_of(el);

E->erase(el);

The functions to handle attributes and structure are the same
as for VCubes, so we do not repeat them here.

3.3 OPERATORS

TBD

Part 11

NETWORKS

BASIC CONCEPTS IN GRAPH THEORY

Before presenting all the types of networks supported by the
library, we show how basic concepts in graph theory map
to library objects and functions.

4.1 GRAPHS, VERTICES AND EDGES

Definition 4.1 (Graph). A graph G is a tuple (V, E) where
V is a finite set of vertices and E is a finite set of unordered
pairs of vertices (edges).

In uunet, vertices and edges are objects that exist indepen-
dently of a graph. The following code:

auto vl = make_shared<Vertex>("v");
auto v2 = make_shared<Vertex>("v");

auto dir = EdgeDir::UNDIRECTED;
auto edgel = make_shared<Edge>(vl.get(), v2.get(), dir);
auto edge?2 = make_shared<Edge>(vl.get(), v2.get(), dir);

creates the C++ objects in Figure 1a. There are two Vertex
objects and two Edge objects, where *v1 != *v2 even if they
have the same name, and *edge1 != *edge2 even if they
connect the same vertices. These C++ objects correspond to
the logical graph in Figure 1b.

33

34 BASIC CONCEPTS IN GRAPH THEORY

’ vertex1:shared_ptr ‘ ’ vertex2:shared_ptr ‘

| |

:‘Vertex :‘Vertex
name = “v” name = “v”
v1 v2 v1 v2 @
:Edge :Edge b ical
dir = UND. dir = UND. (b) Logica

i i

’edge1:shared_ptr ‘ ’edge2:shared_ptr ‘

(a) Physical

Figure 1: Vertices and edges: physical representation of the C++
objects and a traditional visual representation of the two
vertices and edges

In uunet, vertices and edges may be included in a graph,
where a graph:

e guarantees ownership, that is, vertices and edges will
keep existing at least until when they are inside some

graph,

¢ allows to associate attributes to vertices and edges,
that are local to the graph, and

e can create new vertices and edges.

To introduce basic concepts in graph theory, in this chapter
we use the graph G = (V, E) in Figure 2:

o V= {7)1, U2,03,04,0s5,0g,07,08, 09}

o E={ej, e 634065066067, e3}, where ey = (vp,74), etc.

4.1 GRAPHS, VERTICES AND EDGES

Figure 2: A simple graph G

#include "io/read_network.hpp"

const string network_file = "../simple.txt";
auto g = read_network(network_file, "G", ',");
auto vl = g->vertices()->get("vl");

auto v2 g->vertices()->get("v2");
auto v3 = g->vertices()->get("v3");
auto v4 = g->vertices()->get("v4");
auto v5 g->vertices()->get("v5");
auto v6 = g->vertices()->get("v6");
auto v7 = g->vertices()->get("v7");
auto v8 g->vertices()->get("v8");
auto v9 = g->vertices()->get("v9");
auto el g->edges()->get(v2, v4);
auto e2 = g->edges()->get(v3, v4);
auto e3 = g->edges()->get(v5, v4);
auto e4 = g->edges()->get(v6, v4);
auto e5 = g->edges()->get(v5, v7);
auto e6 = g->edges()->get(v6, v7);
auto e7 g->edges()->get(v8, v9);
We say that:

e U, and vy are end-vertices of e.

35

36

BASIC CONCEPTS IN GRAPH THEORY

e vy and vy are adjacent.
e v, is a neighbor of vy, vy is a neighbor of v,.
e ¢ is incident to v, and vy.

In the following we show the corresponding code in
uunet.

cout << "End-vertices_of_el:_"
<< el->vl->name << ", " << el->v2->name
<< endl;

End-vertices of el: v2, v4

auto neigh = g->edges()->neighbors(v4);
cout << "Neighbors_of_v4:_";
for (auto v: *xneigh)

{

cout << v->name << "_";

}

cout << endl;

Neighbors of v4: v2 v3 v5 v6

auto inc = g->edges()->incident(v4);
cout << "Edges,incident_to _v4:" << endl;
for (auto e: *inc)
{
cout << "(" << el->vl->pame << " _--_" << el->v2->
~— name << ")_";
}

cout << endl;

Edges incident to v4:

(v2 -- v4) (v3 -- v4) (v4 -- v5) (v4 -- vb)

NETWORKS

As we have seen in the previous chapter, uunet defines some
basic types of network models, that are reviewed in more
detail in Section 5.1. Using cubes, more general custom
models can be defined, as shown in Section 5.2.

5.1 PREDEFINED MODELS
5.1.1 Basic networks

The four main combinations defining the types of allowed
edges are obtained by specifying edge directionality, and
whether a network allows loops.

Definition 5.1 (Loop). A loop is an edge with the same
end-vertices.

auto dir = EdgeDir::UNDIRECTED;
auto und = EdgeDir::UNDIRECTED;
auto loops = LoopMode: :ALLOWED;
auto no_loops = LoopMode: :DISALLOWED;

The following example creates an undirected network not
allowing loops (which is checked behind the scenes using
an observer monitoring the insertion of new edges):

37

38

NETWORKS

auto g = make_unique<Network>("g", und, no_loops);
auto vl = g->vertices()->add("v1l");

auto v2 = g->vertices()->add("v2");

auto e = g->edges()->add(vl, v2);
g->edges()->contains(v2, vl);

A network also allows to add attributes to its vertices and
edges: the attr functions return pointers to AttributeStores
(see Section 2.1.3 for the list of attribute handling functions
provided by AttributeStores):

g->vertices()->attr();
g->edges()->attr();

The following examples create a directed network allowing
loops:

auto g2 = make_unique<Network>("g", dir, loops);
g2->vertices()->add(vl);
g2->vertices()->add(v2);

g2->edges()->add(vl, v2);

g2->edges()->add(vl, v2);
g2->edges()->contains(v2, vl);
g2->edges()->add(vl, vl);

In uunet, a Network only allows simple edges, while a
MultiNetwork allows multiple edges.

Definition 5.2 (Multiple edge). Multiple edges are edges
with the same pair of end-vertices.

Both Network and MultiNetwork may allow or not loops,
as specified when they are created.

auto simple = make_unique<Network>("g", dir, false);

auto multi = make_unique<MultiNetwork>("g", dir, true);

Notice that a MultiNetwork has a different interface: the
function edges () ->get () returns a container of edges, not a
single edge.

5.1 PREDEFINED MODELS

auto mg = make_unique<MultiNetwork>("g", dir, loops);
mg->vertices()->add(vl);
mg->vertices()->add(v2);
mg->edges () ->add(vl, v2);
mg->edges () ->add(vl, v2);
mg->edges () ->get(vl, v2);

5.1.2 Weights, times and probabilities

Networks can be made weighted:

make_weighted(g.get());
is_weighted(g.get());
set_weight(g.get(), e, 3.14);
get _weight(g.get(), e);

By default, an edge whose weight has not been set will
return weight 1.

Probabilistic networks are defined and manipulated simi-
larly to weighted networks, with the difference that proba-
bilities must be in the [o,1] range:

make_probabilistic(g.get());
is_probabilistic(g.get());

set_prob(g.get(), e, .14);
get_prob(g.get(), e);

In a temporal network, multiple timestamps can be as-
sociated to the same edge. For example, if we define the
following times:

auto tl = uu::core::epoch_to_time(17438);
auto t2 = uu::core::epoch_to_time(17468);

We can then associate both of them to the same edge:

39

40

NETWORKS

make_temporal(g.get());
is_temporal(g.get());
add_time(g.get(), e, tl);
add_time(g.get(), e, t2);
get_times(g.get(), e);

5.1.3 Multilayer networks

In a multilayer network we can add multiple networks as
layers:

auto mnet = make_unique<MultilayerNetwork>("m");
auto 11 = mnet->layers()->add("l1", dir, loops);
auto 12 = mnet->layers()->add("12", und, no_loops);

11 and 12 are of type Network*, so we can use them as
seen above. However, one should be careful when adding
vertices to them if we want to have the same vertices in
different layers:

11->vertices()->add(vl);
12->vertices()->add(vl);

The command 12->vertices()->add("v1") would instead
create and add a different vertex.

The set of distinct vertices in a multilayer network are
called actors:

mnet->actors();

In addition, a multilayer network allows us to add inter-
layer edges. Before adding edges between two layers, we
have to initialize that pair. The following example initializes
the pair of layers 11,12, specifying that interlayer edges be-
tween these layers are directed, and adds two directed edge
between v11 in layer 11 and v1 in layer 12.

mnet->interlayer_edges()->init(11, 12, dir);

5.2 CONSTRUCTION OF CUSTOM NETWORK MODELS

mnet->interlayer_edges()->add(vl, 11, vl1, 12);
mnet->interlayer_edges()->add(vl, 12, vl1, 11);

5.2 CONSTRUCTION OF CUSTOM NETWORK MODELS

Using cubes we can build several types of networks combin-
ing cubes in different ways.

5.2.1 Simple graphs

A simple graph has a set of vertices, a set of edges between
those vertices, and edges are undirected and do not allow
loops:

auto V = make_unique<VCube>("V");

auto E = make_unique<ECube>("E", V.get(), V.get(),
< EdgeDir::UNDIRECTED, LoopMode::DISALLOWED);

Once we have created V and E we can add vertices and edges.

auto vl = V->add("v1l");
auto v2 = V->add("v2");
auto v3 = V->add("v3");
auto el = E->add(vl, v3);
auto e2 = E->add(v2, v3);

Notice that while cubes allow us to assemble many types
of data models, for some models it can be more intuitive to
wrap the cubes inside a better-known and more specific in-
terface. For example, we may want to define networks, and
retrieve their vertices, or we may want to define multiplex
networks, and retrieve their actors, or we may be interested
in getting messages from a temporal text network. In these
cases, we can define an interface and use cubes to imple-
ment it behind the scenes, so that a user does not need to

41

42

NETWORKS

know about them for basic structures and operations. As an
example, we can wrap the two cubes above inside a Network:

auto g = make_unique<Network>("G", move(V), move(E));
g->vertices()

g->edges ()

g->vertices()->add("v4")

Even when we create a network from scratch, behind the
scenes the network is implemented using cubes, but this
knowledge is not needed to work with the network.

auto g = make_unique<Network>("G");
auto vl g->vertices()->add("v1l")
auto v2 = g->vertices()->add("v2")
auto el = g->edges()->add(vl, v2)

5.2.2 Multiplex and multirelational networks

A multiplex network can be defined in different ways, corre-
sponding to the variations found in the literature. In general,
a multiplex network has a set of actors and a set of edges of
different types. So we can just first create a graph (we’ll call
its vertices A instead of V, for Actors):

auto A = make_unique<VCube>("A");
auto E = make_unique<ECube>("E", A.get(), A.get());

then we can transform it into a multiplex network just by
structuring its edges into multiple cells, one for each type of
edges:

E->add_dimension("e-type", {"friend", "work"});

Now we can add actors and edges between actors. Notice
that we can add edges to specific cells.

5.2 CONSTRUCTION OF CUSTOM NETWORK MODELS

auto alice = A->add("Alice");
auto bob = A->add("Bob");
auto mirka = A->add("Mirka");

E->cell({"friend"})->add(alice, bob);
E->cell({"work"})->add(alice, bob);
E->cell({"friend"})->add(alice, mirka);

It is worth noticing that with this design this multiplex
network has two multiplex edges (and not three, as we would
have in a multigraph): one multiplex edge between Alice
and Bob on friend and work, and one edge only on friend.

An alternative design is to use different cubes for the
different types of edges:

auto A = make_unique<VCube>("A");
auto E1 = make_unique<ECube>("fri.", A.get(), A.get());
auto E2 = make_unique<ECube>("work", A.get(), A.get());

In this case we would be able to add different edges among
the same actors in different cubes.

Finally, we can build a generalized multiplex network
with different actors depending on the edges. For example,
we can structure the actors into two cells, one with all the
actors (that we call offline) and one only for the actors
with a Facebook account:

auto A = make_unique<VCube>("A");
A->add_dimension("actor-type", {"facebook", "offline"});

In this way we can specify facebook edges that can only join
actors with a facebook account. To do this, we can build
virtual VCubes on individual cells (or more in general slices
of the cubes):

auto fb = vslice("facebook", A.get(), {{0}});
auto Efb = make_unique<ECube>("fb", fb.get(), fb.get());

Notice that fb is itself a VCube. In addition, the vslice()
function does not replicate any vertex pointer, because it cre-

43

44

NETWORKS

ates a single-cell cube that is a virtual view over the original
one (as in SQL) and so it occupies a marginal amount of
additional memory not depending on the size of the original
cube.

5.2.3 General multilayer networks

Finally, we can add "interlayer" edges between actors of
different types to obtain a general multilayer network:

auto off = vslice("offline", A.get(), {{1}});

auto IE = make_unique<ECube>("ie", off.get(), fb.get());
auto el = IE->add(alice, off.get(), bob, fb.get());
auto e2 = IE->add(bob, off.get(), alice, fb.get());
auto e3 = IE->add(mirka, off.get(), bob, fb.get());

5.2.4 Temporal interlayer edges

Using the attribute handling functionality of the cubes we
can extend the previous data models with times, weights,
probabilities, text messages and other attributes. For some
special attributes (times, weights and probabilities) that are
very common and have specialized algorithms requiring
them, we can also use utility functions to setup the cubes
(e.g., making their elements temporal, or uncertain) and
manipulate these special attributes. The following example
extends our interlayer edges with temporal information,
then adding one or more timestamps to each of them:

make_temporal (IE);

add_time(IE.get(), el, "1970-01-01_01:01:07+0000");
add_time(IE.get(), el, "1970-01-02_07:21:07+0000");
add_time(IE.get(), e2, "1970-01-02_13:09:05+0000");
add_time(IE.get(), e3, "1970-01-03_14:01:07+0000");

5.2 CONSTRUCTION OF CUSTOM NETWORK MODELS

Here we have specified times as strings with a standard
format, but we can express them in different ways, using the
library’s own Time format, or the number of seconds from
epoch or custom string representations of time.

If we want to slice the edges into multiple time windows
we can use a discretization function, which is a fundamental
concept in the theory of multilayer cubes and for practical
applications. One can define custom discretization functions,
but here we use a predefined one that takes a minimum time,
a maximum time and the number of windows as input and
if used while adding a (temporal) dimension it redistributes
the original edges in the new cells. In the next example,
three slices/layers are created:

Time min = to_time("1970-01-01_00:00:00+0000");

Time max = to_time("1970-01-03_23:59:59+0000");

auto d = UniformTemporalDiscretization<ECube>(IE.get(),
< min, max, 3);

IE->add_dimension("times", {"dayl", "day2", "day3"}, d);

Now the extended ECube IE still contains all the original
edges (because all of them had at least one associated time
between min and max), but if we access the individual cells
we will find respectively edge el (day1), edges el and e2
(day2), and edge e3 (day3). The same functionality can be
used to assign tweets to different topical layers based on
their hashtags, actors to different institution layers based on
their affiliations, etc.

45

CREATING NETWORKS

Networks can be created in multiple ways: manually, that
is, individually adding vertices and edges as seen above, or
calling functions which create standard types of graphs, or
using input/output functions, or using network generation
models. All these (apart from manual creation) are reviewed
in this chapter.

6.1 STANDARD GRAPHS

The following pre-defined graphs can be created. The corre-
sponding networks are shown in Figure 3.

#include "generation/standard_graphs.hpp"

auto n_5 = null_graph(5);
auto p_5 = path_graph(5);
auto c_5 = cycle_graph(5);
auto w_5 = wheel_graph(5);
auto k.5 = complete_graph(5);

auto k_3_2 = complete_bipartite_graph(3, 2);

47

48

CREATING NETWORKS

o@ﬁ@

(@) Ns (b) Ps (0) Cs
(d) Ws (e) K5 (f) K23

Figure 3: Special graphs: null graph, path graph, cycle graph,
wheel graph, complete graph, complete bipartite graph

6.2 1/0

The general syntax to read a network from file is the follow-
ing:

#VERSION

2.0

#TYPE
directed

#VERTEX ATTRIBUTES
al,string

#EDGE ATTRIBUTES
al,double

#VERTICES
vl,a_value
v2,another_value

6.2 1SS0

v4,one_more_value

#EDGES
vl,v2,2.3
vl,v3,4
v2,vl,3
vl,v4,4.2

By default edges are undirected, so if no attributes are
present the following is also a valid input file:
vl,v2

vl,v3
vl,v4

Under #TYPE we can also specify whether the network is
weighted:
#TYPE

directed
weighted

If the network is weighted, then the first attribute value for
edges must be the weight:

#EDGES
vl,v2,143,2.3
vl,v3,11,4
v2,vl,14,3
vl,v4,10,4.2

Multilayer networks allow to specify the features of each
layer, and also differentiate between actors and vertices:

#TYPE
multilayer

#VERSION
2.0

#LAYERS

49

50

CREATING NETWORKS

11,11,UNDIRECTED
12,12,UNDIRECTED, LOOPS
11,12,DIRECTED

#ACTOR ATTRIBUTES
ssn, string

#ACTORS
v1,122343242
v3,122343654

#VERTEX ATTRIBUTES
12,day,string

#VERTICES
v6,12,Monday

#EDGE ATTRIBUTES
11,attrl,numeric
attr2,numeric

#EDGES
vl,11,v2,11,1,7
vl,11,v5,11,2,8
v2,11,v5,11,3,9
v2,11,v3,11,4,10
v2,11,v4,11,5,11
v3,11,v4,11,6,12
vl,11,v4,12,13
v2,11,v3,12,14
v2,11,v4,12,15
v3,11,v3,12,16
v3,11,v4,12,17
vl,11,v2,12,18

In the example above, attr1 is an attribute of edges in layer
1, while attr2 is a global attribute.

6.3 GENERATION 51

Edges in a multiplex network are instead expressed only
specifying the layer once, as interlayer edges are not allowed:

11,v1l,v2,1,7
11,v1,v5,2,8

Note: after the introduction of cubes we may define a new input
format that allows more flexibility, without breaking backward
compatibility. Working on it.

6.3 GENERATION

Three types of network generation approaches are currently
available. ER models for simple graphs, multilayer network
co-evolution, and multilayer community-based.

6.3.1 Simple graphs

ER graphs can be created using either the np model, specify-
ing the number of vertices and the probability for every pair
of vertices of being adjacent, or the nm model, specifying
the number of vertices and the number of edges:

auto er_np = erdos_renyi np(10, .2);
auto er_nm = erdos_renyi_nm(10, 4);

6.3.2 Multilayer network coevolution

Multilayer networks can be generated using a co-evolutionary
model where, for every layer, we specify the probability that
the layer evolves according to internal dynamics or import-
ing an edge from another layer. A dependency matrix is
used to specify from which other layers the edge can be
imported, and with which probability.

52

CREATING NETWORKS

vector<string> layer_names = {"11", "12"};
vector<double> pr_internal_event = {.8, .5};
vector<double> pr_external_event = {0, .5};
vector<vector<double>> dependency = {{0, 1}, {1, 0}};

The internal evolution dynamic is specified in the form of an
evolution model, either connecting vertices uniformly at ran-
dom (ERModel) or using preferential attachment (PAModel).

vector<EvolutionModel<MultilayerNetwork>x*> ev_model;
auto pa = make_unique<PAModel<MultilayerNetwork>>(3, 2);
auto er = make_unique<ERModel<MultilayerNetwork>>(50);
ev_model.push_back(pa.get());
ev_model.push_back(er.get());

Finally, we have to specify how many evolution steps we
want to run:

size_t num_of_steps = 100;

The function evolve takes all these parameters and lets
the multilayer network grow. Assume that ml is a pointer to
a multilayer network with two layers.

evolve(ml, layer_names,
pr_internal_event, pr_external_event,
dependency, ev_model,
num_of_steps);

6.3.3 Community-based

The last way to obtain a multilayer network is by passing a
pointer to a community structure as input (see Chapter 9)
specifying the the probability for two vertices of being adja-
cent if they are inside the same community or in different
communities, for each layer.

sample(ml, com, {.5, .5}, {.01, .01});

OPERATIONS

The operations/ module contains functions to manipulate
networks.

7.1 SIMPLE GRAPH OPERATIONS

The library supports basic operations from graph theory.

7.1.1 Graph induction

A first type of operations is graph induction. The definitions
and corresponding library functions follow. Notice that the
following functions return unique pointers to Networks.

Definition 7.1 (Vertex-induced subgraph). Let G = (V,E)
and V' C V. The vertex-induced subgraph Gy» = (V', E')
where E' = {(u,v) | u,v € V'}.

std::vector<const Vertexx> vsl = {v2, v4, v5};
auto g_subl = vertex_induced_subgraph(g.get(),
vsl.begin(), vsl.end());

std::vector<const Vertexx> vs2 = {v4, v5, vb6};

auto g_sub2 = vertex_induced_subgraph(g.get(),
vs2.begin(), vs2.end());

53

54

OPERATIONS

Definition 7.2 (Edge-induced subgraph). Let G = (V,E)
and E’ C E. The vertex-induced subgraph Gz = (V',E)
where V' = {v | e € E' A v is an end-vertex of e}.

Edge-induced subgraphs can be obtained using the func-
tion edge_induced_subgraph().

7.1.2 Vertex-set operations

A second type of operations is set-based manipulation. The
definitions and corresponding library functions follow.

Definition 7.3 (Union). Let G; = (V1,E1) and G, = (V2,E2)
be two graphs. Then G; UG, = (V1UV2,E1UE2)

Please notice that according to this definition and in a
setting where edges have identities, in general the union of
two simple graphs can be a multigraph.

graph_union(g_subl.get(), g_sub2.get());

Definition 7.4 (Intersection). Let G; = (V1,E1) and G, =
(V2,E2) be two graphs. Then G; NG, = (V1N V2,E1NE2)

graph_intersection(g_subl.get(), g_sub2.get());

Definition 7.5 (Complement). Let G = (V,E). Then G =
(V,E") where E' = {(u,v) | u,v € VA (u,v) ¢ E}.

This definition adapts to the type of graph: it is appropri-
ate for digraphs and also in case of loops.

graph_complement(g_subl.get());

7.2 FLATTENING AND PROJECTION

7.1.3 Edge operations

A third type of operations manipulate edges. We can divide
an edge, adding a new vertex in between:
auto v10 = edge_subdivision(g.get(), e7, "v10");

auto e8 = g->edges()->get(v8, v10);
auto e9 = g->edges()->get(v10O, Vv9);

And we can replace an edge with a new vertex:

edge_contraction(g.get(), €9, "v11");

7.2 FLATTENING AND PROJECTION

Flattening adds the edges from a number of layers to a target
network/layer. For example, assume that net contains two
layers, 11 and 12. We can add a new layer 1f1 and add all
edges in either 11 or 12 to it as follows:

auto 1 = {11, 12};

auto 1fl = net->layers()->add("flat");
flatten_unweighted(l.begin(), l.end(), 1f1l);

Notice that the target network does not need to be a
layer in the input multilayer network: we can flatten the
layers into a layer in another multilayer network, or create a
separate (simple) network that is the flattening of the input
one.

In addition, we can use a weighted flattening so that
a weight is added to each edge in the flattened network,
indicating in how many original layers the edge was present.

auto 1f2 = net->layers()->add("w_flat");
flatten_weighted(l.begin(), l.end(), 1f2);

While a flattening works on multiple networks, if a multi-
layer network has interlayer edges we can also compute a

55

56

OPERATIONS

projection. In the following example two vertices in layer
11 will be adjacent in the target layer/network 1f whenever
the two vertices are adjacent to a common vertex in 12.

auto 1f = net->layers()->add("flat");
project_unweighted(net.get(), 12, 11, 1f);

7.3 ANONYMIZATION

TBD

MEASURES

8.1 DEGREE-BASED MEASURES
8.1.1 Degree

Definition 8.1 (Degree). The degree of a vertex v in a graph
G, notated deg(v), is the number of edges incident to v in
G'.

In uunet we have the following degree-based functions.

for (auto v: *xg->vertices())

{
size t deg = degree(g.get(), v);
COUt << “deg(“ << (*V) << “):._,“
<< deg << endl;
}

1 Loops are counted twice.

57

58

MEASURES
deg(v9): 1
deg(v4): 4

auto avg_deg = average_degree(g.get());
cout << "Average_degree: " << avg_deg << endl;

Average degree: 1.55556

With loops, there exists at least a graph for any degree
sequence whose sum is even. Without loops, there are some
degree sequences that cannot correspond to any graph.

cout << "Degree_sequence:_";

auto deg_seq = degree_sequence(g.get());
for (auto deg: deg_seq)

{

cout << deg << "_";

}

cout << endl;

Degree sequence: 011112224

cout << "Degree_distribution:_ ";

auto deg_distr = degree_distribution(g.get());
for (auto freq: deg_distr)

{

cout << freq << "_";

}

cout << endl;

Degree distribution: 143 01

For weighted networks we can also compute the strength
of a vertex, that is the sum of the weights in its incident
edges (loops being counted twice):

strength(g.get(), vl1);

For probabilistic networks we can also compute the ex-
pected degree of a vertex:

8.1 DEGREE-BASED MEASURES

exp_degree(g.get(), vl);

8.1.2 Multilayer degree

Degree in multilayer networks is computed in the same way
as in single networks, where the degrees of an actor in all
the input layers are added together:

auto 1 = net->layers();
size t degree = degree(l.begin(), l.end(), v2);

The degree deviation of a vertex is just the standard devi-
ation of its degree on the input layers:

double dd = degree_deviation(l.begin(), l.end(), v2);

8.1.3 Neighborhood

The multilayer degree function counts the same neighbor
multiple times if it is a neighbor in more than one layer.
Instead, we can extract the distinct neighbors of an actor,
that are the actors adjacent to it in any of the input layers:

neighbors(net->layers()->begin(), net->layers()->end(),
— vl);

Exclusive neighbors are instead those which are neighbors
in the input layers but not in the other layers in the network.
Notice that in this case we also have to pass a pointer to the
multilayer network.

vector<const Networkx> 1 = {11};
xneighbors(net.get(), l.begin(), l.end(), v2);

59

60

MEASURES

8.2 PATH-BASED
8.2.1 Distances

The distance between two vertices can be computed on
single and multilayer networks. For single networks the
library implements Dijkstra’s algorithm (available under
algorithms/):

single_source_path_length(g, v2)

While for multilayer networks we can compute a general-
ized pareto distance:

pareto_distance(net.get(), vl);

8.2.2 Betweenness

Betweenness is currently implemented for single networks:

auto C_b = betweenness(g.get());
C_b[v4];

8.3 LAYER RELEVANCE

The fraction of an actor’s neighbors that are present in a
subset of the layers is called layer relevance for the actor,
and is computed as follows:

vector<const Network> 1 = {11};
relevance(net.get(), l.begin(), l.end(), vl1);

The fraction of an actor’s neighbors that are present in a
subset of the layers but not in the others is called exclusive
layer relevance, and is computed as follows:

84 LAYER COMPARISON

vector<const Network> 1 = {11};
xrelevance(net.get(), l.begin(), l.end(), vl1);

8.4 LAYER COMPARISON

Using property matrices we can define several functions to
compare layers. Two that are pre-packaged into individual
functions are Jaccard Edge and Pearson Degree, computing
respectively the Jaccard coefficient of edges in the two layers
and the Pearson correlation coefficient computed on the
degrees of the actors in the two layers.

jaccard_edge(net.get(), 11, 12);

pearson_degree(net.get(), 11, 12);

61

COMMUNITY DETECTION

The community/ module provides data structures to repre-
sent communities, community detection algorithms, and
evaluation functions. Functions to read and write communi-
ties from/to file are in io/.

9.1 DATA STRUCTURES

A Community Structure is a set of communities, and a Com-
munity is a set of elements. Communities are represented
using a template class so that the type of elements adapts
to the type of network. For example, in a community over
networks its elements are vertices:

auto com = make_unique<CommunityStructure<Network>>();

auto cl = make_unique<Community<Network>>();
auto c2 = make_unique<Community<Network>>();

auto vl = make_unique<Vertex>("v1");
auto v2 = make_unique<Vertex>("v2");

cl->add(vl.get());

63

64

COMMUNITY DETECTION

cl->add(v2.get());
c2->add(v2.get());

com->add(move(cl));
com->add (move(c2));

A community over a multilayer network has multilayer
vertices as elements:

auto ml_c = make_unique<Community<MultilayerNetwork>>();

auto n = make_unique<Network>("net");
auto ml_vl = MLVertex(vl.get(), n.get());
auto ml_v2 = MLVertex(v2.get(), n.get());

ml_c->add(ml_v1);
ml_c->add(ml_v2);

In general, one does not manually create communities,
but obtains them using community detection algorithms.

9.2 ALGORITHMS

The library provides two community detection algorithms
for single networks:

auto comml = label_propagation(net.get());
auto comm2 = louvain(net.get());

and five algorithms for multilayer networks.

auto mlcomml = mlcpm(mlnet.get(), 3, 1);
auto mlcomm2 = abacus(mlnet.get(), 3, 1);

9.3 EVALUATION

auto mlcomm3 = glouvain2(mlnet.get(), 1.0);
auto mlcomm4 = infomap(mlnet.get());
auto mlcomm5 = mlp(mlnet.get());

9.3 EVALUATION

Two community structures can be compared using normal-
ized mutual information (for partitioning communities) and
omega index (for overlapping communities):

nmi(comml.get(), comm2.get(), order(net.get()));
omega_index(comml.get(), comm2.get(), order(net.get()));

The library also provides a function to compute multilayer
modularity:

modularity(mlnet.get(), mlcomm3.get(), 1.0);

94 1/0

If one needs to compare communities found by an algorithm
against some ground truth, then it can be useful to read com-
munities from a file. The format for multilayer communities
requires the name of the actor, the name of the layer and the
community id, starting from 0.

vertex_namel, layer_namel, 0
vertex_name2, layer_namel, 0
% etc.
vertex_namel, layer_name2,1
% etc.

The io/ module provides functions to read and write
community files. Notice that the second parameter of the
reading function is a multilayer network, so that the names

65

66

COMMUNITY DETECTION

of actors and layers can be matched with those in the net-
work.

read_multilayer_communities("com.txt", ml_net.get());

write_multilayer_communities(communities.get(), fname);

The read_multilayer_communities() function returns a unique
pointer to a community structure.

10

LAYOUT

The library does not provide functions to draw network
diagrams. Some basic functions to do so are available in the
R and Python versions.

However, two functions are available in the layout/ mod-
ule to compute coordinates. The first, multiforce, is a
force-based layout computing coordinates inside a frame
width x length. The parameters are the intralayer forces
(repelling different vertices, and attracting adjacent ones),
the interlayer forces (aligning the same actor on different
layers) and gravity (attracting vertices towards the center
of the frame). In the following call, net is a pointer to a
multilayer network, and the last parameter is the number of
iterations.

multiforce(net, 10, 10,
w_intra, w_inter, gravity,
100

)i

The circular layout draws all the vertices in a circle of
radius r:

circular(net, r);

67

11

FURTHER READINGS

In addition to our book, we have written an article explain-
ing how to use the R version of the library:

Matteo Magnani, Luca Rossi and Davide Vega.
Multiplex network analysis with R. Journal of
Statistical Software. (forthcoming)

and various articles summarizing the state of the art on
specific aspects of multilayer network analysis (at the time of
writing), including overviews about community detection:

Matteo Magnani, Obaida Hanteer, Roberto Inter-
donato, Luca Rossi and Andrea Tagarelli. Com-
munity Detection in Multiplex Networks. ACM
Computing Surveys (forthcoming)

pre-processing:

Roberto Interdonato, Matteo Magnani, Diego
Perna, Andrea Tagarelli and Davide Vega. Multi-
layer network simplification: approaches, mod-
els and methods. Computer Science Review, 36,
Elsevier.

layer comparison:

69

70

FURTHER READINGS

Piotr Brodka, Anna Chmiel, Matteo Magnani
and Giancarlo Ragozini (2018). Quantifying layer
similarity in multiplex networks: a systematic
study. Royal Society Open Science, 5(8).

and diffusion/propagation:

Mostafa Salehi, Rajesh Sharma, Moreno Mar-
zolla, Matteo Magnani, Payam Siyari, and Danilo
Montesi (2015). Spreading Processes in Multi-
layer Networks. IEEE Transactions on Network
Science and Engineering 2 (2): 65-83.

The following survey papers on general multilayer net-
works can also be of interest as they provide broad overviews
of the research on multilayer networks from different per-
spectives:

Mikko Kiveld, Alexandre Arenas, Marc Barthelemy,
James P. Gleeson, Yamir Moreno, and Mason A.
Porter. 2014. Multilayer Networks. Physics and
Society. Journal of Complex Networks 2 (3): 203-

71.

Stefano Boccaletti, Ginestra Bianconi, Regino Cri-
ado, Charo I. Del Genio, Jestis Gomez-Gardefies,
Miguel Romance, Irene Sendifia-Nadal, Zhen
Wang, and Massimiliano Zanin. 2014. The Struc-
ture and Dynamics of Multilayer Networks. Physics
Reports 544 (1): 1-122.

	Introduction
	A short history of the library
	An overview of the code
	Code conventions used in this document

	Basic functionality
	The core module
	Stores and attributes
	Object stores
	Attributes
	Attribute stores

	Utilities
	Counter.hpp
	CSVReader.hpp
	NameIterator.hpp
	Stopwatch.hpp
	math.hpp and string.hpp
	random.hpp
	vector.hpp
	hashing.hpp

	Property Matrix
	Exceptions
	Observers

	The OLAP module (cubes)
	Vertex Cubes
	Set functionality
	Handling attributes
	Dimensions and members

	Edge Cubes
	Operators

	Networks
	Basic concepts in graph theory
	Graphs, vertices and edges

	Networks
	Predefined models
	Basic networks
	Weights, times and probabilities
	Multilayer networks

	Construction of custom network models
	Simple graphs
	Multiplex and multirelational networks
	General multilayer networks
	Temporal interlayer edges

	Creating networks
	Standard graphs
	I/O
	Generation
	Simple graphs
	Multilayer network coevolution
	Community-based

	Operations
	Simple graph operations
	Graph induction
	Vertex-set operations
	Edge operations

	Flattening and projection
	Anonymization

	Measures
	Degree-based measures
	Degree
	Multilayer degree
	Neighborhood

	Path-based
	Distances
	Betweenness

	Layer relevance
	Layer comparison

	Community detection
	Data structures
	Algorithms
	Evaluation
	I/O

	Layout
	Further readings

