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CHAPTER

ONE

OVERVIEW AND TUTORIAL

1.1 Introduction

The lsqfit module is designed to facilitate least-squares fitting of noisy data by multi-dimensional, nonlinear func-
tions of arbitrarily many parameters, each with a (Bayesian) prior. lsqfitmakes heavy use of another module, gvar
(distributed separately), which provides tools that simplify the analysis of error propagation, and also the creation of
complicated multi-dimensional Gaussian distributions. The power of the gvar module, particularly for correlated
distributions, is a feature that distinguishes lsqfit from standard fitting packages, as demonstrated below.

The following (complete) code illustrates basic usage of lsqfit:

import numpy as np
import gvar as gv
import lsqfit

y = { # data for the dependent variable
'data1' : gv.gvar([1.376, 2.010], [[ 0.0047, 0.01], [ 0.01, 0.056]]),
'data2' : gv.gvar([1.329, 1.582], [[ 0.0047, 0.0067], [0.0067, 0.0136]]),
'b/a' : gv.gvar(2.0, 0.5)
}

x = { # independent variable
'data1' : np.array([0.1, 1.0]),
'data2' : np.array([0.1, 0.5])
}

prior = {}
prior['a'] = gv.gvar(0.5, 0.5)
prior['b'] = gv.gvar(0.5, 0.5))

def fcn(x, p): # fit function of x and parameters p
ans = {}
for k in ['data1', 'data2']:

ans[k] = gv.exp(p['a'] + x[k] * p['b'])
ans['b/a'] = p['b'] / p['a']
return ans

# do the fit
fit = lsqfit.nonlinear_fit(data=(x, y), prior=prior, fcn=fcn, debug=True)
print(fit.format(maxline=True)) # print standard summary of fit

p = fit.p # best-fit values for parameters
outputs = dict(a=p['a'], b=p['b'])
outputs['b/a'] = p['b']/p['a']
inputs = dict(y=y, prior=prior)
print(gv.fmt_values(outputs)) # tabulate outputs
print(gv.fmt_errorbudget(outputs, inputs)) # print error budget for outputs

3
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This code fits the function f(x,a,b)= exp(a+b*x) (see fcn(x,p)) to two sets of data, labeled data1
and data2, by varying parameters a and b until f(x[’data1’],a,b) and f(x[’data2’],a,b) equal
y[’data1’] and y[’data2’], respectively, to within the ys’ errors. The means and covariance matrices for
the ys are specified in the gv.gvar(...)s used to create them: for example,

>>> print(y['data1'])
[1.376(69) 2.01(24)]
>>> print(y['data1'][0].mean, "+-", y['data1'][0].sdev)
1.376 +- 0.068556546004
>>> print(gv.evalcov(y['data1'])) # covariance matrix
[[ 0.0047 0.01 ]
[ 0.01 0.056 ]]

shows the means, standard deviations and covariance matrix for the data in the first data set (0.0685565 is the square
root of the 0.0047 in the covariance matrix). The dictionary prior gives a priori estimates for the two parameters, a
and b: each is assumed to be 0.5±0.5 before fitting. The parameters p[k] in the fit function fcn(x, p) are stored
in a dictionary having the same keys and layout as prior (since prior specifies the fit parameters for the fitter). In
addition, there is an extra piece of input data, y[’b/a’], which indicates that b/a is 2±0.5. The fit function for this
data is simply the ratio b/a (represented by p[’b’]/p[’a’] in fit function fcn(x,p)). The fit function returns
a dictionary having the same keys and layout as the input data y.

The output from the code sample above is:

Least Square Fit:
chi2/dof [dof] = 0.17 [5] Q = 0.97 logGBF = 0.65538

Parameters:
a 0.253 (32) [ 0.50 (50) ]
b 0.449 (65) [ 0.50 (50) ]

Fit:
key y[key] f(p)[key]

---------------------------------------
b/a 2.00 (50) 1.78 (30)

data1 0 1.376 (69) 1.347 (46)
1 2.01 (24) 2.02 (16)

data2 0 1.329 (69) 1.347 (46)
1 1.58 (12) 1.612 (82)

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0 (itns/time = 5/0.0)

Values:
a: 0.253(32)

b/a: 1.78(30)
b: 0.449(65)

Partial % Errors:
a b/a b

----------------------------------------
y: 12.75 16.72 14.30

prior: 0.92 1.58 1.88
----------------------------------------

total: 12.78 16.80 14.42

The best-fit values for a and b are 0.253(32) and 0.449(65), respectively; and the best-fit result for b/a is 1.78(30),
which, because of correlations, is slightly more accurate than might be expected from the separate errors for a and b.

4 Chapter 1. Overview and Tutorial
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The error budget for each of these three quantities is tabulated at the end and shows that the bulk of the error in each
case comes from uncertainties in the y data, with only small contributions from uncertainties in the priors prior.
The fit results corresponding to each piece of input data are also tabulated (Fit: ...); the agreement is excellent,
as expected given that the chi**2 per degree of freedom is only 0.17.

Note that the constraint in y on b/a in this example is much tighter than the constraints on a and b separately. This
suggests a variation on the previous code, where the tight restriction on b/a is built into the prior rather than y:

... as before ...

y = { # data for the dependent variable
'data1' : gv.gvar([1.376, 2.010], [[ 0.0047, 0.01], [ 0.01, 0.056]]),
'data2' : gv.gvar([1.329, 1.582], [[ 0.0047, 0.0067], [0.0067, 0.0136]])
}

x = { # independent variable
'data1' : np.array([0.1, 1.0]),
'data2' : np.array([0.1, 0.5])
}

prior = {}
prior['a'] = gv.gvar(0.5, 0.5)
prior['b'] = prior['a'] * gv.gvar(2.0, 0.5)

def fcn(x, p): # fit function of x and parameters p[k]
ans = {}
for k in ['data1', 'data2']:

ans[k] = gv.exp(p['a'] + x[k]*p['b'])
return ans

... as before ...

Here the dependent data y no longer has an entry for b/a, and neither do results from the fit function; but the prior
for b is now 2±0.5 times the prior for a, thereby introducing a correlation that limits the ratio b/a to be 2±0.5 in the
fit. This code gives almost identical results to the first one — very slightly less accurate, since there is less input data.
We can often move information from the y data to the prior or back since both are forms of input information.

There are several things worth noting from this example:

• The input data (y) is expressed in terms of Gaussian random variables — quantities with means and a covariance
matrix. These are represented by objects of type gvar.GVar in the code; module gvar has a variety of tools
for creating and manipulating Gaussian random variables (also see below).

• The input data is stored in a dictionary (y) whose values can be gvar.GVars or arrays of gvar.GVars. The
use of a dictionary allows for far greater flexibility than, say, an array. The fit function (fcn(x, p)) has to
return a dictionary with the same layout as that of y (that is, with the same keys and where the value for each key
has the same shape as the corresponding value in y). lsqfit allows y to be an array instead of a dictionary,
which might be preferable for very simple fits (but usually not otherwise).

• The independent data (x) can be anything; it is simply passed through the fit code to the fit function fcn(x,p).
It can also be omitted altogether, in which case the fit function depends only upon the parameters: fcn(p).

• The fit parameters (p in fcn(x,p)) are also stored in a dictionary whose values are gvar.GVars or arrays of
gvar.GVars. Again this allows for great flexibility. The layout of the parameter dictionary is copied from that
of the prior (prior). Again p can be a single array instead of a dictionary, if that simplifies the code (which is
usually not the case).

• The best-fit values of the fit parameters (fit.p[k]) are also gvar.GVars and these capture statistical cor-
relations between different parameters that are indicated by the fit. These output parameters can be combined
in arithmetic expressions, using standard operators and standard functions, to obtain derived quantities. These
operations take account of and track statistical correlations.

1.1. Introduction 5
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• Function gvar.fmt_errorbudget() is a useful tool for assessing the origins (inputs) of the statistical
errors obtained in various final results (outputs). It is particularly useful for analyzing the impact of the a
priori uncertainties encoded in the prior (prior).

• Parameter debug=True is set in lsqfit.nonlinear_fit. This is a good idea, particularly in the eary
stages of a project, because it causes the code to check for various common errors and give more intelligible
error messages than would otherwise arise. This parameter can be dropped once code development is over.

• The priors for the fit parameters specify Gaussian distributions, characterized by the means and standard de-
viations given gv.gvar(...). Some other distributions become available if argument extend=True is
included in the call to lsqfit.nonlinear_fit. The distribution for parameter a, for example, can then be
switched to a log-normal distribution by replacing prior[’a’]=gv.gvar(0.5, 0.5) with:

prior['log(a)'] = gv.log(gv.gvar(0.5,0.5))

in the code. This change would be desirable if we knew a priori that parameter a is positive since this is guaran-
teed with a log-normal distribution. Only the prior need be changed (in particular, the fit function fcn(x,p)
need not be changed).

What follows is a tutorial that demonstrates in greater detail how to use these modules in some standard variations on
the data fitting problem. As above, code for the examples is specified completely and so can be copied into a file, and
run as is. It can also be modified, allowing for experimentation.

Another way to learn about the modules is to examine the case studies that follow this section. Each focuses on a
single problem, again with the full code and data to allow for experimentation.

About Printing: The examples in this tutorial use the print function as it is used in Python 3. Drop the outermost
parenthesis in each print statement if using Python 2; or add

from __future__ import print_function

at the start of your file.

1.2 Gaussian Random Variables and Error Propagation

The inputs and outputs of a nonlinear least squares analysis are probability distributions, and these distributions will
be Gaussian provided the input data are sufficiently accurate. lsqfit assumes this to be the case. (It also provides
tests for non-Gaussian behavior, together with methods for dealing with such behavior.) One of the most distinctive
features of lsqfit is that it is built around a class, gvar.GVar, of objects that can be used to represent arbitrar-
ily complicated Gaussian distributions — that is, they represent Gaussian random variables that specify the means
and covariance matrix of the probability distributions. The input data for a fit are represented by a collection of
gvar.GVars that specify both the values and possible errors in the input values. The result of a fit is a collection of
gvar.GVars specifying the best-fit values for the fit parameters and the estimated uncertainties in those values.

gvar.GVars are defined in the gvar module. There are four important things to know about them (see the gvar
documentation for more details):

1. gvar.GVars are created by gvar.gvar(), individually or in groups: for example,

>>> import gvar as gv
>>> print(gv.gvar(1.0, 0.1), gv.gvar('1.0 +- 0.2'), gv.gvar('1.0(4)'))
1.00(10) 1.00(20) 1.00(40)
>>> print(gv.gvar([1.0, 1.0, 1.0], [0.1, 0.2, 0.41]))
[1.00(10) 1.00(20) 1.00(41)]
>>> print(gv.gvar(['1.0(1)', '1.0(2)', '1.00(41)']))
[1.00(10) 1.00(20) 1.00(41)]
>>> print(gv.gvar(dict(a='1.0(1)', b=['1.0(2)', '1.0(4)'])))
{'a': 1.00(10),'b': array([1.00(20), 1.00(40)], dtype=object)}

6 Chapter 1. Overview and Tutorial
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gvar uses the compact notation 1.234(22) to represent 1.234±0.022 — the digits in parentheses indicate the
uncertainty in the rightmost corresponding digits quoted for the mean value. Very large (or small) numbers use
a notation like 1.234(22)e10.

2. gvar.GVars describe not only means and standard deviations, but also statistical correlations between differ-
ent objects. For example, the gvar.GVars created by

>>> import gvar as gv
>>> a, b = gv.gvar([1, 1], [[0.01, 0.01], [0.01, 0.010001]])
>>> print(a, b)
1.00(10) 1.00(10)

both have means of 1 and standard deviations equal to or very close to 0.1, but the ratio b/a has a standard
deviation that is 100x smaller:

>>> print(b / a)
1.0000(10)

This is because the covariance matrix specified for a and b when they were created has large, positive off-
diagonal elements:

>>> print(gv.evalcov([a, b])) # covariance matrix
[[ 0.01 0.01 ]
[ 0.01 0.010001]]

These off-diagonal elements imply that a and b are strongly correlated, which means that b/a or b-a will have
much smaller uncertainties than a or b separately. The correlation coefficient for a and b is 0.99995:

>>> print(gv.evalcorr([a, b])) # correlation matrix
[[ 1. 0.99995]
[ 0.99995 1. ]]

3. gvar.GVars can be used in arithmetic expressions or as arguments to pure-Python functions. The results are
also gvar.GVars. Covariances are propagated through these expressions following the usual rules, (automat-
ically) preserving information about correlations. For example, the gvar.GVars a and b above could have
been created using the following code:

>>> a = gv.gvar(1, 0.1)
>>> b = a + gv.gvar(0, 0.001)
>>> print(a, b)
1.00(10) 1.00(10)
>>> print(b / a)
1.0000(10)
>>> print(gv.evalcov([a, b]))
[[ 0.01 0.01 ]
[ 0.01 0.010001]]

The correlation is obvious from this code: b is equal to a plus a very small correction. From these variables we
can create new variables that are also highly correlated:

>>> x = gv.log(1 + a ** 2)
>>> y = b * gv.cosh(a / 2)
>>> print(x, y, y / x)
0.69(10) 1.13(14) 1.627(34)
>>> print gv.evalcov([x, y])
[[ 0.01 0.01388174]
[ 0.01388174 0.01927153]]

The gvar module defines versions of the standard Python functions (sin, cos, ...) that work with
gvar.GVars. Most any numeric pure-Python function will work with them as well. Numeric functions

1.2. Gaussian Random Variables and Error Propagation 7
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that are compiled in C or other low-level languages generally do not work with gvar.GVars; they should
be replaced by equivalent pure-Python functions if they are needed for gvar.GVar-valued arguments. See the
gvar documentation for more information.

The fact that correlation information is preserved automatically through arbitrarily complicated arithmetic is
what makes gvar.GVars particularly useful. This is accomplished using automatic differentiation to compute
the derivatives of any derived gvar.GVar with respect to the primary gvar.GVars (those defined using
gvar.gvar()) from which it was created. As a result, for example, we need not provide derivatives of fit
functions for lsqfit (which are needed for the fit) since they are computed implicitly by the fitter from the
fit function itself. Also it becomes trivial to build correlations into the priors used in fits, and to analyze the
propagation of errors through complicated functions of the parameters after the fit.

4. Storing gvar.GVars in a file for later use is somewhat complicated because one generally wants to hold onto
their correlations as well as their mean values and standard deviations. One easy way to do this is to put all of
the gvar.GVars to be saved into a single dictionary object of type gvar.BufferDict, and then to save the
gvar.BufferDict using Python’s pickle module: for example, using the variables defined above,

>>> import pickle
>>> buffer = gv.BufferDict(a=a, b=b, x=x, y=y)
>>> print(buffer)
{'a': 1.00(10),'b': 1.00(10),'x': 0.69(10),'y': 1.13(14)}
>>> pickle.dump(buffer, open('outputfile.p', 'wb'))

This creates a file named ’outputfile.p’ containing the gvar.GVars. Loading the file into a Python
code later recovers the gvar.BufferDict with correlations intact:

>>> buffer = pickle.load(open('outputfile.p', 'rb'))
>>> print(buffer)
{'a': 1.00(10),'b': 1.00(10),'x': 0.69(10),'y': 1.13(14)}
>>> print(buffer['y'] / buffer['x'])
1.627(34)

gvar.BufferDicts were created specifically to handle gvar.GVars, although they can be quite useful
with other data types as well. The values in a pickled gvar.BufferDict can be individual gvar.GVars or
arbitrary numpy arrays of gvar.GVars. See the gvar docmentation for more information.

There is considerably more information about gvar.GVars in the documentation for module gvar.

1.3 Basic Fits

A fit analysis typically requires three types of input: 1) fit data x,y (or possibly just y); 2) a function y = f(x, p)
relating values of y to to values of x and a set of fit parameters p (if there is no x, then y = f(p)); and 3) some a
priori idea about the fit parameters’ values. The a priori information about a parameter could be fairly imprecise —
for example, the parameter is order 1. The point of the fit is to improve our knowledge of the parameter values, beyond
our a priori impressions, by analyzing the fit data. We now show how to do this using the lsqfit module.

For this example, we use fake data generated by a function, make_data(), that is described at the end of this section.
The function call x,y = make_data() generates 11 values for x, equal to 5,6,7..10,12,14..20, and 11
values for y, where each y is obtained by adding random noise to the value of a function of the corresponding x. The
function of x we use is:

sum(a[i] * exp(-E[i]*x) for i in range(100))

where a[i]=0.4 and E[i]=0.9*(i+1). The result is a set of random ys with correlated statistical errors:

>>> print(y)
[0.004502(46) 0.001817(19) 0.0007362(79) ... ]

8 Chapter 1. Overview and Tutorial
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>>> print(gv.evalcov(y)) # covariance matrix
[[ 2.15378088e-09 8.81617947e-10 3.62373566e-10 ... ]
[ 8.81617947e-10 3.61934618e-10 1.49216108e-10 ... ]
[ 3.62373566e-10 1.49216108e-10 6.17104688e-11 ... ]
...

]

Our goal is to fit this data for y, as a function of x, and obtain estimates for the parameters a[i] and E[i]. The
correct results are, of course, a[i]=0.4 and E[i]=0.9*(i+1) but we will pretend that we do not know this.

Next we need code for the fit function. We assume that we know that a sum of exponentials is appropriate, and
therefore we define the following Python function to represent the relationship between x and y in our fit:

import numpy as np

def f(x, p): # function used to fit x, y data
a = p['a'] # array of a[i]s
E = p['E'] # array of E[i]s
return sum(ai * np.exp(-Ei * x) for ai, Ei in zip(a, E))

The fit parameters, a[i] and E[i], are stored in a dictionary, using labels a and E to access them. These parameters
are varied in the fit to find the best-fit values p=p_fit for which f(x, p_fit) most closely approximates the ys
in our fit data. The number of exponentials included in the sum is specified implicitly in this function, by the lengths
of the p[’a’] and p[’E’] arrays.

Finally we need to define priors that encapsulate our a priori knowledge about the fit-parameter values. In practice
we almost always have a priori knowledge about parameters; it is usually impossible to design a fit function without
some sense of the parameter sizes. Given such knowledge it is important (usually essential) to include it in the fit. This
is done by designing priors for the fit, which are probability distributions for each parameter that describe the a priori
uncertainty in that parameter. As discussed in the previous section, we use objects of type gvar.GVar to describe
(Gaussian) probability distributions. Let’s assume that before the fit we suspect that each a[i] is of order 0.5±0.4,
while E[i] is of order (1+i)±0.4. A prior that represents this information is built using the following code:

import lsqfit
import gvar as gv

def make_prior(nexp): # make priors for fit parameters
prior = gv.BufferDict() # prior -- any dictionary works
prior['a'] = [gv.gvar(0.5, 0.4) for i in range(nexp)]
prior['E'] = [gv.gvar(i+1, 0.4) for i in range(nexp)]
return prior

where nexp is the number of exponential terms that will be used (and therefore the number of as and Es). With
nexp=3, for example, one would then have:

>>> print(prior['a'])
[0.50(40) 0.50(40) 0.50(40)]
>>> print(prior['E'])
[1.00(40), 2.00(40), 3.00(40)]

We use dictionary-like class gvar.BufferDict for the prior because it allows us to save the prior in a file if we
wish (using Python’s pickle module). If saving is unnecessary, gvar.BufferDict can be replaced by dict()
or most any other Python dictionary class.

With fit data, a fit function, and a prior for the fit parameters, we are finally ready to do the fit, which is now easy:

fit = lsqfit.nonlinear_fit(data=(x, y), fcn=f, prior=prior)

So pulling together the entire code, our complete Python program for making fake data and fitting it is:
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import lsqfit
import numpy as np
import gvar as gv

def f_exact(x, nexp=100): # exact f(x)
return sum(0.4 * np.exp(-0.9*(i+1) * x) for i in range(nexp))

def f(x, p): # function used to fit x, y data
a = p['a'] # array of a[i]s
E = p['E'] # array of E[i]s
return sum(ai * np.exp(-Ei * x) for ai, Ei in zip(a, E))

def make_data(nexp=100, eps=0.01): # make x, y fit data
x = np.array([5., 6., 7., 8., 9., 10., 12., 14., 16., 18., 20.])
cr = gv.gvar(0.0, eps)
c = [gv.gvar(cr(), eps) for n in range(100)]
x_xmax = x/max(x)
noise = 1+ sum(c[n] * x_xmax ** n for n in range(100))
y = f_exact(x, nexp) * noise
return x, y

def make_prior(nexp): # make priors for fit parameters
prior = gv.BufferDict() # prior -- any dictionary works
prior['a'] = [gv.gvar(0.5, 0.4) for i in range(nexp)]
prior['E'] = [gv.gvar(i+1, 0.4) for i in range(nexp)]
return prior

def main():
gv.ranseed([2009, 2010, 2011, 2012]) # initialize random numbers (opt.)
x, y = make_data() # make fit data
p0 = None # make larger fits go faster (opt.)
for nexp in range(1, 11):

print('************************************* nexp =', nexp)
prior = make_prior(nexp)
fit = lsqfit.nonlinear_fit(data=(x, y), fcn=f, prior=prior, p0=p0)
print(fit) # print the fit results
if nexp > 2:

E = fit.p['E'] # best-fit parameters
a = fit.p['a']
print('E1/E0 =', E[1] / E[0], ' E2/E0 =', E[2] / E[0])
print('a1/a0 =', a[1] / a[0], ' a2/a0 =', a[2] / a[0])

if fit.chi2 / fit.dof < 1.:
p0 = fit.pmean # starting point for next fit (opt.)

print()

if __name__ == '__main__':
main()

We are not sure a priori how many exponentials are needed to fit our data. Given that there are only eleven ys, and
these are noisy, there may only be information in the data about the first few terms. Consequently we write our code
to try fitting with each of nexp=1,2,3..10 terms. (The pieces of the code involving p0 are optional; they make
the more complicated fits go about 30 times faster since the output from one fit is used as the starting point for the
next fit — see the discussion of the p0 parameter for lsqfit.nonlinear_fit.) Running this code produces the
following output, which is reproduced here in some detail in order to illustrate a variety of features:

************************************* nexp = 1
Least Square Fit:

chi2/dof [dof] = 9.2e+02 [11] Q = 0 logGBF = -4830
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Parameters:
a 0 0.00150 (27) [ 0.50 (40) ] *
E 0 1.2467 (89) [ 1.00 (40) ]

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0* (itns/time = 7/0.0)

************************************* nexp = 2
Least Square Fit:

chi2/dof [dof] = 4.6 [11] Q = 5.3e-07 logGBF = 162.76

Parameters:
a 0 0.4014 (40) [ 0.50 (40) ]
1 0.4501 (45) [ 0.50 (40) ]

E 0 0.90158 (50) [ 1.00 (40) ]
1 1.83335 (71) [ 2.00 (40) ]

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0* (itns/time = 5/0.0)

************************************* nexp = 3
Least Square Fit:

chi2/dof [dof] = 0.57 [11] Q = 0.85 logGBF = 182.44

Parameters:
a 0 0.4020 (40) [ 0.50 (40) ]
1 0.4108 (90) [ 0.50 (40) ]
2 0.59 (35) [ 0.50 (40) ]

E 0 0.90045 (53) [ 1.00 (40) ]
1 1.8055 (50) [ 2.00 (40) ]
2 2.85 (19) [ 3.00 (40) ]

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0* (itns/time = 30/0.0)

E1/E0 = 2.0050(52) E2/E0 = 3.17(21)
a1/a0 = 1.022(20) a2/a0 = 1.47(88)

************************************* nexp = 4
Least Square Fit:

chi2/dof [dof] = 0.57 [11] Q = 0.85 logGBF = 182.45

Parameters:
a 0 0.4020 (40) [ 0.50 (40) ]
1 0.4110 (90) [ 0.50 (40) ]
2 0.59 (35) [ 0.50 (40) ]
3 0.50 (40) [ 0.50 (40) ]

E 0 0.90045 (53) [ 1.00 (40) ]
1 1.8055 (50) [ 2.00 (40) ]
2 2.85 (19) [ 3.00 (40) ]
3 4.00 (40) [ 4.00 (40) ]

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0* (itns/time = 3/0.0)

E1/E0 = 2.0051(52) E2/E0 = 3.17(21)
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a1/a0 = 1.022(20) a2/a0 = 1.47(88)

************************************* nexp = 5
Least Square Fit:

chi2/dof [dof] = 0.57 [11] Q = 0.85 logGBF = 182.45

Parameters:
a 0 0.4020 (40) [ 0.50 (40) ]
1 0.4110 (90) [ 0.50 (40) ]
2 0.59 (35) [ 0.50 (40) ]
3 0.50 (40) [ 0.50 (40) ]
4 0.50 (40) [ 0.50 (40) ]

E 0 0.90045 (53) [ 1.00 (40) ]
1 1.8055 (50) [ 2.00 (40) ]
2 2.85 (19) [ 3.00 (40) ]
3 4.00 (40) [ 4.00 (40) ]
4 5.00 (40) [ 5.00 (40) ]

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0* (itns/time = 1/0.0)

E1/E0 = 2.0051(52) E2/E0 = 3.17(21)
a1/a0 = 1.022(20) a2/a0 = 1.47(88)

.

.

.

.

************************************* nexp = 10
Least Square Fit:

chi2/dof [dof] = 0.57 [11] Q = 0.85 logGBF = 182.45

Parameters:
a 0 0.4020 (40) [ 0.50 (40) ]
1 0.4110 (90) [ 0.50 (40) ]
2 0.59 (35) [ 0.50 (40) ]
3 0.50 (40) [ 0.50 (40) ]
4 0.50 (40) [ 0.50 (40) ]
5 0.50 (40) [ 0.50 (40) ]
6 0.50 (40) [ 0.50 (40) ]
7 0.50 (40) [ 0.50 (40) ]
8 0.50 (40) [ 0.50 (40) ]
9 0.50 (40) [ 0.50 (40) ]

E 0 0.90045 (53) [ 1.00 (40) ]
1 1.8055 (50) [ 2.00 (40) ]
2 2.85 (19) [ 3.00 (40) ]
3 4.00 (40) [ 4.00 (40) ]
4 5.00 (40) [ 5.00 (40) ]
5 6.00 (40) [ 6.00 (40) ]
6 7.00 (40) [ 7.00 (40) ]
7 8.00 (40) [ 8.00 (40) ]
8 9.00 (40) [ 9.00 (40) ]
9 10.00 (40) [ 10.00 (40) ]

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0 (itns/time = 1/0.0)

E1/E0 = 2.0051(52) E2/E0 = 3.17(21)
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a1/a0 = 1.022(20) a2/a0 = 1.47(88)

There are several things to notice here:

• Clearly two exponentials (nexp=2) is not enough. The chi**2 per degree of freedom (chi2/dof) is signif-
icantly larger than one. The chi**2 improves substantially for nexp=3 exponentials, and there is essentially
no change when further exponentials are added.

• The best-fit values for each parameter are listed for each of the fits, together with the prior values (in brackets,
on the right). Values for each a[i] and E[i] are listed in order, starting at the points indicated by the labels
a and E. Asterisks are printed at the end of the line if the mean best-fit value differs from the prior’s mean by
more than one standard deviation; the number of asterisks, up to a maximum of 5, indicates how many standard
deviations the difference is. Differences of one or two standard deviations are not uncommon; larger differences
could indicate a problem with the prior or the fit.

Once the fit converges, the best-fit values for the various parameters agree well — that is to within their errors,
approximately — with the exact values, which we know since we are using fake data. For example, a and E for
the first exponential are 0.402(4) and 0.9004(5), respectively, from the fit where the exact answers are 0.4 and
0.9; and we get 0.411(9) and 1.806(5) for the second exponential where the exact values are 0.4 and 1.8.

• Note in the nexp=4 fit how the means and standard deviations for the parameters governing the fourth (and
last) exponential are essentially identical to the values in the corresponding priors: 0.50(40) from the fit for a
and 4.0(4) for E. This tells us that our fit data has no information to add to what we knew a priori about these
parameters — there isn’t enough data and what we have isn’t accurate enough.

This situation remains true of further terms as they are added in the nexp=5 and later fits. This is why the fit
results stop changing once we have nexp=3 exponentials. There is no point in including further exponentials,
beyond the need to verify that the fit has indeed converged.

• The last fit includes nexp=10 exponentials and therefore has 20 parameters. This is in a fit to 11 ys. Old-
fashioned fits, without priors, are impossible when the number of parameters exceeds the number of data points.
That is clearly not the case here, where the number of terms and parameters can be made arbitrarily large,
eventually (after nexp=3 terms) with no effect at all on the results.

The reason is that the prior that we include for each new parameter is, in effect, a new piece of data (the mean
and standard deviation of the a priori expectation for that parameter); it leads to a new term in the chi**2
function. We are fitting both the data and our a priori expectations for the parameters. So in the nexp=10 fit,
for example, we actually have 31 pieces of data to fit: the 11 ys plus the 20 prior values for the 20 parameters.

The effective number of degrees of freedom (dof in the output above) is the number of pieces of data minus the
number of fit parameters, or 31-20=11 in this last case. With priors for every parameter, the number of degrees
of freedom is always equal to the number of ys, irrespective of how many fit parameters there are.

• The Gaussian Bayes Factor (whose logarithm is logGBF in the output) is a measure of the likelihood that the
actual data being fit could have come from a theory with the prior and fit function used in the fit. The larger this
number, the more likely it is that prior/fit-function and data could be related. Here it grows dramatically from
the first fit (nexp=1) but then stops changing after nexp=3. The implication is that this data is much more
likely to have come from a theory with nexp>=3 than with nexp=1 (which we know to be the actual case).

• In the code, results for each fit are captured in a Python object fit, which is of type
lsqfit.nonlinear_fit. A summary of the fit information is obtained by printing fit. Also the best-fit
results for each fit parameter can be accessed through fit.p, as is done here to calculate various ratios of
parameters.

The errors in these last calculations automatically account for any correlations in the statistical errors for dif-
ferent parameters. This is evident in the ratio a1/a0, which would be 1.022(25) if there was no statistical
correlation between our estimates for a1 and a0, but in fact is 1.022(20) in this fit. The modest (positive)
correlation is clear from the correlation matrix:
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>>> print(gv.evalcorr(a[:2]))
[[ 1. 0.48404447]
[ 0.48404447 1. ]]

Finally we inspect the fit’s quality point by point. The input data are compared with results from the fit func-
tion, evaluated with the best-fit parameters, in the following table (obtained in the code by printing the output from
fit.format(maxline=True)):

Fit:
x[k] y[k] f(x[k],p)

-----------------------------------------------
5 0.004502 (46) 0.004505 (46)
6 0.001817 (19) 0.001819 (19)
7 0.0007362 (79) 0.0007371 (78)
8 0.0002987 (33) 0.0002992 (32)
9 0.0001213 (14) 0.0001216 (13)

10 0.00004926 (57) 0.00004939 (56)
12 8.13(10)e-06 8.156(96)e-06
14 1.342(19)e-06 1.347(17)e-06
16 2.217(37)e-07 2.224(29)e-07
18 3.661(85)e-08 3.674(50)e-08
20 6.24(61)e-09 6.067(88)e-09

The fit is excellent over the entire six orders of magnitude. This information is presented again in the following plot,
which shows the ratio y/f(x,p), as a function of x, using the best-fit parameters p. The correct result for this ratio,
of course, is one. The smooth variation in the data — smooth compared with the size of the statistical-error bars — is
an indication of the statistical correlations between individual ys.

This particular plot was made using the matplotlib module, with the following code added to the end of main()
(outside the loop):
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import matplotlib.pyplot as plt
ratio = y / f(x, fit.pmean)
plt.xlim(4, 21)
plt.xlabel('x')
plt.ylabel('y / f(x,p)')
plt.errorbar(x=x, y=gv.mean(ratio), yerr=gv.sdev(ratio), fmt='ob')
plt.plot([4.0, 21.0], [1.0, 1.0], 'b:')
plt.show()

Making Fake Data: Function make_data() creates a list of x values, evaluates the underlying function,
f_exact(x), for those values, and then adds random noise to the results to create the y array of fit data: y =
f_exact(x) * noise where

noise = 1 + sum_n=0..99 c[n] * (x/x_max) ** n

Here the c[n] are random coefficients generated using the following code:

cr = gv.gvar(0.0, eps)
c = [gv.gvar(cr(), eps) for n in range(100)]

Gaussian variable cr represents a Gaussian distribution with mean 0.0 and width 0.01, which we use here as a random
number generator: cr() is a number drawn randomly from the distribution represented by cr:

>>> print(cr)
0.000(10)
>>> print(cr())
0.00452180208286
>>> print(cr())
-0.00731564589737

We use cr() to generate mean values for the Gaussian distributions represented by the c[n]s, each of which has
width 0.01. The resulting ys fluctuate around the corresponding values of f_exact(x):

>>> print(y-f_exact(x))
[0.0011(27) 0.00029(80) ... ]

The Gaussian variables y[i] together with the numbers x[i] comprise our fake data.

1.4 Chained Fits

The priors in a fit represent knowledge that we have about the parameters before we do the fit. This knowledge might
come from theoretical considerations or experiment. Or it might come from another fit. Imagine that we want to add
new information to that extracted from the fit in the previous section. For example, we might learn from some other
source that the ratio of amplitudes a[1]/a[0] equals 1±1e-5. The challenge is to combine this new information
with information extracted from the fit above without rerunning that fit. (We assume it is not possible to rerun the first
fit, because, say, the input data for that fit has been lost or is unavailable.)

We can combine the new data with the old fit results by creating a new fit using the best-fit parameters, fit.p,
from the old fit as the priors for the new fit. To try this out, we add the following code onto the end of the main()
subroutine in the previous section, keeping nexp<=4 (since that is all that is needed):

def ratio(p): # new fit function
a = p['a']
return a[1] / a[0]

prior = fit.p # prior = best-fit parameters from 1st fit
data = gv.gvar(1, 1e-5) # new data for the ratio
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newfit = lsqfit.nonlinear_fit(data=data, fcn=ratio, prior=prior)
print(newfit)
E = newfit.p['E']
a = newfit.p['a']
print('E1/E0 =', E[1] / E[0], ' E2/E0 =', E[2] / E[0])
print('a1/a0 =', a[1] / a[0], ' a2/a0 =', a[2] / a[0])

The result of the new fit (to one piece of new data) is:

Least Square Fit:
chi2/dof [dof] = 1.3 [1] Q = 0.25 logGBF = 2.3618

Parameters:
a 0 0.4018 (40) [ 0.4020 (40) ]
1 0.4018 (40) [ 0.4110 (90) ] *
2 0.37 (29) [ 0.59 (35) ]
3 0.49 (40) [ 0.50 (40) ]

E 0 0.90030 (51) [ 0.90045 (53) ]
1 1.8000 (12) [ 1.8055 (50) ] *
2 2.69 (13) [ 2.85 (19) ]
3 4.01 (40) [ 4.00 (40) ]

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0* (itns/time = 3/0.0)

E1/E0 = 1.9993(11) E2/E0 = 2.99(14)
a1/a0 = 1.000000(10) a2/a0 = 0.91(73)

Parameters a[0] and E[0] are essentially unchanged by the new information, but a[i] and E[i] are more precise
for i=1 and 2, as is a[1]/a[0], of course.

It might seem odd that E[1], for example, is changed at all, since the fit function, ratio(p), makes no mention of
it. This is not surprising, however, since ratio(p) does depend upon a[1], and a[1] is strongly correlated with
E[1] through the prior. It is important to include all parameters from the first fit as parameters in the new fit in order
to capture the impact of the new information on parameters correlated with a[1]/a[0].

It would have been easy to change the fit code in the previous section to incorporate the new information about
a[1]/a[0]. The approach presented here is numerically equivalent to that approach insofar as the chi**2 function
for the original fit can be well approximated by a quadratic function in the fit parameters. This is, of course, a
fundamental assumption underlying the use of lsqfit in the first place.

Obviously, we can include further fits in order to incorporate more data. The prior for each new fit is the best-fit output
(fit.p) from the previous fit. The output from the chain’s final fit is the cummulative result of all of these fits.

Finally note that this particular problem can be done much more simply using a weighted average
(lsqfit.wavg()). Adding the following code onto the end of the main() subroutine in the previous section

fit.p['a1/a0'] = fit.p['a'][1] / fit.p['a'][0]
new_data = {'a1/a0' : gv.gvar(1,1e-5)}
new_p = lsqfit.wavg([fit.p, new_data])

print('chi2/dof = %.2f\n' % new_p.chi2 / new_p.dof)
print('E:', new_p['E'][:4])
print('a:', new_p['a'][:4])
print('a1/a0:', new_p['a1/a0'])

gives the following output:
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chi2/dof = 1.30

E: [0.90030(51) 1.8000(12) 2.69(13) 4.01(40)]
a: [0.4018(40) 0.4018(41) 0.36(29) 0.49(40)]
a1/a0: 1.000000(10)

Here we do a weighted average of a[1]/a[0] from the original fit (fit.p[’a1/a0’]) with our new piece of data
(new_data[’a1/a0’]). The dictionary new_p returned by lsqfit.wavg() has an entry for every key in either
fit.p or new_data. The weighted average for a[1]/a[0] is in new_data[’a1/a0’]. New values for the fit
parameters, that take account of the new data, are stored in new_p[’E’] and new_p[’a’]. The E[i] and a[i]
estimates differ from their values in fit.p since those parameters are correlated with a[1]/a[0]. Consequently
when the ratio is shifted by new data, the E[i] and a[i] are shifted as well. The final results in new_p are almost
identical to what we obtained above; this is because the errors are sufficiently small that the ratio a[1]/a[0] is
Gaussian.

1.5 Bayesian Integrals

The least-squares fit analyses above implicitly assume that every probability distribution relevant to the fits is well
approximated by a Gaussian distribution. The key distribution in a fit is the probability density function for the
parameters, which is proportional to exp(-chi**2/2) in a full Bayesian analysis. (Here the the chi**2 func-
tion is treated as a function of the parameters and has contributions from both the data and the priors.) Bayesian
estimates for the fit parameters are the expectation values of those parameters calculated with this probability den-
sity function. These will agree with the best-fit results of our least-squares fits provided chi**2 is well approxi-
mated by its quadratic expansion in the parameters — that is, insofar as exp(-chi**2/2) is well approximated
by the Gaussian distribution in the parameters specified by their best-fit means and covariance matrix (in fit.p).
lsqfit.BayesIntegrator can be used to evaluate Bayesian expectation values when the Gaussian approxima-
tion breaks down.

lsqfit.BayesIntegrator uses the vegas module for adaptive multi-dimensional integration to evaluate ex-
pectation values by integrating arbitrary functions of the parameters, mutliplied by the exact probability density func-
tion, over the entire parameter space. (Module vegas must be installed for lsqfit.BayesIntegrator.) To
illustrate its use we will redo the fit in our discussion of Basic Fits using Bayesian integration. To keep things simple
we will focus just on the parameters a[0] and E[0] that describe the leading exponential.

The following code, added to the end of the main() function in Basic Fits (outside the loop), evaluates the Bayesian
expectation value of function g(p) of the fit parameters:

# fit is from the last least-squares fit
expval = lsqfit.BayesIntegrator(fit, limit=10.)

# adapt integrator to PDF from fit
expval(neval=10000, nitn=10)

# calculate expectation value of function g(p)
E0_hist = gv.PDFHistogram(fit.p['E'][0])

def g(p):
parameters = [p['a'][0], p['E'][0]]
return dict(

mean=parameters,
outer=np.outer(parameters, parameters),
hist=E0_hist.count(p['E'][0]),
)

results = expval(g, neval=10000, nitn=10, adapt=False)
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# analyze results and compare with least-squares fit results
print(results.summary())
mean = results['mean']
cov = results['outer'] - np.outer(results['mean'], results['mean'])

print('Results from Bayesian Integration:')
print('a0: mean =', mean[0], ' sdev =', cov[0,0]**0.5)
print('E0: mean =', mean[1], ' sdev =', cov[1,1]**0.5)
print(

'covariance from Bayesian integral =',
np.array2string(cov, prefix=36 * ' ')
)

print()

print('Results from Least-Squares Fit:')
print('a0: mean =', fit.p['a'][0].mean, ' sdev =', fit.p['a'][0].sdev)
print('E0: mean =', fit.p['E'][0].mean, ' sdev =', fit.p['E'][0].sdev)
print(

'covariance from least-squares fit =',
np.array2string(

gv.evalcov([fit.p['a'][0], fit.p['E'][0]]),
prefix=36 * ' ', precision=3
)

)

# make histogram of E[0] probabilty
plt = E0_hist.make_plot(results['hist'])
plt.xlabel('$E_0$')
plt.show()

Here expval is an integrator that is used to evaluate expectation values of arbitrary functions of the fit parameters.
BayesIntegrator uses output (fit) from a least-squares fit to design a vegas integrator for calculating expec-
tation values. The integrator uses an iterative Monte Carlo algorithm that adapts to the probability density function
after each iteration. See the vegas documentation for much more information.

We first call the integrator without a function. This allows it to adapt to the probability density function from the fit
without the extra overhead of evaluating some function of the parameters. The integrator uses nitn=10 iterations of
the vegas algorithm, with at most neval=10000 evaluations of the probability density function for each iteration.

We then use the optimized integrator to evaluate the expectation value of function g(p) (turning adaptation off with
adapt=False). The expectation value of g(p) is returned in dictionary results, where results[k] is the
expectation value of g(p)[k] for each key used in the dictionary returned by g(p). Thus results[mean], for
example, contains the expectation value of [a[0], E[0]] (i.e., the mean value). We also compute the expectation
value of outer product of [a[0], E[0]] with itself, so we can compute the covariance matrix for a[0] and E[0].
Finally we accumulate histogram data, using PDFHistogram from the gvar module, for E[0].

The output from this codes is (for nexp=4):

itn integral average chi2/dof Q
-------------------------------------------------------

1 0.275(38) 0.275(38) 0.00 1.00
2 0.273(27) 0.274(23) 0.60 0.90
3 0.232(22) 0.260(17) 0.63 0.95
4 0.232(15) 0.253(13) 0.74 0.91
5 0.274(55) 0.257(15) 0.81 0.87
6 0.287(43) 0.262(15) 0.84 0.86
7 0.283(47) 0.265(14) 0.90 0.76
8 0.257(27) 0.264(13) 0.85 0.89
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9 0.205(13) 0.258(12) 0.85 0.90
10 0.259(23) 0.258(11) 0.86 0.90

Results from Bayesian Integration:
a0: mean = 0.40210(16) sdev = 0.00401(11)
E0: mean = 0.900460(19) sdev = 0.000528(31)
covariance from Bayesian integral = [[0.00001610(87) -1.5(5.8)e-08]

[-1.5(5.8)e-08 2.79(32)e-07]]

Results from Least-Squares Fit:
a0: mean = 0.40197397247 sdev = 0.00401779882449
E0: mean = 0.900453307997 sdev = 0.000529523389062
covariance from least-squares fit = [[ 1.614e-05 2.166e-08]

[ 2.166e-08 2.804e-07]]

The table shows results from each of the nitn=10 vegas iterations used to evaluate the expectation values. Esti-
mates for the integral of the probability density function are listed for each iteration. (Results from the integrator are
approximate, with error estimates.) These are consistent with each other and with the (more accurate) overall average.
The table shows that the probability density function is normalized to 0.258(11) rather than to unity. This indicates
that the distribution is not quite Gaussian, although 0.258 is fairly close to 1 for an 8-dimensional distribution (the
1/8-th root of 0.258 is 0.84).

The agreement is excellent between the mean values and covariances calculated using Bayesian integrals, and those
directly from the least-squares fit. This suggests that the Gaussian approximation is reliable for this problem. The
Bayesian integral, over all 8 parameters, takes much more time (15–20 seconds on a 2014 laptop) than the least-
squares fit (a small fraction of a second), so the latter is much more efficient when the Gaussian approximation is
sufficiently accurate.

As a further check on the Gaussian approximation we also accumulated data (results[’hist’]) on the probability
distribution of E[0] values, integrating out the other 7 parameters. The plot produced by the code above shows that
posterior probability distribution for E[0] (bars) agrees well with that implied by fit.p[’E’][0] (dashed line):
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The Bayesian integrals are relatively simple in this example. More complicated problems can require much more
computer time to evaluate the integrals, with hundreds of thousands or millions of integrand evaluations per iteration
(neval). This is particularly true as the number of parameters increases. BayesIntegrator uses information
from the least-squares fit to simplify the integration for vegas by optimizing the integration variables used, but
integrals over tens of variables are intrinsically challenging. BayesIntegrator can be used with MPI to run such
integrals on multiple processors, for a considerable speed-up.

1.6 x has Error Bars

We now consider variations on our basic fit analysis (described in Basic Fits). The first variation concerns what to do
when the independent variables, the xs, have errors, as well as the ys. This is easily handled by turning the xs into fit
parameters, and otherwise dispensing with independent variables.

To illustrate this, we modify the basic analysis code above. First we need to add errors to the xs, which we do by
changing make_data so that each x has a random value within about ±0.001% of its original value and an error:

def make_data(nexp=100, eps=0.01): # make x, y fit data
x = np.array([5., 6., 7., 8., 9., 10., 12., 14., 16., 18., 20.])
cr = gv.gvar(0.0, eps)
c = [gv.gvar(cr(), eps) for n in range(100)]
x_xmax = x/max(x)
noise = 1+ sum(c[n] * x_xmax ** n for n in range(100))
y = f_exact(x, nexp) * noise # noisy y[i]s
xfac = gv.gvar(1.0, 0.00001) # Gaussian distrib'n: 1±0.001%
x = np.array([xi * gv.gvar(xfac(), xfac.sdev) for xi in x]) # noisy x[i]s
return x, y

Here gvar.GVar object xfac is used as a random number generator: each time it is called, xfac() is a dif-
ferent random number from the distribution with mean xfac.mean and standard deviation xfac.sdev (that is,
1±0.00001). The main program is modified so that the (now random) x array is treated as a fit parameter. The prior
for each x is, obviously, specified by the mean and standard deviation of that x, which is read directly out of the array
of xs produced by make_data():

def make_prior(nexp, x): # make priors for fit parameters
prior = gv.BufferDict() # prior -- any dictionary works
prior['a'] = [gv.gvar(0.5, 0.5) for i in range(nexp)]
prior['E'] = [gv.gvar(i+1, 0.5) for i in range(nexp)]
prior['x'] = x # x now an array of parameters
return prior

def main():
gv.ranseed([2009, 2010, 2011, 2012]) # initialize random numbers (opt.)
x, y = make_data() # make fit data
p0 = None # make larger fits go faster (opt.)
for nexp in range(1, 10):

print('************************************* nexp =', nexp)
prior = make_prior(nexp, x)
fit = lsqfit.nonlinear_fit(data=y, fcn=f, prior=prior, p0=p0)
print(fit) # print the fit results
if nexp > 2:

E = fit.p['E'] # best-fit parameters
a = fit.p['a']
print('E1/E0 =', E[1] / E[0], ' E2/E0 =', E[2] / E[0])
print('a1/a0 =', a[1] / a[0], ' a2/a0 =', a[2] / a[0])

if fit.chi2/fit.dof<1.:
p0 = fit.pmean # starting point for next fit (opt.)
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print()

The fit data now consists of just the y array (data=y), and the fit function loses its x argument and gets its x values
from the fit parameters p instead:

def f(p):
a = p['a']
E = p['E']
x = p['x']
return sum(ai*exp(-Ei*x) for ai, Ei in zip(a, E))

Running the new code gives, for nexp=4 terms:

************************************* nexp = 4
Least Square Fit:

chi2/dof [dof] = 0.97 [11] Q = 0.47 logGBF = 167.6

Parameters:
a 0 0.3982 (41) [ 0.50 (40) ]
1 0.423 (94) [ 0.50 (40) ]
2 0.50 (40) [ 0.50 (40) ]
3 0.50 (40) [ 0.50 (40) ]

E 0 0.90028 (68) [ 1.00 (40) ]
1 1.810 (57) [ 2.00 (40) ]
2 3.01 (40) [ 3.00 (40) ]
3 4.00 (40) [ 4.00 (40) ]

x 0 5.000046 (50) [ 5.000045 (50) ]
1 5.999982 (56) [ 5.999985 (60) ]
2 6.999966 (47) [ 6.999990 (70) ]
3 7.999968 (52) [ 7.999926 (80) ]
4 8.999973 (52) [ 8.999860 (90) ] *
5 9.999976 (63) [ 10.00018 (10) ] **
6 11.999985 (84) [ 11.99994 (12) ]
7 14.00002 (11) [ 13.99995 (14) ]
8 16.00010 (15) [ 16.00014 (16) ]
9 18.00018 (18) [ 18.00018 (18) ]
10 19.99957 (20) [ 19.99957 (20) ]

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0* (itns/time = 2/0.0)

E1/E0 = 2.011(62) E2/E0 = 3.34(44)
a1/a0 = 1.06(23) a2/a0 = 1.2(1.0)

This looks quite a bit like what we obtained before, except that now there are 11 more parameters, one for each x, and
also now all results are a good deal less accurate. Note that one result from this analysis is new values for the xs. In
some cases (e.g., x[4] and x[5]), the errors on the x values have been reduced — by information in the fit data.

1.7 Correlated Parameters; Gaussian Bayes Factor

gvar.GVar objects are very useful for handling more complicated priors, including situations where we know a
priori of correlations between parameters. Returning to the Basic Fits example above, imagine a situation where we
still have a ±0.4 uncertainty about the value of any individual E[i], but we know a priori that the separations between
adjacent E[i]s is 0.9±0.01. We want to build the correlation between adjacent E[i]s into our prior.

We do this by introducing a gvar.GVar object de[i] for each separate difference E[i]-E[i-1], with de[0]
being E[0]:
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de = [gvar(0.9, 0.01) for i in range(nexp)]
de[0] = gvar(1, 0.5) # different distribution for E[0]

Then de[0] specifies the probability distribution for E[0], de[0]+de[1] the distribution for E[1],
de[0]+de[1]+de[2] the distribution for E[2], and so on. This can be implemented (slightly inefficiently) in
a single line of Python:

E = [sum(de[:i+1]) for i in range(nexp)]

For nexp=3, this implies that

>>> print(E)
[1.00(40) 1.90(40) 2.80(40)]
>>> print(E[1] - E[0], E[2] - E[1])
0.900(10) 0.900(10)

which shows that each E[i] separately has an uncertainty of ±0.4 (approximately) but that differences are specified
to within ±0.01.

In the code, we need only change the definition of the prior in order to introduce these correlations:

def make_prior(nexp): # make priors for fit parameters
prior = gv.BufferDict() # prior -- any dictionary works
prior['a'] = [gv.gvar(0.5, 0.4) for i in range(nexp)]
de = [gv.gvar(0.9, 0.01) for i in range(nexp)]
de[0] = gv.gvar(1, 0.4)
prior['E'] = [sum(de[:i + 1]) for i in range(nexp)]
return prior

Running the code as before, but now with the correlated prior in place, we obtain the following fit with nexp=5 terms:

************************************* nexp = 5
Least Square Fit:

chi2/dof [dof] = 0.56 [11] Q = 0.87 logGBF = 186.47

Parameters:
a 0 0.4019 (40) [ 0.50 (40) ]
1 0.4057 (71) [ 0.50 (40) ]
2 0.370 (48) [ 0.50 (40) ]
3 0.49 (40) [ 0.50 (40) ]
4 0.50 (40) [ 0.50 (40) ]

E 0 0.90041 (53) [ 1.00 (40) ]
1 1.8029 (41) [ 1.90 (40) ]
2 2.703 (11) [ 2.80 (40) ]
3 3.603 (15) [ 3.70 (40) ]
4 4.503 (18) [ 4.60 (40) ]

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0* (itns/time = 2/0.0)

E1/E0 = 2.0023(42) E2/E0 = 3.002(12)
a1/a0 = 1.009(14) a2/a0 = 0.92(12)

The results are similar to before for the leading parameters, but substantially more accurate for parameters describ-
ing the second and later exponential terms, as might be expected given our enhanced knowledge about the differ-
ences between E[i]s. The output energy differences are particularly accurate: they range from E[1]-E[0] =
0.9025(39), which is almost three times more precise than the prior, to E[6]-E[5] = 0.900(10), which is
just what was put into the fit through the prior (the fit data adds no new information). The correlated prior allows us to
merge our a priori information about the energy differences with the new information carried by the fit data x, y.
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Note that the Gaussian Bayes Factor (see logGBF in the output) is larger with the correlated prior (logGBF =
186.5) than it was for the uncorrelated prior (logGBF = 182.4). Had we been uncertain as to which prior was
more appropriate, this difference says that the data prefers the correlated prior. (More precisely, it says that we would
be exp(186.5-182.4) = 60 times more likely to get our x,y data from a theory with the correlated prior than
from one with the uncorrelated prior.) This difference is significant despite the fact that the chi**2s in the two cases
are almost the same. chi**2 tests goodness of fit, but there are usually more ways than one to get a good fit. Some
are more plausible than others, and the Bayes factor helps sort out which.

The Gaussian Bayes Factor is an approximation to the Bayes Factor which is valid in the limit where all distributions
can be approximated by Gaussians. The Bayes Factor is the probability (density) that the fit data would be generated
randomly from the fit function and priors (the model) used in the fit. Ratios of Bayes Factors from fits with different
models tell us about the relative likelihood of the different models given the data. (Actually the ratio gives the ratio
of probabilities for obtaining the data from the models, as opposed to the probabilities for the models given the data.
The latter ratio is the same as the former, however, provided the two models are equally likely a priori (from Bayes
Theorem).)

1.8 Tuning Priors and the Empirical Bayes Criterion

Given two choices of prior for a parameter, the one that results in a larger Gaussian Bayes Factor after fitting (see
logGBF in fit output or fit.logGBF) is the one preferred by the data. We can use this fact to tune a prior or set of
priors in situations where we are uncertain about the correct a priori value: we vary the widths and/or central values
of the priors of interest to maximize logGBF. This leads to complete nonsense if it is applied to all the priors, but it is
useful for tuning (or testing) limited subsets of the priors when other information is unavailable. In effect we are using
the data to get a feel for what is a reasonable prior. This procedure for setting priors is called the Empirical Bayes
method.

This method is implemented in a driver program

fit, z = lsqfit.empbayes_fit(z0, fitargs)

which varies numpy array z, starting at z0, to maximize fit.logGBF where

fit = lsqfit.nonlinear_fit(**fitargs(z)).

Function fitargs(z) returns a dictionary containing the arguments for nonlinear_fit(). These arguments,
and the prior in particular, are varied as some function of z. The optimal fit (that is, the one for which fit.logGBF
is maximum) and z are returned.

To illustrate, consider tuning the widths of the priors for the amplitudes, prior[’a’], in the example from the
previous section. This is done by adding the following code to the end of main() subroutine:

def fitargs(z, nexp=nexp, prior=prior, f=f, data=(x, y), p0=p0):
z = np.exp(z)
prior['a'] = [gv.gvar(0.5, 0.5 * z[0]) for i in range(nexp)]
return dict(prior=prior, data=data, fcn=f, p0=p0)

##
z0 = [0.0]
fit, z = empbayes_fit(z0, fitargs, tol=1e-3)
print(fit) # print the optimized fit results
E = fit.p['E'] # best-fit parameters
a = fit.p['a']
print('E1/E0 =', E[1] / E[0], ' E2/E0 =', E[2] / E[0])
print('a1/a0 =', a[1] / a[0], ' a2/a0 =', a[2] / a[0])
print("prior['a'] =", fit.prior['a'][0])
print()
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Function fitargs generates a dictionary containing the arguments for lsqfit.nonlinear_fit. These are
identical to what we have been using except that the width of the priors in prior[’a’] is adjusted according
to parameter z. Function lsqfit.empbayes_fit() does fits for different values of z and selects the z that
maximizes fit.logGBF. It returns the corresponding fit and the value of z.

This code generates the following output when nexp=4:

Least Square Fit:
chi2/dof [dof] = 0.81 [11] Q = 0.63 logGBF = 188.78

Parameters:
a 0 0.4023 (40) [ 0.50 (11) ]
1 0.4040 (67) [ 0.50 (11) ]
2 0.388 (42) [ 0.50 (11) ] *
3 0.50 (11) [ 0.50 (11) ]

E 0 0.90036 (52) [ 1.00 (50) ]
1 1.8014 (38) [ 1.90 (50) ]
2 2.703 (11) [ 2.80 (50) ]
3 3.603 (15) [ 3.70 (50) ]

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0* (itns/time = 1/0.0)

E1/E0 = 2.0008(39) E2/E0 = 3.002(12)
a1/a0 = 1.004(13) a2/a0 = 0.96(10)

Reducing the width of the prior[’a’]s from 0.5 to 0.1 increased logGBF from 186.5 to 188.8. The error for
a2/a0 is 20% smaller, but the other results are less affected — suggesting that the details of prior[’a’] are not
all that important, which is confirmed by the error budgets generated in the next section. It is not surprising, of course,
that the optimal width is 0.1 since the mean values for the fit.p[’a’]s are clustered around 0.4, which is 0.1 below
the mean value of the priors prior[’a’].

The Bayes factor, exp(fit.logGBF), is useful for deciding about fit functions as well as priors. Consider the
following two fits of the sort discussed in the previous section, one using just two terms in the fit function and one
using three terms:

************************************* nexp = 2
Least Square Fit:

chi2/dof [dof] = 0.58 [11] Q = 0.84 logGBF = 187.74

Parameters:
a 0 0.4018 (40) [ 0.50 (50) ]
1 0.4017 (40) [ 0.50 (50) ]

E 0 0.90032 (51) [ 1.00 (50) ]
1 1.80017 (73) [ 1.90 (50) ]

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0* (itns/time = 5/0.0)

************************************* nexp = 3
Least Square Fit:

chi2/dof [dof] = 0.64 [11] Q = 0.79 logGBF = 185.09

Parameters:
a 0 0.4019 (40) [ 0.50 (50) ]
1 0.4051 (70) [ 0.50 (50) ]
2 -0.029 (49) [ 0.50 (50) ] *

E 0 0.90040 (53) [ 1.00 (50) ]
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1 1.8025 (41) [ 1.90 (50) ]
2 2.702 (11) [ 2.80 (50) ]

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0* (itns/time = 4/0.0)

Measured by their chi**2s, the two fits are almost equally good. The Bayes factor for the first fit, however, is larger
than that for the second fit. It says that the probability that our fit data comes from an underlying theory with exactly
two terms is exp(187.74 - 185.09) = 14 times larger than the probability that it comes from a theory with
three terms. In fact, the data comes from a theory with only two terms since it was generated using the same code as in
the previous section but with x, y = make_data(2) instead of x, y = make_data() in the main program.

1.9 Partial Errors and Error Budgets

We frequently want to know how much of the uncertainty in a fit result is due to a particular input uncertainty or subset
of input uncertainties (from the input data and/or from the priors). We refer to such errors as “partial errors” (or partial
standard deviations) since each is only part of the total uncertainty in the fit result. The collection of such partial errors,
each associated with a different input error, is called an “error budget” for the fit result. The partial errors from all
sources of input error reproduce the total fit error when they are added in quadrature.

Given the fit object (an lsqfit.nonlinear_fit object) from the example in the section on Correlated Param-
eters; Gaussian Bayes Factor, for example, we can extract such information using gvar.GVar.partialsdev()
— for example:

>>> E = fit.p['E']
>>> a = fit.p['a']
>>> print(E[1] / E[0])
2.0023(42)
>>> print((E[1] / E[0]).partialsdev(fit.prior['E']))
0.00166261727498
>>> print((E[1] / E[0]).partialsdev(fit.prior['a']))
0.000472922525865
>>> print((E[1] / E[0]).partialsdev(y))
0.00387452586852

This shows that the total uncertainty in E[1]/E[0], 0.0042, is the sum in quadrature of a contribution 0.0017 due to
the priors specified by prior[’E’], 0.0005 due to prior[’a’], and 0.0039 from the statistical errors in the input
data y.

There are two utility functions for tabulating results and error budgets. They require dictionaries of output results and
inputs, and use the keys from the dictionaries to label columns and rows, respectively, in an error-budget table:

outputs = {
'E1/E0':E[1] / E[0], 'E2/E0':E[2] / E[0],
'a1/a0':a[1] / a[0], 'a2/a0':a[2] / a[0],
}

inputs = {'E':fit.prior['E'], 'a':fit.prior['a'], 'y':y}
print(fit.fmt_values(outputs))
print(fit.fmt_errorbudget(outputs, inputs))

This gives the following output:

Values:
E2/E0: 3.002(12)
E1/E0: 2.0023(42)
a2/a0: 0.92(12)
a1/a0: 1.009(14)
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Partial % Errors:
E2/E0 E1/E0 a2/a0 a1/a0

--------------------------------------------------
a: 0.01 0.02 4.56 0.19
y: 0.13 0.19 10.95 1.27
E: 0.38 0.08 5.68 0.55

--------------------------------------------------
total: 0.40 0.21 13.15 1.40

This table shows, for example, that the 0.40% uncertainty in E2/E0 comes from a 0.01% contribution due to
prior[’a’], a 0.13% contribution due to due to statistical errors in the fit data y, and a 0.38% contribution due to
prior[’E’], where, again, the total error is the sum in quadrature of the partial errors. This suggests that reducing
the statistical errors in the input y data would reduce the error in E2/E0 only slightly. On the other hand, more accu-
rate y data should significantly reduce the errors in E1/E0 and a1/a0, where y is the dominant source of uncertainty.
In fact a four-fold reduction in the y errors reduces the E1/E0 error to 0.06% (from 0.21%) while leaving the E2/E0
error at 0.38%.

1.10 y has No Error Bars

Occasionally there are fit problems where values for the dependent variable y are known exactly (to machine preci-
sion). This poses a problem for least-squares fitting since the chi**2 function is infinite when standard deviations
are zero. How does one assign errors to exact ys in order to define a chi**2 function that can be usefully minimized?

It is almost always the case in physical applications of this sort that the fit function has in principle an infinite number
of parameters. It is, of course, impossible to extract information about infinitely many parameters from a finite number
of ys. In practice, however, we generally care about only a few of the parameters in the fit function. (If this isn’t the
case, give up.) The goal for a least-squares fit is to figure out what a finite number of exact ys can tell us about the
parameters we want to know.

The key idea here is to use priors to model the part of the fit function that we don’t care about, and to remove that
part of the function from the analysis by subtracting or dividing it out from the input data. To illustrate, consider
again the example described in the section on Correlated Parameters; Gaussian Bayes Factor. Let us imagine that
we know the exact values for y for each of x=1, 1.2, 1.4...2.6, 2.8. We are fitting this data with a sum
of exponentials a[i]*exp(-E[i]*x) where now we will assume that a priori we know that: E[0]=1.0(5),
E[i+1]-E[i]=0.9(2), and a[i]=0.5(5). Suppose that our goal is to find good estimates for E[0] and
a[0].

We know that for some set of parameters

y = sum_i=0..inf a[i]*exp(-E[i]*x)

for each x-y pair in our fit data. Given that a[0] and E[0] are all we want to know, we might imagine defining a
new, modified dependent variable ymod, equal to just a[0]*exp(-E[0]*x):

ymod = y - sum_i=1..inf a[i]*exp(-E[i]*x)

We know everything on the right-hand side of this equation: we have exact values for y and we have a priori estimates
for the a[i] and E[i] with i>0. So given means and standard deviations for every i>0 parameter, and the exact y,
we can determine a mean and standard deviation for ymod. The strategy then is to compute the corresponding ymod
for every y and x pair, and then fit ymod versus x to the single exponential a[0]*exp(-E[0]*t). That fit will
give values for a[0] and E[0] that reflect the uncertainties in ymod, which in turn originate in uncertainties in our
knowledge about the parameters for the i>0 exponentials.

It turns out to be quite simple to implement such a strategy using gvar.GVars. We convert our code by first mod-
ifying the main program so that it provides prior information to a subroutine that computes ymod. We will vary the
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number of terms nexp that are kept in the fit, putting the rest into ymod as above (up to a maximum of 20 terms,
which is close enough to infinity):

def main():
gv.ranseed([2009, 2010, 2011, 2012]) # initialize random numbers (opt.)
max_prior = make_prior(20) # maximum sized prior
p0 = None # make larger fits go faster (opt.)
for nexp in range(1, 7):

print('************************************* nexp =', nexp)
fit_prior = gv.BufferDict() # part of max_pior used in fit
ymod_prior = gv.BufferDict() # part of max_prior absorbed in ymod
for k in max_prior:

fit_prior[k] = max_prior[k][:nexp]
ymod_prior[k] = max_prior[k][nexp:]

x, y = make_data(ymod_prior) # make fit data
fit = lsqfit.nonlinear_fit(data=(x, y), fcn=f, prior=fit_prior, p0=p0)
print(fit.format(maxline=True)) # print the fit results
print()
if fit.chi2/fit.dof<1.:

p0 = fit.pmean # starting point for next fit (opt.)

We put all of our a priori knowledge about parameters into prior max_prior and then pull out the part we need for
the fit — that is, the first nexp terms. The remaining part of max_prior is used to correct the exact data, which
comes from a new make_data:

def make_data(ymod_prior): # make x, y fit data
x = np.arange(1., 10 * 0.2 + 1., 0.2)
ymod = f_exact(x) - f(x, ymod_prior)
return x, ymod

Running the new code produces the following output, where again nexp is the number of exponentials kept in the fit
(and 20-nexp is the number pushed into the modified dependent variable ymod):

************************************* nexp = 1
Least Square Fit:

chi2/dof [dof] = 0.051 [10] Q = 1 logGBF = 97.499

Parameters:
a 0 0.4009 (14) [ 0.50 (50) ]
E 0 0.90033 (62) [ 1.00 (50) ]

Fit:
x[k] y[k] f(x[k],p)

-----------------------------------------
1 0.15 (11) 0.16292 (47)

1.2 0.128 (74) 0.13607 (38)
1.4 0.110 (52) 0.11365 (30)
1.6 0.093 (37) 0.09492 (24)
1.8 0.078 (26) 0.07928 (19)

2 0.066 (18) 0.06622 (15)
2.2 0.055 (13) 0.05531 (12)
2.4 0.0462 (93) 0.046192 (94)
2.6 0.0387 (66) 0.038581 (74)
2.8 0.0323 (47) 0.032223 (58)

Settings:
svdcut/n = 1e-15/2 reltol/abstol = 0.0001/0* (itns/time = 5/0.0)
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************************************* nexp = 2
Least Square Fit:

chi2/dof [dof] = 0.053 [10] Q = 1 logGBF = 99.041

Parameters:
a 0 0.4002 (13) [ 0.50 (50) ]
1 0.405 (36) [ 0.50 (50) ]

E 0 0.90006 (55) [ 1.00 (50) ]
1 1.803 (30) [ 1.90 (54) ]

Fit:
x[k] y[k] f(x[k],p)

------------------------------------------
1 0.223 (45) 0.2293 (44)

1.2 0.179 (26) 0.1823 (28)
1.4 0.145 (15) 0.1459 (18)
1.6 0.1168 (90) 0.1174 (12)
1.8 0.0947 (53) 0.09492 (74)

2 0.0770 (32) 0.07711 (47)
2.2 0.0628 (19) 0.06289 (30)
2.4 0.0515 (11) 0.05148 (19)
2.6 0.04226 (67) 0.04226 (12)
2.8 0.03479 (40) 0.034784 (72)

Settings:
svdcut/n = 1e-15/2 reltol/abstol = 0.0001/0* (itns/time = 3/0.0)

************************************* nexp = 3
Least Square Fit:

chi2/dof [dof] = 0.057 [10] Q = 1 logGBF = 99.844

Parameters:
a 0 0.39998 (93) [ 0.50 (50) ]
1 0.399 (35) [ 0.50 (50) ]
2 0.401 (99) [ 0.50 (50) ]

E 0 0.89999 (36) [ 1.00 (50) ]
1 1.799 (26) [ 1.90 (54) ]
2 2.70 (20) [ 2.80 (57) ]

Fit:
x[k] y[k] f(x[k],p)

-------------------------------------------
1 0.253 (19) 0.2557 (54)

1.2 0.1968 (91) 0.1977 (28)
1.4 0.1545 (45) 0.1548 (15)
1.6 0.1224 (22) 0.12256 (75)
1.8 0.0979 (11) 0.09793 (39)

2 0.07885 (54) 0.07886 (20)
2.2 0.06391 (27) 0.06391 (10)
2.4 0.05206 (13) 0.052065 (51)
2.6 0.042602 (67) 0.042601 (26)
2.8 0.034983 (33) 0.034982 (13)

Settings:
svdcut/n = 1e-15/2 reltol/abstol = 0.0001/0* (itns/time = 4/0.0)
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************************************* nexp = 4
Least Square Fit:

chi2/dof [dof] = 0.057 [10] Q = 1 logGBF = 99.842

Parameters:
a 0 0.39995 (77) [ 0.50 (50) ]
1 0.399 (32) [ 0.50 (50) ]
2 0.40 (10) [ 0.50 (50) ]
3 0.40 (15) [ 0.50 (50) ]

E 0 0.89998 (30) [ 1.00 (50) ]
1 1.799 (23) [ 1.90 (54) ]
2 2.70 (19) [ 2.80 (57) ]
3 3.61 (28) [ 3.70 (61) ]

Fit:
x[k] y[k] f(x[k],p)

---------------------------------------------
1 0.2656 (78) 0.2666 (22)

1.2 0.2027 (32) 0.20297 (97)
1.4 0.1573 (13) 0.15737 (42)
1.6 0.12378 (54) 0.12381 (18)
1.8 0.09853 (22) 0.098540 (79)

2 0.079153 (93) 0.079155 (34)
2.2 0.064051 (39) 0.064051 (15)
2.4 0.052134 (16) 0.0521344 (64)
2.6 0.0426348 (67) 0.0426347 (29)
2.8 0.0349985 (28) 0.0349985 (13)

Settings:
svdcut/n = 1e-15/2 reltol/abstol = 0.0001/0* (itns/time = 4/0.0)

E1/E0 = 1.999(25) E2/E0 = 3.00(21)
a1/a0 = 0.997(77) a2/a0 = 1.01(26)

Here we use fit.format(maxline=True) to print out a table of x and y (actually ymod) values, together with
the value of the fit function using the best-fit parameters. There are several things to notice:

• Were we really only interested in a[0] and E[0], a single-exponential fit would have been adequate. This
is because we are in effect doing a 20-exponential fit even in that case, by including all but the first term as
corrections to y. The answers given by the first fit are correct (we know the exact values since we are using fake
data).

The ability to push uninteresting parameters into a ymod can be highly useful in practice since it is usually
much cheaper to incorporate those fit parameters into ymod than it is to include them as fit parameters — fits
with smaller numbers of parameters are usually a lot faster.

• The chi**2 and best-fit parameter means and standard deviations are almost unchanged by shifting terms
from ymod back into the fit function, as nexp increases. The final results for a[0] and E[0], for example,
are nearly identical in the nexp=1 and nexp=4 fits.

In fact it is straightforward to prove that best-fit parameter means and standard deviations, as well as chi**2,
should be exactly the same in such situations provided the fit function is linear in all fit parameters. Here the
fit function is approximately linear, given our small standard deviations, and so results are only approximately
independent of nexp.

• The uncertainty in ymod for a particular x decreases as nexp increases and as x increases. Also the nexp
independence of the fit results depends upon capturing all of the correlations in the correction to y. This is why
gvar.GVars are useful since they make the implementation of those correlations trivial.
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• Although we motivated this example by the need to deal with ys having no errors, it is straightforward to apply
the same ideas to a situation where the ys have errors. Again one might want to do so since fitting uninteresting
fit parameters is generally more costly than absorbing them into the y (which then has a modified mean and
standard deviation).

1.11 SVD Cuts and Roundoff Error

All of the fits discussed above have (default) SVD cuts of 1e-15. This has little impact in most of the problems, but
makes a big difference in the problem discussed in the previous section. Had we run that fit, for example, with an SVD
cut of 1e-19, instead of 1e-15, we would have obtained the following output:

Least Square Fit:
chi2/dof [dof] = 0.057 [10] Q = 1 logGBF = 99.847

Parameters:
a 0 0.39994 (77) [ 0.50 (50) ]
1 0.398 (32) [ 0.50 (50) ]
2 0.40 (10) [ 0.50 (50) ]
3 0.40 (15) [ 0.50 (50) ]

E 0 0.89997 (30) [ 1.00 (50) ]
1 1.799 (23) [ 1.90 (54) ]
2 2.70 (19) [ 2.80 (57) ]
3 3.61 (28) [ 3.70 (61) ]

Fit:
x[k] y[k] f(x[k],p)

--------------------------------------------
1 0.2656 (78) 0.2666 (57)

1.2 0.2027 (32) 0.2030 (23)
1.4 0.1573 (13) 0.15737 (92)
1.6 0.12378 (54) 0.12381 (35)
1.8 0.09853 (22) 0.09854 (12)

2 0.079153 (93) 0.079155 (37)
2.2 0.064051 (39) 0.064051 (18)
2.4 0.052134 (16) 0.052134 (20)
2.6 0.0426348 (67) 0.042635 (19)
2.8 0.0349985 (28) 0.034998 (17)

Settings:
svdcut/n = 1e-19/0 reltol/abstol = 0.0001/0 (itns/time = 5/0.0)

E1/E0 = 2.00(49) E2/E0 = 3.0(3.8)
a1/a0 = 1.0(1.5) a2/a0 = 1.0(3.3)

The standard deviations quoted for E1/E0, etc. are much too large compared with the standard deviations shown for
the individual parameters, and much larger than what we obtained in the previous section. This is due to roundoff
error. The standard deviations quoted for the parameters are computed differently from the standard deviations in
fit.p (which was used to calculate E1/E0). The former come directly from the curvature of the chi**2 function
at its minimum; the latter are related back to the standard deviations of the input data and priors used in the fit. The
two should agree, but they will not agree if the covariance matrix for the input y data is too ill-conditioned.

The inverse of the y–prior covariance matrix is used in the chi**2 function that is minimized by
lsqfit.nonlinear_fit. Given the finite precision of computer hardware, it is impossible to compute this
inverse accurately if the matrix is singular or almost singular, and in such situations the reliability of the fit results
is in question. The eigenvalues of the covariance matrix in this example (for nexp=6) indicate that this is the case:
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they range from 7.2e-5 down to 4.2e-26, covering 21 orders of magnitude. This is likely too large a range to be
handled with the 16–18 digits of precision available in normal double precision computation. The smallest eigenvalues
and their eigenvectors are likely to be quite inaccurate, as is any method for computing the inverse matrix.

One solution to this common problem in least-squares fitting is to introduce an SVD cut, here called svdcut:

fit = nonlinear_fit(data=(x, ymod), fcn=f, prior=prior, p0=p0, svdcut=1e-15)

This regulates the singularity of the covariance matrix by, in effect, replacing its smallest eigenvalues with a larger,
minimum eigenvalue. The cost is less precision in the final results since we are decreasing the precision of the input y
data. This is a conservative move, but numerical stability is worth the tradeoff. The listing shows that 2 eigenvalues are
modified when svdcut=1e-15 (see entry for svdcut/n); no eigenvalues are changed when svdcut=1e-19.

The SVD cut is actually applied to the correlation matrix, which is the covariance matrix rescaled by standard devi-
ations so that all diagonal elements equal 1. Working with the correlation matrix rather than the covariance matrix
helps mitigate problems caused by large scale differences between different variables. Eigenvalues of the correlation
matrix that are smaller than a minimum eigenvalue, equal to svdcut times the largest eigenvalue, are replaced by the
minimum eigenvalue, while leaving their eigenvectors unchanged. This defines a new, less singular correlation matrix
from which a new, less singular covariance matrix is constructed. Larger values of svdcut affect larger numbers of
eigenmodes and increase errors in the final results.

The error budget is different in the example above. There is no contribution from the original y data since it is exact.
So all statistical uncertainty comes from the priors in max_prior, and from the SVD cut, which contributes since
it modifies the effective variances of several eigenmodes of the correlation matrix. The SVD contribution to the error
can be obtained from fit.svdcorrection, so the full error budget is constructed by the following code,

outputs = {'E1/E0':E[1] / E[0], 'E2/E0':E[2] / E[0],
'a1/a0':a[1] / a[0], 'a2/a0':a[2] / a[0]}

inputs = {'E':max_prior['E'], 'a':max_prior['a'], 'svd':fit.svdcorrection}
print(fit.fmt_values(outputs))
print(fit.fmt_errorbudget(outputs, inputs))

which gives:

Values:
E2/E0: 3.00(21)
E1/E0: 1.999(25)
a2/a0: 1.01(26)
a1/a0: 0.997(77)

Partial % Errors:
E2/E0 E1/E0 a2/a0 a1/a0

--------------------------------------------------
a: 3.84 0.72 12.11 4.46

svd: 0.29 0.10 0.13 0.55
E: 5.86 0.99 22.26 6.30

--------------------------------------------------
total: 7.01 1.23 25.35 7.74

Here the contribution from the SVD cut is almost negligible, which might not be the case in other applications.

The SVD cut is applied separately to each block diagonal sub-matrix of the correlation matrix. This means, among
other things, that errors for uncorrelated data are unaffected by the SVD cut. Applying an SVD cut of 1e-4, for
example, to the following singular covariance matrix,

[[ 1.0 1.0 0.0 ]
[ 1.0 1.0 0.0 ]
[ 0.0 0.0 1e-20]],

gives a new, non-singular matrix
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[[ 1.0001 0.9999 0.0 ]
[ 0.9999 1.0001 0.0 ]
[ 0.0 0.0 1e-20]]

where only the upper right sub-matrix is different.

lsqfit.nonlinear_fit uses a default value for svdcut of 1e-15. This default can be overridden, as shown
above, but for many problems it is a good choice. Roundoff errors become more accute, however, when there are
strong correlations between different parts of the fit data or prior. Then much larger svdcuts may be needed.

The SVD cut is applied to both the data and the prior. It is possible to apply SVD cuts to either of these separately
using gvar.svd() before the fit: for example,

ymod = gv.svd(ymod, svdcut=1e-10)
prior = gv.svd(prior, svdcut=1e-12)
fit = nonlinear_fit(data=(x, ymod), fcn=f, prior=prior, p0=p0, svdcut=None)

applies different SVD cuts to the prior and data.

Note that taking svdcut=-1e-15, with a minus sign, causes the problematic modes to be dropped. This is a more
conventional implementation of SVD cuts, but here it results in much less precision than using svdcut=1e-15
(giving, for example, 1.993(69) for E1/E0, which is almost three times less precise). Dropping modes is equivalent
to setting the corresponding variances to infinity, which is (obviously) much more conservative and less realistic than
setting them equal to the SVD-cutoff variance.

The method lsqfit.nonlinear_fit.check_roundoff() can be used to check for roundoff errors by
adding the line fit.check_roundoff() after the fit. It generates a warning if roundoff looks to be a problem.
This check is done automatically if debug=True is added to the argument list of lsqfit.nonlinear_fit.

1.12 Bootstrap Error Analysis

Our analysis above assumes that every probability distribution relevant to the fit is approximately Gaussian. For
example, we characterize the input data for y by a mean and a covariance matrix obtained from averaging many
random samples of y. For large sample sizes it is almost certainly true that the average values follow a Gaussian
distribution, but in practical applications the sample size could be too small. The statistical bootstrap is an analysis
tool for dealing with such situations.

The strategy is to: 1) make a large number of “bootstrap copies” of the original input data that differ from each other
by random amounts characteristic of the underlying randomness in the original data; 2) repeat the entire fit analysis
for each bootstrap copy of the data, extracting fit results from each; and 3) use the variation of the fit results from
bootstrap copy to bootstrap copy to determine an approximate probability distribution (possibly non-Gaussian) for the
each result.

Consider the code from the previous section, where we might reasonably want another check on the error estimates
for our results. That code can be modified to include a bootstrap analysis by adding the following to the end of the
main() subroutine:

Nbs = 40 # number of bootstrap copies
outputs = {'E1/E0':[], 'E2/E0':[], 'a1/a0':[], 'a2/a0':[]} # results
for bsfit in fit.bootstrap_iter(n=Nbs):

E = bsfit.pmean['E'] # best-fit parameter values
a = bsfit.pmean['a'] # (ignore errors)
outputs['E1/E0'].append(E[1] / E[0]) # accumulate results
outputs['E2/E0'].append(E[2] / E[0])
outputs['a1/a0'].append(a[1] / a[0])
outputs['a2/a0'].append(a[2] / a[0])
outputs['E1'].append(E[1])
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outputs['a1'].append(a[1])
# extract "means" and "standard deviations" from the bootstrap output;
# print using .fmt() to create compact representation of GVars
outputs = gv.dataset.avg_data(outputs, bstrap=True)
print('Bootstrap results:')
print('E1/E0 =', outputs['E1/E0'].fmt(), ' E2/E1 =', outputs['E2/E0'].fmt())
print('a1/a0 =', outputs['a1/a0'].fmt(), ' a2/a0 =', outputs['a2/a0'].fmt())
print('E1 =', outputs['E1'].fmt(), ' a1 =', outputs['a1'].fmt())

The results are consistent with the results obtained directly from the fit (when using svdcut=1e-15):

Bootstrap results:
E1/E0 = 1.999(22) E2/E1 = 2.96(22)
a1/a0 = 0.995(68) a2/a0 = 1.00(38)
E1 = 1.799(20) a1 = 0.398(28)

In particular, the bootstrap analysis confirms our previous error estimates (to within 10-30%, since Nbs=40).
When Nbs is small, it is often safer to use the median instead of the mean as the estimator, which is what
gv.dataset.avg_data does here since flag bstrap is set to True.

1.13 Testing Fits with Simulated Data

Ideally we would test a fitting protocol by doing fits of data similar to our actual fit but where we know the correct
values for the fit parameters ahead of the fit. The lsqfit.nonlinear_fit iterator simulated_fit_iter
creates any number of such simulations of the original fit. Returning again to the fits in the section on Correlated
Parameters; Gaussian Bayes Factor, we can add three fit simulations to the end of the main program:

def main():
gv.ranseed([2009, 2010, 2011, 2012]) # initialize random numbers (opt.)
x, y = make_data() # make fit data
p0 = None # make larger fits go faster (opt.)
for nexp in range(1, 5):

print('************************************* nexp =', nexp)
prior = make_prior(nexp)
fit = lsqfit.nonlinear_fit(data=(x, y), fcn=f, prior=prior, p0=p0)
print(fit) # print the fit results
if nexp > 2:

E = fit.p['E'] # best-fit parameters
a = fit.p['a']
print('E1/E0 =', E[1] / E[0], ' E2/E0 =', E[2] / E[0])
print('a1/a0 =', a[1] / a[0], ' a2/a0 =', a[2] / a[0])

if fit.chi2 / fit.dof < 1.:
p0 = fit.pmean # starting point for next fit (opt.)

print()

# 3 fit simulations based upon last fit
for sfit in fit.simulated_fit_iter(3):

print(sfit)
sE = sfit.p['E'] # best-fit parameters (simulation)
sa = sfit.p['a']
E = sfit.pexact['E'] # correct results for parameters
a = sfit.pexact['a']
print('E1/E0 =', sE[1] / sE[0], ' E2/E0 =', sE[2] / sE[0])
print('a1/a0 =', sa[1] / sa[0], ' a2/a0 =', sa[2] / sa[0])
print('\nSimulated Fit Values - Exact Values:')
print(
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'E1/E0:', (sE[1] / sE[0]) - (E[1] / E[0]),
' E2/E0:', (sE[2] / sE[0]) - (E[2] / E[0])
)

print(
'a1/a0:', (sa[1] / sa[0]) - (a[1] / a[0]),
' a2/a0:', (sa[2] / sa[0]) - (a[2] / a[0])
)

# compute chi**2 comparing selected fit results to exact results
sim_results = [sE[0], sE[1], sa[0], sa[1]]
exact_results = [E[0], E[1], a[0], a[1]]
chi2 = gv.chi2(sim_results, exact_results)
print(

'\nParameter chi2/dof [dof] = %.2f' % (chi2 / gv.chi2.dof),
'[%d]' % gv.chi2.dof,
' Q = %.1f' % gv.chi2.Q
)

The fit data for each of the three simulations is the same as the original fit data except that the means have been adjusted
(randomly) so the correct values for the fit parameters are in each case equal to pexact=fit.pmean. Simulation
fit results will typically differ from the correct values by an amount of order a standard deviation. With sufficiently
accurate data, the results from a large number of simulations will be distributed in Gaussians centered on the correct
values (pexact), with widths that equal the standard deviations given by the fit (fit.psdev). (With less accurate
data, the distributions may become non-Gaussian, and the interpretation of fit results more complicated.)

In the present example, the output from the three simulations is:

************************************* simulation
Least Square Fit:

chi2/dof [dof] = 0.53 [11] Q = 0.88 logGBF = 185.72

Parameters:
a 0 0.4076 (40) [ 0.50 (50) ]
1 0.4166 (73) [ 0.50 (50) ]
2 0.336 (50) [ 0.50 (50) ]
3 0.48 (50) [ 0.50 (50) ]

E 0 0.90130 (52) [ 1.00 (50) ]
1 1.8074 (41) [ 1.90 (50) ]
2 2.707 (11) [ 2.80 (50) ]
3 3.607 (15) [ 3.70 (50) ]

Settings:
svdcut/n = None/0 reltol/abstol = 0.0001/0* (itns/time = 3/0.0)

E1/E0 = 2.0053(42) E2/E0 = 3.004(12)
a1/a0 = 1.022(14) a2/a0 = 0.82(12)

Simulated Fit Values - Exact Values:
E1/E0: 0.0029(42) E2/E0: 0.002(12)
a1/a0: 0.013(14) a2/a0: -0.10(12)

Parameter chi2/dof [dof] = 1.27 [4] Q = 0.3

************************************* simulation
Least Square Fit:

chi2/dof [dof] = 0.26 [11] Q = 0.99 logGBF = 187.22

Parameters:
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a 0 0.4038 (40) [ 0.50 (50) ]
1 0.4129 (72) [ 0.50 (50) ]
2 0.332 (50) [ 0.50 (50) ]
3 0.48 (50) [ 0.50 (50) ]

E 0 0.90029 (52) [ 1.00 (50) ]
1 1.8067 (41) [ 1.90 (50) ]
2 2.707 (11) [ 2.80 (50) ]
3 3.607 (15) [ 3.70 (50) ]

Settings:
svdcut/n = None/0 reltol/abstol = 0.0001/0* (itns/time = 3/0.0)

E1/E0 = 2.0068(42) E2/E0 = 3.006(12)
a1/a0 = 1.023(14) a2/a0 = 0.82(12)

Simulated Fit Values - Exact Values:
E1/E0: 0.0044(42) E2/E0: 0.005(12)
a1/a0: 0.013(14) a2/a0: -0.10(12)

Parameter chi2/dof [dof] = 0.56 [4] Q = 0.7

************************************* simulation
Least Square Fit:

chi2/dof [dof] = 0.6 [11] Q = 0.83 logGBF = 185.3

Parameters:
a 0 0.4053 (40) [ 0.50 (50) ]
1 0.4051 (70) [ 0.50 (50) ]
2 0.406 (48) [ 0.50 (50) ]
3 0.50 (50) [ 0.50 (50) ]

E 0 0.89959 (52) [ 1.00 (50) ]
1 1.7995 (41) [ 1.90 (50) ]
2 2.700 (11) [ 2.80 (50) ]
3 3.600 (15) [ 3.70 (50) ]

Settings:
svdcut/n = None/0 reltol/abstol = 0.0001/0* (itns/time = 3/0.0)

E1/E0 = 2.0004(42) E2/E0 = 3.001(12)
a1/a0 = 1.000(14) a2/a0 = 1.00(12)

Simulated Fit Values - Exact Values:
E1/E0: -0.0020(42) E2/E0: -0.001(12)
a1/a0: -0.010(14) a2/a0: 0.08(12)

Parameter chi2/dof [dof] = 0.97 [4] Q = 0.4

The simulations show that the fit values usually agree with the correct values to within a standard deviation or so
(the correct results here are the mean values from the last fit discussed in Correlated Parameters; Gaussian Bayes
Factor). Furthermore the error estimates for each parameter from the original fit are reproduced by the simulations.
We also compute the chi**2 for the difference between the leading fit parameters and the exact values. This checks
parameter values, standard deviations, and correlations. The results are reasonable for four degrees of freedom. Here
the first simulation shows results that are off by a third of a standard deviation on average, but this is not so unusual —
the Q=0.1 indicates that it happens 10% of the time.

More thorough testing is possible: for example, one could run many simulations (100?) to verify that the distribution
of (simulation) fit results is Gaussian, centered around pexact. This is overkill in most situations, however. The
three simulations above are enough to reassure us that the original fit estimates, including errors, are reliable.

1.13. Testing Fits with Simulated Data 35



lsqfit Documentation, Release 8.0.1

1.14 Positive Parameters; Non-Gaussian Priors

The priors for lsqfit.nonlinear_fit are all Gaussian. There are situations, however, where other distributions
would be desirable. One such case is where a parameter is known to be positive, but is close to zero in value (“close”
being defined relative to the a priori uncertainty). For such cases we would like to use non-Gaussian priors that force
positivity — for example, priors that impose log-normal or exponential distributions on the parameter. Ideally the
decision to use such a distribution is made on a parameter- by-parameter basis, when creating the priors, and has no
impact on the definition of the fit function itself.

lsqfit.nonlinear_fit supports log-normal distributions when extend=True is set in its argument list. This
argument only affects fits that use dictionaries for their parameters. The prior for a parameter ’c’ is switched from a
Gaussian distribution to a log-normal distribtuion by replacing parameter ’c’ in the fit prior with a prior for its loga-
rithm, using the key ’log(c)’. This causes lsqfit.nonlinear_fit to use the logarithm as the fit parameter
(with its Gaussian prior). Parameter dictionaries produced by lsqfit.nonlinear_fit will have entries for both
’c’ and ’log(c)’, so only the prior need be changed to switch distributions. In particular the fit function can be
expressed directly in terms of ’c’ so that it is independent of the distribution chosen for the ’c’ prior.

To illustrate consider a simple problem where an experimental quantity y is known to be positive, but experimental
errors mean that measured values can often be negative:

import gvar as gv
import lsqfit

y = gv.gvar([
'-0.17(20)', '-0.03(20)', '-0.39(20)', '0.10(20)', '-0.03(20)',
'0.06(20)', '-0.23(20)', '-0.23(20)', '-0.15(20)', '-0.01(20)',
'-0.12(20)', '0.05(20)', '-0.09(20)', '-0.36(20)', '0.09(20)',
'-0.07(20)', '-0.31(20)', '0.12(20)', '0.11(20)', '0.13(20)'
])

We want to know the average value a of the ys and so could use the following fitting code:

prior = gv.BufferDict()
prior['a'] = gv.gvar(0.02, 0.02)) # a = avg value of y's

def fcn(p, N=len(y)):
return N * [p['a']]

fit = lsqfit.nonlinear_fit(prior=prior, data=y, fcn=fcn)
print(fit)
print('a =', fit.p['a'].fmt())

where we are assuming a priori information that suggests the average is around 0.02. The output from this code is:

Least Square Fit:
chi2/dof [dof] = 0.84 [20] Q = 0.67 logGBF = 5.3431

Parameters:
a 0.004 (18) [ 0.020 (20) ]

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0 (itns/time = 2/0.0)

a = 0.004(18)

This is not such a useful result since much of the one-sigma range for a is negative, and yet we know that a must be
postive.

A better analysis is to use a log-normal distribution for a:
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prior = gv.BufferDict()
prior['log(a)'] = gv.log(gv.gvar(0.02, 0.02))) # loga not a

def fcn(p, N=len(y)):
return N * [p['a']]

fit = lsqfit.nonlinear_fit(prior=prior, data=y, fcn=fcn, extend=True)
print(fit)
print('a =', fit.p['a'].fmt()) # exp(log(a))

The fit parameter is now log(a) rather than a itself, but the code is unchanged except for the definition of the prior
and the addition of extend=True to the lsqfit.nonlinear_fit arguments. In particular the fit function is
identical to what we used in the first case since parameter dictionary p has entries for both ’a’ and ’log(a)’.

The result from this fit is

Least Square Fit:
chi2/dof [dof] = 0.85 [20] Q = 0.65 logGBF = 5.252

Parameters:
log(a) -4.44 (97) [ -3.9 (1.0) ]

-----------------------------------------------
a 0.012 (11) [ 0.020 (20) ]

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0* (itns/time = 12/0.0)

a = 0.012(11)

which is more compelling. Parameters listed above the dashed line in the parameter table are the actual parameters
used in the fit; those listed below the dashed line are derived from those above the line. The “correct” value for a here
is 0.015 (given the method used to generate the ys).

Setting extend=True in lsqfit.nonlinear_fit also allows parameters to be replaced by their square roots
as fit parameters, or by the inverse error function. The latter option is useful here because it allows us to define a prior
distribution for parameter a that is uniform between 0 and 0.04:

prior = gv.BufferDict()
prior['erfinv(50*a - 1)'] = gv.gvar('0(1)') / gv.sqrt(2)

def fcn(p, N=len(y)):
a = (1 + p['50*a-1']) / 50.
return N * [a]

fit = lsqfit.nonlinear_fit(prior=prior, data=y, fcn=fcn, extend=True)
print(fit)
print('a =', ((1+fit.p['a']) / 50).fmt())

In general, setting a prior prior[’erfinv(w)’] equal to (0±1)/sqrt(2) means that the prior probability for vari-
able w is constant between -1 and 1, and zero elsewhere. Here w=50*a-1, so that the prior distribution for a is
uniform between 0 and 0.04, and zero elsewhere. This again guarantees a positive parameter.

The result from this last fit is:

Least Square Fit:
chi2/dof [dof] = 0.85 [20] Q = 0.65 logGBF = 5.2385

Parameters:
erfinv(50a-1) -0.42 (68) [ 0.00 (71) ]
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-----------------------------------------------
50a-1 -0.44 (64) [ 0.00 (80) ]

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0* (itns/time = 9/0.0)

a = 0.011(13)

This fit implies that a=0.011(13) which is almost identical to the result obtained from the log-normal distribution.

Other distributions can be defined using lsqfit.add_parameter_distribution(). For example,

import lsqfit
import gvar as gv

def invf(x):
return 0.02 + 0.02 * gv.tanh(x)

def f(x): # not used
return gv.arctanh((x - 0.02) / 0.02)

lsqfit.add_parameter_distribution('f', invf)
prior = gv.BufferDict()
prior['f(a)'] = gv.gvar('0.00(75)')

... as before ...

does a fit with Gaussian parameter f(a), which forces a to lie between 0 and 0.04. This fit gives a=0.012(12),
which again agrees well with log-normal fit. The prior 0±0.75 for f(a) is chosen to make the prior probability
distribution for parameter a almost flat across most (80%) of the interval 0.2±0.2.

1.15 Debugging and Troubleshooting

It is a very good idea to set parameter debug=True in lsqfit.nonlinear_fit, at least in the early stages of a
project. This causes the code to look for common mistakes and report on them with more intelligible error messages.
The code also then checks for significant roundoff errors in the matrix inversion of the covariance matrice.

A common mistake is a mismatch between the format of the data and the format of what comes back from the
fit function. Another mistake is when a fit function fcn(p) returns results containing gvar.GVars when the
parameters p are all just numbers (or arrays of numbers). The only way a gvar.GVar should get into a fit function
is through the parameters; if a fit function requires an extra gvar.GVar, that gvar.GVar should be turned into a
parameter by adding it to the prior.

Error messages that come from inside the gsl routines used by lsqfit.nonlinear_fit are sometimes less than
useful. They are usually due to errors in one of the inputs to the fit (that is, the fit data, the prior, or the fit function).
Again setting debug=True may catch the errors before they land in gsl.

Occasionally lsqfit.nonlinear_fit appears to go crazy, with gigantic chi**2s (e.g., 1e78). This could be
because there is a genuine zero-eigenvalue mode in the covariance matrix of the data or prior. Such a zero mode makes
it impossible to invert the covariance matrix when evaluating chi**2. One fix is to include SVD cuts in the fit by
setting, for example, svdcut=1e-8 in the call to lsqfit.nonlinear_fit. These cuts will exclude exact or
nearly exact zero modes, while leaving important modes mostly unaffected.

Even if the SVD cuts work in such a case, the question remains as to why one of the covariance matrices has a zero
mode. A common cause is if the same gvar.GVar was used for more than one prior. For example, one might think
that
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>>> import gvar as gv
>>> z = gv.gvar(1, 1)
>>> prior = gv.BufferDict(a=z, b=z)

creates a prior 1±1 for each of parameter a and parameter b. Indeed each parameter separately is of order 1±1, but
in a fit the two parameters would be forced equal to each other because their priors are both set equal to the same
gvar.GVar, z:

>>> print(prior['a'], prior['b'])
1.0(1.0) 1.0(1.0)
>>> print(prior['a']-prior['b'])
0(0)

That is, while parameters a and b fluctuate over a range of 1±1, they fluctuate together, in exact lock-step. The
covariance matrix for a and b must therefore be singular, with a zero mode corresponding to the combination a-b; it
is all 1s in this case:

>>> import numpy as np
>>> cov = gv.evalcov(prior.flat) # prior's covariance matrix
>>> print(np.linalg.det(cov)) # determinant is zero
0.0

This zero mode upsets nonlinear_fit(). If a and b are meant to fluctuate together then an SVD cut as above will
give correct results (with a and b being forced equal to several decimal places, depending upon the cut). Of course,
simply replacing b by a in the fit function would be even better. If, on the other hand, a and b were not meant to
fluctuate together, the prior should be redefined:

>>> prior = gv.BufferDict(a=gv.gvar(1, 1), b=gv.gvar(1, 1))

where now each parameter has its own gvar.GVar. A slightly more succinct way of writing this line is:

>>> prior = gv.gvar(gv.BufferDict(a='1(1)', b='1(1)'))
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CHAPTER

TWO

CASE STUDY: SIMPLE EXTRAPOLATION

In this case study, we examine a simple extrapolation problem. We show first how not to solve this problem. A better
solution follows, together with a discussion of priors and Bayes factors. Finally a very simple, alternative solution,
using marginalization, is described.

2.1 The Problem

Consider a problem where we have five pieces of uncorrelated data for a function y(x):

x[i] y(x[i])
----------------------
0.1 0.5351 (54)
0.3 0.6762 (67)
0.5 0.9227 (91)
0.7 1.3803(131)
0.95 4.0145(399)

We know that y(x) has a Taylor expansion in x:

y(x) = sum_n=0..inf p[n] x**n

The challenge is to extract a reliable estimate for y(0)=p[0] from the data — that is, the challenge is to fit the data
and use the fit to extrapolate the data to x=0.

2.2 A Bad Solution

One approach that is certainly wrong is to fit the data with a power series expansion for y(x) that is truncated after
five terms (n<=4) — there are only five pieces of data and such a fit would have five parameters. This approach gives
the following fit, where the gray band shows the 1-sigma uncertainty in the fit function evaluated with the best-fit
parameters:
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This fit was generated using the following code:

import numpy as np
import gvar as gv
import lsqfit

# fit data
y = gv.gvar([

'0.5351(54)', '0.6762(67)', '0.9227(91)', '1.3803(131)', '4.0145(399)'
])

x = np.array([0.1, 0.3, 0.5, 0.7, 0.95])

# fit function
def f(x, p):

return sum(pn * x ** n for n, pn in enumerate(p))

p0 = np.ones(5.) # starting value for chi**2 minimization
fit = lsqfit.nonlinear_fit(data=(x, y), p0=p0, fcn=f)
print(fit.format(maxline=True))

Note that here the function gv.gvar converts the strings ’0.5351(54)’, etc. into gvar.GVars. Running the
code gives the following output:

Least Square Fit (no prior):
chi2/dof [dof] = 1.2e-26 [0] Q = 0 logGBF = None

Parameters:
0 0.742 (39) [ 1 +- inf ]
1 -3.86 (59) [ 1 +- inf ]
2 21.5 (2.4) [ 1 +- inf ]
3 -39.1 (3.7) [ 1 +- inf ]
4 25.8 (1.9) [ 1 +- inf ]

Fit:
x[k] y[k] f(x[k],p)

---------------------------------------
0.1 0.5351 (54) 0.5351 (54)
0.3 0.6762 (67) 0.6762 (67)
0.5 0.9227 (91) 0.9227 (91)
0.7 1.380 (13) 1.380 (13)

0.95 4.014 (40) 4.014 (40)
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Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0 (itns/time = 2/0.0)

This is a “perfect” fit in that the fit function agrees exactly with the data; the chi**2 for the fit is zero. The 5-
parameter fit gives a fairly precise answer for p[0] (0.74(4)), but the curve looks oddly stiff. Also some of the
best-fit values for the coefficients are quite large (e.g., p[3]= -39(4)), perhaps unreasonably large.

2.3 A Better Solution — Priors

The problem with a 5-parameter fit is that there is no reason to neglect terms in the expansion of y(x) with n>4.
Whether or not extra terms are important depends entirely on how large we expect the coefficients p[n] for n>4 to be.
The extrapolation problem is impossible without some idea of the size of these parameters; we need extra information.

In this case that extra information is obviously connected to questions of convergence of the Taylor expansion we are
using to model y(x). Let’s assume we know, from previous work, that the p[n] are of order one. Then we would
need to keep at least 91 terms in the Taylor expansion if we wanted the terms we dropped to be small compared with
the 1% data errors at x=0.95. So a possible fitting function would be:

y(x; N) = sum_n=0..N p[n] x**n

with N=90.

Fitting a 91-parameter formula to five pieces of data is also impossible. Here, however, we have extra (prior) informa-
tion: each coefficient is order one, which we make specific by saying that they equal 0±1. We include these a priori
estimates for the parameters as extra data that must be fit, together with our original data. So we are actually fitting
91+5 pieces of data with 91 parameters.

The prior information is introduced into the fit as a prior:

import numpy as np
import gvar as gv
import lsqfit

# fit data
y = gv.gvar([

'0.5351(54)', '0.6762(67)', '0.9227(91)', '1.3803(131)', '4.0145(399)'
])

x = np.array([0.1, 0.3, 0.5, 0.7, 0.95])

# fit function
def f(x, p):

return sum(pn * x ** n for n, pn in enumerate(p))

# 91-parameter prior for the fit
prior = gv.gvar(91 * ['0(1)'])

fit = lsqfit.nonlinear_fit(data=(x, y), prior=prior, fcn=f)
print(fit.format(maxline=True))

Note that a starting value p0 is not needed when a prior is specified. This code also gives an excellent fit, with a
chi**2 per degree of freedom of 0.35 (note that the data point at x=0.95 is off the chart, but agrees with the fit to
within its 1% errors):
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The fit code output is:

Least Square Fit:
chi2/dof [dof] = 0.35 [5] Q = 0.88 logGBF = -0.45508

Parameters:
0 0.489 (17) [ 0.0 (1.0) ]
1 0.40 (20) [ 0.0 (1.0) ]
2 0.60 (64) [ 0.0 (1.0) ]
3 0.44 (80) [ 0.0 (1.0) ]
4 0.28 (87) [ 0.0 (1.0) ]
5 0.19 (87) [ 0.0 (1.0) ]
6 0.16 (90) [ 0.0 (1.0) ]
7 0.16 (93) [ 0.0 (1.0) ]
8 0.17 (95) [ 0.0 (1.0) ]
9 0.18 (96) [ 0.0 (1.0) ]
10 0.19 (97) [ 0.0 (1.0) ]
11 0.19 (97) [ 0.0 (1.0) ]
12 0.19 (97) [ 0.0 (1.0) ]
13 0.19 (97) [ 0.0 (1.0) ]
14 0.18 (97) [ 0.0 (1.0) ]
15 0.18 (97) [ 0.0 (1.0) ]

.

.

.
88 0.004 (1.000) [ 0.0 (1.0) ]
89 0.004 (1.000) [ 0.0 (1.0) ]
90 0.004 (1.000) [ 0.0 (1.0) ]

Fit:
x[k] y[k] f(x[k],p)

---------------------------------------
0.1 0.5351 (54) 0.5349 (54)
0.3 0.6762 (67) 0.6768 (65)
0.5 0.9227 (91) 0.9219 (87)
0.7 1.380 (13) 1.381 (13)

0.95 4.014 (40) 4.014 (40)

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0 (itns/time = 2/0.0)
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This is a much more plausible fit than than the 5-parameter fit, and gives an extrapolated value of p[0]=0.489(17).
The original data points were created using a Taylor expansion with random coefficients, but with p[0] set equal to
0.5. So this fit to the five data points (plus 91 a priori values for the p[n] with n<91) gives the correct result.
Increasing the number of terms further would have no effect since the last terms added are having no impact, and so
end up equal to the prior value — the fit data are not sufficiently precise to add new information about these parameters.

2.4 Bayes Factors

We can test our priors for this fit by re-doing the fit with broader and narrower priors. Setting prior =
gv.gvar(91 * [’0(3)’]) gives an excellent fit,

Least Square Fit:
chi2/dof [dof] = 0.039 [5] Q = 1 logGBF = -5.0993

Parameters:
0 0.490 (33) [ 0.0 (3.0) ]
1 0.38 (48) [ 0.0 (3.0) ]
2 0.6 (1.8) [ 0.0 (3.0) ]
3 0.5 (2.4) [ 0.0 (3.0) ]
...

but with a very small chi2/dof and somewhat larger errors on the best-fit estimates for the parameters. The loga-
rithm of the (Gaussian) Bayes Factor, logGBF, can be used to compare fits with different priors. It is the logarithm
of the probability that our data would come from parameters generated at random using the prior. The exponential
of logGBF is more than 100 times larger with the original priors of 0(1) than with priors of 0(3). This says that
our data is more than 100 times more likely to come from a world with parameters of order one than from one with
parameters of order three. Put another way it says that the size of the fluctuations in the data are more consistent
with coefficients of order one than with coefficients of order three — in the latter case, there would have been larger
fluctuations in the data than are actually seen. The logGBF values argue for the original prior.

Narrower priors, prior = gv.gvar(91 * [’0.0(3)’]), give a poor fit, and also a less optimal logGBF:

Least Square Fit:
chi2/dof [dof] = 3.7 [5] Q = 0.0024 logGBF = -3.3058

Parameters:
0 0.484 (11) [ 0.00 (30) ] *
1 0.454 (98) [ 0.00 (30) ] *
2 0.50 (23) [ 0.00 (30) ] *
3 0.40 (25) [ 0.00 (30) ] *
...

Setting prior = gv.gvar(91 * [’0(20)’]) gives very wide priors and a rather strange looking fit:
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Here fit errors are comparable to the data errors at the data points, as you would expect, but balloon up in between.
This is an example of over-fitting: the data and priors are not sufficiently accurate to fit the number of parameters used.
Specifically the priors are too broad. Again the Bayes Factor signals the problem: logGBF = -14.479 here, which
means that our data are roughly a million times (=exp(14)) more likely to to come from a world with coefficients
of order one than from one with coefficients of order twenty. That is, the broad priors suggest much larger variations
between the leading parameters than is indicated by the data — again, the data are unnaturally regular in a world
described by the very broad prior.

Absent useful a priori information about the parameters, we can sometimes use the data to suggest a plausible width
for a set of priors. We do this by setting the width equal to the value that maximizes logGBF. This approach suggests
priors of 0.0(6) for the fit above, which gives results very similar to the fit with priors of 0(1). See Tuning Priors
and the Empirical Bayes Criterion for more details.

The priors are responsible for about half of the final error in our best estimate of p[0] (with priors of 0(1)); the rest
comes from the uncertainty in the data. This can be established by creating an error budget using the code

inputs = dict(prior=prior, y=y)
outputs = dict(p0=fit.p[0])
print(gv.fmt_errorbudget(inputs=inputs, outputs=outputs))

which prints the following table:

Partial % Errors:
p0

------------------------------
y: 2.67

prior: 2.23
------------------------------

total: 3.48

The table shows that the final 3.5% error comes from a 2.7% error due to uncertainties in y and a 2.2% error from
uncertainties in the prior (added in quadrature).

2.5 Another Solution — Marginalization

There is a second, equivalent way of fitting this data that illustrates the idea of marginalization. We really only care
about parameter p[0] in our fit. This suggests that we remove n>0 terms from the data before we do the fit:
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ymod[i] = y[i] - sum_n=1...inf prior[n] * x[i] ** n

Before the fit, our best estimate for the parameters is from the priors. We use these to create an estimate for the
correction to each data point coming from n>0 terms in y(x). This new data, ymod[i], should be fit with a new
fitting function, ymod(x) = p[0] — that is, it should be fit to a constant, independent of x[i]. The last three
lines of the code above are easily modified to implement this idea:

import numpy as np
import gvar as gv
import lsqfit

# fit data
y = gv.gvar([

'0.5351(54)', '0.6762(67)', '0.9227(91)', '1.3803(131)', '4.0145(399)'
])

x = np.array([0.1, 0.3, 0.5, 0.7, 0.95])

# fit function
def f(x, p):

return sum(pn * x ** n for n, pn in enumerate(p))

# prior for the fit
prior = gv.gvar(91 * ['0(1)'])

# marginalize all but one parameter (p[0])
priormod = prior[:1] # restrict fit to p[0]
ymod = y - (f(x, prior) - f(x, priormod)) # correct y

fit = lsqfit.nonlinear_fit(data=(x, ymod), prior=priormod, fcn=f)
print(fit.format(maxline=True))

Running this code give:

Least Square Fit:
chi2/dof [dof] = 0.35 [5] Q = 0.88 logGBF = -0.45508

Parameters:
0 0.489 (17) [ 0.0 (1.0) ]

Fit:
x[k] y[k] f(x[k],p)

------------------------------------
0.1 0.54 (10) 0.489 (17)
0.3 0.68 (31) 0.489 (17)
0.5 0.92 (58) 0.489 (17)
0.7 1.38 (98) 0.489 (17)

0.95 4.0 (3.0) 0.489 (17) *

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0 (itns/time = 2/0.0)

Remarkably this one-parameter fit gives results for p[0] that are identical (to machine precision) to our 91-parameter
fit above. The 90 parameters for n>0 are said to have been marginalized in this fit. Marginalizing a parameter in this
way has no effect if the fit function is linear in that parameter. Marginalization has almost no effect for nonlinear fits
as well, provided the fit data have small errors (in which case the parameters are effectively linear). The fit here is:
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The constant is consistent with all of the data in ymod[i], even at x[i]=0.95, because ymod[i] has much larger
errors for larger x[i] because of the correction terms.

Fitting to a constant is equivalent to doing a weighted average of the data plus the prior, so our fit can be replaced by
an average:

lsqfit.wavg(list(ymod) + list(priormod))

This again gives 0.489(17) for our final result. Note that the central value for this average is below the central
values for every data point in ymod[i]. This is a consequence of large positive correlations introduced into ymod
when we remove the n>0 terms. These correlations are captured automatically in our code, and are essential —
removing the correlations between different ymods results in a final answer, 0.564(97), which has a much larger
error.
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CHAPTER

THREE

CASE STUDY: PENDULUM

This case study shows how to fit a differential equation, using gvar.ode, and how to deal with uncertainty in the
independent variable of a fit (that is, the x in a y versus x fit).

3.1 The Problem

A pendulum is released at time 0 from angle 1.571(50) (radians). It’s angular position is measured at intervals of
approximately a tenth of second:

t[i] theta(t[i])
----------------------
0.0 1.571(50)
0.10(1) 1.477(79)
0.20(1) 0.791(79)
0.30(1) -0.046(79)
0.40(1) -0.852(79)
0.50(1) -1.523(79)
0.60(1) -1.647(79)
0.70(1) -1.216(79)
0.80(1) -0.810(79)
0.90(1) 0.185(79)
1.00(1) 0.832(79)

Function theta(t) satisfies a differential equation:

d/dt d/dt theta(t) = -(g/l) sin(theta(t))

where g is the acceleration due to gravity and l is the pendulum’s length. The challenge is to use the data to improve
our very approximate a priori estimate 40±20 for g/l.

3.2 Pendulum Dynamics

We start by designing a data type that solves the differential equation for theta(t):

import numpy as np
import gvar as gv

class Pendulum(object):
""" Integrator for pendulum motion.

Input parameters are:
g/l .... where g is acceleration due to gravity and l the length
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tol .... precision of numerical integration of ODE
"""
def __init__(self, g_l, tol=1e-4):

self.g_l = g_l
self.odeint = gv.ode.Integrator(deriv=self.deriv, tol=tol)

def __call__(self, theta0, t_array):
""" Calculate pendulum angle theta for every t in t_array.

Assumes that the pendulum is released at time t=0
from angle theta0 with no initial velocity. Returns
an array containing theta(t) for every t in t_array.
"""
# initial values
t0 = 0
y0 = [theta0, 0.0] # theta and dtheta/dt

# solution (keep only theta; discard dtheta/dt)
y = self.odeint.solution(t0, y0)
return [y(t)[0] for t in t_array]

def deriv(self, t, y, data=None):
" Calculate [dtheta/dt, d2theta/dt2] from [theta, dtheta/dt]."
theta, dtheta_dt = y
return np.array([dtheta_dt, - self.g_l * gv.sin(theta)])

A Pendulum object is initialized with a value for g/l and a tolerance for the differential-equation integrator,
gvar.ode.Integrator. Evaluating the object for a given value of theta(0) and t then calculates theta(t);
t is an array. We use gvar.ode here, rather than some other integrator, because it works with gvar.GVars, allow-
ing errors to propagate through the integration.

3.3 Two Types of Input Data

There are two ways to include data in a fit: either as regular data, or as fit parameters with priors. In general dependent
variables are treated as regular data, and independent variables with errors are treated as fit parameters, with priors.
Here the dependent variable is theta(t) and the independent variable is t. The independent variable has uncer-
tainties, so we treat the individual values as fit parameters whose priors equal the initial values t[i]. The value of
theta(t=0) is also independent data, and so becomes a fit parameter since it is uncertain. Our fit code therefore is:

from __future__ import print_function # makes this work for python2 and 3

import collections
import numpy as np
import gvar as gv
import lsqfit

def main():
# pendulum data exhibits experimental error in theta and t
t = gv.gvar([

'0.10(1)', '0.20(1)', '0.30(1)', '0.40(1)', '0.50(1)',
'0.60(1)', '0.70(1)', '0.80(1)', '0.90(1)', '1.00(1)'
])

theta = gv.gvar([
'1.477(79)', '0.791(79)', '-0.046(79)', '-0.852(79)',
'-1.523(79)', '-1.647(79)', '-1.216(79)', '-0.810(79)',
'0.185(79)', '0.832(79)'
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])

# priors for all fit parameters: g/l, theta(0), and t[i]
prior = collections.OrderedDict()
prior['g/l'] = gv.gvar('40(20)')
prior['theta(0)'] = gv.gvar('1.571(50)')
prior['t'] = t

# fit function: use class Pendulum object to integrate pendulum motion
def fitfcn(p, t=None):

if t is None:
t = p['t']

pendulum = Pendulum(p['g/l'])
return pendulum(p['theta(0)'], t)

# do the fit and print results
fit = lsqfit.nonlinear_fit(data=theta, prior=prior, fcn=fitfcn)
print(fit.format(maxline=True))

The prior is a dictionary containing a priori estimates for every fit parameter. The fit parameters are varied to give the
best fit to both the data and the priors. The fit function uses a Pendulum object to integrate the differential equation
for theta(t), generating values for each value of t[i] given a value for theta(0). The function returns an array
that has the same shape as array theta.

The fit is excellent with a chi**2 per degree of freedom of 0.7:

The gray band in the figure shows the best fit to the data, with the error bars on the fit. The output from this fit is:

Least Square Fit:
chi2/dof [dof] = 0.7 [10] Q = 0.73 logGBF = 6.359

Parameters:
g/l 39.82 (87) [ 40 (20) ]

theta(0) 1.595 (32) [ 1.571 (50) ]
t 0 0.0960 (91) [ 0.100 (10) ]
1 0.2014 (74) [ 0.200 (10) ]
2 0.3003 (67) [ 0.300 (10) ]
3 0.3982 (76) [ 0.400 (10) ]
4 0.5043 (93) [ 0.500 (10) ]
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5 0.600 (10) [ 0.600 (10) ]
6 0.7079 (89) [ 0.700 (10) ]
7 0.7958 (79) [ 0.800 (10) ]
8 0.9039 (78) [ 0.900 (10) ]
9 0.9929 (83) [ 1.000 (10) ]

Fit:
key y[key] f(p)[key]

---------------------------------------
0 1.477 (79) 1.412 (42)
1 0.791 (79) 0.802 (56)
2 -0.046 (79) -0.044 (60)
3 -0.852 (79) -0.867 (56)
4 -1.523 (79) -1.446 (42)
5 -1.647 (79) -1.594 (32)
6 -1.216 (79) -1.323 (49) *
7 -0.810 (79) -0.776 (61)
8 0.185 (79) 0.158 (66)
9 0.832 (79) 0.894 (63)

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0 (itns/time = 4/0.0)

The final result for g/l is 39.8(9), which is accurate to about 2%. Note that the fit generates (slightly) improved
estimates for several of the t values and for theta(0).
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CHAPTER

FOUR

CASE STUDY: OUTLIERS AND BAYESIAN INTEGRALS

In this case study, we analyze a fit with outliers in the data that distort the least-squares solution. We show one
approach to dealing with the outliers that requires using Bayesian integrals in place of least-squares fitting, to fit the
data while also modeling the outliers.

This case study is adapted from an example by Jake Vanderplas on his Python blog.

4.1 The Problem

We want to extrapolate a set of data values y to x=0 fitting a linear fit function (fitfcn(x,p)) to the data:

import matplotlib.pyplot as plt
import numpy as np

import gvar as gv
import lsqfit

def main():
# least-squares fit to the data
x = np.array([

0.2, 0.4, 0.6, 0.8, 1.,
1.2, 1.4, 1.6, 1.8, 2.,
2.2, 2.4, 2.6, 2.8, 3.,
3.2, 3.4, 3.6, 3.8
])

y = gv.gvar([
'0.38(20)', '2.89(20)', '0.85(20)', '0.59(20)', '2.88(20)',
'1.44(20)', '0.73(20)', '1.23(20)', '1.68(20)', '1.36(20)',
'1.51(20)', '1.73(20)', '2.16(20)', '1.85(20)', '2.00(20)',
'2.11(20)', '2.75(20)', '0.86(20)', '2.73(20)'
])

fit = lsqfit.nonlinear_fit(data=(x, y), prior=make_prior(), fcn=fitfcn)
print(fit)

# plot data
plt.errorbar(x, gv.mean(y), gv.sdev(y), fmt='o', c='b')

# plot fit function +- 1 sigma
xline = np.linspace(x[0], x[-1], 100)
yline = fitfcn(xline, fit.p)
plt.plot(xline, gv.mean(yline), 'k--')
yp = gv.mean(yline) + gv.sdev(yline)
ym = gv.mean(yline) - gv.sdev(yline)
plt.fill_between(xline,yp,ym,color='0.8')
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plt.xlabel('x')
plt.ylabel('y')
plt.show()

def fitfcn(x, p):
c = p['c']
return c[0] + c[1] * x

def make_prior():
prior = gv.BufferDict(c=gv.gvar(['0(5)', '0(5)']))
return prior

if __name__ == '__main__':
main()

The fit is not good, with a chi**2 per degree of freedom that is much larger than one, despite rather broad priors for
the intercept and slope:

Least Square Fit:
chi2/dof [dof] = 13 [19] Q = 1.2e-40 logGBF = -117.45

Parameters:
c 0 1.149 (95) [ 0.0 (5.0) ]
1 0.261 (42) [ 0.0 (5.0) ]

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0* (itns/time = 2/0.0)

The problem is evident if we plot the data:
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At least three of the data points are outliers: they disagree with other nearby points by several standard deviations.
These outliers have a big impact on the fit (dashed line, with the gray band showing the ±1-sigma region). In particular
they pull the x=0 intercept (fit.p[’c’][0]) up above one, while the rest of the data suggest an intercept of 0.5 or
less.

4.2 A Solution

There are many ad hoc prescriptions for handling outliers. In the best of situations one would have an explanation for
the outliers and seek to model them accordingly. For example, we might know that some fraction w of the time our
detector malfunctions, resulting in much larger measurement errors than usual. This model can be represented by a
more complicated probability density function (PDF) for the data that consists of a linear combination of the normal
PDF with another PDF that is similar but with much larger errors. The relative weights assigned to these two terms
would be 1-w and w, respectively.

A modified data prior of this sort is incompatible with the least-squares code in lsqfit. Here we will incorporate it
by replacing the least-squares analysis with a Bayesian integral, where the normal PDF is replaced a modified PDF of
the sort described above. The complete code for this analysis is as follows:

import matplotlib.pyplot as plt
import numpy as np

import gvar as gv
import lsqfit

def main():
### 1) least-squares fit to the data
x = np.array([

0.2, 0.4, 0.6, 0.8, 1.,
1.2, 1.4, 1.6, 1.8, 2.,
2.2, 2.4, 2.6, 2.8, 3.,
3.2, 3.4, 3.6, 3.8
])

y = gv.gvar([
'0.38(20)', '2.89(20)', '0.85(20)', '0.59(20)', '2.88(20)',
'1.44(20)', '0.73(20)', '1.23(20)', '1.68(20)', '1.36(20)',
'1.51(20)', '1.73(20)', '2.16(20)', '1.85(20)', '2.00(20)',
'2.11(20)', '2.75(20)', '0.86(20)', '2.73(20)'
])

prior = make_prior()
fit = lsqfit.nonlinear_fit(data=(x, y), prior=prior, fcn=fitfcn, extend=True)
print(fit)

# plot data
plt.errorbar(x, gv.mean(y), gv.sdev(y), fmt='o', c='b')

# plot fit function
xline = np.linspace(x[0], x[-1], 100)
yline = fitfcn(xline, fit.p)
plt.plot(xline, gv.mean(yline), 'k:')
yp = gv.mean(yline) + gv.sdev(yline)
ym = gv.mean(yline) - gv.sdev(yline)
plt.fill_between(xline, yp, ym, color='0.8')
plt.xlabel('x')
plt.ylabel('y')
plt.savefig('case-outliers1.png', bbox_inches='tight')
# plt.show()
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### 2) Bayesian integral with modified PDF
# modified probability density function
mod_pdf = ModifiedPDF(data=(x, y), fcn=fitfcn, prior=prior)

# integrator for expectation values with modified PDF
expval = lsqfit.BayesIntegrator(fit, pdf=mod_pdf)

# adapt integrator to pdf
expval(neval=1000, nitn=15)

# evaluate expectation value of g(p)
def g(p):

w = 0.5 + 0.5 * p['2w-1']
c = p['c']
return dict(w=[w, w**2], mean=c, outer=np.outer(c,c))

results = expval(g, neval=1000, nitn=15, adapt=False)
print(results.summary())

# parameters c[i]
mean = results['mean']
cov = results['outer'] - np.outer(mean, mean)
c = mean + gv.gvar(np.zeros(mean.shape), gv.mean(cov))
print('c =', c)
print(

'corr(c) =',
np.array2string(gv.evalcorr(c), prefix=10 * ' '),
'\n',
)

# parameter w
wmean, w2mean = results['w']
wsdev = gv.mean(results['w'][1] - wmean ** 2) ** 0.5
w = wmean + gv.gvar(np.zeros(np.shape(wmean)), wsdev)
print('w =', w)

# add new fit to plot
yline = fitfcn(xline, dict(c=c))
plt.plot(xline, gv.mean(yline), 'r--')
yp = gv.mean(yline) + gv.sdev(yline)
ym = gv.mean(yline) - gv.sdev(yline)
plt.fill_between(xline, yp, ym, color='r', alpha=0.2)
plt.show()

class ModifiedPDF:
""" Modified PDF to account for measurement failure. """

def __init__(self, data, fcn, prior):
self.x, self.y = data
self.fcn = fcn
self.prior = prior

def __call__(self, p):
w = 0.5 + 0.5 * p['2w-1']
y_fx = self.y - self.fcn(self.x, p)
data_pdf1 = self.gaussian_pdf(y_fx, 1.)
data_pdf2 = self.gaussian_pdf(y_fx, 10.)
prior_pdf = self.gaussian_pdf(
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p.buf[:len(self.prior.buf)] - self.prior.buf
)

return np.prod((1. - w) * data_pdf1 + w * data_pdf2) * np.prod(prior_pdf)

@staticmethod
def gaussian_pdf(x, f=1.):

xmean = gv.mean(x)
xvar = gv.var(x) * f ** 2
return gv.exp(-xmean ** 2 / 2. /xvar) / gv.sqrt(2 * np.pi * xvar)

def fitfcn(x, p):
c = p['c']
return c[0] + c[1] * x

def make_prior():
prior = gv.BufferDict(c=gv.gvar(['0(5)', '0(5)']))
prior['erfinv(2w-1)'] = gv.gvar('0(1)') / 2 ** 0.5
return prior

if __name__ == '__main__':
main()

Here class ModifiedPDF implements the modified PDF. As usual the PDF for the parameters (in __call__) is the
product of a PDF for the data times a PDF for the priors. The data PDF is more complicated than usual, however, as it
consists of two Gaussian distributions: one, data_pdf1, with the norminal data errors, and the other, data_pdf2,
with errors that are ten times larger. Parameter w determines the relative weight of each data PDF.

The Bayesian integrals are estimated using lsqfit.BayesIntegrator expval, which is created from the least-
squares fit output (fit). It is used to evaluate expectation values of arbitrary functions of the fit variables. Normally
it would use the standard PDF from the least-squares fit, but we replace that PDF here with an instance (mod_pdf) of
class ModifiedPDF.

We have modified make_prior() to introduce 2w-1 as a new fit parameter. The inverse error function of this
parameter has a Gaussian prior (0±1)/sqrt(2), which makes 2w-1 uniformly distributed across the interval from -1 to
1 (and therefore w uniformly distributed between 0 and 1). This parameter has no role in the initial least-squares fit.

We first call expvalwith no function, to allow the integrator to adapt to the modified PDF. We then use the integrator,
now with adaptation turned off (adapt=False), to evaluate the expectation value of function g(p). The output
dictionary results contains expectation values of the corresponding entries in the dictionary returned g(p). These
data allow us to calculate means, standard deviations and correlation matrices for the fit parameters.

The results from this code are as follows:

Least Square Fit:
chi2/dof [dof] = 13 [19] Q = 1.2e-40 logGBF = -117.45

Parameters:
c 0 1.149 (95) [ 0.0 (5.0) ]
1 0.261 (42) [ 0.0 (5.0) ]

erfinv(2w-1) 2e-16 +- 0.71 [ 0.00 (71) ]
---------------------------------------------------

2w-1 3e-16 +- 0.8 [ 0.00 (80) ]

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0* (itns/time = 2/0.0)

itn integral average chi2/dof Q
-------------------------------------------------------

1 6.874(81)e-11 6.874(81)e-11 0.00 1.00
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2 6.669(89)e-11 6.771(60)e-11 1.40 0.18
3 6.843(97)e-11 6.795(52)e-11 1.41 0.11
4 6.820(82)e-11 6.801(44)e-11 1.17 0.24
5 6.574(87)e-11 6.756(39)e-11 1.19 0.20
6 6.779(81)e-11 6.760(35)e-11 1.18 0.19
7 6.821(88)e-11 6.769(33)e-11 1.07 0.33
8 6.848(92)e-11 6.779(31)e-11 1.14 0.21
9 6.857(82)e-11 6.787(29)e-11 1.06 0.35

10 6.856(84)e-11 6.794(27)e-11 0.98 0.54
11 6.737(80)e-11 6.789(26)e-11 0.94 0.65
12 6.591(88)e-11 6.772(25)e-11 0.94 0.64
13 6.866(95)e-11 6.780(24)e-11 0.91 0.74
14 6.95(14)e-11 6.792(24)e-11 0.99 0.50
15 6.706(91)e-11 6.786(24)e-11 0.99 0.51

c = [0.28(14) 0.623(57)]
corr(c) = [[ 1. -0.89732867]

[-0.89732867 1. ]]

w = 0.26(11)

logBF = -23.4135(35)

The table after the fit shows results for the normalization of the modified PDF from each of the nitn=15 iterations
of the vegas algorithm used to estimate the integrals. The logarithm of the normalization (logBF) is -23.4, which
is much larger than the value -117.5 of logGBF from the least-squares fit. This means that the data much prefer the
modified prior (by a factor of exp(-23.4 + 117.4) or about 1041.).

The new fit parameters are much more reasonable. In particular the intercept is 0.28(14) rather than the 1.15(10) from
the least-squares fit. This is much better suited to the data (see the dashed line in red):
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Note, from the correlation matrix, that the intercept and slope are anti-correlated, as one might guess for this fit. The
analysis also gives us an estimate for the failure rate w=0.26(11) of our detectors — they fail about a quarter of the
time.

4.3 A Variation

Vanderplas in his version of this problem assigns a separate w to each data point. This is a slightly different model for
the failure that leads to outliers. It is easily implemented here by changing the prior so that 2w-1 (and its inverse error
function) is an array:

def make_prior():
prior = gv.BufferDict(c=gv.gvar(['0(5)', '0(5)']))
prior['erfinv(2w-1)'] = gv.gvar(19 * ['0(1)']) / 2 ** 0.5
return prior

The Bayesian integral then has 21 parameters, rather than the 3 parameters before. The code still takes only 5–6 secs
to run (on a 2014 laptop).

The final results are quite similar to the other model:

c = [0.28(16) 0.621(67)]
corr(c) = [[ 1. -0.92077026]

[-0.92077026 1. ]]

w = [0.38(27) 0.68(23) 0.40(29) 0.37(27) 0.65(24) 0.50(27) 0.51(29) 0.40(27)
0.42(27) 0.36(26) 0.38(27) 0.37(25) 0.40(28) 0.37(26) 0.39(26) 0.37(25)
0.45(29) 0.66(22) 0.36(26)]

logBF = -24.189(66)

Note that the logarithm of the Bayes Factor logBF is slighly lower for this model than before. It is also less accurately
determined (20x), because 21-parameter integrals are considerably more difficult than 3-parameter integrals. More
precision can be obtained by increasing neval, but the current precision is more than adequate.

Only three of the w[i] values listed in the output are more than two standard deviations away from zero. Not
surprisingly, these correspond to the unambiguous outliers.

The outliers in this case are pretty obvious; one is tempted to simply drop them. It is clearly better, however, to
understand why they have occurred and to quantify the effect if possible, as above. Dropping outliers would be much
more difficult if they were, say, three times closer to the rest of the data. The least-squares fit would still be poor
(chi**2 per degree of freedom of 3) and its intercept a bit too high (0.6(1)). Using the modified PDF, on the other
hand, would give results very similar to what we obtained above: for example, the intercept would be 0.35(17).
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CHAPTER

FIVE

LSQFIT - NONLINEAR LEAST SQUARES FITTING

5.1 Introduction

This package contains tools for nonlinear least-squares curve fitting of data. In general a fit has four inputs:

1. The dependent data y that is to be fit — typically y is a Python dictionary in an lsqfit analysis. Its values
y[k] are either gvar.GVars or arrays (any shape or dimension) of gvar.GVars that specify the values of
the dependent variables and their errors.

2. A collection x of independent data — x can have any structure and contain any data (or no data).

3. A fit function f(x, p) whose parameters p are adjusted by the fit until f(x, p) equals y to within ys errors
— parameters p‘ are usually specified by a dictionary whose values p[k] are individual parameters or (numpy)
arrays of parameters. The fit function is assumed independent of x (that is, f(p)) if x = False (or if x is
omitted from the input data).

4. Initial estimates or priors for each parameter in p — priors are usually specified using a dictionary prior
whose values prior[k] are gvar.GVars or arrays of gvar.GVars that give initial estimates (values and
errors) for parameters p[k].

A typical code sequence has the structure:

... collect x, y, prior ...

def f(x, p):
... compute fit to y[k], for all k in y, using x, p ...
... return dictionary containing the fit values for the y[k]s ...

fit = lsqfit.nonlinear_fit(data=(x, y), prior=prior, fcn=f)
print(fit) # variable fit is of type nonlinear_fit

The parameters p[k] are varied until the chi**2 for the fit is minimized.

The best-fit values for the parameters are recovered after fitting using, for example, p=fit.p. Then the p[k] are
gvar.GVars or arrays of gvar.GVars that give best-fit estimates and fit uncertainties in those estimates. The
print(fit) statement prints a summary of the fit results.

The dependent variable y above could be an array instead of a dictionary, which is less flexible in general but possibly
more convenient in simpler fits. Then the approximate y returned by fit function f(x, p) must be an array with the
same shape as the dependent variable. The prior prior could also be represented by an array instead of a dictionary.

By default priors are Gaussian/normal distributions, represented by gvar.GVars. Setting nonlinear_fit pa-
rameter extend=True allows for log-normal and sqrt-normal distributions as well. The latter are indicated by
replacing the prior (in a dictionary prior) with key c, for example, by a prior for the parameter’s logarithm or
square root, with key log(c) or sqrt(c), respectively. nonlinear_fit adds parameter c to the parameter
dictionary, deriving its value from parameter log(c) or sqrt(c). The fit function can be expressed directly in
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terms of parameter c and so is the same no matter which distribution is used for c. Note that a sqrt-normal dis-
tribution with zero mean is equivalent to an exponential distribution. Additional distributions can be added using
gvar.add_parameter_distribution().

The lsqfit tutorial contains extended explanations and examples. The first appendix in the paper at
http://arxiv.org/abs/arXiv:1406.2279 provides conceptual background on the techniques used in this module for fits
and, especially, error budgets.

5.2 nonlinear_fit Objects

class lsqfit.nonlinear_fit(data, fcn, prior=None, p0=None, extend=False, svdcut=1e-15, de-
bug=False, **kargs)

Nonlinear least-squares fit.

lsqfit.nonlinear_fit fits a (nonlinear) function f(x, p) to data y by varying parameters p, and stores
the results: for example,

fit = nonlinear_fit(data=(x, y), fcn=f, prior=prior) # do fit
print(fit) # print fit results

The best-fit values for the parameters are in fit.p, while the chi**2, the number of degrees of freedom,
the logarithm of Gaussian Bayes Factor, the number of iterations, and the cpu time needed for the fit are in
fit.chi2, fit.dof, fit.logGBF, fit.nit, and fit.time, respectively. Results for individual pa-
rameters in fit.p are of type gvar.GVar, and therefore carry information about errors and correlations with
other parameters. The fit data and prior can be recovered using fit.x (equals False if there is no x), fit.y,
and fit.prior; the data and prior are corrected for the svd cut, if there is one (that is, their covariance
matrices have been modified in accordance with the svd cut).

Parameters

• data – Data to be fit by lsqfit.nonlinear_fit. It can have any of the following
formats:

data = x, y x is the independent data that is passed to the fit function with the fit
parameters: fcn(x, p). y is a dictionary (or array) of gvar.GVars that encode
the means and covariance matrix for the data that is to be fit being fit. The fit function
must return a result having the same layout as y.

data = y y is a dictionary (or array) of gvar.GVars that encode the means and
covariance matrix for the data being fit. There is no independent data so the fit
function depends only upon the fit parameters: fit(p). The fit function must
return a result having the same layout as y.

data = x, ymean, ycov x is the independent data that is passed to the fit func-
tion with the fit parameters: fcn(x, p). ymean is an array containing the mean
values of the fit data. ycov is an array containing the covariance matrix of the
fit data; ycov.shape equals 2*ymean.shape. The fit function must return an
array having the same shape as ymean.

data = x, ymean, ysdev x is the independent data that is passed to the fit
function with the fit parameters: fcn(x, p). ymean is an array containing the
mean values of the fit data. ysdev is an array containing the standard deviations
of the fit data; ysdev.shape equals ymean.shape. The data are assumed to be
uncorrelated. The fit function must return an array having the same shape as ymean.

Setting x=False in the first, third or fourth of these formats implies that the fit function
depends only on the fit parameters: that is, fcn(p) instead of fcn(x, p). (This is not
assumed if x=None.)
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• fcn (function) – The function to be fit to data. It is either a function of the indepen-
dent data x and the fit parameters p (fcn(x, p)), or a function of just the fit parameters
(fcn(p)) when there is no x data or x=False. The parameters are tuned in the fit until
the function returns values that agree with the y data to within the ys’ errors. The function’s
return value must have the same layout as the y data (a dictionary or an array). The fit pa-
rameters p are either: 1) a dictionary where each p[k] is a single parameter or an array of
parameters (any shape); or, 2) a single array of parameters. The layout of the parameters is
the same as that of prior prior if it is specified; otherwise, it is inferred from of the starting
value p0 for the fit.

• prior (dictionary, array, or None) – A dictionary (or array) containing a priori estimates
for all parameters p used by fit function fcn(x, p) (or fcn(p)). Fit parameters p are
stored in a dictionary (or array) with the same keys and structure (or shape) as prior. The
default value is None; prior must be defined if p0 is None.

• p0 (dictionary, array, string or None) – Starting values for fit parameters in fit.
lsqfit.nonlinear_fit adjusts p0 to make it consistent in shape and structure with
prior when the latter is specified: elements missing from p0 are filled in using prior,
and elements in p0 that are not in prior are discarded. If p0 is a string, it is taken as a
file name and lsqfit.nonlinear_fit attempts to read starting values from that file;
best-fit parameter values are written out to the same file after the fit (for priming future fits).
If p0 is None or the attempt to read the file fails, starting values are extracted from prior.
The default value is None; p0 must be defined if prior is None.

• svdcut (None or float) – If svdcut is nonzero (not None), svd cuts are applied to
every block-diagonal sub-matrix of the covariance matrix for the data y and prior (if there
is a prior). The blocks are first rescaled so that all diagonal elements equal 1 – that is, the
blocks are replaced by the correlation matrices for the corresponding subsets of variables.
Then, if svdcut > 0, eigenvalues of the rescaled matrices that are smaller than svdcut
times the maximum eigenvalue are replaced by svdcut times the maximum eigenvalue.
This makes the covariance matrix less singular and less susceptible to roundoff error. When
svdcut < 0, eigenvalues smaller than |svdcut| times the maximum eigenvalue are
discarded and the corresponding components in y and prior are zeroed out.

• extend – Log-normal and sqrt-normal distributions can be used for fit priors when
extend=True, provided the parameters are specified by a dictionary (as opposed
to an array). To use such a distribution for a parameter ’c’ in the fit prior, re-
place prior[’c’] with a prior specifying its logarithm or square root, designated
by prior[’log(c)’] or prior[’sqrt(c)’], respectively. The dictionaries con-
taining parameters generated by lsqfit.nonlinear_fit will have entries for both
’c’ and ’log(c)’ or ’sqrt(c)’, so only the prior need be changed to switch
to log-normal/sqrt-normal distributions. Setting extend=False (the default) restricts
all parameters to Gaussian distributions. Additional distributions can be added using
gvar.add_parameter_distribution().

• debug (boolean) – Set to True for extra debugging of the fit function and a check for
roundoff errors. (Default is False.)

• fitterargs – Dictionary of arguments passed on to lsqfit.multifit, which does
the fitting.

The results from the fit are accessed through the following attributes (of fit where fit =
nonlinear_fit(...)):

chi2
The minimum chi**2 for the fit. fit.chi2 / fit.dof is usually of order one in good fits; values
much less than one suggest that the actual standard deviations in the input data and/or priors are smaller
than the standard deviations used in the fit.
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cov
Covariance matrix of the best-fit parameters from the fit.

dof
Number of degrees of freedom in the fit, which equals the number of pieces of data being fit when priors
are specified for the fit parameters. Without priors, it is the number of pieces of data minus the number of
fit parameters.

logGBF
The logarithm of the probability (density) of obtaining the fit data by randomly sampling the parameter
model (priors plus fit function) used in the fit. This quantity is useful for comparing fits of the same
data to different models, with different priors and/or fit functions. The model with the largest value of
fit.logGBF is the one prefered by the data. The exponential of the difference in fit.logGBF between
two models is the ratio of probabilities (Bayes factor) for those models. Differences in fit.logGBF
smaller than 1 are not very significant. Gaussian statistics are assumed when computing fit.logGBF.

p
Best-fit parameters from fit. Depending upon what was used for the prior (or p0), it is either:
a dictionary (gvar.BufferDict) of gvar.GVars and/or arrays of gvar.GVars; or an array
(numpy.ndarray) of gvar.GVars. fit.p represents a multi-dimensional Gaussian distribution
which, in Bayesian terminology, is the posterior probability distribution of the fit parameters.

pmean
Means of the best-fit parameters from fit (dictionary or array).

psdev
Standard deviations of the best-fit parameters from fit (dictionary or array).

palt
Same as fit.p except that the errors are computed directly from fit.cov. This is faster but means
that no information about correlations with the input data is retained (unlike in fit.p); and, therefore,
fit.palt cannot be used to generate error budgets. fit.p and fit.palt give the same means and
normally give the same errors for each parameter. They differ only when the input data’s covariance matrix
is too singular to invert accurately (because of roundoff error), in which case an SVD cut is advisable.

p0
The parameter values used to start the fit.

Q
The probability that the chi**2 from the fit could have been larger, by chance, assuming the best-fit
model is correct. Good fits have Q values larger than 0.1 or so. Also called the p-value of the fit.

svdcorrection
The sum of all SVD corrections, if any, added to the fit data y or the prior prior.

svdn
The number of eignemodes modified (and/or deleted) by the SVD cut.

nblocks
A dictionary where nblocks[s] equals the number of block-diagonal sub-matrices of the y–prior
covariance matrix that are size s-by-s. This is sometimes useful for debugging.

time
CPU time (in secs) taken by fit.

The input parameters to the fit can be accessed as attributes. Note in particular attributes:

prior
Prior used in the fit. This may differ from the input prior if an SVD cut is used. It is either a dictionary
(gvar.BufferDict) or an array (numpy.ndarray), depending upon the input. Equals None if no
prior was specified.
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x
The first field in the input data. This is sometimes the independent variable (as in ‘y vs x’ plot), but may
be anything. It is set equal to False if the x field is omitted from the input data. (This also means that
the fit function has no x argument: so f(p) rather than f(x,p).)

y
Fit data used in the fit. This may differ from the input data if an SVD cut is used. It is either a dictionary
(gvar.BufferDict) or an array (numpy.ndarray), depending upon the input.

Additional methods are provided for printing out detailed information about the fit, testing fits with simulated
data, doing bootstrap analyses of the fit errors, dumping (for later use) and loading parameter values, and check-
ing for roundoff errors in the final error estimates:

format(maxline=0, pstyle=’v’)
Formats fit output details into a string for printing.

The output tabulates the chi**2 per degree of freedom of the fit (chi2/dof), the number of degrees of
freedom, the logarithm of the Gaussian Bayes Factor for the fit (logGBF), and the number of fit- algorithm
iterations needed by the fit. Optionally, it will also list the best-fit values for the fit parameters together
with the prior for each (in [] on each line). Lines for parameters that deviate from their prior by more than
one (prior) standard deviation are marked with asterisks, with the number of asterisks equal to the number
of standard deviations (up to five). format can also list all of the data and the corresponding values from
the fit, again with asterisks on lines where there is a significant discrepancy. At the end it lists the SVD cut,
the number of eigenmodes modified by the SVD cut, the tolerances used in the fit, and the time in seconds
needed to do the fit. The tolerance used to terminate the fit is marked with an asterisk.

Parameters

• maxline (integer or bool) – Maximum number of data points for which fit results and
input data are tabulated. maxline<0 implies that only chi2, Q, logGBF, and itns
are tabulated; no parameter values are included. Setting maxline=True prints all data
points; setting it equal None or False is the same as setting it equal to -1. Default is
maxline=0.

• pstyle (‘vv’, ‘v’, or ‘m’) – Style used for parameter list. Supported values are ‘vv’ for
very verbose, ‘v’ for verbose, and ‘m’ for minimal. When ‘m’ is set, only parameters
whose values differ from their prior values are listed.

Returns String containing detailed information about fit.

fmt_errorbudget(outputs, inputs, ndecimal=2, percent=True)
Tabulate error budget for outputs[ko] due to inputs[ki].

For each output outputs[ko], fmt_errorbudget computes the contributions to outputs[ko]‘s
standard deviation coming from the gvar.GVars collected in inputs[ki]. This is done for each key
combination (ko,ki) and the results are tabulated with columns and rows labeled by ko and ki, respec-
tively. If a gvar.GVar in inputs[ki] is correlated with other gvar.GVars, the contribution from
the others is included in the ki contribution as well (since contributions from correlated gvar.GVars
cannot be distinguished). The table is returned as a string.

Parameters

• outputs – Dictionary of gvar.GVars for which an error budget is computed.

• inputs – Dictionary of: gvar.GVars, arrays/dictionaries of gvar.GVars, or lists
of gvar.GVars and/or arrays/dictionaries of gvar.GVars. fmt_errorbudget
tabulates the parts of the standard deviations of each outputs[ko] due to each
inputs[ki].

• ndecimal (int) – Number of decimal places displayed in table.
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• percent (boolean) – Tabulate % errors if percent is True; otherwise tabulate the
errors themselves.

• colwidth (positive integer or None) – Width of each column. This is set automatically,
to accommodate label widths, if colwidth=None (default).

• verify (boolean) – If True, a warning is issued if: 1) different inputs are correlated
(and therefore double count errors); or 2) the sum (in quadrature) of partial errors is not
equal to the total error to within 0.1% of the error (and the error budget is incomplete or
overcomplete). No checking is done if verify==False (default).

Returns A table (str) containing the error budget. Output variables are labeled by the keys in
outputs (columns); sources of uncertainty are labeled by the keys in inputs (rows).

fmt_values(outputs, ndecimal=None)
Tabulate gvar.GVars in outputs.

Parameters

• outputs – A dictionary of gvar.GVar objects.

• ndecimal (int or None) – Format values v using v.fmt(ndecimal).

Returns A table (str) containing values and standard deviations for variables in outputs,
labeled by the keys in outputs.

simulated_fit_iter(n=None, pexact=None, **kargs)
Iterator that returns simulation copies of a fit.

Fit reliability can be tested using simulated data which replaces the mean values in self.y with random
numbers drawn from a distribution whose mean equals self.fcn(pexact) and whose covariance
matrix is the same as self.y‘s. Simulated data is very similar to the original fit data, self.y, but
corresponds to a world where the correct values for the parameters (i.e., averaged over many simulated
data sets) are given by pexact. pexact is usually taken equal to fit.pmean.

Each iteration of the iterator creates new simulated data, with different random numbers, and fits it, return-
ing the the lsqfit.nonlinear_fit that results. The simulated data has the same covariance matrix
as fit.y. Typical usage is:
...
fit = nonlinear_fit(...)
...
for sfit in fit.simulated_fit_iter(n=3):

... verify that sfit.p agrees with pexact=fit.pmean within errors ...

Only a few iterations are needed to get a sense of the fit’s reliability since we know the correct answer in
each case. The simulated fit’s output results should agree with pexact (=fit.pmean here) within the
simulated fit’s errors.

Simulated fits can also be used to estimate biases in the fit’s output parameters or functions of them,
should non-Gaussian behavior arise. This is possible, again, because we know the correct value for every
parameter before we do the fit. Again only a few iterations may be needed for reliable estimates.

The (possibly non-Gaussian) probability distributions for parameters, or functions of them, can be ex-
plored in more detail by setting option bootstrap=True and collecting results from a large number
of simulated fits. With bootstrap=True, the means of the priors are also varied from fit to fit, as in
a bootstrap simulation; the new prior means are chosen at random from the prior distribution. Variations
in the best-fit parameters (or functions of them) from fit to fit define the probability distributions for those
quantities. For example, one would use the following code to analyze the distribution of function g(p) of
the fit parameters:
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fit = nonlinear_fit(...)

...

glist = []
for sfit in fit.simulated_fit_iter(n=100, bootstrap=True):

glist.append(g(sfit.pmean))

... analyze samples glist[i] from g(p) distribution ...

This code generates n=100 samples glist[i] from the probability distribution of g(p). If everything
is Gaussian, the mean and standard deviation of glist[i] should agree with g(fit.p).mean and
g(fit.p).sdev.

The only difference between simulated fits with bootstrap=True and bootstrap=False (the de-
fault) is that the prior means are varied. It is essential that they be varied in a bootstrap analysis since one
wants to capture the impact of the priors on the final distributions, but it is not necessary and probably not
desirable when simply testing a fit’s reliability.

Parameters

• n (integer or None) – Maximum number of iterations (equals infinity if None).

• pexact (None or array or dictionary of numbers) – Fit-parameter values for the under-
lying distribution used to generate simulated data; replaced by self.pmean if is None
(default).

• bootstrap (bool) – Vary prior means if True; otherwise vary only the means in
self.y (default).

Returns An iterator that returns lsqfit.nonlinear_fits for different simulated data.

Note that additional keywords can be added to overwrite keyword arguments in
lsqfit.nonlinear_fit.

bootstrap_iter(n=None, datalist=None)
Iterator that returns bootstrap copies of a fit.

A bootstrap analysis involves three steps: 1) make a large number of “bootstrap copies” of the original input
data and prior that differ from each other by random amounts characteristic of the underlying randomness
in the original data; 2) repeat the entire fit analysis for each bootstrap copy of the data, extracting fit results
from each; and 3) use the variation of the fit results from bootstrap copy to bootstrap copy to determine
an approximate probability distribution (possibly non-gaussian) for the fit parameters and/or functions of
them: the results from each bootstrap fit are samples from that distribution.

Bootstrap copies of the data for step 2 are provided in datalist. If datalist is None, they are
generated instead from the means and covariance matrix of the fit data (assuming gaussian statistics). The
maximum number of bootstrap copies considered is specified by n (None implies no limit).

Variations in the best-fit parameters (or functions of them) from bootstrap fit to bootstrap fit define the
probability distributions for those quantities. For example, one could use the following code to analyze the
distribution of function g(p) of the fit parameters:

fit = nonlinear_fit(...)

...

glist = []
for sfit in fit.bootstrapped_fit_iter(

n=100, datalist=datalist, bootstrap=True
):
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glist.append(g(sfit.pmean))

... analyze samples glist[i] from g(p) distribution ...

This code generates n=100 samples glist[i] from the probability distribution of g(p). If everything
is Gaussian, the mean and standard deviation of glist[i] should agree with g(fit.p).mean and
g(fit.p).sdev.

Parameters

• n (integer) – Maximum number of iterations if n is not None; otherwise there is no max-
imum.

• datalist (sequence or iterator or None) – Collection of bootstrap data sets for fitter.

Returns Iterator that returns an lsqfit.nonlinear_fit object containing results from the
fit to the next data set in datalist

dump_p(filename)
Dump parameter values (fit.p) into file filename.

fit.dump_p(filename) saves the best-fit parameter values (fit.p) from
a nonlinear_fit called fit. These values are recovered using p =
nonlinear_fit.load_parameters(filename) where p‘s layout is the same as that of
fit.p.

dump_pmean(filename)
Dump parameter means (fit.pmean) into file filename.

fit.dump_pmean(filename) saves the means of the best-fit parameter values
(fit.pmean) from a nonlinear_fit called fit. These values are recovered using p0 =
nonlinear_fit.load_parameters(filename)where p0‘s layout is the same as fit.pmean.
The saved values can be used to initialize a later fit (nonlinear_fit parameter p0).

static load_parameters(filename)
Load parameters stored in file filename.

p = nonlinear_fit.load_p(filename) is used to recover the values of fit parameters dumped
using fit.dump_p(filename) (or fit.dump_pmean(filename)) where fit is of type
lsqfit.nonlinear_fit. The layout of the returned parameters p is the same as that of fit.p
(or fit.pmean).

check_roundoff(rtol=0.25, atol=1e-6)
Check for roundoff errors in fit.p.

Compares standard deviations from fit.p and fit.palt to see if they agree to within relative tolerance rtol
and absolute tolerance atol. Generates a warning if they do not (in which case an svd cut might be
advisable).

5.3 Functions

lsqfit.empbayes_fit(z0, fitargs, **minargs)
Call lsqfit.nonlinear_fit(**fitargs(z)) varying z, starting at z0, to maximize logGBF (em-
pirical Bayes procedure).

The fit is redone for each value of z that is tried, in order to determine logGBF.

Parameters

• z0 (array) – Starting point for search.
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• fitargs (function) – Function of array z that determines which fit parameters to use. The
function returns these as an argument dictionary for lsqfit.nonlinear_fit().

• minargs (dictionary) – Optional argument dictionary, passed on to
lsqfit.multiminex, which finds the minimum.

Returns A tuple containing the best fit (object of type lsqfit.nonlinear_fit) and the opti-
mal value for parameter z.

lsqfit.wavg(dataseq, prior=None, fast=False, **kargs)
Weighted average of gvar.GVars or arrays/dicts of gvar.GVars.

The weighted average of several gvar.GVars is what one obtains from a least-squares fit of the collection of
gvar.GVars to the one-parameter fit function

def f(p):
return N * [p[0]]

where N is the number of gvar.GVars. The average is the best-fit value for p[0]. gvar.GVars with smaller
standard deviations carry more weight than those with larger standard deviations. The averages computed by
wavg take account of correlations between the gvar.GVars.

If prior is not None, it is added to the list of data used in the average. Thus wavg([x2, x3],
prior=x1) is the same as wavg([x1, x2, x3]).

Typical usage is

x1 = gvar.gvar(...)
x2 = gvar.gvar(...)
x3 = gvar.gvar(...)
xavg = wavg([x1, x2, x3]) # weighted average of x1, x2 and x3

where the result xavg is a gvar.GVar containing the weighted average.

The individual gvar.GVars in the last example can be replaced by multidimensional distributions, represented
by arrays of gvar.GVars or dictionaries of gvar.GVars (or arrays of gvar.GVars). For example,

x1 = [gvar.gvar(...), gvar.gvar(...)]
x2 = [gvar.gvar(...), gvar.gvar(...)]
x3 = [gvar.gvar(...), gvar.gvar(...)]
xavg = wavg([x1, x2, x3])

# xavg[i] is wgtd avg of x1[i], x2[i], x3[i]

where each array x1, x2 ... must have the same shape. The result xavg in this case is an array of gvar.GVars,
where the shape of the array is the same as that of x1, etc.

Another example is

x1 = dict(a=[gvar.gvar(...), gvar.gvar(...)], b=gvar.gvar(...))
x2 = dict(a=[gvar.gvar(...), gvar.gvar(...)], b=gvar.gvar(...))
x3 = dict(a=[gvar.gvar(...), gvar.gvar(...)])
xavg = wavg([x1, x2, x3])

# xavg['a'][i] is wgtd avg of x1['a'][i], x2['a'][i], x3['a'][i]
# xavg['b'] is gtd avg of x1['b'], x2['b']

where different dictionaries can have (some) different keys. Here the result xavg is a gvar.BufferDict‘
having the same keys as x1, etc.

Weighted averages can become costly when the number of random samples being averaged is large (100s or
more). In such cases it might be useful to set parameter fast=True. This causes wavg to estimate the
weighted average by incorporating the random samples one at a time into a running average:
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result = prior
for dataseq_i in dataseq:

result = wavg([result, dataseq_i], ...)

This method is much faster when len(dataseq) is large, and gives the exact result when there are no corre-
lations between different elements of list dataseq. The results are approximately correct when dataseq[i]
and dataseq[j] are correlated for i!=j.

Parameters

• dataseq – The gvar.GVars to be averaged. dataseq is a one-dimensional sequence
of gvar.GVars, or of arrays of gvar.GVars, or of dictionaries containing gvar.GVars
or arrays of gvar.GVars. All dataseq[i] must have the same shape.

• prior (gvar.GVar or array/dictionary of gvar.GVars) – Prior values for the averages,
to be included in the weighted average. Default value is None, in which case prior is
ignored.

• fast (bool) – Setting fast=True causes wavg to compute an approximation to the
weighted average that is much faster to calculate when averaging a large number of samples
(100s or more). The default is fast=False.

• kargs (dict) – Additional arguments (e.g., svdcut) to the fitter used to do the averaging.

Results returned by gvar.wavg() have the following extra attributes describing the average:

lsqfit.chi2
chi**2 for weighted average.

lsqfit.dof
Effective number of degrees of freedom.

lsqfit.Q
The probability that the chi**2 could have been larger, by chance, assuming that the data are all Gaussain
and consistent with each other. Values smaller than 0.1 or suggest that the data are not Gaussian or are
inconsistent with each other. Also called the p-value.

Quality factor Q (or p-value) for fit.

lsqfit.time
Time required to do average.

lsqfit.svdcorrection
The svd corrections made to the data when svdcut is not None.

lsqfit.fit
Fit output from average.

lsqfit.gammaQ()
Return the normalized incomplete gamma function Q(a,x) = 1-P(a,x).

Q(a, x) = 1/Gamma(a) * \int_x^\infty dt exp(-t) t ** (a-1) = 1 - P(a, x)

Note that gammaQ(ndof/2., chi2/2.) is the probabilty that one could get a chi**2 larger than chi2
with ndof degrees of freedom even if the model used to construct chi2 is correct.

gvar.add_parameter_distribution(name, invfcn)
Add new parameter distribution for use in fits.

This function adds new distributions for the parameters used in lsqfit.nonlinear_fit. For example, the
code
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import gvar as gv
gv.add_parameter_distribution('log', gv.exp)

enables the use of log-normal distributions for parameters. The log-normal distribution is invoked for a param-
eter p by including log(p) rather than p itself in the fit prior. log-normal, sqrt-normal, and erfinv-normal
distributions are included by default. (Setting a prior prior[erfinv(w)] equal to gv.gvar(’0(1)’)
/ gv.sqrt(2) means that the prior probability for w is distributed uniformly between -1 and 1, and is zero
elsewhere.)

These distributions are implemented by replacing a fit parameter p by a new fit parameter fcn(p) where fcn
is some function. fcn(p) is assumed to have a Gaussian distribution, and parameter p is recovered using the
inverse function invfcn where p=invfcn(fcn(p)).

Parameters

• name (str) – Distribution’s name.

• invfcn – Inverse of the transformation function.

gvar.del_parameter_distribution(name)
Delete parameter distribution name.

gvar.add_parameter_parentheses(p)
Return dictionary with proper keys for parameter distributions (legacy code).

This utility function helps fix legacy code that uses parameter keys like logp or sqrtp instead of log(p)
or sqrt(p), as now required. This method creates a copy of dictionary p’’ but with keys like
‘‘logp or sqrtp replaced by log(p) or sqrt(p). So setting

p = add_parameter_parentheses(p)

fixes the keys in p for log-normal and sqrt-normal parameters.

5.4 Classes for Bayesian Integrals

class lsqfit.BayesPDF(fit, svdcut=1e-15)
Bayesian probability density function corresponding to nonlinear_fit fit.

The probability density function is the exponential of -1/2 times the chi**2 function (data and priors) used
in fit divided by norm.

Parameters

• fit – Fit from nonlinear_fit.

• svdcut (non-negative float or None) – If not None, replace covariance matrix of g with
a new matrix whose small eigenvalues are modified: eigenvalues smaller than svdcut
times the maximum eigenvalue eig_max are replaced by svdcut*eig_max. This can
ameliorate problems caused by roundoff errors when inverting the covariance matrix. It
increases the uncertainty associated with the modified eigenvalues and so is conservative.
Setting svdcut=None or svdcut=0 leaves the covariance matrix unchanged. Default is
1e-15.

__call__(p)
Probability density function evaluated at p.

logpdf(p)
Logarithm of the probability density function evaluated at p.
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class lsqfit.BayesIntegrator(fit, limit=1e15, scale=1, pdf=None, svdcut=1e-15)
vegas integrator for Bayesian fit integrals.

Parameters

• fit – Fit from nonlinear_fit.

• limit (positive float) – Limits the integrations to a finite region of size limit times the
standard deviation on either side of the mean. This can be useful if the functions being
integrated misbehave for large parameter values (e.g., numpy.exp overflows for a large
range of arguments). Default is 1e15.

• scale (positive float) – The integration variables are rescaled to emphasize parameter val-
ues of order scale times the corresponding standard deviations. The rescaling does not
change the value of the integral but it can reduce uncertainties in the vegas estimates.
Default is 1.0.

• pdf (function) – Probability density function pdf(p) of the fit parameters to use in place
of the normal PDF associated with the least-squares fit used to create the integrator.

• svdcut (non-negative float or None) – If not None, replace covariance matrix of g with
a new matrix whose small eigenvalues are modified: eigenvalues smaller than svdcut
times the maximum eigenvalue eig_max are replaced by svdcut*eig_max. This can
ameliorate problems caused by roundoff errors when inverting the covariance matrix. It
increases the uncertainty associated with the modified eigenvalues and so is conservative.
Setting svdcut=None or svdcut=0 leaves the covariance matrix unchanged. Default is
1e-15.

BayesIntegrator(fit) is a vegas integrator that evaluates expectation values for the multi-dimensional
Bayesian distribution associated with nonlinear_fit fit: the probability density function is the exponen-
tial of the chi**2 function (times -1/2), for data and priors, used in the fit. For linear fits, it is equivalent
to gvar.PDFIntegrator(fit.p), since the chi**2 function is quadratic in the fit parameters; but they
can differ significantly for nonlinear fits.

BayesIntegrator integrates over the entire parameter space but first reexpresses the integrals in terms
of variables that diagonalize the covariance matrix of the best-fit parameters fit.p from nonlinear_fit
and are centered at the best-fit values. This greatly facilitates the integration using vegas, making integrals
over 10s or more of parameters feasible. (The vegas module must be installed separately in order to use
BayesIntegrator.)

A simple illustration of BayesIntegrator is given by the following code, which we use to evaluate the
mean and standard deviation for s*g where s and g are fit parameters:

import lsqfit
import gvar as gv
import numpy as np

# least-squares fit
x = np.array([0.1, 1.2, 1.9, 3.5])
y = gv.gvar(['1.2(1.0)', '2.4(1)', '2.0(1.2)', '5.2(3.2)'])
prior = gv.gvar(dict(a='0(5)', s='0(2)', g='2(2)'))
def f(x, p):

return p['a'] + p['s'] * x ** p['g']
fit = lsqfit.nonlinear_fit(data=(x,y), prior=prior, fcn=f, debug=True)
print(fit)

# Bayesian integral to evaluate expectation value of s*g
def g(p):

sg = p['s'] * p['g']
return [sg, sg**2]
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expval = lsqfit.BayesIntegrator(fit, limit=20.)
warmup = expval(neval=4000, nitn=10)
results = expval(g, neval=4000, nitn=15, adapt=False)
print(results.summary())
print('results =', results, '\n')
sg, sg2 = results
sg_sdev = (sg2 - sg**2) ** 0.5
print('s*g from Bayes integral: mean =', sg, ' sdev =', sg_sdev)
print('s*g from fit:', fit.p['s'] * fit.p['g'])

where the warmup calls to the integrator are used to adapt it to probability density function from the fit, and
then the integrator is used to evaluate the expectation value of g(p), which is returned in array results.
Here neval is the (approximate) number of function calls per iteration of the vegas algorithm and nitn is
the number of iterations. We use the integrator to calculated the expectation value of s*g and (s*g)**2 so
we can compute a mean and standard deviation.

The output from this code shows that the Gaussian approximation for s*g (0.76(66)) is somewhat different
from the result obtained from a Bayesian integral (0.48(54)):

Least Square Fit:
chi2/dof [dof] = 0.32 [4] Q = 0.87 logGBF = -9.2027

Parameters:
a 1.61 (90) [ 0.0 (5.0) ]
s 0.62 (81) [ 0.0 (2.0) ]
g 1.2 (1.1) [ 2.0 (2.0) ]

Settings:
svdcut/n = 1e-15/0 reltol/abstol = 0.0001/0* (itns/time = 10/0.0)

itn integral average chi2/dof Q
-------------------------------------------------------
1 1.034(21) 1.034(21) 0.00 1.00
2 1.034(21) 1.034(15) 0.56 0.64
3 1.024(18) 1.030(12) 0.37 0.90
4 1.010(18) 1.0254(98) 0.47 0.89
5 1.005(17) 1.0213(85) 0.55 0.88
6 1.013(19) 1.0199(78) 0.69 0.80
7 0.987(16) 1.0152(70) 0.78 0.72
8 1.002(18) 1.0135(66) 0.90 0.59
9 1.036(20) 1.0160(62) 0.86 0.66

10 1.060(20) 1.0204(60) 0.94 0.55

results = [0.4837(32) 0.5259(47)]

s*g from Bayes integral: mean = 0.4837(32) sdev = 0.5403(25)
s*g from fit: 0.78(66)

The table shows estimates of the probability density function’s normalization from each of the vegas iterations
used by the integrator to estimate the final results.

In general functions being integrated can return a number, or an array of numbers, or a dictionary whose values
are numbers or arrays of numbers. This allows multiple expectation values to be evaluated simultaneously.

See the documentation with the vegas module for more details on its use, and on the attributes and methods
associated with integrators. The example above sets adapt=False when computing final results. This gives
more reliable error estimates when neval is small. Note that neval may need to be much larger (tens or
hundreds of thousands) for more difficult high-dimension integrals.
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__call__(f=None, mpi=False, pdf=None, **kargs)
Estimate expectation value of function f(p).

Uses multi-dimensional integration modules vegas to estimate the expectation value of f(p) with re-
spect to the probability density function associated with nonlinear_fit fit. Setting mpi=True
configures vegas for multi-processor running using MPI.

Parameters

• f (function) – Function f(p) to integrate. Integral is the expectation value of the function
with respect to the distribution. The function can return a number, an array of numbers, or
a dictionary whose values are numbers or arrays of numbers.

• mpi (bool) – If True configure for use with multiple processors and MPI. This option
requires module mpi4py. A script xxx.py using an MPI integrator is run with mpirun:
e.g.,

mpirun -np 4 -output-filename xxx.out python xxx.py

runs on 4 processors. Setting mpi=False (default) does not support multiple processors.
The MPI processor rank can be obtained from the mpi_rank attribute of the integrator.

• pdf (function) – Probability density function pdf(p) of the fit parameters to use in place
of the normal PDF associated with the least-squares fit used to create the integrator.

All other keyword arguments are passed on to a vegas integrator; see the vegas documentation for
further information.

5.5 Other Classes

class lsqfit.multifit(x0, n, f, tol=1e-4, maxit=1000, alg=’lmsder’, analyzer=None)
Fitter for nonlinear least-squares multidimensional fits.

Parameters

• x0 (numpy array of floats) – Starting point for minimization.

• n (positive integer) – Length of vector returned by the fit function f(x).

• f (function) – Fit function: multifit minimizes sum_i f_i(x)**2 by varying pa-
rameters x. The parameters are a 1-d numpy array of either numbers or gvar.GVars.

• tol (tuple or float) – Setting tol=(reltol, abstol) causes the fit to stop searching
for a solution when |dx_i| <= abstol + reltol * |x_i|. With version 2 or
higher of the GSL library, tol=(xtol, gtol, ftol) can be used, where the fit stops
when any one of the following three criteria is satisfied:

1. step size small: |dx_i| <= xtol * (xtol + |x_i|);

2. gradient small: ||g . x||_inf <= gtol * ||f||^2;

3. residuals small: ||f(x+dx) - f(x)|| <= ftol * max(||f(x)||, 1).

Recommended values are: xtol=1/10**d for d digits of precision in the parameters;
gtol=1e-6 to account for roundoff errors in gradient g (unless the second order deriva-
tive vanishes at minimum as well, in which case gtol=0 might be good); and ftol<<1.
Setting tol=reltol is equivalent to setting tol=(reltol, 0.0). The default setting
is tol=0.0001.

• maxit (integer) – Maximum number of iterations in search for minimum; default is 1000.
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• alg (string) – GSL algorithm to use for minimization. Two options are currently available:
"lmsder", the scaled LMDER algorithm (default); and "lmder", the unscaled LMDER
algorithm. With version 2 of the GSL library, another option is "lmniel", which can be
useful when there is much more data than parameters.

• analyzer (function) – Optional function of x, [...f_i(x)...],
[[..df_ij(x)..]] which is called after each iteration. This can be used to
inspect intermediate steps in the minimization, if needed.

multifit is a function-class whose constructor does a least squares fit by minimizing sum_i f_i(x)**2
as a function of vector x. The following attributes are available:

x
Location of the most recently computed (best) fit point.

cov
Covariance matrix at the minimum point.

f
The fit function f(x) at the minimum in the most recent fit.

J
Gradient J_ij = df_i/dx[j] for most recent fit.

nit
Number of iterations used in last fit to find the minimum.

stopping_criterion

Criterion used to stop fit: 0 => didn’t converge 1 => step size small 2 => gradient small 3 => residuals
small

error
None if fit successful; an error message otherwise.

multifit is a wrapper for the multifit GSL routine.

class lsqfit.multiminex(x0, f, tol=1e-4, maxit=1000, step=1, alg=’nmsimplex2’, analyzer=None)
Minimizer for multidimensional functions.

Parameters

• x0 (numpy array of floats) – Starting point for minimization search.

• f (function) – Function f(x) to be minimized by varying vector x.

• tol (float) – Minimization stops when x has converged to with tolerance tol; default is
1e-4.

• maxit (integer) – Maximum number of iterations in search for minimum; default is 1000.

• step (number) – Initial step size to use in varying components of x; default is 1.

• alg (string) – GSL algorithm to use for minimization. Three options are currently available:
"nmsimplex", Nelder Mead Simplex algorithm; "nmsimplex2", an improved version
of "nmsimplex" (default); and "nmsimplex2rand", a version of "nmsimplex2"
with random shifts in the start position.

• analyzer (function) – Optional function of x, f(x), it, where it is the iteration
number, which is called after each iteration. This can be used to inspect intermediate steps
in the minimization, if needed.

5.5. Other Classes 75



lsqfit Documentation, Release 8.0.1

multiminex is a function-class whose constructor minimizes a multidimensional function f(x) by varying
vector x. This routine does not use user-supplied information about the gradient of f(x). The following
attributes are available:

x
Location of the most recently computed minimum (1-d array).

f
Value of function f(x) at the most recently computed minimum.

nit
Number of iterations required to find most recent minimum.

error
None if fit successful; an error message otherwise.

multiminex is a wrapper for the multimin GSL routine.

5.6 Requirements

lsqfit relies heavily on the gvar, and numpy modules. Several utility functions are in lsqfit_util. Also the
minimization routines are from the Gnu Scientific Library (GSL).
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