Coverage for pygeodesy/ellipsoidalNvector.py: 96%

137 statements  

« prev     ^ index     » next       coverage.py v7.2.2, created at 2024-05-06 16:50 -0400

1 

2# -*- coding: utf-8 -*- 

3 

4u'''Ellipsoidal, C{N-vector}-based geodesy. 

5 

6Ellipsoidal classes geodetic L{LatLon}, geocentric (ECEF) L{Cartesian} 

7and C{Nvector} and DEPRECATED L{Ned} and functions L{meanOf}, L{sumOf} 

8and DEPRECATED L{toNed}. 

9 

10Pure Python implementation of n-vector-based geodetic (lat-/longitude) 

11methods by I{(C) Chris Veness 2011-2016} published under the same MIT 

12Licence**, see U{Vector-based geodesy 

13<https://www.Movable-Type.co.UK/scripts/latlong-vectors.html>}. 

14 

15These classes and functions work with: (a) geodetic lat-/longitude points on 

16the earth's surface and (b) 3-D vectors used as n-vectors representing points 

17on the earth's surface or vectors normal to the plane of a great circle. 

18 

19See also I{Kenneth Gade} U{'A Non-singular Horizontal Position Representation' 

20<https://www.NavLab.net/Publications/A_Nonsingular_Horizontal_Position_Representation.pdf>}, 

21The Journal of Navigation (2010), vol 63, nr 3, pp 395-417. 

22''' 

23# make sure int/int division yields float quotient, see .basics 

24from __future__ import division as _; del _ # PYCHOK semicolon 

25 

26from pygeodesy.basics import issubclassof, map2, _xinstanceof 

27from pygeodesy.datums import _earth_ellipsoid, _ellipsoidal_datum, _WGS84 

28# from pygeodesy.dms import toDMS # _MODS 

29from pygeodesy.ellipsoidalBase import CartesianEllipsoidalBase, \ 

30 _nearestOn, LatLonEllipsoidalBase, \ 

31 _TOL_M, _Wrap 

32from pygeodesy.errors import _IsnotError, _xkwds, _xkwds_pop2 

33# from pygeodesy.fmath import fdot # from .nvectorBase 

34from pygeodesy.interns import NN, _Nv00_, _COMMASPACE_ 

35from pygeodesy.interns import _down_, _east_, _north_, _pole_ # PYCHOK used! 

36from pygeodesy.lazily import _ALL_LAZY, _ALL_MODS as _MODS, _ALL_OTHER 

37# from pygeodesy.ltp import Ltp # _MODS 

38from pygeodesy.ltpTuples import Aer as _Aer, Ned as _Ned, Ned4Tuple, \ 

39 sincos2d_, _xnamed 

40# from pygeodesy.named import _xnamed # from .ltpTuples 

41from pygeodesy.nvectorBase import fabs, fdot, NorthPole, LatLonNvectorBase, \ 

42 NvectorBase, sumOf as _sumOf 

43from pygeodesy.props import deprecated_class, deprecated_function, \ 

44 deprecated_method, Property_RO, property_RO 

45from pygeodesy.streprs import Fmt, fstr, _xzipairs 

46from pygeodesy.units import Bearing, Distance, Height, Scalar 

47# from pygeodesy.utily import sincos2d_, _Wrap # from .ltpTuples, .ellipsoidalBase 

48 

49# from math import fabs # from .nvectorBase 

50 

51__all__ = _ALL_LAZY.ellipsoidalNvector 

52__version__ = '24.02.18' 

53 

54 

55class Ned(_Ned): 

56 '''DEPRECATED on 2024.02.04, use class L{pygeodesy.Ned}.''' 

57 

58 def __init__(self, north, east, down, name=NN): 

59 deprecated_class(self.__class__) 

60 _Ned.__init__(self, north, east, down, name=name) 

61 

62 @deprecated_method # PYCHOK expected 

63 def toRepr(self, prec=None, fmt=Fmt.SQUARE, sep=_COMMASPACE_, **unused): 

64 '''DEPRECATED, use class L{pygeodesy.Ned}. 

65 

66 @kwarg prec: Number of (decimal) digits, unstripped (C{int}). 

67 @kwarg fmt: Enclosing backets format (C{str}). 

68 @kwarg sep: Separator between NEDs (C{str}). 

69 

70 @return: This Ned as "[L:f, B:degrees360, E:degrees90]" (C{str}) 

71 with length or slantrange C{L}, bearing or azimuth C{B} 

72 and elevation C{E}. 

73 ''' 

74 dms = _MODS.dms 

75 t = (fstr(self.slantrange, prec=prec), 

76 dms.toDMS(self.azimuth, form=dms.F_D, prec=prec, ddd=0), 

77 dms.toDMS(self.elevation, form=dms.F_D, prec=prec, ddd=0)) 

78 return _xzipairs('LBE', t, sep=sep, fmt=fmt) 

79 

80 

81class Cartesian(CartesianEllipsoidalBase): 

82 '''Extended to convert geocentric, L{Cartesian} points to 

83 C{Nvector} and n-vector-based, geodetic L{LatLon}. 

84 ''' 

85 @property_RO 

86 def Ecef(self): 

87 '''Get the ECEF I{class} (L{EcefVeness}), I{once}. 

88 ''' 

89 return _Ecef() 

90 

91 def toLatLon(self, **LatLon_and_kwds): # PYCHOK LatLon=LatLon, datum=None 

92 '''Convert this cartesian to an C{Nvector}-based geodetic point. 

93 

94 @kwarg LatLon_and_kwds: Optional L{LatLon}, B{C{datum}} and other 

95 keyword arguments. Use C{B{LatLon}=...} to 

96 override this L{LatLon} class or specify 

97 C{B{LatLon} is None}. 

98 

99 @return: The geodetic point (L{LatLon}) or if B{C{LatLon}} is set 

100 to C{None}, an L{Ecef9Tuple}C{(x, y, z, lat, lon, height, 

101 C, M, datum)} with C{C} and C{M} if available. 

102 

103 @raise TypeError: Invalid B{C{LatLon_and_kwds}}. 

104 ''' 

105 kwds = _xkwds(LatLon_and_kwds, LatLon=LatLon, datum=self.datum) 

106 return CartesianEllipsoidalBase.toLatLon(self, **kwds) 

107 

108 def toNvector(self, **Nvector_and_kwds): # PYCHOK Datums.WGS84 

109 '''Convert this cartesian to C{Nvector} components, I{including height}. 

110 

111 @kwarg Nvector_and_kwds: Optional C{Nvector}, B{C{datum}} and other 

112 keyword arguments. Use C{B{Nvector}=...} to 

113 override this C{Nvector} class or specify 

114 C{B{Nvector} is None}. 

115 

116 @return: The C{n-vector} components (C{Nvector}) or if B{C{Nvector}} 

117 is set to C{None}, a L{Vector4Tuple}C{(x, y, z, h)} 

118 

119 @raise TypeError: Invalid B{C{Nvector_and_kwds}}. 

120 ''' 

121 kwds = _xkwds(Nvector_and_kwds, Nvector=Nvector, datum=self.datum) 

122 return CartesianEllipsoidalBase.toNvector(self, **kwds) 

123 

124 

125class LatLon(LatLonNvectorBase, LatLonEllipsoidalBase): 

126 '''An n-vector-based, ellipsoidal L{LatLon} point. 

127 ''' 

128 _Nv = None # cached toNvector (C{Nvector}) 

129 

130 def _update(self, updated, *attrs, **setters): # PYCHOK args 

131 '''(INTERNAL) Zap cached attributes if updated. 

132 ''' 

133 if updated: 

134 LatLonNvectorBase._update(self, updated, _Nv=self._Nv) # special case 

135 LatLonEllipsoidalBase._update(self, updated, *attrs, **setters) 

136 

137# def crossTrackDistanceTo(self, start, end, radius=R_M): 

138# '''Return the (signed) distance from this point to the great 

139# circle defined by a start point and an end point or bearing. 

140# 

141# @arg start: Start point of great circle line (L{LatLon}). 

142# @arg end: End point of great circle line (L{LatLon}) or 

143# initial bearing (compass C{degrees360}) at the 

144# start point. 

145# @kwarg radius: Mean earth radius (C{meter}). 

146# 

147# @return: Distance to great circle, negative if to left or 

148# positive if to right of line (C{meter}, same units 

149# as B{C{radius}}). 

150# 

151# @raise TypeError: If B{C{start}} or B{C{end}} point is not L{LatLon}. 

152# ''' 

153# self.others(start=start) 

154# 

155# if _isDegrees(end): # gc from point and bearing 

156# gc = start.greatCircle(end) 

157# else: # gc by two points 

158# gc = start.toNvector().cross(end.toNvector()) 

159# 

160# # (signed) angle between point and gc normal vector 

161# v = self.toNvector() 

162# a = gc.angleTo(v, vSign=v.cross(gc)) 

163# a = _copysign(PI_2, a) - a 

164# return a * float(radius) 

165 

166 def deltaTo(self, other, wrap=False, **Ned_and_kwds): 

167 '''Calculate the local delta from this to an other point. 

168 

169 @note: This is a linear delta, I{unrelated} to a geodesic on the 

170 ellipsoid. 

171 

172 @arg other: The other point (L{LatLon}). 

173 @kwarg wrap: If C{True}, wrap or I{normalize} the B{C{other}} 

174 point (C{bool}). 

175 @kwarg Ned_and_kwds: Optional C{B{Ned}=L{Ned} class and B{name}=NN} 

176 to return delta and other B{C{Ned}} keyword arguments. 

177 

178 @return: Delta from this to the other point (B{C{Ned}}). 

179 

180 @raise TypeError: The B{C{other}} point is not L{LatLon} or 

181 B{C{Ned}} is not L{pygeodesy.Ned} nor 

182 L{pygeodesy.Ned4Tuple} nor DEPRECATED L{Ned}. 

183 

184 @raise ValueError: If ellipsoids are incompatible. 

185 ''' 

186 self.ellipsoids(other) # throws TypeError and ValueError 

187 

188 p = self.others(other) 

189 if wrap: 

190 p = _Wrap.point(p) 

191 # get delta in cartesian frame 

192 dc = p.toCartesian().minus(self.toCartesian()) 

193 # rotate dc to get delta in n-vector reference 

194 # frame using the rotation matrix row vectors 

195 ned_ = map2(dc.dot, self._rotation3) 

196 

197 N, kwds = _xkwds_pop2(Ned_and_kwds, Ned=Ned) 

198 if issubclassof(N, Ned4Tuple): 

199 ned_ += _MODS.ltp.Ltp(self, ecef=self.Ecef(self.datum)), 

200 elif not issubclassof(N, _Ned): 

201 raise _IsnotError(Fmt.sub_class(_Ned, Ned4Tuple), Ned=N) 

202 return N(*ned_, **_xkwds(kwds, name=self.name)) 

203 

204# def destination(self, distance, bearing, radius=R_M, height=None): 

205# '''Return the destination point after traveling from this 

206# point the given distance on the given initial bearing. 

207# 

208# @arg distance: Distance traveled (C{meter}, same units as 

209# given earth B{C{radius}}). 

210# @arg bearing: Initial bearing (compass C{degrees360}). 

211# @kwarg radius: Mean earth radius (C{meter}). 

212# @kwarg height: Optional height at destination point, 

213# overriding default (C{meter}, same units 

214# as B{C{radius}}). 

215# 

216# @return: Destination point (L{LatLon}). 

217# ''' 

218# r = _m2radians(distance, radius) # angular distance in radians 

219# # great circle by starting from this point on given bearing 

220# gc = self.greatCircle(bearing) 

221# 

222# v1 = self.toNvector() 

223# x = v1.times(cos(r)) # component of v2 parallel to v1 

224# y = gc.cross(v1).times(sin(r)) # component of v2 perpendicular to v1 

225# 

226# v2 = x.plus(y).unit() 

227# return v2.toLatLon(height=self.height if height is C{None} else height) 

228 

229 def destinationNed(self, delta): 

230 '''Calculate the destination point using the supplied NED delta 

231 from this point. 

232 

233 @arg delta: Delta from this to the other point in the local 

234 tangent plane (LTP) of this point (L{Ned}). 

235 

236 @return: Destination point (L{LatLon}). 

237 

238 @raise TypeError: If B{C{delta}} is not L{pygeodesy.Ned} or 

239 DEPRECATED L{Ned}. 

240 ''' 

241 _xinstanceof(_Ned, delta=delta) 

242 

243 nv, ev, dv = self._rotation3 

244 # convert NED delta to standard coordinate frame of n-vector 

245 dn = delta.ned[:3] # XXX Ned4Tuple.to3Tuple 

246 # rotate dn to get delta in cartesian (ECEF) coordinate 

247 # reference frame using the rotation matrix column vectors 

248 dc = Cartesian(fdot(dn, nv.x, ev.x, dv.x), 

249 fdot(dn, nv.y, ev.y, dv.y), 

250 fdot(dn, nv.z, ev.z, dv.z)) 

251 

252 # apply (cartesian) delta to this Cartesian to obtain destination as cartesian 

253 v = self.toCartesian().plus(dc) 

254 return v.toLatLon(datum=self.datum, LatLon=self.classof) # Cartesian(v.x, v.y, v.z).toLatLon(...) 

255 

256 def distanceTo(self, other, radius=None, wrap=False): 

257 '''I{Approximate} the distance from this to an other point. 

258 

259 @arg other: The other point (L{LatLon}). 

260 @kwarg radius: Mean earth radius, ellipsoid or datum (C{meter}, 

261 L{Ellipsoid}, L{Ellipsoid2}, L{Datum} or 

262 L{a_f2Tuple}), overriding the mean radius C{R1} 

263 of this point's datum.. 

264 @kwarg wrap: If C{True}, wrap or I{normalize} and unroll the 

265 B{C{other}} and angular distance (C{bool}). 

266 

267 @return: Distance (C{meter}, same units as B{C{radius}}). 

268 

269 @raise TypeError: The B{C{other}} point is not L{LatLon}. 

270 

271 @raise ValueError: Invalid B{C{radius}}. 

272 ''' 

273 p = self.others(other) 

274 if wrap: 

275 p = _Wrap.point(p) 

276 a = self._N_vector.angleTo(p._N_vector, wrap=wrap) 

277 E = self.datum.ellipsoid if radius is None else _earth_ellipsoid(radius) 

278 return fabs(a) * E.R1 # see .utily.radians2m 

279 

280 @property_RO 

281 def Ecef(self): 

282 '''Get the ECEF I{class} (L{EcefVeness}), I{once}. 

283 ''' 

284 return _Ecef() 

285 

286 @deprecated_method 

287 def equals(self, other, eps=None): # PYCHOK no cover 

288 '''DEPRECATED, use method L{isequalTo}. 

289 ''' 

290 return self.isequalTo(other, eps=eps) 

291 

292 def isequalTo(self, other, eps=None): 

293 '''Compare this point with an other point. 

294 

295 @arg other: The other point (L{LatLon}). 

296 @kwarg eps: Optional margin (C{float}). 

297 

298 @return: C{True} if points are identical, including 

299 datum, I{ignoring height}, C{False} otherwise. 

300 

301 @raise TypeError: The B{C{other}} point is not L{LatLon}. 

302 

303 @raise ValueError: Invalid B{C{eps}}. 

304 

305 @see: Method C{isequalTo3} to include I{height}. 

306 ''' 

307 return self.datum == self.others(other).datum and \ 

308 _MODS.formy._isequalTo(self, other, eps=eps) 

309 

310# def greatCircle(self, bearing): 

311# '''Return the great circle heading on the given bearing 

312# from this point. 

313# 

314# Direction of vector is such that initial bearing vector 

315# b = c × p, where p is representing this point. 

316# 

317# @arg bearing: Bearing from this point (compass C{degrees360}). 

318# 

319# @return: N-vector representing great circle (C{Nvector}). 

320# ''' 

321# a, b, _ = self.philamheight 

322# t = radians(bearing) 

323# 

324# sa, ca, sb, cb, st, ct = sincos2_(a, b, t) 

325# return self._xnamed(Nvector(sb * ct - sa * cb * st, 

326# -cb * ct - sa * sb * st, 

327# ca * st) 

328 

329# def initialBearingTo(self, other, wrap=False): 

330# '''Return the initial bearing (forward azimuth) from 

331# this to an other point. 

332# 

333# @arg other: The other point (L{LatLon}). 

334# @kwarg wrap: If C{True}, wrap or I{normalize} 

335# and unroll the B{C{other}} (C{bool}). 

336# 

337# @return: Initial bearing (compass C{degrees360}). 

338# 

339# @raise TypeError: The B{C{other}} point is not L{LatLon}. 

340# ''' 

341# p = self.others(other) 

342# if wrap: 

343# p = _Wrap.point(p) 

344# v1 = self.toNvector() 

345# 

346# gc1 = v1.cross(p.toNvector()) # gc through v1 & v2 

347# gc2 = v1.cross(_NP3) # gc through v1 & North pole 

348# 

349# # bearing is (signed) angle between gc1 & gc2 

350# return degrees360(gc1.angleTo(gc2, vSign=v1)) 

351 

352 def intermediateTo(self, other, fraction, height=None, wrap=False): 

353 '''Return the point at given fraction between this and 

354 an other point. 

355 

356 @arg other: The other point (L{LatLon}). 

357 @arg fraction: Fraction between both points (C{scalar}, 

358 0.0 at this to 1.0 at the other point. 

359 @kwarg height: Optional height, overriding the fractional 

360 height (C{meter}). 

361 @kwarg wrap: If C{True}, wrap or I{normalize} the 

362 B{C{other}} point (C{bool}). 

363 

364 @return: Intermediate point (L{LatLon}). 

365 

366 @raise TypeError: The B{C{other}} point is not L{LatLon}. 

367 ''' 

368 p = self.others(other) 

369 if wrap: 

370 p = _Wrap.point(p) 

371 f = Scalar(fraction=fraction) 

372 h = self._havg(other, f=f, h=height) 

373 i = self.toNvector().intermediateTo(p.toNvector(), f) 

374 return i.toLatLon(height=h, LatLon=self.classof) # Nvector(i.x, i.y, i.z).toLatLon(...) 

375 

376 @Property_RO 

377 def _rotation3(self): 

378 '''(INTERNAL) Get the rotation matrix from n-vector coordinate frame axes. 

379 ''' 

380 nv = self.toNvector() # local (n-vector) coordinate frame 

381 

382 dv = nv.negate() # down, opposite to n-vector 

383 ev = NorthPole.cross(nv, raiser=_pole_).unit() # east, pointing perpendicular to the plane 

384 nv = ev.cross(dv) # north, by right hand rule 

385 return nv, ev, dv # matrix rows 

386 

387 def toCartesian(self, **Cartesian_and_kwds): # PYCHOK Cartesian=Cartesian, datum=None 

388 '''Convert this point to an C{Nvector}-based geodetic point. 

389 

390 @kwarg Cartesian_and_kwds: Optional L{Cartesian}, B{C{datum}} and other 

391 keyword arguments. Use C{B{Cartesian}=...} 

392 to override this L{Cartesian} class or specify 

393 C{B{Cartesian}=None}. 

394 

395 @return: The geodetic point (L{Cartesian}) or if B{C{Cartesian}} is set 

396 to C{None}, an L{Ecef9Tuple}C{(x, y, z, lat, lon, height, C, M, 

397 datum)} with C{C} and C{M} if available. 

398 

399 @raise TypeError: Invalid B{C{Cartesian}} or other B{C{Cartesian_and_kwds}}. 

400 ''' 

401 kwds = _xkwds(Cartesian_and_kwds, Cartesian=Cartesian, datum=self.datum) 

402 return LatLonEllipsoidalBase.toCartesian(self, **kwds) 

403 

404 def toNvector(self, **Nvector_and_kwds): # PYCHOK signature 

405 '''Convert this point to C{Nvector} components, I{including height}. 

406 

407 @kwarg Nvector_and_kwds: Optional C{Nvector}, B{C{datum}} and other 

408 keyword arguments. Use C{B{Nvector}=...} 

409 to override this C{Nvector} class or specify 

410 C{B{Nvector}=None}. 

411 

412 @return: The C{n-vector} components (C{Nvector}) or if B{C{Nvector}} 

413 is set to C{None}, a L{Vector4Tuple}C{(x, y, z, h)}. 

414 

415 @raise TypeError: Invalid B{C{Nvector}} or other B{C{Nvector_and_kwds}}. 

416 ''' 

417 kwds = _xkwds(Nvector_and_kwds, Nvector=Nvector, datum=self.datum) 

418 return LatLonNvectorBase.toNvector(self, **kwds) 

419 

420 

421_Nvll = LatLon(0, 0, name=_Nv00_) # reference instance (L{LatLon}) 

422 

423 

424class Nvector(NvectorBase): 

425 '''An n-vector is a position representation using a (unit) vector 

426 normal to the earth ellipsoid. Unlike lat-/longitude points, 

427 n-vectors have no singularities or discontinuities. 

428 

429 For many applications, n-vectors are more convenient to work 

430 with than other position representations like lat-/longitude, 

431 earth-centred earth-fixed (ECEF) vectors, UTM coordinates, etc. 

432 

433 Note commonality with L{pygeodesy.sphericalNvector.Nvector}. 

434 ''' 

435 _datum = _WGS84 # default datum (L{Datum}) 

436 

437 def __init__(self, x_xyz, y=None, z=None, h=0, datum=None, ll=None, name=NN): 

438 '''New n-vector normal to the earth's surface. 

439 

440 @arg x_xyz: X component of vector (C{scalar}) or (3-D) vector 

441 (C{Nvector}, L{Vector3d}, L{Vector3Tuple} or 

442 L{Vector4Tuple}). 

443 @kwarg y: Y component of vector (C{scalar}), ignored if B{C{x_xyz}} 

444 is not C{scalar}, otherwise same units as B{C{x_xyz}}. 

445 @kwarg z: Z component of vector (C{scalar}), ignored if B{C{x_xyz}} 

446 is not C{scalar}, otherwise same units as B{C{x_xyz}}. 

447 @kwarg h: Optional height above model surface (C{meter}). 

448 @kwarg datum: Optional datum this n-vector is defined in 

449 (L{Datum}, L{Ellipsoid}, L{Ellipsoid2} or 

450 L{a_f2Tuple}). 

451 @kwarg ll: Optional, original latlon (C{LatLon}). 

452 @kwarg name: Optional name (C{str}). 

453 

454 @raise TypeError: If B{C{datum}} is not a L{Datum}. 

455 ''' 

456 NvectorBase.__init__(self, x_xyz, y=y, z=z, h=h, ll=ll, name=name) 

457 if datum not in (None, self._datum): 

458 self._datum = _ellipsoidal_datum(datum, name=name) 

459 

460 @Property_RO 

461 def datum(self): 

462 '''Get this n-vector's datum (L{Datum}). 

463 ''' 

464 return self._datum 

465 

466 @property_RO 

467 def ellipsoidalNvector(self): 

468 '''Get this C{Nvector}'s ellipsoidal class. 

469 ''' 

470 return type(self) 

471 

472 def toCartesian(self, **Cartesian_and_kwds): # PYCHOK Cartesian=Cartesian 

473 '''Convert this n-vector to C{Nvector}-based cartesian (ECEF) coordinates. 

474 

475 @kwarg Cartesian_and_kwds: Optional L{Cartesian}, B{C{h}}, B{C{datum}} and 

476 other keyword arguments. Use C{B{Cartesian}=...} 

477 to override this L{Cartesian} class or specify 

478 C{B{Cartesian} is None}. 

479 

480 @return: The cartesian point (L{Cartesian}) or if B{C{Cartesian}} is set 

481 to C{None}, an L{Ecef9Tuple}C{(x, y, z, lat, lon, height, C, M, 

482 datum)} with C{C} and C{M} if available. 

483 

484 @raise TypeError: Invalid B{C{Cartesian_and_kwds}}. 

485 ''' 

486 kwds = _xkwds(Cartesian_and_kwds, h=self.h, Cartesian=Cartesian, 

487 datum=self.datum) 

488 return NvectorBase.toCartesian(self, **kwds) # class or .classof 

489 

490 def toLatLon(self, **LatLon_and_kwds): # PYCHOK height=None, LatLon=LatLon 

491 '''Convert this n-vector to an C{Nvector}-based geodetic point. 

492 

493 @kwarg LatLon_and_kwds: Optional L{LatLon}, B{C{height}}, B{C{datum}} 

494 and other keyword arguments. Use C{B{LatLon}=...} 

495 to override this L{LatLon} class or specify 

496 C{B{LatLon} is None}. 

497 

498 @return: The geodetic point (L{LatLon}) or if B{C{LatLon}} is set 

499 to C{None}, an L{Ecef9Tuple}C{(x, y, z, lat, lon, height, 

500 C, M, datum)} with C{C} and C{M} if available. 

501 

502 @raise TypeError: Invalid B{C{LatLon_and_kwds}}. 

503 ''' 

504 kwds = _xkwds(LatLon_and_kwds, height=self.h, datum=self.datum, LatLon=LatLon) 

505 return NvectorBase.toLatLon(self, **kwds) # class or .classof 

506 

507 def unit(self, ll=None): 

508 '''Normalize this vector to unit length. 

509 

510 @kwarg ll: Optional, original latlon (C{LatLon}). 

511 

512 @return: Normalised vector (C{Nvector}). 

513 ''' 

514 u = NvectorBase.unit(self, ll=ll) 

515 if u.datum != self.datum: 

516 u._update(False, datum=self.datum) 

517 return u 

518 

519 

520def _Ecef(): 

521 # return the Ecef class and overwrite property_RO 

522 Cartesian.Ecef = LatLon.Ecef = E = _MODS.ecef.EcefVeness 

523 return E 

524 

525 

526def meanOf(points, datum=_WGS84, height=None, wrap=False, 

527 **LatLon_and_kwds): 

528 '''Compute the geographic mean of several points. 

529 

530 @arg points: Points to be averaged (L{LatLon}[]). 

531 @kwarg datum: Optional datum to use (L{Datum}). 

532 @kwarg height: Optional height at mean point, overriding 

533 the mean height (C{meter}). 

534 @kwarg wrap: If C{True}, wrap or I{normalize} B{C{points}} 

535 (C{bool}). 

536 @kwarg LatLon_and_kwds: Optional B{C{LatLon}} class to return 

537 the mean points and overriding this L{LatLon} 

538 (or C{None}) and additional B{C{LatLon}} 

539 keyword arguments, ignored if C{B{LatLon} 

540 is None}. 

541 

542 @return: Geographic mean point and mean height (B{C{LatLon}}) 

543 or if B{C{LatLon}} is C{None}, an L{Ecef9Tuple}C{(x, 

544 y, z, lat, lon, height, C, M, datum)} with C{C} and 

545 C{M} if available. 

546 

547 @raise ValueError: Insufficient number of B{C{points}}. 

548 ''' 

549 Ps = _Nvll.PointsIter(points, wrap=wrap) 

550 # geographic mean 

551 m = sumOf(p._N_vector for p in Ps.iterate(closed=False)) 

552 kwds = _xkwds(LatLon_and_kwds, height=height, datum=datum, 

553 LatLon=LatLon, name=meanOf.__name__) 

554 return m.toLatLon(**kwds) 

555 

556 

557def nearestOn(point, point1, point2, within=True, height=None, wrap=False, 

558 equidistant=None, tol=_TOL_M, LatLon=LatLon, **LatLon_kwds): 

559 '''I{Iteratively} locate the closest point on the geodesic between 

560 two other (ellipsoidal) points. 

561 

562 @arg point: Reference point (C{LatLon}). 

563 @arg point1: Start point of the geodesic (C{LatLon}). 

564 @arg point2: End point of the geodesic (C{LatLon}). 

565 @kwarg within: If C{True} return the closest point I{between} 

566 B{C{point1}} and B{C{point2}}, otherwise the 

567 closest point elsewhere on the geodesic (C{bool}). 

568 @kwarg height: Optional height for the closest point (C{meter}, 

569 conventionally) or C{None} or C{False} for the 

570 interpolated height. If C{False}, the closest 

571 takes the heights of the points into account. 

572 @kwarg wrap: If C{True}, wrap or I{normalize} and unroll I{only} 

573 B{C{point1}} and B{C{point2}} (C{bool}). 

574 @kwarg equidistant: An azimuthal equidistant projection (I{class} 

575 or function L{pygeodesy.equidistant}) or C{None} 

576 for the preferred C{B{point}.Equidistant}. 

577 @kwarg tol: Convergence tolerance (C{meter}). 

578 @kwarg LatLon: Optional class to return the closest point 

579 (L{LatLon}) or C{None}. 

580 @kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword 

581 arguments, ignored if C{B{LatLon} is None}. 

582 

583 @return: Closest point, a B{C{LatLon}} instance or if C{B{LatLon} 

584 is None}, a L{LatLon4Tuple}C{(lat, lon, height, datum)}. 

585 

586 @raise ImportError: Package U{geographiclib 

587 <https://PyPI.org/project/geographiclib>} 

588 not installed or not found. 

589 

590 @raise TypeError: Invalid or non-ellipsoidal B{C{point}}, B{C{point1}} 

591 or B{C{point2}} or invalid B{C{equidistant}}. 

592 

593 @raise ValueError: No convergence for the B{C{tol}}. 

594 

595 @see: U{The B{ellipsoidal} case<https://GIS.StackExchange.com/questions/48937/ 

596 calculating-intersection-of-two-circles>} and U{Karney's paper 

597 <https://ArXiv.org/pdf/1102.1215.pdf>}, pp 20-21, section B{14. MARITIME 

598 BOUNDARIES} for more details about the iteration algorithm. 

599 ''' 

600 return _nearestOn(point, point1, point2, within=within, height=height, wrap=wrap, 

601 equidistant=equidistant, tol=tol, LatLon=LatLon, **LatLon_kwds) 

602 

603 

604def sumOf(nvectors, Vector=Nvector, h=None, **Vector_kwds): 

605 '''Return the vectorial sum of two or more n-vectors. 

606 

607 @arg nvectors: Vectors to be added (C{Nvector}[]). 

608 @kwarg Vector: Optional class for the vectorial sum (C{Nvector}). 

609 @kwarg h: Optional height, overriding the mean height (C{meter}). 

610 @kwarg Vector_kwds: Optional, additional B{C{Vector}} keyword 

611 arguments, ignored if C{B{Vector} is None}. 

612 

613 @return: Vectorial sum (B{C{Vector}}). 

614 

615 @raise VectorError: No B{C{nvectors}}. 

616 ''' 

617 return _sumOf(nvectors, Vector=Vector, h=h, **Vector_kwds) 

618 

619 

620@deprecated_function 

621def toNed(distance, bearing, elevation, Ned=Ned, name=NN): 

622 '''DEPRECATED, use L{pygeodesy.Aer}C{(bearing, elevation, 

623 distance).xyzLocal.toNed(B{Ned}, name=B{name})} or 

624 L{XyzLocal}C{(pygeodesy.Aer(bearing, elevation, 

625 distance)).toNed(B{Ned}, name=B{name})}. 

626 

627 Create an NED vector from distance, bearing and elevation 

628 (in local coordinate system). 

629 

630 @arg distance: NED vector length (C{meter}). 

631 @arg bearing: NED vector bearing (compass C{degrees360}). 

632 @arg elevation: NED vector elevation from local coordinate 

633 frame horizontal (C{degrees}). 

634 @kwarg Ned: Optional class to return the NED (C{Ned}) or 

635 C{None}. 

636 @kwarg name: Optional name (C{str}). 

637 

638 @return: An NED vector equivalent to this B{C{distance}}, 

639 B{C{bearing}} and B{C{elevation}} (DEPRECATED L{Ned}) 

640 or a DEPRECATED L{Ned3Tuple}C{(north, east, down)} 

641 if C{B{Ned} is None}. 

642 

643 @raise ValueError: Invalid B{C{distance}}, B{C{bearing}} 

644 or B{C{elevation}}. 

645 ''' 

646 if True: # use new Aer class 

647 n, e, d, _ = _Aer(bearing, elevation, distance).xyz4 

648 else: # DEPRECATED 

649 d = Distance(distance) 

650 

651 sb, cb, se, ce = sincos2d_(Bearing(bearing), 

652 Height(elevation=elevation)) 

653 n = cb * d * ce 

654 e = sb * d * ce 

655 d *= se 

656 

657 r = _MODS.deprecated.classes.Ned3Tuple(n, e, -d) if Ned is None else \ 

658 Ned(n, e, -d) 

659 return _xnamed(r, name) 

660 

661 

662__all__ += _ALL_OTHER(Cartesian, LatLon, Ned, Nvector, # classes 

663 meanOf, sumOf, toNed) 

664 

665# **) MIT License 

666# 

667# Copyright (C) 2016-2024 -- mrJean1 at Gmail -- All Rights Reserved. 

668# 

669# Permission is hereby granted, free of charge, to any person obtaining a 

670# copy of this software and associated documentation files (the "Software"), 

671# to deal in the Software without restriction, including without limitation 

672# the rights to use, copy, modify, merge, publish, distribute, sublicense, 

673# and/or sell copies of the Software, and to permit persons to whom the 

674# Software is furnished to do so, subject to the following conditions: 

675# 

676# The above copyright notice and this permission notice shall be included 

677# in all copies or substantial portions of the Software. 

678# 

679# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 

680# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

681# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 

682# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

683# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

684# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

685# OTHER DEALINGS IN THE SOFTWARE.