
NMRPy Documentation
Release 0.2.4

Johann Eicher, Johann Rohwer

Jun 23, 2020

CONTENTS

1 Introduction 3
1.1 References . 3

2 Installation 5
2.1 Abbreviated requirements . 5
2.2 Installation on Anaconda . 5
2.3 Direct pip-based install . 6
2.4 Testing the installation . 7
2.5 Working with NMRPy . 7
2.6 Documentation . 8

3 Quickstart Tutorial 9
3.1 Importing . 9
3.2 Apodisation and Fourier-transformation . 10
3.3 Phase-correction . 11
3.4 Calibration . 15
3.5 Peak-picking . 15
3.6 Deconvolution . 18
3.7 Saving / Loading . 21
3.8 Full tutorial script . 21

4 Basic Data Objects 25

5 Plotting Objects 33

6 Indices and tables 35

Python Module Index 37

Index 39

i

ii

NMRPy Documentation, Release 0.2.4

Contents:

CONTENTS 1

NMRPy Documentation, Release 0.2.4

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

NMRPy is a Python 3 module for the processing and analysis of NMR spectra. The functionality of NMRPy is
structured to make the analysis of arrayed NMR spectra more intuitive.

A particular use case is the bulk processing and integration/deconvolution of arrayed NMR spectra obtained for enzyme
reaction time-courses, with a view to determining enzyme-kinetic parameters for building systems-biology models
[1,2].

1.1 References

1. Eicher, J. J.; Snoep, J. L. & Rohwer, J. M. (2012) Determining enzyme kinetics for systems biology with Nuclear
Magnetic Resonance spectroscopy. Metabolites 2:818-843. DOI: 10.3390/metabo2040818

2. Badenhorst, M.; Barry, C. J.; Swanepoel, C. J.; van Staden, C. T.; Wissing, J. & Rohwer, J. M. (2019) Workflow
for data analysis in experimental and computational systems biology: Using Python as ‘glue’. Processes 7:460.
DOI: 10.3390/pr7070460

3

https://doi.org/10.3390/metabo2040818
https://doi.org/10.3390/pr7070460

NMRPy Documentation, Release 0.2.4

4 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

The following are some general guidelines for installing NMRPy, and are by no means the only way to install a Python
package.

NMRPy is a pure Python package that runs on Windows, macOS and Linux. In addition to the option of installing
directly from source (https://github.com/NMRPy/nmrpy), we provide binary installers for pip and conda.

2.1 Abbreviated requirements

NMRPy has a number of requirements that must be met before installation can take place. These should be taken care
of automatically during installation. An abbreviated list of requirements follows:

• A Python 3.x installation (Python 3.6 or higher is recommended)

• The full SciPy Stack (see http://scipy.org/install.html).

• Jupyter Notebook (https://jupyter.org/)

• Matplotlib (https://matplotlib.org) with the ipympl backend

• Lmfit (https://lmfit.github.io/lmfit-py)

• Nmrglue (https://www.nmrglue.com)

Note: NMRPy will not work using Python 2.

2.2 Installation on Anaconda

The Anaconda Distribution, which is available for Windows, macOS and Linux, comes pre-installed with many pack-
ages required for scientific computing, including most of the dependencies required for NMRPy.

A number of the dependencies (lmfit, nmrglue and ipympl) are not available from the default conda channel. If you
perform a lot of scientific or bioinformatics computing, it may be worth your while to add the following additional
conda channels to your system, which will simplify installation (this is, however, not required, and the additional
channels can also be specified once-off during the install command):

(base) $ conda config --add channels bioconda
(base) $ conda config --add channels conda-forge

5

https://github.com/NMRPy/nmrpy
http://scipy.org/install.html
https://jupyter.org/
https://matplotlib.org
https://lmfit.github.io/lmfit-py
https://www.nmrglue.com
https://www.anaconda.com/products/individual#Downloads

NMRPy Documentation, Release 0.2.4

2.2.1 Virtual environments

Virtual environments are a great way to keep package dependencies separate from your system files. It is highly rec-
ommended to install NMRPy into a separate environment, which first must be created (here we create an environment
called nmr). It is recommended to use a Python version >=3.6 (here we use Python 3.7). After creation, activate the
environment:

(base) $ conda create -n nmr python=3.7
(base) $ conda activate nmr

Then install NMRPy:

(nmr) $ conda install -c jmrohwer nmrpy

Or, if you have not added the additional channels system-wide:

(nmr) $ conda install -c bioconda -c conda-forge -c jmrohwer nmrpy

2.3 Direct pip-based install

First be sure to have Python 3 and pip installed. Pip is a useful Python package management system.

On Debian and Ubuntu-like systems these can be installed with the following terminal commands:

$ sudo apt install python3
$ sudo apt install python3-pip

On Windows, download Python from https://www.python.org/downloads/windows; be sure to install pip as well
when prompted by the installer, and add the Python directories to the system PATH. You can verify that the Python
paths are set up correctly by checking the pip version in a Windows Command Prompt:

> pip -V

On macOS you can install Python directly from https://www.python.org/downloads/mac-osx, or by installing Home-
brew and then installing Python 3 with Homebrew. Both come with pip available.

Note: While most Linux distributions come pre-installed with a version of Python 3, the options for Windows and
macOS detailed above are more advanced and for experienced users, who prefer fine-grained control. If you are
starting out, we strongly recommend using Anaconda!

2.3.1 Virtual environments

As for an Anaconda-based install, it is highly recommended to install NMRPy into a separate virtual environment.
There are several options for setting up your working environment. We will use virtualenvwrapper, which works out
of the box on Linux and macOS. On Windows, virtualenvwrapper can be used under an MSYS environment in a native
Windows Python installation. Alternatively, you can use virtualenvwrapper-win. This will take care of managing your
virtual environments by maintaining a separate Python site-directory for you.

Install virtualenvwrapper using pip. On Linux and MacOS:

$ sudo -H pip install virtualenv
$ sudo -H pip install virtualenvwrapper

6 Chapter 2. Installation

https://en.wikipedia.org/wiki/Pip_(package_manager)
https://www.python.org/downloads/windows
https://www.python.org/downloads/mac-osx
https://docs.brew.sh/Installation
https://docs.brew.sh/Installation
https://virtualenvwrapper.readthedocs.io/en/latest/index.html
http://www.mingw.org/wiki/MSYS
https://pypi.org/project/virtualenvwrapper-win/

NMRPy Documentation, Release 0.2.4

On Windows in a Python command prompt:

> pip install virtualenv
> pip install virtualenvwrapper-win

Make a new virtual environment for working with NMRPy (e.g. nmr), and specify that it use Python 3 (we used
Python 3.7):

$ mkvirtualenv -p python3.7 nmr

The new virtual environment will be activated automatically, and this will be indicated in the shell prompt, e.g.:

(nmr) $

If you are not yet familiar with virtual environments we recommend you survey the basic commands (https:
//virtualenvwrapper.readthedocs.io/en/latest/) before continuing.

The NMRPy code and its dependencies can now be installed directly from PyPI into your virtual environment using
pip.

(nmr) $ pip install nmrpy

2.4 Testing the installation

Various tests are provided to test aspects of the NMRPy functionality within the unittest framework. The tests
should be run from a terminal and can be invoked with nmrpy.test() after importing the nmrpy module.

Only a specific subset of tests can be run by providing an additional argument:

nmrpy.test(tests='all')

:keyword tests: Specify tests to run (default 'all'). Running only a subset
of tests can be selected using the following arguments:

'fidinit' - Fid initialisation tests
'fidarrayinit' - FidArray initialisation tests
'fidutils' - Fid utilities tests
'fidarrayutils' - FidArray utilities tests
'plotutils' - plotting utilities tests

When testing the plotting utilities, a number of matplotlib plots will appear. This tests that the peak and range
selection widgets are working properly; the plot windows can be safely closed.

2.5 Working with NMRPy

Though the majority of NMRPy functionality can be used purely in a scripting context and executed by the Python
interpreter, it will often need to be used interactively. We suggest two ways to do this:

2.5.1 Jupyter Notebook

The recommended way to run NMRPy is in the Jupyter Notebook environment. It has been installed by default with
NMRPy and can be launched with (be sure to activate your virtual environment first):

2.4. Testing the installation 7

https://virtualenvwrapper.readthedocs.io/en/latest/
https://virtualenvwrapper.readthedocs.io/en/latest/

NMRPy Documentation, Release 0.2.4

(nmr) $ jupyter-notebook

The peak-picking and range-selection widgets in the Jupyter Notebook require the Matplotlib Jupyter Integration
extension (ipympl). This is installed automatically but the extension needs to be activated at the beginning of every
notebook thus:

In [1]: %matplotlib widget

2.5.2 IPython

If you rather prefer a shell-like experience, IPython is an interactive Python shell with some useful functionalities like
tab-completion. This has been installed by default with NMRPy and can be launched from the command line with:

(nmr) $ ipython

2.6 Documentation

Online documentation is available at https://nmrpy.readthedocs.io. The documentation is also distributed in PDF
format in the docs subfolder of the nmrpy folder in site-packages where the package is installed.

The docs folder also contains an example Jupyter notebook (quickstart_tutorial.ipynb) that mirrors the
Quickstart Tutorial.

8 Chapter 2. Installation

https://github.com/matplotlib/ipympl
https://nmrpy.readthedocs.io

CHAPTER

THREE

QUICKSTART TUTORIAL

This is a “quickstart” tutorial for NMRPy in which an Agilent (Varian) NMR dataset will be processed. The following
topics are explored:

• Importing

• Apodisation and Fourier-transformation

• Phase-correction

• Calibration

• Peak-picking

• Deconvolution

• Saving / Loading

• Full tutorial script

This tutorial will use the test data in the nmrpy install directory:

site-packages/nmrpy/tests/test_data/test1.fid

The dataset consists of a time array of spectra of the phosphoglucose isomerase reaction:

fructose-6-phosphate -> glucose-6-phosphate

An example Jupyter notebook is provided in the docs subdirectory of the nmrpy install directory, which mirrors this
Quickstart Tutorial.

site-packages/nmrpy/docs/quickstart_tutorial.ipynb

3.1 Importing

The basic NMR project object used in NMRPy is the FidArray , which consists of a set of Fid objects, each
representing a single spectrum in an array of spectra.

The simplest way to instantiate an FidArray is by using the from_path() method, and specifying the path of the
.fid directory:

>>> import nmrpy
>>> import os, sysconfig
>>> fname = os.path.join(sysconfig.get_paths()['purelib'], 'nmrpy',

'tests', 'test_data', 'test1.fid')
>>> fid_array = nmrpy.from_path(fname)

9

NMRPy Documentation, Release 0.2.4

You will notice that the fid_array object is instantiated and now owns several attributes, most of which are of the
form fidXX where XX is a number starting at 00. These are the individual arrayed Fid objects.

3.2 Apodisation and Fourier-transformation

To quickly visualise the imported data, we can use the plotting functions owned by each Fid instance. This will not
display the imaginary portion of the data:

>>> fid_array.fid00.plot_ppm()

We now perform apodisation of the FIDs using the default value of 5 Hz, and visualise the result:

>>> fid_array.emhz_fids()
>>> fid_array.fid00.plot_ppm()

10 Chapter 3. Quickstart Tutorial

NMRPy Documentation, Release 0.2.4

Finally, we Fourier-transform the data into the frequency domain:

>>> fid_array.ft_fids()
>>> fid_array.fid00.plot_ppm()

3.3 Phase-correction

It is clear from the data visualisation that at this stage the spectra require phase-correction. NMRPy provides a number
of GUI widgets for manual processing of data. In this case we will use the phaser() method on fid00:

3.3. Phase-correction 11

NMRPy Documentation, Release 0.2.4

>>> fid_array.fid00.phaser()

Dragging with the left mouse button and right mouse button will apply zero- and first-order phase-correction, re-
spectively. The cumulative phase correction for the zero-order (p0) and first-order (p1) phase angles is displayed at
the bottom of the plot so that these can be applied programatically to all Fid objects in the FidArray using the
ps_fids() method.

12 Chapter 3. Quickstart Tutorial

NMRPy Documentation, Release 0.2.4

Alternatively, automatic phase-correction can be applied at either the FidArray or Fid level. We will apply it to
the whole array:

>>> fid_array.phase_correct_fids()

And plot an array of the phase-corrected data:

>>> fid_array.plot_array()

3.3. Phase-correction 13

NMRPy Documentation, Release 0.2.4

Zooming in on the relevant peaks, changing the view perspective, and filling the spectra produces a more interesting
plot:

>>> fid_array.plot_array(upper_ppm=7, lower_ppm=-1, filled=True, azim=-76, elev=23)

At this stage it is useful to discard the imaginary component of our data, and possibly normalise the data (by the
maximum data value amongst the Fid objects):

>>> fid_array.real_fids()
>>> fid_array.norm_fids()

14 Chapter 3. Quickstart Tutorial

NMRPy Documentation, Release 0.2.4

3.4 Calibration

The spectra may need calibration by assigning a chemical shift to a reference peak of a known standard and adjusting
the spectral offset accordingly. To this end, a calibrate() convenience method exists that allows the user to easily
select a peak and specify the PPM. This method can be applied at either the FidArray or Fid level. We will apply
it to the whole array:

>>> fid_array.calibrate()

Left-clicking selects a peak and its current ppm value is displayed below the spectrum. The new ppm value can be
entered in a text box, and hitting Enter completes the calibration process. Here we have chosen triethyl phosphate
(TEP) as reference peak and assigned its chemical shift value of 0.44 ppm (the original value was 0.57 ppm, and the
offset of all the spectra in the array has been adjusted by 0.13 ppm after the calibration).

3.5 Peak-picking

To begin the process of integrating peaks by deconvolution, we will need to pick some peaks. The peaks attribute
of a Fid is an array of peak positions, and ranges is an array of range boundaries. These two objects are used in
deconvolution to integrate the data by fitting Lorentzian/Gaussian peak shapes to the spectra. peaks and ranges
may be specified programatically, or picked using the interactive GUI widget:

3.4. Calibration 15

NMRPy Documentation, Release 0.2.4

>>> fid_array.peakpicker(fid_number=10)

Left-clicking specifies a peak selection with a vertical red line. Dragging with a right-click specifies a range to fit
independently with a grey rectangle:

Inadvertent wrongly selected peaks can be deleted with Ctrl+left-click; wrongly selected ranges can be deleted with
Ctrl+right-click. Once you are done selecting peaks and ranges, these need to be assigned to the FidArray; this is
achieved with a Ctrl+Alt+right-click.

Ranges divide the data into smaller portions, which significantly speeds up the process of fitting of peakshapes to the
data. Range-specification also prevents incorrect peaks from being fitted by the fitting algorithm.

Having used the peakpicker() FidArray method (as opposed to the peakpicker() on each individual Fid
instance), the peak and range selections have now been assigned to each Fid in the array:

16 Chapter 3. Quickstart Tutorial

NMRPy Documentation, Release 0.2.4

>>> print(fid_array.fid00.peaks)
[4.73 4.63 4.15 0.55]
>>> print(fid_array.fid00.ranges)
[[5.92 3.24]
[1.19 -0.01]]

3.5.1 Peak-picking trace selector

Sometimes peaks are subject to drift so that the chemical shift changes over time; this can happen, e.g., when the pH
of the reaction mixture changes as the reaction proceeds. NMRPy offers a convenient trace selector, with which the
drift of the peaks can be traced over time and the chemical shift selected accordingly as appropriate for the particular
Fid.

>>> fid_array.peakpicker_traces(voff=0.08)

As for the peakpicker(), ranges are selected by dragging the right mouse button and can be deleted with
Ctrl+right-click. A peak trace is initiated by left-clicking below the peak underneath the first Fid in the series. This
selects a point and anchors the trace line, which is displayed in red as the mouse is moved. The trace will attempt to
follow the highest peak. Further trace points can be added by repeated left-clicking, thus tracing the peak through the
individual Fids in the series. It is not necessary to add an anchor point for every Fid, only when the trace needs to
change direction. Once the trace has traversed all the Fids, select a final trace point (left-click) and then finalize the
trace with a right-click. The trace will change colour from red to blue to indicate that it has been finalized.

Additional peaks can then be selected by initiating a new trace. Wrongly selected traces can be deleted by Ctrl+left-
click at the bottom of the trace that should be removed. Note that the interactive buttons on the matplotlib toolbar for
the figure can be used to zoom and pan into a region of interest of the spectra.

3.5. Peak-picking 17

NMRPy Documentation, Release 0.2.4

As previously, peaks and ranges need to be assigned to the FidArray with Ctrl+Alt+right-click. As can be seen
below, the individual peaks have different chemical shifts for the different Fids, although the drift in these spectra is
not significant so that peakpicker_traces() need not have been used and peakpicker() would have been
sufficient. This is merely for illustrative purposes.

>>> print(p.fid00.peaks)
[4.73311164 4.65010807 0.55783899 4.15787759]
>>> print(p.fid10.peaks)
[4.71187817 4.6404565 0.5713512 4.16366854]
>>> print(p.fid20.peaks)
[4.73311164 4.63466555 0.57907246 4.16366854]

3.6 Deconvolution

Individual Fid objects can be deconvoluted with deconv(). FidArray objects can be deconvoluted with
deconv_fids(). By default this is a multiprocessed method (mp=True), which will fit pure Lorentzian lineshapes
(frac_gauss=0.0) to the peaks and ranges specified in each Fid.

We shall fit the whole array at once:

>>> fid_array.deconv_fids()

And visualise the deconvoluted spectra:

>>> fid_array.fid10.plot_deconv()

18 Chapter 3. Quickstart Tutorial

NMRPy Documentation, Release 0.2.4

Zooming-in to a set of peaks makes clear the fitting result:

>>> fid_array.fid10.plot_deconv(upper_ppm=5.5, lower_ppm=3.5)
>>> fid_array.fid10.plot_deconv(upper_ppm=0.9, lower_ppm=0.2)

In this case, peaks 0 and 1 belong to glucose-6-phosphate, peak 2 belongs to fructose-6-phosphate, and peak 3 belongs
to triethyl-phosphate.

We can view the deconvolution result for the whole array using plot_deconv_array(). Fitted peaks appear in
red:

>>> fid_array.plot_deconv_array(upper_ppm=6, lower_ppm=3)

Peak integrals of the entire FidArray are stored in deconvoluted_integrals, or in each individual Fid as

3.6. Deconvolution 19

NMRPy Documentation, Release 0.2.4

Fig. 1: The lines are colour-coded according to:
• Blue: individual peak shapes (and peak numbers above);

• Black: original data;

• Red: summed peak shapes;

• Green: residual (original data - summed peakshapes).

20 Chapter 3. Quickstart Tutorial

NMRPy Documentation, Release 0.2.4

deconvoluted_integrals.

We could easily plot the species integrals using the following code:

from matplotlib import pyplot as plt

integrals = fid_array.deconvoluted_integrals.transpose()

g6p = integrals[0] + integrals[1]
f6p = integrals[2]
tep = integrals[3]

#scale species by internal standard tep (5 mM)
g6p = 5.0*g6p/tep.mean()
f6p = 5.0*f6p/tep.mean()
tep = 5.0*tep/tep.mean()

species = {'g6p': g6p,
'f6p': f6p,
'tep': tep}

fig = plt.figure()
ax = fig.add_subplot(111)
for k, v in species.items():

ax.plot(fid_array.t, v, label=k)

ax.set_xlabel('min')
ax.set_ylabel('mM')
ax.legend(loc=0, frameon=False)

plt.show()

3.7 Saving / Loading

The current state of any FidArray object can be saved to file using the save_to_file() method:

>>> fid_array.save_to_file(filename='fidarray.nmrpy')

And reloaded using from_path():

>>> fid_array = nmrpy.from_path(fid_path='fidarray.nmrpy')

3.8 Full tutorial script

The full script for the quickstart tutorial:

import nmrpy
import os, sysconfig
from matplotlib import pyplot as plt

fname = os.path.join(sysconfig.get_paths()['purelib'], 'nmrpy',
'tests', 'test_data', 'test1.fid')

fid_array = nmrpy.from_path(fid_path=fname)

(continues on next page)

3.7. Saving / Loading 21

NMRPy Documentation, Release 0.2.4

22 Chapter 3. Quickstart Tutorial

NMRPy Documentation, Release 0.2.4

(continued from previous page)

fid_array.emhz_fids()
#fid_array.fid00.plot_ppm()
fid_array.ft_fids()
#fid_array.fid00.plot_ppm()
#fid_array.fid00.phaser()
fid_array.phase_correct_fids()
#fid_array.fid00.plot_ppm()
fid_array.real_fids()
fid_array.norm_fids()
#fid_array.plot_array()
#fid_array.plot_array(upper_ppm=7, lower_ppm=-1, filled=True, azim=-76, elev=23)
#fid_array.calibrate()

peaks = [4.73, 4.63, 4.15, 0.55]
ranges = [[5.92, 3.24], [1.19, -0.01]]
for fid in fid_array.get_fids():

fid.peaks = peaks
fid.ranges = ranges

fid_array.deconv_fids()

#fid_array.fid10.plot_deconv(upper_ppm=5.5, lower_ppm=3.5)
#fid_array.fid10.plot_deconv(upper_ppm=0.9, lower_ppm=0.2)
#fid_array.plot_deconv_array(upper_ppm=6, lower_ppm=3)

integrals = fid_array.deconvoluted_integrals.transpose()

g6p = integrals[0] + integrals[1]
f6p = integrals[2]
tep = integrals[3]

#scale species by internal standard tep at 5 mM
g6p = 5.0*g6p/tep.mean()
f6p = 5.0*f6p/tep.mean()
tep = 5.0*tep/tep.mean()

species = {'g6p': g6p,
'f6p': f6p,
'tep': tep}

fig = plt.figure()
ax = fig.add_subplot(111)
for k, v in species.items():

ax.plot(fid_array.t, v, label=k)
ax.set_xlabel('min')
ax.set_ylabel('mM')
ax.legend(loc=0, frameon=False)
plt.show()

#fid_array.save_to_file(filename='fidarray.nmrpy')
#fid_array = nmrpy.from_path(fid_path='fidarray.nmrpy')

3.8. Full tutorial script 23

NMRPy Documentation, Release 0.2.4

24 Chapter 3. Quickstart Tutorial

CHAPTER

FOUR

BASIC DATA OBJECTS

class nmrpy.data_objects.Fid(*args, **kwargs)
The basic FID (Free Induction Decay) class contains all the data for a single spectrum (data), and the necessary
methods to process these data.

baseline_correct(deg=2)
Perform baseline correction by fitting specified baseline points (stored in _bl_ppm) with polynomial of
specified degree (stored in _bl_ppm) and subtract this polynomial from data.

Parameters deg – degree of fitted polynomial

baseliner()
Instantiate a baseline-correction GUI widget. Right-click-dragging defines a range. Ctrl-Right click
deletes previously selected range. Indices selected are stored in _bl_ppm, which is used for baseline-
correction (see baseline_correction()).

calibrate()
Instantiate a GUI widget to select a peak and calibrate spectrum. Left-clicking selects a peak. The user is
then prompted to enter the PPM value of that peak for calibration.

data
The spectral data. This is the primary object upon which the processing and analysis functions work.

deconv(method=’leastsq’, frac_gauss=0.0)
Deconvolute data object by fitting a series of peaks to the spectrum. These peaks are generated using
the parameters in peaks. ranges splits data up into smaller portions. This significantly speeds up
deconvolution time.

Parameters

• frac_gauss – (0-1) determines the Gaussian fraction of the peaks. Setting this argu-
ment to None will fit this parameter as well.

• method – The fitting method to use. Default is ‘leastsq’, the Levenberg-Marquardt algo-
rithm, which is usually sufficient. Additional options include:

Nelder-Mead (nelder)

L-BFGS-B (l-bfgs-b)

Conjugate Gradient (cg)

Powell (powell)

Newton-CG (newton)

deconvoluted_integrals
An array of integrals for each deconvoluted peak.

25

NMRPy Documentation, Release 0.2.4

emhz(lb=5.0)
Apply exponential line-broadening to data array data.

Parameters lb – degree of line-broadening in Hz.

classmethod from_data(data)
Instantiate a new Fid object by providing a spectral data object as argument. Eg.

fid = Fid.from_data(data)

ft()
Fourier Transform the data array data.

Calculates the Discrete Fourier Transform using the Fast Fourier Transform algorithm as implemented in
NumPy (Cooley, James W., and John W. Tukey, 1965, ‘An algorithm for the machine calculation of complex
Fourier series,’ Math. Comput. 19: 297-301.)

peakpick(thresh=0.1)
Attempt to automatically identify peaks. Picked peaks are assigned to peaks.

Parameters thresh – fractional threshold for peak-picking

peakpicker()
Instantiate a peak-picking GUI widget. Left-clicking selects a peak. Right-click-dragging defines a range.
Ctrl-left click deletes nearest peak; ctrl-right click deletes range. Peaks are stored in peaks; ranges are
stored in ranges: both are used for deconvolution (see deconv()).

peaks
Picked peaks for deconvolution of data.

phase_correct(method=’leastsq’)
Automatically phase-correct data by minimising total absolute area.

Parameters method – The fitting method to use. Default is ‘leastsq’, the Levenberg-Marquardt
algorithm, which is usually sufficient. Additional options include:

Nelder-Mead (nelder)

L-BFGS-B (l-bfgs-b)

Conjugate Gradient (cg)

Powell (powell)

Newton-CG (newton)

phaser()
Instantiate a phase-correction GUI widget which applies to data.

plot_deconv(**kwargs)
Plot data with deconvoluted peaks overlaid.

Parameters

• upper_ppm – upper spectral bound in ppm

• lower_ppm – lower spectral bound in ppm

• lw – linewidth of plot

• colour – colour of the plot

• peak_colour – colour of the deconvoluted peaks

• residual_colour – colour of the residual signal after subtracting deconvoluted peaks

26 Chapter 4. Basic Data Objects

NMRPy Documentation, Release 0.2.4

plot_ppm(**kwargs)
Plot data.

Parameters

• upper_ppm – upper spectral bound in ppm

• lower_ppm – lower spectral bound in ppm

• lw – linewidth of plot

• colour – colour of the plot

ps(p0=0.0, p1=0.0)
Linear phase correction of data

Parameters

• p0 – Zero order phase in degrees

• p1 – First order phase in degrees

ranges
Picked ranges for deconvolution of data.

real()
Discard imaginary component of data.

zf()
Apply a single degree of zero-filling to data array data.

Note: extends data to double length by appending zeroes. This results in an artificially increased resolution
once Fourier-transformed.

class nmrpy.data_objects.FidArray(*args, **kwargs)
This object collects several Fid objects into an array, and it contains all the processing methods necessary for
bulk processing of these FIDs. It should be considered the parent object for any project. The class methods
from_path() and from_data() will instantiate a new FidArray object from a Varian/Bruker .fid path
or an iterable of data respectively. Each Fid object in the array will appear as an attribute of FidArray with
a unique ID of the form ‘fidXX’, where ‘XX’ is an increasing integer .

add_fid(fid)
Add an Fid object to this FidArray , using a unique id.

Parameters fid – an Fid instance

add_fids(fids)
Add a list of Fid objects to this FidArray .

Parameters fids – a list of Fid instances

baseline_correct_fids(deg=2)
Apply baseline-correction to all Fid objects owned by this FidArray

Parameters deg – degree of the baseline polynomial (see baseline_correct())

baseliner_fids()
Instantiate a baseline-correction GUI widget. Right-click-dragging defines a range. Ctrl-Right click
deletes previously selected range. Indices selected are stored in _bl_ppm, which is used for baseline-
correction (see baseline_correction()).

calibrate(fid_number=None, assign_only_to_index=False, voff=0.02)
Instantiate a GUI widget to select a peak and calibrate spectra in a FidArray . Left-clicking selects a
peak. The user is then prompted to enter the PPM value of that peak for calibration; this will be applied to
all Fid objects owned by this FidArray . See also calibrate().

27

NMRPy Documentation, Release 0.2.4

Parameters fid_number – list or number, index of

Fid to use for calibration. If None, the whole data array is plotted.

Parameters assign_only_to_index – if True, assigns calibration only

to Fid objects indexed by fid_number; if False, assigns to all.

Parameters voff – vertical offset for spectra

data
An array of all data objects belonging to the Fid objects owned by this FidArray .

deconv_fids(mp=True, cpus=None, method=’leastsq’, frac_gauss=0.0)
Apply deconvolution to all Fid objects owned by this FidArray , using the peaks and ranges at-
tribute of each respective Fid.

Parameters

• method – see phase_correct()

• mp – parallelise the phasing process over multiple processors, significantly reduces com-
putation time

• cpus – defines number of CPUs to utilise if ‘mp’ is set to True, default is n-1 cores

deconvoluted_integrals
Collected deconvoluted_integrals

del_fid(fid_id)
Delete an Fid object belonging to this FidArray , using a unique id.

Parameters fid_id – a string id for an Fid

emhz_fids(lb=5.0)
Apply line-broadening (apodisation) to all nmrpy.~data_objects.Fid objects owned by this
FidArray

Parameters lb – degree of line-broadening in Hz.

classmethod from_data(data)
Instantiate a new FidArray object from a 2D data set of spectral arrays.

Parameters data – a 2D data array

classmethod from_path(fid_path=’.’, file_format=None, arrayset=None)
Instantiate a new FidArray object from a .fid directory.

Parameters

• fid_path – filepath to .fid directory

• file_format – ‘varian’ or ‘bruker’, usually unnecessary

• arrayset – (int) array set for interleaved spectra, user is prompted if not specified

ft_fids(mp=True, cpus=None)
Fourier-transform all FIDs.

Parameters

• mp – parallelise over multiple processors, significantly reducing computation time

• cpus – defines number of CPUs to utilise if ‘mp’ is set to True

get_fid(id)
Return an Fid object owned by this object, identified by unique ID. Eg.:

28 Chapter 4. Basic Data Objects

NMRPy Documentation, Release 0.2.4

fid12 = fid_array.get_fid('fid12')

Parameters id – a string id for an Fid

get_fids()
Return a list of all Fid objects owned by this FidArray .

get_integrals_from_traces()
Returns a dictionary of integral values for all Fid objects calculated from trace dictionary
integral_traces.

get_masked_integrals()
After peakpicker_traces() and deconv_fids() this function returns a masked integral array.

integral_traces
Returns the dictionary of integral traces generated by select_integral_traces().

norm_fids()
Normalise FIDs by maximum data value in data.

peakpicker(fid_number=None, assign_only_to_index=True, voff=0.02)
Instantiate peak-picker widget for data, and apply selected peaks and ranges to all Fid objects
owned by this FidArray . See peakpicker().

Parameters fid_number – list or number, index of

Fid to use for peak-picking. If None, data array is plotted.

Parameters assign_only_to_index – if True, assigns selections only

to Fid objects indexed by fid_number, if False, assigns to all

Parameters voff – vertical offset for spectra

peakpicker_traces(voff=0.02, lw=1)
Instantiates a widget to pick peaks and ranges employing a polygon shape (or ‘trace’). This is useful
for picking peaks that are subject to drift and peaks that appear (or disappear) during the course of an
experiment.

Parameters

• voff – vertical offset fraction (0.01)

• lw – linewidth of plot (1)

phase_correct_fids(method=’leastsq’, mp=True, cpus=None)
Apply automatic phase-correction to all Fid objects owned by this FidArray

Parameters

• method – see phase_correct()

• mp – parallelise the phasing process over multiple processors, significantly reducing com-
putation time

• cpus – defines number of CPUs to utilise if ‘mp’ is set to True

plot_array(**kwargs)
Plot data.

Parameters

• upper_index – upper index of array (None)

29

NMRPy Documentation, Release 0.2.4

• lower_index – lower index of array (None)

• upper_ppm – upper spectral bound in ppm (None)

• lower_ppm – lower spectral bound in ppm (None)

• lw – linewidth of plot (0.5)

• azim – starting azimuth of plot (-90)

• elev – starting elevation of plot (40)

• filled – True=filled vertices, False=lines (False)

• show_zticks – show labels on z axis (False)

• labels – under development (None)

• colour – plot spectra with colour spectrum, False=black (True)

• filename – save plot to .pdf file (None)

plot_deconv_array(**kwargs)
Plot all data with deconvoluted peaks overlaid.

Parameters

• upper_index – upper index of Fids to plot

• lower_index – lower index of Fids to plot

• upper_ppm – upper spectral bound in ppm

• lower_ppm – lower spectral bound in ppm

• data_colour – colour of the plotted data (‘k’)

• summed_peak_colour – colour of the plotted summed peaks (‘r’)

• residual_colour – colour of the residual signal after subtracting deconvoluted peaks
(‘g’)

• data_filled – fill state of the plotted data (False)

• summed_peak_filled – fill state of the plotted summed peaks (True)

• residual_filled – fill state of the plotted residuals (False)

• figsize – [x, y] size of plot ([15, 7.5])

• lw – linewidth of plot (0.3)

• azim – azimuth of 3D axes (-90)

• elev – elevation of 3D axes (20)

ps_fids(p0=0.0, p1=0.0)
Apply manual phase-correction to all Fid objects owned by this FidArray

Parameters

• p0 – Zero order phase in degrees

• p1 – First order phase in degrees

real_fids()
Discard imaginary component of FID data sets.

save_to_file(filename=None)
Save FidArray object to file, including all objects owned.

30 Chapter 4. Basic Data Objects

NMRPy Documentation, Release 0.2.4

Parameters filename – filename to save FidArray to

select_integral_traces(voff=0.02, lw=1)
Instantiate a trace-selection widget to identify deconvoluted peaks. This can be useful when data are
subject to drift. Selected traces on the data array are translated into a set of nearest deconvoluted peaks,
and saved in a dictionary: integral_traces.

Parameters

• voff – vertical offset fraction (0.01)

• lw – linewidth of plot (1)

t
An array of the acquisition time for each FID.

zf_fids()
Zero-fill all Fid objects owned by this FidArray

31

NMRPy Documentation, Release 0.2.4

32 Chapter 4. Basic Data Objects

CHAPTER

FIVE

PLOTTING OBJECTS

class nmrpy.plotting.Calibrator(fid, lw=1, label=None, title=None)
Interactive data-selection widget for calibrating PPM of a spectrum.

class nmrpy.plotting.DataPeakRangeSelector(fid_array, peaks=None, ranges=None,
y_indices=None, aoti=True, voff=0.001,
lw=1, label=None)

Interactive data-selection widget with lines and ranges. Lines and spans are saved as self.peaks, self.ranges.

class nmrpy.plotting.DataPeakSelector(fid, peaks=None, ranges=None, voff=0.001, lw=1, la-
bel=None, title=None)

Interactive data-selection widget with lines and ranges for a single Fid. Lines and spans are saved as self.peaks,
self.ranges.

class nmrpy.plotting.DataSelector(data, params, extra_data=None, extra_data_colour=’k’,
peaks=None, ranges=None, title=None, voff=0.001, la-
bel=None)

Interactive selector widget. can inherit from various mixins for functionality: Line selec-
tion: LineSelectorMixin Span selection: SpanSelectorMixin Poly selection:
PolySelectorMixin

This class is not intended to be used without inheriting at least one mixin.

class nmrpy.plotting.DataTraceRangeSelector(fid_array, peaks=None, ranges=None,
voff=0.001, lw=1, label=None)

Interactive data-selection widget with traces and ranges. Traces are saved as self.data_traces (WRT data) and
self.index_traces (WRT index). Spans are saves as self.spans.

class nmrpy.plotting.DataTraceSelector(fid_array, extra_data=None, ex-
tra_data_colour=’b’, voff=0.001, lw=1, la-
bel=None)

Interactive data-selection widget with traces and ranges. Traces are saved as self.data_traces (WRT data) and
self.index_traces (WRT index).

class nmrpy.plotting.FidArrayRangeSelector(fid_array, ranges=None, y_indices=None,
voff=0.001, lw=1, title=None, label=None)

Interactive data-selection widget with ranges. Spans are saved as self.ranges.

class nmrpy.plotting.FidRangeSelector(fid, title=None, ranges=None, y_indices=None,
voff=0.001, lw=1, label=None)

Interactive data-selection widget with ranges. Spans are saved as self.ranges.

class nmrpy.plotting.IntegralDataSelector(data, params, extra_data=None, ex-
tra_data_colour=’k’, peaks=None,
ranges=None, title=None, voff=0.001, la-
bel=None)

33

NMRPy Documentation, Release 0.2.4

class nmrpy.plotting.LineSpanDataSelector(data, params, extra_data=None, ex-
tra_data_colour=’k’, peaks=None,
ranges=None, title=None, voff=0.001, la-
bel=None)

class nmrpy.plotting.PeakDataSelector(data, params, extra_data=None, ex-
tra_data_colour=’k’, peaks=None, ranges=None,
title=None, voff=0.001, label=None)

class nmrpy.plotting.PeakTraceDataSelector(data, params, extra_data=None, ex-
tra_data_colour=’k’, peaks=None,
ranges=None, title=None, voff=0.001, la-
bel=None)

class nmrpy.plotting.Phaser(fid)
Interactive phase-correction widget

class nmrpy.plotting.Plot
Basic ‘plot’ class containing functions for various types of plots.

class nmrpy.plotting.RangeCalibrator(fid_array, y_indices=None, aoti=True, voff=0.001,
lw=1, label=None)

Interactive data-selection widget for calibrating PPM of an array of spectra.

class nmrpy.plotting.SpanDataSelector(data, params, extra_data=None, ex-
tra_data_colour=’k’, peaks=None, ranges=None,
title=None, voff=0.001, label=None)

34 Chapter 5. Plotting Objects

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

35

NMRPy Documentation, Release 0.2.4

36 Chapter 6. Indices and tables

PYTHON MODULE INDEX

n
nmrpy.data_objects, 25
nmrpy.plotting, 33

37

NMRPy Documentation, Release 0.2.4

38 Python Module Index

INDEX

A
add_fid() (nmrpy.data_objects.FidArray method), 27
add_fids() (nmrpy.data_objects.FidArray method),

27

B
baseline_correct() (nmrpy.data_objects.Fid

method), 25
baseline_correct_fids() (nm-

rpy.data_objects.FidArray method), 27
baseliner() (nmrpy.data_objects.Fid method), 25
baseliner_fids() (nmrpy.data_objects.FidArray

method), 27

C
calibrate() (nmrpy.data_objects.Fid method), 25
calibrate() (nmrpy.data_objects.FidArray method),

27
Calibrator (class in nmrpy.plotting), 33

D
data (nmrpy.data_objects.Fid attribute), 25
data (nmrpy.data_objects.FidArray attribute), 28
DataPeakRangeSelector (class in nmrpy.plotting),

33
DataPeakSelector (class in nmrpy.plotting), 33
DataSelector (class in nmrpy.plotting), 33
DataTraceRangeSelector (class in nm-

rpy.plotting), 33
DataTraceSelector (class in nmrpy.plotting), 33
deconv() (nmrpy.data_objects.Fid method), 25
deconv_fids() (nmrpy.data_objects.FidArray

method), 28
deconvoluted_integrals (nm-

rpy.data_objects.Fid attribute), 25
deconvoluted_integrals (nm-

rpy.data_objects.FidArray attribute), 28
del_fid() (nmrpy.data_objects.FidArray method), 28

E
emhz() (nmrpy.data_objects.Fid method), 25

emhz_fids() (nmrpy.data_objects.FidArray method),
28

F
Fid (class in nmrpy.data_objects), 25
FidArray (class in nmrpy.data_objects), 27
FidArrayRangeSelector (class in nmrpy.plotting),

33
FidRangeSelector (class in nmrpy.plotting), 33
from_data() (nmrpy.data_objects.Fid class method),

26
from_data() (nmrpy.data_objects.FidArray class

method), 28
from_path() (nmrpy.data_objects.FidArray class

method), 28
ft() (nmrpy.data_objects.Fid method), 26
ft_fids() (nmrpy.data_objects.FidArray method), 28

G
get_fid() (nmrpy.data_objects.FidArray method), 28
get_fids() (nmrpy.data_objects.FidArray method),

29
get_integrals_from_traces() (nm-

rpy.data_objects.FidArray method), 29
get_masked_integrals() (nm-

rpy.data_objects.FidArray method), 29

I
integral_traces (nmrpy.data_objects.FidArray at-

tribute), 29
IntegralDataSelector (class in nmrpy.plotting),

33

L
LineSpanDataSelector (class in nmrpy.plotting),

33

N
nmrpy.data_objects (module), 25
nmrpy.plotting (module), 33
norm_fids() (nmrpy.data_objects.FidArray method),

29

39

NMRPy Documentation, Release 0.2.4

P
PeakDataSelector (class in nmrpy.plotting), 34
peakpick() (nmrpy.data_objects.Fid method), 26
peakpicker() (nmrpy.data_objects.Fid method), 26
peakpicker() (nmrpy.data_objects.FidArray

method), 29
peakpicker_traces() (nm-

rpy.data_objects.FidArray method), 29
peaks (nmrpy.data_objects.Fid attribute), 26
PeakTraceDataSelector (class in nmrpy.plotting),

34
phase_correct() (nmrpy.data_objects.Fid method),

26
phase_correct_fids() (nm-

rpy.data_objects.FidArray method), 29
Phaser (class in nmrpy.plotting), 34
phaser() (nmrpy.data_objects.Fid method), 26
Plot (class in nmrpy.plotting), 34
plot_array() (nmrpy.data_objects.FidArray

method), 29
plot_deconv() (nmrpy.data_objects.Fid method), 26
plot_deconv_array() (nm-

rpy.data_objects.FidArray method), 30
plot_ppm() (nmrpy.data_objects.Fid method), 26
ps() (nmrpy.data_objects.Fid method), 27
ps_fids() (nmrpy.data_objects.FidArray method), 30

R
RangeCalibrator (class in nmrpy.plotting), 34
ranges (nmrpy.data_objects.Fid attribute), 27
real() (nmrpy.data_objects.Fid method), 27
real_fids() (nmrpy.data_objects.FidArray method),

30

S
save_to_file() (nmrpy.data_objects.FidArray

method), 30
select_integral_traces() (nm-

rpy.data_objects.FidArray method), 31
SpanDataSelector (class in nmrpy.plotting), 34

T
t (nmrpy.data_objects.FidArray attribute), 31

Z
zf() (nmrpy.data_objects.Fid method), 27
zf_fids() (nmrpy.data_objects.FidArray method), 31

40 Index

	Introduction
	References

	Installation
	Abbreviated requirements
	Installation on Anaconda
	Direct pip-based install
	Testing the installation
	Working with NMRPy
	Documentation

	Quickstart Tutorial
	Importing
	Apodisation and Fourier-transformation
	Phase-correction
	Calibration
	Peak-picking
	Deconvolution
	Saving / Loading
	Full tutorial script

	Basic Data Objects
	Plotting Objects
	Indices and tables
	Python Module Index
	Index

