
SOLD TO THE FINE
mbrochh@gmail.com

Two Scoops of Django
Best Practices for Django 1.5

Daniel Greenfeld
Audrey Roy

Two Scoops of Django: Best Practices for Django 1.5
First Edition, Alpha Version, 20130125
by Daniel Greenfeld and Audrey Roy

Copyright © 2013 Daniel Greenfeld, Audrey Roy, and Cartwheel Web.
All rights reserved. !is book may not be reproduced in any form, in whole or in part, without written
permission from the authors, except in the case of brief quotations embodied in articles or reviews.

Limit of Liability and Disclaimer of Warranty: !e authors have used their best efforts in preparing this
book, and the information provided herein "as is." !e information provided is sold without warranty, either
express or implied. Neither the authors nor Cartwheel Web will be held liable for any damages to be caused
either directly or indirectly by the contents of this book.

Trademarks: Rather than indicating every occurence of a trademarked name as such, this book uses the names
only in an editorial fashion and to the bene#t of the trademark owner with no intention of infringement of
the trademark.

ii

Table of Contents

Authors' Notes xiii
A Few Words From Daniel Greenfeld xiii
A Few Words From Audrey Roy xiv

Introduction xvii
A Word About Our Recommendations xvii
Why Two Scoops of Django? xviii
Before You Begin xix

!is book is intended for Django 1.5 and Python 2.7.x xix
Each Chapter Stands On Its Own xix
Conventions Used in !is Book xx
Core Concepts xxi

Keep It Simple, Stupid xxi
Fat Models, Helper Functions, !in Views, Stupid Templates xxi
Start With Django by Default xxii
Stand on the Shoulders of Giants xxii

1. Coding Style 1
!e Importance of Making Your Code Readable 1
PEP 8 2
!e Word on Imports 2
Use Relative Imports 3
Avoid Using Import * 5
Django Coding Style Guidelines 6

Follow the Official Django Coding Style Standards 6
Other Good Conventions 7

Never Code to the IDE (or Text Editor) 7
Summary 7

iii

2. The Optimal Django Environment Setup 9
Use the Same Database Locally and in Production 9

Fixtures Are Not a Magic Solution 9
You Can't Examine an Exact Copy of Production Data Locally 10
Different Databases Have Different Field Types and Constraints 10

Use Pip and Virtualenv 11
Install Django and Other Dependencies Via Pip 12
Use a Version Control System 12
Summary 13

3. How To Lay Out Django Projects 15
Django 1.5's Default Project Layout 15
Our Preferred Project Layout 16

Top Level: Repository Root 16
Second Level: Django Project Root 16
!ird Level: Con$guration Root 17

Sample Project Layout 17
What About the Virtualenv? 20
Using a startproject Template To Generate Our Layout 21
Other Alternatives 21
Summary 21

4. Fundamentals of Django App Design 23
!e Golden Rule of Django App Design 23

A Practical Example of Apps in a Project 24
What To Name Your Django Apps 25
When In Doubt, Keep Apps Small 26
Summary 26

5. Settings and Requirements Files 27
Avoid Non-Versioned Local Settings 27
Using Multiple Settings Files 29

Notice How We Use django-admin.py Here 31
A Development Settings Example 31

iv

Multiple Development Settings 33
Keep Secret Keys Out With Environment Variables 34

A Caution Before Using Environment Variables for Secrets 34
How To Set Environment Variables Locally 35
How To Set Environment Variables in Production 35
Handling Missing Secret Key Exceptions 36

Using Multiple Requirements Files 38
Installing From Multiple Requirements Files 39
Using multiple requirements $les with Platforms as a Service (PaaS) 40

Handling File Paths in Settings 40
Summary 43

6. Database/Model Best Practices 45
Basics 46

Break Up Apps With Too Many Models 46
Don't Drop Down to Raw SQL Until It's Necessary 46
Add Indexes As Needed 47
Be Careful With Model Inheritance 47
Model Inheritance in Practice: !e TimeStampedModel 49
Use South for Migrations 52

Django Model Design 52
Start Normalized 53
Cache Before Denormalizing 53
Denormalize Only If Absolutely Needed 53

When To Use Null and Blank 54
Model Managers 55
Summary 57

7. Function- and Class-Based Views 59
When to use FBVs or CBVs 59
Keep View Logic Out of URLConfs 60

Stick To Loose Coupling in URLConfs 62
What if we aren't using CBVs? 64

Summary 64

8. Best Practices for Class-Based Views 65

v

Mixins 66
Which Django CBV Should Be Used For What Task? 67
General Tips for Django CBVs 69

Constraining Django CBV Access to Authenticated Users 69
Performing Custom Actions on Views With Valid Forms 70
Performing Custom Actions on Views With Invalid Forms 70

Summary 71

9. Common Patterns for Forms 73
How Your Views Should Hook !ings Together 74

Views + ModelForm Example 74
Views + Form Example 78

Common Form Patterns 80
Pattern 1: Simply Using a ModelForm With Default Validators 80
Pattern 2: Custom Validators on Form Fields in Model Forms 81
Pattern 3: Override clean() in CBV / Form 85
Pattern 4: Overloading Form Fields (2 CBVs, 2 Forms, 1 Model) 87
Pattern 5: Simple Search Mixin View (1 Mixin, 2 CBV, 1 Form, 2 Models) 91

10. More Things To Know About Forms 95
Use the POST Method in HTML Forms 95

Don't Disable Django's CSRF Protection 95
Know How Form Validation Works 96

Form Data Is Saved to the Form, !en the Model Instance 97
Summary 98

11. Building REST APIs in Django 99
Fundamentals of Basic REST API Design 100
Implementing a Simple JSON API 101
Reusing Our Simple JSON API 105
API Creation Libraries 107
Summary 107

12. Templates: Best Practices 109
Exploring Template Inheritance 110

vi

To demonstrate the base.html "le in use, we'll use a simple about.html template.
!is "le will extend or inherit the base.html template in order to display the
following: 111

{{ block.super }} gives the power of control 113
Flat Is Better !an Nested 115
Don't Bother Making Your Generated HTML Pretty 116
Useful !ings to Consider 118

Our Naming Practices 118
Limit Looping 118
Debugging Complex Templates 118
Use URL Names Instead of Hardcoded Paths 119
Use Named Context Objects 119
Avoid Coupling Styles Too Tightly to Python Code 120
Using Javascript Templates in Django Templates 120
Location, Location, Location! 120
Don't Replace the Django Template Engine 121

Summary 122

13. Template Tags and Filters 123
Our Problems With Template Tags and Filters 123
Naming Your Template Tag Modules 125
Loading Your Template Tag Modules 125

Watch Out for !is Crazy Anti-Pattern 125

14. Tradeoffs of Replacing Core Components 127
!e Temptation To Build FrankenDjango 127
Case Study: Replacing the Django Template Engine 128

Excuses, Excuses 128
What if I'm Hitting the Limits of Templates? 129
What About My Unusual Use Case? 129

Summary 130

15. Working With the Django Admin 131
It's Not for End Users 131
Admin Customization vs. New Views 131

vii

Secure It Well 132

16. Dealing With the User Model 133
Use Django's Tools for Finding the User Model 133
Custom User Fields for Projects Starting at Django 1.5 134

Option 1: Linking Back From a Related Model 135
Option 2: Subclass AbstractUser 135
Option 3: Subclass AbstractBaseUser 136

Summary 143

17. Django's Secret Sauce: Third-Party Packages 145
Examples of !ird-Party Packages 145
Know About the Python Package Index 146
Know about DjangoPackages.com 146

Know Your Resources 146
Tools For Installing and Managing Packages 147
Package Requirements 147
Wiring Up Django Packages: !e Basics 147

1. Read the Documentation for the Package 147
2. Add Package and Version Number to Your Requirements 148
3. Install the Requirements Into Your Virtualenv 149
4. Follow the Package's Installation Instructions Exactly 149

Troubleshooting !ird-Party Packages 149
How To Create and Release Your Own Django Packages 150
What Makes a Good Django Package? 150

Purpose 151
Scope 151
Documentation 151
Tests 152
Activity 152
Community 152
Modularity 152
Availability on PyPI 152
License 153
Clarity of Code 153

Summary 153

viii

18. Testing Stinks and Is a Waste of Money! 155
Testing Saves Money, Jobs, and Lives 155
Who cares? We Don't Have Time for Tests! 156
!e Game of Test Coverage 157
Setting Up the Test Coverage Game 157

Step 1: Set Up A Test Runner 158
Step 2: Run Tests and Generate Coverage Report 158

Playing the Game of Test Coverage 160
How to Structure Tests 160
Summary 161

19. Documentation: Be Obsessed 163
Formatting Your Docs 163

Use reStructuredText Markup To Write Up Python Docs 163
Use Sphinx To Generate Documentation From reStructuredText 164

What Docs Should Your Django Project Contain? 164
Using a Wiki or other documentation methods 165
Summary 166

20. Finding and Reducing Bottlenecks 167
Should You Even Care? 167
Get the Most Out of Your Database 167
Getting the Most Out of PostgreSQL 168
Getting the Most Out of MySQL 168
Use django-debug-toolbar To Find Query-Heavy Pages 169
Cache Queries With Memcached or Redis 170
Identify Speci"c Places to Cache 170
Consider !ird-Party Caching Packages 171
Compression and Mini"cation of HTML, CSS, and Javascript 172
Use Upstream Caching or a Content Delivery Network 173
Other Resources 173
Summary 174

21. Security Best Practices 175

ix

Harden Your Servers 175
Use django-secure 175
Use SSL/HTTPS in Production 176
Always Use CSRF Protection With Forms !at Modify Data 176
Prevent Against Cross Site Scripting (XSS) Attacks 177
Don't Run Arbitrary Python Code 177
Don't use ModelForms.Meta.excludes 178
Beware of SQL Injection Attacks 180
Never Store Credit Card Data 181
Secure the Django Admin 181

Only Allow Access Via HTTPS 181
Limit Access Based on IP 181
Change the Default Admin URL 182
Use django-admin-honeypot 182

Summary 182

22. Logging: Tips and Tools 183
Don't Use Print Statements 183
Logging Tips 183
Necessary Reading Material 184
Useful !ird-Party Tools 184
Summary 184

23. Signals: Use Cases and Avoidance Techniques 185
When To Use and Avoid Signals 185
Signal Avoidance Techniques 186

Validate Your Model Elsewhere 186
Override Your model's save() or delete() Method Instead 186

24. What About Those Random Utilities? 187
Create a Core App for Your Utilities 187
Django's Own Swiss Army Knife 188

django.utils.html.remove_tags(value, tags) 188
django.utils.html.strip_tags(value) 188
django.utils.text.slugify(value) 189

x

django.utils.timezone 189
django.utils.translation 189

Summary 189

25. Deploying Django Projects 191
Using Your Own Web Servers 191
Using a Platform as a Service 192
Summary 194

26. Where and How to Ask Django Questions 195
What to Do When You're Stuck 195
How to Ask Great Django Questions in IRC 196
Insider Tip: Be Active in the Community 197

10 Easy Ways To Participate 197
Summary 198

27. Closing Thoughts 199

Appendix A: Packages Mentioned In This Book 201

Appendix B: Troubleshooting 205
Identifying the Issue 205
Our Recommended Solutions 205

Check Your Virtualenv Installation 205
Check If Your Virtualenv Has Django 1.5 Installed 206
Check For Other Problems 207

About This Book 208
Acknowledgements 208

!e Python and Django Community 208
Technical Reviewers 208
Alpha Reviewers 210

xi

xii

Authors' Notes

A Few Words From Daniel

Greenfeld

In the spring of 2006, I was working for NASA on
a project that implemented a Java-based RESTful
web service that was taking weeks to deliver. One
evening, when management had left for the day, I
reimplemented the service in Python in 90
minutes.

I knew then that I wanted to work with Python.

I wanted to use Django for the web front-end of the web service, but management
insisted on using a closed-source stack because “Django is only at version 0.9x, hence not
ready for real projects.” I disagreed, but stayed happy with the realization that at least the
core architecture was in Python.

Django used to be edgy during those heady days, and it scared people the same way that
Node.js scares people today.

Nearly seven years later, Django is considered a mature, powerful, secure, stable
framework used by incredibly successful corporations (Instagram, Pinterest, Mozilla, etc.)
and government agencies (NASA, et al) all over the world. Convincing management to
use Django isn’t hard anymore, and if it is hard to convince them, $nding jobs which let
you use Django has become much easier.

Authors' Notes

xiii

In my 6+ years of building Django projects, I’ve learned how to launch new web
applications with incredible speed while keeping technical debt to an absolute minimum.

My goal in this book is to share with you what I’ve learned. My knowledge and
experience have been gathered from advice given by core developers, mistakes I’ve made,
successes shared with others, and an enormous amount of note taking. I’m going to admit
that the book is opinionated, but many of the leaders in the Django community use the
same or similar techniques.

!is book is for you, the developers.

I hope you enjoy it!

A Few Words From Audrey Roy

I $rst discovered Python in a graduate class at MIT in 2005. In less than 4 weeks of
homework assignments, each student built a voice-controlled system for navigating
between rooms in MIT’s Stata Center, running on our HP iPaqs running Debian. I was
in awe of Python and wondered why it wasn’t used for everything. I tried building a web
application with Zope but struggled with it.

A couple of years passed, and I got drawn into the Silicon Valley tech startup scene. I
wrote graphics libraries in C and desktop applications in C++ for a startup. At some
point, I left that job and picked up painting and sculpture. Soon I was drawing and
painting frantically for art shows, co-directing a 140-person art show, and managing a
series of real estate renovations. I realized that I was doing a lot at once and had to
optimize. Naturally, I turned to Python and began writing scripts to generate some of my
artwork. !at was when I rediscovered the joy of working with Python.

Many friends from the Google App Engine, SuperHappyDevHouse, and hackathon scenes in

Silicon Valley inspired me to get into Django. Through them and through various freelance

projects and partnerships I discovered how powerful Django was.

Authors' Notes

xiv

Before I knew it, I was attending PyCon 2010, where I met my $ance Daniel Greenfeld.
We met at the end of James Bennett’s Django In Depth tutorial, and now this chapter in
our lives has come full circle with the publication of this book.

Django has brought more joy to my life than I thought was possible with a web
framework. My goal with this book is to give you the thoughtful guidance on common
Django development practices that are normally left unwritten (or implied), so that you
can get past common hurdles and experience the joy of using the Django web framework
for your projects.

Authors' Notes

xv

Introduction

Our aim in writing this book is to write down all of the unwritten tips, tricks, and
common practices that we've learned over the years while working with Django.

While writing, we've thought of ourselves as scribes, taking the various things that people
assume are common knowledge and recording them with simple examples.

A Word About Our Recommendations

Like the official Django documentation, this book covers how to do things in Django,
illustrating various scenarios with code examples.

Unlike the Django documentation, this book recommends particular coding styles,
patterns, and library choices. While core Django developers may agree with some or
many of these choices, keep in mind that many of our recommendations are just that:
personal recommendations formed after years of working with Django.

!roughout this book, we advocate certain practices and techniques that we consider to
be the best approaches. We also express our own personal preferences for particular tools
and libraries.

Sometimes we reject common practices that we consider to be anti-patterns. For most
things we reject, we try to be polite and respectful of the hard work of the authors. !ere
are the rare, few things that we may not be so polite about. !is is in the interest of
helping you avoid dangerous pitfalls.

We have made every effort to give thoughtful recommendations and to make sure that
our practices are sound. We've subjected ourselves to harsh, nerve-wracking critiques from
Django core developers whom we greatly respect. We've had this book reviewed by more

Introduction

xvii

technical reviewers than the average technical book, and we've poured countless hours
into revisions. !at being said, there is always the possibility of errors or omissions. !ere
is also the possibility that better practices may emerge than those described here.

We are fully committed to iterating on and improving this book, and we mean it. If you
see any practices that you disagree with or anything that can be done better, we humbly
ask that you send us your suggestions for improvements.

Please don't hesitate to tell us what can be improved. We will take your feedback
constructively. If immediate action is required, we will send out errata or an updated
version to readers ASAP at no cost.

Why Two Scoops of Django?

Like most people, we, the authors of this book, love ice cream. Every Saturday night we
throw caution to the wind and indulge in ice cream. Don’t tell anyone, but sometimes we
even have some when it’s not Saturday night!

We like to try new %avors and discuss their merits against our old favorites. Tracking our
progress through all these %avors, and possibly building a club around it, makes for a great
sample Django project.

Introduction

xviii

When we do $nd a %avor we really like, the new %avor brings a smile to our face, just like
when we $nd great tidbits of code or advice in a technical book. One of our goals for this
book is to write the kind of technical book that brings the ice cream smile to readers.

Best of all, using ice cream analogies has allowed us to come up with more vivid code
examples. We've had a lot of fun writing this book. You may see us go overboard with ice
cream silliness here and there; please forgive us.

Before You Begin

If you are new to Django, this book will be helpful, but large parts will be challenging for
you. To use this book to its fullest extent, you should have a grounding in Python (http://
learnpythonthehardway.org/) and have at least gone through the 5-page Django tutorial:
https://docs.djangoproject.com/en/1.5/intro/tutorial01/.

This book is intended for Django 1.5 and Python 2.7.x

!is book should work well with the Django 1.4 series, less so with Django 1.3, and so on.
Even though we make no promises about functional compatibility, at least the general
approaches from most of this book stand up over every post-1.0 version of Django.

As for the Python version, this book relies on Python 2.7.x. We hope to release an
updated edition once more of the Django community starts moving toward Python 3.3
(or higher).

None of the content in this book, including our practices, the code examples, and the
libraries referenced applies to Google App Engine (GAE). If you try to use this book as a
reference for GAE development, you may run into problems.

Each Chapter Stands On Its Own

Unlike tutorial and walkthrough books where each chapter builds upon the previous
chapter's project, we've written this book in a way that each chapter intentionally stands
by itself.

Introduction

xix

http://learnpythonthehardway.org/
http://learnpythonthehardway.org/
http://learnpythonthehardway.org/
http://learnpythonthehardway.org/
https://docs.djangoproject.com/en/1.5/intro/tutorial01/
https://docs.djangoproject.com/en/1.5/intro/tutorial01/

We've done this in order to make it easy for you to reference chapters about speci$c topics
when needed while you're working on a project.

!e examples in each chapter are completely independent. !ey aren't intended to be
combined into one project. Consider them useful, isolated snippets that illustrate and help
with various coding scenarios.

Conventions Used in This Book

Code blocks like the following are used throughout the book:

class Scoop(object):
 def __init__(self):
 self._is_yummy = True

To keep these snippets compact, we sometimes violate the PEP 8 conventions on
comments and line spacing.

Special "Don't Do !is!" code blocks like the following indicate examples of bad code
that you should avoid:

DON'T DO THIS!
from rotten_ice_cream import something_bad

We use the following typographical conventions throughout the book:

• Constant width for code fragments or commands.
• Bold and italic for $lenames.
• Bold when introducing a new term or important word.

Boxes containing notes, warnings, tips, and little anecdotes are also used in this book:

TIP: Something You Should Know

Tip boxes give handy advice.

Introduction

xx

WARNING: Some Dangerous Pitfall

Warning boxes help you avoid common mistakes and pitfalls.

THIRD-PARTY PACKAGES: Recommendations For Your Projects

Indicates notes about useful third-party packages related to the current chapter, and
general notes about using various Django packages. We also provide a complete list of
packages recommended throughout the book in Appendix A: !ird-Party Packages We Use.

Core Concepts

When we build Django projects, we keep the following concepts in mind:

Keep It Simple, Stupid

Kelly Johnson, one of the most renowned and proli$c aircraft design engineers in the
history of aviation, said it this way about 50 years ago. Centuries earlier, Leonardo da
Vinci meant the same thing when he said “Simplicity is the ultimate sophistication.”

When building software projects, each piece of unnecessary complexity makes it harder to
add new features and maintain old ones. Attempt the simplest solution, but take care not
to implement overly simplistic solutions that make bad assumptions.

Fat Models, Helper Functions, Thin Views, Stupid Templates

When deciding where to put a piece of code, we like to follow the “Fat Models, Helper
Functions, !in Views, Stupid Templates” approach.

We recommend that you err on the side of putting more logic into anything but views
and templates. !e results are pleasing. !e code becomes clearer, more self-documenting,
less duplicated, and a lot more reusable.

Introduction

xxi

As for template tags, and $lters, they should contain the minimum logic possible to
function.

We cover this further in the chapters on Views, Templates and Template Tags.

Start With Django by Default

Before we consider switching out core Django components for things like alternative
template engines, different ORMs, or non-relational databases, we $rst try an
implementation using standard Django components. If we run into obstacles, we explore
all possibilities before replacing core Django components.

See the chapter on Tradeoffs of Replacing Core Components for more details.

Stand on the Shoulders of Giants

While we take credit and responsibility for our work, we certainly did not come up with
the practices described in this book on our own.

Without all of the talented, creative, and generous developers who make up the Django,
Python, and general open-source software communities, this book would not exist. We
strongly believe in recognizing the people who have served as our teachers and mentors as
well as our sources for information, and we've tried our best to give credit whenever credit
is due.

Introduction

xxii

Coding Style

A little attention to following standard coding style guidelines will go a long way. We
highly recommend that you read this chapter, even though you may be tempted to skip it.

The Importance of Making Your Code Readable

Code is read more than it is written. An individual block of code takes moments to write,
minutes or hours to debug, and can last forever without being touched again. It’s when
you or someone else visits code written yesterday or ten years ago that having code
written in a clear, consistent style becomes extremely useful. Understandable code frees
mental bandwidth from having to puzzle out inconsistencies, making it easier to maintain
and enhance projects of all sizes.

What this means is that you should go the extra mile to make your code as readable as
possible:

• Avoid abbreviating variable names.
• Write out your function argument names.
• Document your classes and methods.
• Refactor repeated lines of code into reusable functions or methods.

When you come back to your code after time away from it, you'll have an easier time
picking up where you left off.

Take those pesky abbreviated variable names, for example. When you see a variable called
balance_sheet_decrease, it's much easier to interpret in your mind than an
abbreviated variable like bsd or bal_s_d. !ese types of shortcuts may save a few seconds
of typing, but that savings comes at the expense of hours or days of technical debt. It's not
worth it.

1

1

PEP 8

PEP 8 is the official style guide for Python. We advise reading it in detail and learn to
follow the PEP 8 coding conventions: www.python.org/dev/peps/pep-0008/

PEP 8 describes coding conventions such as:

• “Use 4 spaces per indentation level.”
• “Separate top-level function and class de$nitions with two blank lines.”
• “Method de$nitions inside a class are separated by a single blank line.”

All the Python $les in your Django projects should follow PEP 8. If you have trouble
remembering the PEP 8 guidelines, $nd a plugin for your code editor that checks your
code as you type.

When an experienced Python developer sees gross violations of PEP 8 in a Django
project, even if they don't say something mean, they are probably thinking bad things.
Trust us on this one.

WARNING: Don't Change an Existing Project's Conventions

!e style of PEP 8 applies to new Django projects only. If you are brought into an
existing Django project that follows a different convention than PEP 8, then follow the
existing conventions. Please read "A Foolish Consistency is the Hobgoblin of Little
Minds" (http://2scoops.org/hobgoblin-of-little-minds/).

The Word on Imports

PEP 8 suggests that imports should be grouped in the following order:

1. Standard library imports
2. Related third-party imports
3. Local application or library speci$c imports

Chapter 1: Coding Style

2

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://2scoops.org/hobgoblin-of-little-minds/
http://2scoops.org/hobgoblin-of-little-minds/

When we’re working on a Django project, our imports look something like the following:

Stdlib imports
from math import sqrt
from os.path import abspath

Core Django imports
from django.db import models
from django.utils.translation import ugettext_lazy as _

Third-party app imports
from django_extensions.db.models import TimeStampedModel

Imports from your apps
from splits.models import BananaSplit

(Note: you don’t actually need to comment your imports like this; the comments are just
here to explain the example.)

!e import order here is:

1. Standard library imports.
2. Imports from core Django.
3. Imports from third-party apps.
4. Imports from the apps that you created as part of your Django project. (You’ll read

more about apps in the Fundamentals of App Design chapter.)

Use Relative Imports

When writing code, it’s important to do so in such a way that it’s easier to move, rename,
and version your work. In Python, relative imports remove the need for hardcoding a
module’s package, separating individual modules from being tightly coupled to the
architecture around them. Since Django apps are simply Python packages, the same rules
apply.

To illustrate the bene$ts of relative imports, let's explore an example.

Chapter 1: Coding Style

3

Imagine that the following snippet is from a Django project that you created to track your
ice cream consumption, including all of the waffle/sugar/cake cones that you have ever
eaten.

Oh no, your cones app contains hardcoded imports, which are bad!

cones/views.py
Hard coding of package name
from django.views.generic import CreateView

DON’T DO THIS: Hardcoding of the 'cones' package
from cones.models import WaffleCone
from cones.forms import WaffleConeForm

class WaffleConeCreateView(CreateView):
 model = WaffleCone
 form_class = WaffleConeForm

Sure, your cones app works $ne within your ice cream tracker project, but it has those
nasty hardcoded imports that make it less portable and reusable:

• What if you wanted to reuse your cones app in another project that tracks your
general dessert consumption, but you had to change the name due to a naming
con%ict (e.g. a con%ict with a Django app for snow cones)?

• What if you simply wanted to change the name of the app at some point?

With hardcoded imports, you can't just change the name of the app; you have to dig
through all of the imports and change them as well. It’s not hard to change them
manually, but before you dismiss the need for relative imports, keep in mind that the
above example is extremely simple compared to a real app with various additional helper
modules.

Let's now convert the bad code snippet containing hardcoded imports into a good one
containing relative imports. Here's the corrected example:

Chapter 1: Coding Style

4

cones/views.py
from django.views.generic import CreateView

Relative imports of the 'cones' package
from .models import WaffleCone
from .forms import WaffleConeForm

class WaffleConeCreateView(CreateView):
 model = WaffleCone
 form_class = WaffleConeForm

Get into the habit of using relative imports. It’s very easy to do, and using relative imports
is a good habit for any Python programmer to develop.

Additional reading:

• http://www.python.org/dev/peps/pep-0328/

Avoid Using Import *

In 99% of all our work, we explicitly import each module:

from django import forms
from django.db import models

Never do the following:

ANTI-PATTERN: Don’t do this!
from django.forms import *
from django.db.models import *

!e reason for this is to avoid implicitly loading all of another Python module’s locals
into and over our current module’s namespace, which can produce unpredictable and
sometimes catastrophic results.

Chapter 1: Coding Style

5

http://www.python.org/dev/peps/pep-0328/
http://www.python.org/dev/peps/pep-0328/

For example, both the Django Forms and Django Models libraries have a class called
CharField. By implicitly loading both libraries, the Models library overwrote the Forms
version of the CharField class. !is can also happen with Python built-in libraries and
other third-party libraries overwriting critical functionality.

WARNING: Python Naming Collisions

You'll run into similar problems if you try to import two things with the same name, such
as:
from django.forms import CharField
from django.db.models import CharField

Using import * is like being that greedy customer at an ice cream shop who asks for a
free taster spoon of all thirty-one %avors, but who only purchases one or two scoops.
Don't import everything if you're only going to use one or two things.

If the customer then walked out with a giant ice cream bowl containing a scoop of every
or almost every %avor, though, it would be a different matter.

TODO: What happens when you walk into an ice cream shop and import * - illustration.

Django Coding Style Guidelines

Follow the Official Django Coding Style Standards

Django has its own set of style guidelines that extend PEP 8. See:

https://docs.djangoproject.com/en/1.5/internals/contributing/writing-code/coding-style/

Rather than do it here, in many chapters we’ll explore the speci$cs of the Django coding
style guidelines as they apply in that chapter.

Chapter 1: Coding Style

6

https://docs.djangoproject.com/en/1.5/internals/contributing/writing-code/coding-style/
https://docs.djangoproject.com/en/1.5/internals/contributing/writing-code/coding-style/

Other Good Conventions

Although these conventions are not speci$ed in the official standards, you may want to
follow them in your projects:

• Use underscores (the ‘_’ character) in URL pattern names rather than dashes. Note
that we are referring to the name argument of url() here, not the actual URL typed
into the browser. Dashes in actual URLs are $ne.

• Use underscores rather than dashes in template block names.

Never Code to the IDE (or Text Editor)

!ere are developers who make decisions about the layout and implementation of their
project based on the features of IDEs. !is can make discovery of project code extremely
difficult for anyone whose choice of development tool doesn’t match the original author.

Another way of saying “Never code to the IDE” could also be “Coding by Convention” .
Always assume that the developers around you like to use their own tools and that your
code and project layout should be transparent enough that someone stuck using NotePad
or Nano will be able to navigate your work.

For example, introspecting template tags or discovering their source can be difficult and
time consuming for developers not using a very, very limited pool of IDEs. !erefore, we
follow the commonly used naming pattern of <app_name>_tags.py.

Summary

!is chapter covered our preferred coding style and explained why we prefer each
technique.

Even if you don't follow the coding style that we use, please follow a consistent coding
style. Projects with varying styles are much harder to maintain, slowing development and
increasing the chances of developer mistakes.

Chapter 1: Coding Style

7

The Optimal Django Environment Setup

!is chapter describes what we consider the best local environment setup for intermediate
and advanced developers working with Django.

Use the Same Database Locally and in Production

A common developer pitfall is using SQLite3 for local development and PostgreSQL (or
another database besides SQLite3) in production. !is section applies not only to the
SQLite3/PostgreSQL scenario, but to any scenario where you're using two different
databases and expecting them to behave identically.

Here are some of the issues we’ve encountered with using different databases for
development and production:

Fixtures Are Not a Magic Solution

You may be wondering why you can't simply use $xtures to abstract away the differences
between your local and production databases.

Well, $xtures are great for creating simple hardcoded test data sets. Sometimes you need
to pre-populate your databases with fake test data during development, particularly
during the early stages of a project.

Fixtures are not a reliable tool for migrating large data sets from one database to another
in a database-agnostic way, and they are not meant to be used that way. Don’t mistake the
ability of $xtures to create basic data (dumpdata/loaddata) with the capability to migrate
production data between database tools.

2

You Can't Examine an Exact Copy of Production Data Locally

When your production database is different from your local development database, you
can't grab an exact copy of your production database to examine data locally.

Sure, you can generate a SQL dump from production and import it into your local
database, but that doesn't mean that you have an exact copy after the export and import.

Different Databases Have Different Field Types and Constraints

Keep in mind that different databases handle typing of $eld data differently. Django’s
ORM attempts to accommodate those differences, but there's only so much that it can
do.

Speci$cally, in the case of SQLite3 versus most other relational databases, SQLite3 has
dynamic, weak typing instead of strong typing. Yet the Django ORM has features that
allow your code to interact with SQLite3 in a more strongly typed manner.

!at may sound great, but form and model validation mistakes in development will go
uncaught (even in tests) until the code goes to a production server. You may be saving
long strings locally without a hitch, for example, since SQLite3 won’t care. But then in
production, your PostgreSQL or MySQL database will throw constraint errors that
you've never seen locally, and you'll have a hard time replicating the issues until you set up
an identical database locally.

Most problems usually can’t be discovered until the project is run on a strongly typed
database (e.g. PostgreSQL or MySQL). When these types of bugs hit, you end up kicking
yourself and scrambling to set up your local development machine with the right
database.

TIP: Django+PostgreSQL Rocks

Most Django developers that we know prefer to use PostgreSQL for all environments;
development, staging, QA, and production systems. PostgreSQL may take some work to
get running, but we $nd it’s well worth the effort.

Chapter 2: !e Optimal Django Environment Setup

10

Depending on your operating system, use these instructions:

•Mac: Download the one-click Mac installer at http://postgresapp.com

•Windows: Download the one-click Windows installer at www.postgresql.org/
download/windows/

•Linux: Install via your package manager, or follow the instructions at
www.postgresql.org/download/linux/

Use Pip and Virtualenv

Pip is a tool for managing and installing Python packages. It’s like easy_install but has
more features, the key feature being support for virtualenv.

Virtualenv is a tool for creating isolated Python environments. It’s great for situations
where, say, you’re working on one project that requires Django 1.4 and another that
requires Django 1.5.

We strongly urge you to use both. Follow the instructions at:

• pip: www.pip-installer.org
• virtualenv: www.virtualenv.org

Most experienced Djangonauts can’t live without pip and virtualenv.

TIP: Virtualenvwrapper

For developers using Mac OSX or Linux, who are experienced with the shell, in addition
to pip and virtualenv, we also highly recommend virtualenvwrapper: http://
virtualenvwrapper.readthedocs.org

Virtualenv without virtualenvwrapper can be a pain to use, because every time you want
to activate a virtual environment, you have to type something long like:

Chapter 2: !e Optimal Django Environment Setup

11

http://postgresapp.com
http://postgresapp.com
http://www.postgresql.org/download/windows/
http://www.postgresql.org/download/windows/
http://www.postgresql.org/download/windows/
http://www.postgresql.org/download/windows/
http://www.postgresql.org/download/linux/
http://www.postgresql.org/download/linux/
http://www.pip-installer.org
http://www.pip-installer.org
http://www.virtualenv.org
http://www.virtualenv.org
http://virtualenvwrapper.readthedocs.org
http://virtualenvwrapper.readthedocs.org
http://virtualenvwrapper.readthedocs.org
http://virtualenvwrapper.readthedocs.org

 $ source ~/.virtualenvs/twoscoops/bin/activate

With virtualenvwrapper, you’d only have to type:

 $ workon twoscoops

We $nd that this makes our lives easier, but it's not an absolute necessity.

Install Django and Other Dependencies Via Pip

!e official Django documentation describes several ways of installing Django. Our
recommended installation method is with pip and requirements $les.

To summarize how this works: a requirements $le is like a grocery list of Python packages
that you want to install. It contains the name and desired version of each package. You use
pip to install packages from this list into your virtual environment.

We cover the setup of and installation from requirements $les in the Settings and
Requirements Files chapter.

Use a Version Control System

Version control systems are also known as revision control or source control. Whenever
you work on any Django project, you should use a version control system to keep track of
your code changes.

Wikipedia has a detailed comparison of different version control systems: http://
en.wikipedia.org/wiki/Comparison_of_revision_control_software

Of all the options, Git and Mercurial seem to be the most popular among Django
developers. Both Git and Mercurial make it easy to create branches and merge changes.

Chapter 2: !e Optimal Django Environment Setup

12

http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software

When using a version control system, it’s important to not only have a local copy of your
code repository, but also to use a code hosting service for backups. For this, we
recommend that you use GitHub (https://github.com/) or Bitbucket (https://
bitbucket.org/).

Summary

!is chapter covered using the same database in development as in production, pip,
virtualenv, and version control systems. !ese are good to have in your toolchest, since
they are commonly used not just in Django, but in the majority of Python software
development.

Chapter 2: !e Optimal Django Environment Setup

13

https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/

How To Lay Out Django Projects

Project layout is one of those areas where core Django developers have differing opinions
about what they consider best practice. In this chapter, we present our approach, which is
one of the most commonly-used ones.

Django 1.5's Default Project Layout

Let's examine the default project layout that gets created when you run startproject and
startapp:

$ django-admin.py startproject mysite
$ cd mysite
$ django-admin.py startapp my_app

Here's the resulting project layout:

mysite/
 manage.py
 my_app/
 __init__.py
 models.py
 tests.py
 views.py
 mysite/
 __init__.py
 settings.py
 urls.py
 wsgi.py

3

Our Preferred Project Layout

We rely on a three-tiered approach that builds on what is generated by the django-
admin.py startproject management command. We place that inside another
directory which serves as the git repository root. Our layouts at the highest level are:

<repository_root>/
 <django_project_root>/
 <configuration_root>/

Let’s go over each level in detail:

Top Level: Repository Root

!e top-level <repository_root>/ directory is the absolute root directory of the
project. In addition to the <django_project_root> we also place other critical
components like the README, docs/ directory, design/ directory, .gitignore,
requirements.txt $les, and other high-level $les that are required for deployment.

Second Level: Django Project Root

Generated by the django-admin.py startproject command, this is what is
traditionally considered the Django project root.

!is directory contains the <configuration_root>, media and static directories, a site-
wide templates directory, as well as Django apps speci$c to your particular project.

TIP: Common Practice Varies Here

Some developers like to make the <django_project_root> the <repository_root>
of the project.

Chapter 3: How To Lay Out Django Projects

16

Third Level: Configuration Root

Also generated by the django-admin.py startproject command, the
<configuration_root> directory is where the settings module and base URLConf
(urls.py) are placed. !is must be a valid Python package (containing an __init__.py
module).

Sample Project Layout

Let's take a common example: a simple rating site. Imagine that we are creating Ice
Cream Ratings, a web application for rating different brands and %avors of ice cream.

!is is how we would lay out such a project:

icratings_project/
 .gitignore
 Makefile
 docs/
 README.rst
 requirements.txt
 icratings/
 manage.py
 media/
 products/
 profiles/
 ratings/
 static/
 templates/
 icratings/
 __init__.py
 settings/
 urls.py
 wsgi.py

Let’s do an in-depth review of this layout. Turn the page to learn more about what's
going on here!

Chapter 3: How To Lay Out Django Projects

17

As you can see, in the icratings_project/ directory, which is the <repository_root>,
we have the following $les and directories. We describe them in the table below:

icratings_project/

File or Directory Purpose

.gitignore Lists the files and directories that Git should ignore. (This file is different
for other version control systems. For example, if you are using Mercurial
instead, you'd have an .hgignore file.)

README.rst
docs/

Developer-facing project documentation. You’ll read more about this in
the Documentation chapter.

Makefile Contains simple deployment tasks and macros. For more complex
deployments you may want to rely on tools like Fabric.

requirements.txt A list of Python packages required by your project, including the Django
1.5 package. You’ll read more about this in the chapter on Django's
Secret Sauce: !ird-Party Packages.

icratings/ The <django_project_root> of the project.

When anyone visits this project, they are provided with a high level view of the project.
We've found this allows us to work easily with each other and even non-developers. For
example, it's not uncommon for designer focused directories to be created in the root
directory.

Many developers like to make this at the same level as our <repository_root>, and
that's perfectly alright with us. We just like to see our projects a little more separated.

On the next page, we'll cover the <django_project_root> directory.

Chapter 3: How To Lay Out Django Projects

18

Inside the icratings_project/icratings directory, at the <django_project_root>, we
place the following $les/directories:

icratings_project/icratings/

File or Directory Purpose

manage.py If you leave this in, don’t modify its contents.

These days, it’s becoming common practice to delete manage.py and use
django-admin.py instead, though. Refer to the Settings and Requirements
Files chapter for more details.

media/ User-generated static media assets such as photos uploaded by users. For
larger projects, this will be hosted on separate static media server(s).

products/ App for managing and displaying ice cream brands.

profiles/ App for managing and displaying user profiles.

ratings/ App for managing user ratings.

static/ Non-user-generated static media assets including CSS, Javascript, and images.
For larger projects, this will be hosted on separate static media server(s).

templates/ Where you put your site-wide Django templates.

icratings/ The <configuration_root> of the project, where project-wide
settings, urls, and wsgi modules are placed (We’ll cover settings file
layout later in Settings and Requirements Files).

Chapter 3: How To Lay Out Django Projects

19

TIP: Conventions For Static Media Directory Names

In the example above, we follow the official Django documentation’s convention of using
static/ for the (non-user-generated) static media directory.

If you $nd this confusing, there’s no harm in calling it assets/ or site_assets/ instead.
Just remember to update your STATICFILES_DIRS setting appropriately.

What About the Virtualenv?

Notice how there is no virtualenv directory anywhere in the project directory or its
subdirectories? !at is completely intentional.

A good place to create the virtualenv for this project would be a separate directory where
you keep all of your virtualenvs for all of your Python projects.

If you’re using virtualenvwrapper, that directory defaults to ~/.virtualenvs/ and the
virtualenv would be located at:

 ~/.virtualenvs/icratings/

TIP: Listing Current Dependencies

If you have trouble determining which versions of dependencies you are using in your
virtualenv, at the command-line you can list your dependencies by typing:

 $ pip freeze

Also, remember, there’s no need to keep the contents of your virtualenv in version control
since it already has all the dependencies captured in requirements.txt, and since you won't
be editing any of the source code $les in your virtualenv directly. Just remember that
requirements.txt does need to remain in version control!

Chapter 3: How To Lay Out Django Projects

20

Using a startproject Template To Generate Our Layout

Want to use our layout with a minimum of fuss? If you have Django 1.5 (or even Django
1.4), you can use the startproject command as follows, all on one line:

$ django-admin.py startproject --template=https://github.com/
 twoscoops/django-twoscoops-project/zipball/master --
 extension=py,rst,html icratings_project

!is will create an icratings_project where you call it, and this follows the layout example
we provided. It also builds settings, requirements, templates in the same pattern as those
items are described later in the book.

Other Alternatives

As we mentioned, there's no one right way when it comes to project layout. It's okay if a
project differs from our layout, just so long as things are either done in a hierarchical
fashion or the locations of elements of the project (docs, templates, apps, settings, etc) are
documented in the root README.rst.

Summary

In this chapter, we covered our approach to basic Django project layout. We provided a
detailed example to give you as much insight as possible into our practices.

Project layout is one of those areas of Django where practices differ widely from
developer to developer and group to group. What works for a small team may not work
for a large team with distributed resources. Whatever layout is chosen should be
documented clearly.

Chapter 3: How To Lay Out Django Projects

21

Fundamentals of Django App Design

It’s not uncommon for new Django developers to become understandably confused by
Django’s usage of the word ‘app’. So before we get into Django app design, it’s very
important that we go over some de$nitions.

A Django project is a web application powered by the Django web framework.

Django apps are small libraries designed to represent a single aspect of a project. A
Django project is made up of many Django apps. Some of those apps are internal to the
project and will never be reused; others are third-party Django packages.

!ird-party Django packages are simply pluggable, reusable Django apps that have been
packaged with the Python packaging tools. We'll begin coverage of them in the chapter
on Django's Secret Sauce: !ird-Party Packages.

The Golden Rule of Django App Design

James Bennett serves as both a Django core developer and its release manager. He taught
us everything we know about good Django app design. We quote him:

“!e art of a creating and maintaining a good Django app is that it should follow
the truncated Unix philosophy according to Douglas McIlroy:

‘Write programs that do one thing and do it well.’”

In essence, each app should be tightly focused on its task. If an app can’t be explained in a
single sentence of moderate length, or you need to say ‘and’ more than once, it probably
means the app is too big and should be broken up.

4

A Practical Example of Apps in a Project

Imagine that we're creating a web application for our $ctional ice cream shop called Two
Scoops. Picture us getting ready to open the shop: polishing the countertops, making the
$rst batches of ice cream, and building the website for our shop.

We'd call the Django project for our shop's website twoscoops_project. !e apps
within our Django project might be something like:

• A flavors app to track all of our ice cream %avors and list them on our website.
• A blog app for the official Two Scoops blog.
• An events app to display listings of our shop's events on our website: events such

as Strawberry Sundae Sundays and Fudgy First Fridays.

Each one of these apps does one particular thing. Yes, the apps relate to each other, and
you could imagine events or blog posts that are centered around certain ice cream %avors,
but it's much better to have three specialized apps than one app that does everything.

In the future, we might extend the site with apps like:

• A shop app to allow us to sell pints by mail order.
• A tickets app, which would handle ticket sales for premium all-you-can-eat ice

cream fests.

Notice how events are kept separate from ticket sales. Rather than expanding the events
app to sell tickets, we create a separate tickets app because most events don't require
tickets, and because event calendars and ticket sales have the potential to contain complex
logic as the site grows.

Eventually, we hope to use the tickets app to sell tickets to Icecreamlandia, the ice cream
theme park $lled with thrill rides that we've always wanted to open.

Did we say that this was a $ctional example? Ahem...well, here's an early concept map of
what we envision for Icecreamlandia:

Chapter 4: Fundamentals of Django App Design

24

What To Name Your Django Apps

Everyone has their own conventions, and some people like to use really colorful names.
We like to use naming systems that are dull, boring, and obvious. In fact, we advocate
doing the following:

When possible keep to single word names like flavors, animals, blog, polls, dreams,
estimates, and finances. A good, obvious app name makes the project easier to
maintain.

As a general rule, the app’s name should be a plural version of the app’s main model, but
there are many good exceptions to this rule, blog being one of the most common ones.

Don't just consider the app's main model, though. You should also consider how you want
your URLs to appear when choosing a name. If you want your site's blog to appear at
http://www.example.com/weblog/, then consider naming your app weblog rather than
blog, posts, or blogposts, even if the main model is Post, to make it easier for you to
see which app corresponds with which part of the site.

Chapter 4: Fundamentals of Django App Design

25

http://www.example.com/blogs/
http://www.example.com/blogs/

Use valid, PEP-8-compliant, importable Python package names: short, all-lowercase
names without numbers, dashes, periods, spaces, or special characters. If needed for
readability, you can use underscores to separate words, although the use of underscores is
discouraged.

When In Doubt, Keep Apps Small

Don’t worry too hard about getting app design perfect. It’s an art, not a science.
Sometimes you have to rewrite them or break them up. !at’s okay.

Try and keep your apps small. Remember, it’s better to have many small apps than to have
a few giant apps.

Summary

!is chapter covered the art of Django app design. Speci$cally, each Django app should
be tightly-focused on its own task, possess a simple, easy-to-remember name. If an app
seems too complex, it should be broken up into smaller apps. Getting app design takes
practice and effort, but it's well worth the effort.

Chapter 4: Fundamentals of Django App Design

26

Settings and Requirements Files

Django 1.5 has over 130 settings that can be controlled in the settings module, most of
which come with default values. Settings are loaded when your server starts up, and
experienced Django developers stay away from trying to change settings without
requiring a restart.

Some best practices we like to follow:

• All settings "les need to be version-controlled. !is is especially true in
production environments, where dates, times, and explanations for settings changes
absolutely must be tracked.

• Don’t repeat yourself. You should inherit from a base settings $le rather than
cutting-and-pasting from one $le to another.

Avoid Non-Versioned Local Settings

We used to advocate the non-versioned local_settings anti-pattern. Now we know
better.

As developers, we have our own necessary settings for development, such as settings for
debug tools which should be disabled (and often not installed to) staging or production
servers.

Furthermore, there are often good reasons to keep speci$c settings out of public or private
code repositories. !e SECRET_KEY setting is the $rst thing that comes to mind, but
API key settings to services like Amazon, Stripe, and other password-type variables need
to be protected.

5

WARNING: Protect Your Secrets!

!e SECRET_KEY setting is used in Django's cryptographic signing functionality, and
needs to be set to a unique, unpredictable setting best kept out of version control.
Running Django with a known SECRET_KEY defeats many of Django's security
protections, which can lead to serious security vulnerabilities. For more details, read
https://docs.djangoproject.com/en/1.5/topics/signing/.

!e same warning for SECRET_KEY also applies to production database passwords, AWS
keys, OAuth tokens, or any other sensitive data that your project needs in order to
operate.

We’ll show how to handle the SECRET_KEY issue in the “Keep Secret Keys Out With
Environment Settings” section.

A common solution is to create local_settings.py modules that are created locally per
server or development machine, and are purposefully kept out of version control.
Developers now make development-speci$c settings changes, including the incorporation
of business logic without the code being tracked in version control. Staging and
deployment servers can have location speci$c settings and logic without them being
tracked in version control.

What could possibly go wrong?!?

Ahem...

• Every machine has untracked code.
• How much hair will you pull out, when after hours of failing to duplicate a

production bug locally, you discover that the problem was custom logic in a
production-only setting?

• How fast will you run from everyone when the ‘bug’ you discovered locally, $xed
and pushed to production was actually caused by customizations you made in your
own local_settings.py module and is now crashing the site?

Chapter 5: Settings and Requirements Files

28

https://docs.djangoproject.com/en/1.5/topics/signing/
https://docs.djangoproject.com/en/1.5/topics/signing/

• Everyone copy/pastes the same local_settings.py module everywhere. Isn’t this a
violation of Don’t Repeat Yourself but on a larger scale?

Let’s take a different approach. Let’s break up development, staging, test, and production
settings into separate components that inherit from a common base $le all tracked by
version control. We'll make sure we do it in such a way that server secrets will remain
secret.

Read on and see how it’s done!

Using Multiple Settings Files

TIP: This is Adapted From "The One True Way"

!e setup described here is based on “!e One True Way”, from Jacob Kaplan-Moss’ !e
Best (and Worst) of Django talk at OSCON 2011 (http://www.slideshare.net/jacobian/the-
best-and-worst-of-django).

Instead of having one settings.py $le, with this setup you have a settings/ directory
containing your settings $les. It will typically contain something like the following:

settings/
 __init__.py
 base.py
 local.py
 staging.py
 test.py

 production.py

WARNING: Requirements + Settings

Each settings module should have its own corresponding requirements $le. We'll cover
this at the end of this chapter in the "Using Multiple Requirements Files" section.

Chapter 5: Settings and Requirements Files

29

http://www.slideshare.net/jacobian/the-best-and-worst-of-django
http://www.slideshare.net/jacobian/the-best-and-worst-of-django
http://www.slideshare.net/jacobian/the-best-and-worst-of-django
http://www.slideshare.net/jacobian/the-best-and-worst-of-django

Settings file Purpose

base.py Settings common to all instances of the project.

local.py This is the settings file that you use when you’re working on the project locally.
Local development-specific settings include DEBUG mode, log level, and
activation of developer tools like django-debug-toolbar. Developers
sometimes name this file dev.py.

staging.py Staging version for running a semi-private version of the site on a production
server. This is where managers and clients should be looking before your work
is moved to production.

test.py Settings for running tests including test runners, in-memory database
definitions, and log settings.

production.py This is the settings file used by your live production server(s). That is, the
server(s) that host the real live website. This file contains production-level
settings only. It is sometimes called prod.py.

TIP: Multiple Files with Continuous Integration Servers

You'll also want to have a ci.py module containing that server's settings.

Similarly, if it's a large project and you have other special-purpose servers, you might have
custom settings $les for each of them.

Let's take a look at how to use the shell and runserver management commands with
this setup. You’ll have to use the --settings command line option, so you’ll be entering
the following at the command-line.

To start the Python interactive interpreter with Django, using your local.py settings $le:

$ django-admin.py shell --settings=twoscoops.settings.local

To run the local development server with your local.py settings $le:

$ django-admin.py runserver --settings=twoscoops.settings.local

Chapter 5: Settings and Requirements Files

30

TIP: DJANGO_SETTINGS_MODULE

A great alternative to using the --settings command line option everywhere is to set the
DJANGO_SETTINGS_MODULE environment variable to your desired settings module path.
You'd have to set DJANGO_SETTINGS_MODULE to the corresponding settings module for
each environment, of course.

For the settings setup that we just described, here are the values to use with the
‑‑settings command line option or the DJANGO_SETTINGS_MODULE environment
variable:

Environment Option To Use With --settings
(or DJANGO_SETTINGS_MODULE Value)

Your local development server twoscoops.settings.local

Your staging server twoscoops.settings.staging

Your test server twoscoops.settings.test

Your production server twoscoops.settings.production

Notice How We Use django-admin.py Here

As described in the official Django documentation, you should use django-admin.py

rather than manage.py when working with multiple settings $les: https://
docs.djangoproject.com/en/1.5/ref/django-admin/

If you run into "command not found" issues, see Appendix B: Troubleshooting for tips on
how to resolve your issues.

A Development Settings Example

As mentioned earlier, we need settings con$gured for development, such as setting the
email host to localhost, setting the project to run in DEBUG mode, and setting other

Chapter 5: Settings and Requirements Files

31

https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/
https://docs.djangoproject.com/en/1.5/ref/django-admin/

con$guration options that are used solely for development purposes. We place
development settings like the following into settings/local.py:

settings/local.py
from .base import *

DEBUG = True
TEMPLATE_DEBUG = DEBUG

EMAIL_HOST = 'localhost'
EMAIL_PORT = 1025

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'twoscoops',
 'USER': '',
 'PASSWORD': '',
 'HOST': 'localhost',
 'PORT': '',
 }
}

INSTALLED_APPS += ('debug_toolbar',)
INTERNAL_IPS = ('127.0.0.1',)
MIDDLEWARE_CLASSES += \
 ('debug_toolbar.middleware.DebugToolbarMiddleware',)

Now try it out at the command-line with:

$ django-admin.py runserver --settings=twoscoops.settings.local

Open http://127.0.0.1:8000 and enjoy your development settings, ready to go into version
control! You and other developers will be sharing the same development settings $les,
which for shared projects, is awesome.

Chapter 5: Settings and Requirements Files

32

http://127.0.0.1:8000
http://127.0.0.1:8000
http://127.0.0.1:8000
http://127.0.0.1:8000

Yet there’s another advantage: No more ‘if DEBUG’ or ‘if not DEBUG’ logic to copy/paste
around between projects. Settings just got a whole lot simpler!

Multiple Development Settings

Sometimes we’re working on a large project where different developers need different
settings, and sharing the same dev.py settings $le with teammates won’t do.

Well, it’s still better tracking these settings in version control than relying on everyone
customizing the same dev.py module to their own tastes. A nice way to do this is with
multiple dev settings $les, e.g. dev_audreyr.py and dev_pydanny.py:

settings/dev_pydanny.py
from .local import *

Set short cache timeout
CACHE_TIMEOUT = 30

Why? It’s not only good to keep all your own settings $les in version control, but it’s also
good to be able to see your teammates’ dev settings $les. !at way, you can tell if
someone’s missing a vital or helpful setting in their local development setup, and you can
make sure that everyone’s local settings $les are synchronized.

Here is what our projects frequently use for settings layout:

settings/
 __init__.py
 base.py
 dev_audreyr.py
 dev_pydanny.py
 local.py
 staging.py
 test.py
 production.py

Chapter 5: Settings and Requirements Files

33

Keep Secret Keys Out With Environment Variables

One of the causes of the local_settings anti-pattern is that putting SECRET_KEY, AWS
keys, API keys, or server-speci$c values into settings $les has problems:

• Secrets often should be just that: secret! Keeping them in version control means
that everyone with repository access has access to them.

• Secret keys are con$guration values, not code.
• Platforms-as-a-service usually don’t give you the ability to edit code on individual

servers. Even if they allow it, it’s a terribly dangerous practice.

To resolve this, our answer is to use environment variables.

Every operating system supported by Django (and Python) provides the easy capability to
create environment variables.

Here are the bene$ts of using environment variables for secret keys:

• Keeping secrets out of settings allows you to store every settings $le in version
control without hesitation. All of your Python code really should be stored in
version control, including your settings.

• Instead of each developer maintaining their own copy-and-pasted version of
local_settings.py.example for development, everyone shares the same version-
controlled settings/local.py.

• System administrators can rapidly deploy the project without having to modify
$les containing Python code.

• Most platforms-as-a-service recommend the use of environment variables for
con$guration and have built-in features for setting and managing them.

A Caution Before Using Environment Variables for Secrets

Before you begin setting environment variables, you should have the following:

• A way to manage the secret information you are going to store.

Chapter 5: Settings and Requirements Files

34

• A good understanding of how bash settings work on servers, or a willingness to
have your project hosted by a platform-as-a-service.

How To Set Environment Variables Locally

On Mac and many Linux distributions that use bash for the shell, you can add lines like
the following to your .bashrc, .bash_pro$le, or .pro$le:

export SOME_SECRET_KEY=1c3-cr3am-15-yummy
export AUDREY_FREEZER_KEY=y34h-r1ght-d0nt-t0uch-my-1c3-cr34m

On Windows systems, it's a bit trickier. You can set them one-by-one at the command
line (cmd.exe) in a persistent way with the setx command, but you'll have to close and
reopen your command prompt for them to go into effect:

> setx SOME_SECRET_KEY 1c3-cr3am-15-yummy

For more information, see http://en.wikipedia.org/wiki/Environment_variable.

How To Set Environment Variables in Production

If you're using your own servers, your exact practices will differ depending on the tools
you're using and the complexity of your setup. For the simplest 1-server setup, it's just a
matter of appending to your .bashrc $le as described above. But if you're using scripts or
tools for automated server provisioning and deployment, your approach may be more
complex. Check the documentation for your deployment tools for more information.

If your Django project is deployed via a platform-as-a-service, check the documentation
for speci$c instructions. We've included Gondor.io, Heroku, and dotCloud instructions
here so that you can see that it's similar for different platform-as-a-service options.

On Gondor.io, you set environment variables with the following command, executed
from your development machine:

$ gondor env:set SOME_SECRET_KEY=1c3-cr3am-15-yummy

Chapter 5: Settings and Requirements Files

35

http://en.wikipedia.org/wiki/Environment_variable
http://en.wikipedia.org/wiki/Environment_variable

On Heroku, you set environment variables with the following command, executed from
your development machine:

$ heroku config:add SOME_SECRET_KEY=1c3-cr3am-15-yummy

On dotCloud, you set environment variables with the following command, executed from
your development machine

$ dotcloud env set SOME_SECRET_KEY=1c3-cr3am-15-yummy

To see how you access environment variables from the Python side, open up a new
Python prompt and type:

>>> import os
>>> os.environ['SOME_SECRET_KEY']
'1c3-cr3am-15-yummy'

To access environment variables from one of your settings $les, you can do something like
this:

Top of settings/production.py
import os
SOME_SECRET_KEY = os.environ["SOME_SECRET_KEY"]

!is snippet simply gets the value of the SOME_SECRET_KEY environment variable from
the operating system and saves it to a Python variable called SOME_SECRET_KEY.

Following this pattern means all code can remain in version control, and all secrets remain
safe.

Handling Missing Secret Key Exceptions

In the above implementation, if the SECRET_KEY isn’t available, it will throw a
KeyError, making it impossible to start the project. !at’s great, but a KeyError doesn’t
tell you that much about what’s actually wrong. Without a more helpful error message,

Chapter 5: Settings and Requirements Files

36

this can be hard to debug, especially under the pressure of deploying to servers while users
are waiting and your ice cream is melting.

Here's a useful code snippet that makes it easier to troubleshoot those missing
environment variables. If you're using our recommended environment variable secrets
approach, you'll want to add this to your settings/base.py $le:

settings/base.py
import os

Normally you should not import ANYTHING from Django directly
into your settings, but ImproperlyConfigured is an exception.
from django.core.exceptions import ImproperlyConfigured

def get_env_variable(var_name):
 """ Get the environment variable or return exception """
 try:
 return os.environ[var_name]
 except KeyError:
 error_msg = "Set the %s env variable" % var_name
 raise ImproperlyConfigured(error_msg)

!en, in any of your settings $les, you can load secret keys from environment variables as
follows:

SOME_SECRET_KEY = get_env_variable("SOME_SECRET_KEY")

Now, if you don’t have SOME_SECRET_KEY set as an environment variable, you get a
traceback that ends with a useful error message like this:

django.core.exceptions.ImproperlyConfigured: Set the SOME_SECRET_KEY environment variable.

Chapter 5: Settings and Requirements Files

37

WARNING: Don't Import Anything From Django Into Settings Modules!

!is can have many unpredictable side effects, so avoid any sort of import of Django
components into your settings.

ImproperlyConfigured is the exception because it's the official Django exception for...
well... improperly con$gured projects. And just to be helpful we add the name of the
problem setting to the error message.

Using Multiple Requirements Files

Finally, there’s one more thing you need to know about the multiple settings $les setup.
It’s good practice for each settings $le to have its own corresponding requirements $le.
!is means we’re only installing what is required on each server.

To follow this pattern, recommended to us by Jeff Triplett, $rst create a requirements/
directory in the <repo_root>. !en create ‘.txt’ $les that match the contents of your
settings directory. !e results should look something like:

requirements/
 _base.txt
 local.txt
 staging.txt
 production.txt

In the _base.txt $le, place the dependencies used in all environments. For example, you
might have something like the following in there:

https://www.djangoproject.com/download/1.5c1/tarball/
psycopg2==2.4.5
South==0.7.6

Your local.txt $le should have dependencies used for local development, such as:

Chapter 5: Settings and Requirements Files

38

-r _base.txt # includes the _base.txt requirements file

coverage==3.6
django-discover-runner==0.2.2
django-debug-toolbar==0.9.4

!e needs of a continuous integration server might prompt the following for a ci.txt $le:

-r _base.txt # includes the _base.txt requirements file

coverage==3.6
django-discover-runner==0.2.2
django-jenkins==0.13.0

Production installations should be close to what is used in other locations, so
production.txt commonly just calls _base.txt:

-r _base.txt # includes the _base.txt requirements file

Installing From Multiple Requirements Files

For local development:

$ pip install -r requirements/local.txt

For production:

$ pip install -r requirements/production.txt

TIP: Don't Know What Dependencies You Installed?

You can use pip to output a list of packages that are currently installed in your Python
environment. From the command-line, type:

$ pip freeze

Chapter 5: Settings and Requirements Files

39

Using multiple requirements files with Platforms as a Service (PaaS)

See the section on "Using a Platform as a Service" in the chapter on Deploying Django
Projects.

Handling File Paths in Settings

If you switch to the multiple settings setup and get new $lepath errors to things like
templates and media, don't be alarmed. !is section will help you resolve these errors.

We humbly beseech the reader to never hardcode $le paths in Django settings $les. !is
is really bad:

settings/base.py

Configuring MEDIA_ROOT
DON’T DO THIS! Hardcoded to just one user's preferences
MEDIA_ROOT = "/Users/pydanny/code/twoscoops_project/media"

Configuring STATIC_ROOT
DON’T DO THIS! Hardcoded to just one user's preferences
STATIC_ROOT = "/Users/pydanny/code/twoscoops_project/
collected_static"

Configuring TEMPLATE_DIRS
DON’T DO THIS! Hardcoded to just one user's preferences
TEMPLATE_DIRS = (
 "/Users/pydanny/code/twoscoops_project/templates",
)

!e above code represents a common pitfall called hardcoding. !e above code, called a
#xed path, is bad because as far as you know, ‘pydanny’ (Daniel Greenfeld) is the only
person who has set up their computer to match this path structure. Anyone else trying to
use this example will see their project break, forcing them to either change their directory
structure (unlikely) or change the settings module to match their preference (causing
problems for everyone else including pydanny).

Chapter 5: Settings and Requirements Files

40

Don’t hardcode your paths!

To $x the path issue, we dynamically set a project root variable intuitively named
PROJECT_ROOT at the top of the base settings module. Since PROJECT_ROOT is
determined in relation to the location of base.py, your project can be run from any
location on any development computer or server.

We $nd the cleanest way to set PROJECT_ROOT is with Unipath (http://pypi.python.org/
pypi/Unipath/), a Python package that does elegant, clean path calculations:

At the top of settings/base.py
from unipath import Path

PROJECT_ROOT = Path(__file__).ancestor(3)

MEDIA_ROOT = PROJECT_ROOT.child('media')
STATIC_ROOT = PROJECT_ROOT.child('static')
STATICFILES_DIRS = (
 PROJECT_ROOT.child('assets'),
)
TEMPLATE_DIRS = (
 PROJECT_ROOT.child('templates'),
)

If you really want to set your PROJECT_ROOT with the Python standard library’s os.path
module, though, this is one way to do it in a way that will account for paths:

At the top of settings/base.py
from os.path import join, abspath, dirname

here = lambda *x: join(abspath(dirname(__file__)), *x)
PROJECT_ROOT = here("..", "..")
root = lambda *x: join(abspath(PROJECT_ROOT), *x)

Configuring MEDIA_ROOT

Chapter 5: Settings and Requirements Files

41

http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/
http://pypi.python.org/pypi/Unipath/

MEDIA_ROOT = root('media')

Configuring STATIC_ROOT
STATIC_ROOT = root('collected_static')

Additional locations of static files
STATICFILES_DIRS = (
 root('assets'),
)

Configuring TEMPLATE_DIRS
TEMPLATE_DIRS = (
 root('templates'),
)

With your various path settings dependent on PROJECT_ROOT, your $lepath settings
should work, which means your templates and media should be loading without error.

TIP: How different are your settings from the Django defaults?

If you want to know how things in your project differ from Django’s defaults, use the
diffsettings management command.

Chapter 5: Settings and Requirements Files

42

Summary

Remember, everything except for critical security related values ought to be tracked in
version control.

Any project that's destined for a real live production server is bound to need multiple
settings and requirements $les. Even beginners to Django need this kind of settings/
requirements $le setup once their projects are ready to leave the original development
machine. We provide our solution since it works well for both beginning and advanced
developers.

!e same thing applies to requirements $les. Working with untracked dependency
differences increases risk as much as untracked settings.

Chapter 5: Settings and Requirements Files

43

Database/Model Best Practices

Models are the foundation of most Django projects. Racing to write Django models
without thinking things through can lead to problems down the road.

All too frequently we developers rush into adding or modifying models without
considering the rami$cations of what we are doing. !e quick $x or sloppy "temporary"
design decision that we toss into our code base now can hurt us in the months or years to
come, forcing crazy workarounds or corrupting existing data.

So keep this in mind when adding new models in Django or modifying existing ones.
Take your time to think things through, and design your foundation to be as strong and
sound as possible.

THIRD-PARTY PACKAGES: Our Picks For Working With Models

Here's a quick list of the model-related Django packages that we use in practically every
project.

•South for database migrations. South is so commonplace these days that using it
has become a de facto best practice. We'll cover tips for working with South later in
this chapter.

•django-model-utils to handle common patterns like TimeStampedModel.
•django-extensions has a powerful management command called ‘shell_plus’ which

autoloads the model classes for all installed apps. !e downside of this library is
that it includes a lot of other functionality which breaks from our preference for
small, focused apps.

6

Basics

Break Up Apps With Too Many Models

If there are 20+ models in a single app, think about ways to break it down into smaller
apps, as it probably means your app is doing too much. In practice, we like to lower this
number to no more than $ve models per app.

Don't Drop Down to Raw SQL Until It's Necessary

Most of the queries we write are simple. !e ORM provides a great productivity shortcut:
writing decent SQL that comes complete with validation and security. If you can write
your query easily with the ORM, then take advantage of it!

It's also good to keep in mind that if you ever release one of your Django apps as a third-
party package, using raw SQL will decrease the portability of the work.

Finally, in the rare event that the data has to be migrated from one database to another,
any database-speci$c features that you use in your SQL queries will complicate the
migration.

So when should you actually write raw SQL? If expressing your query as raw SQL would
drastically simplify your Python code or the SQL generated by the ORM, then go ahead
and do it. For example, if you're chaining a number of QuerySet operations that each
operate on a large data set, there may be a more efficient way to write it as raw SQL.

TIP: Malcolm Tredinnick's Advice On Writing SQL in Django

Django core developer Malcolm Tredinnick says (paraphrased): “!e ORM can do many
wonderful things, but sometimes SQL is the right answer. !e rough policy for the
Django ORM is that it’s a storage layer that happens to use SQL to implement
functionality. If you need to write advanced SQL you should write it. I would balance that
by cautioning against overuse of the raw() and extra() methods.”

Chapter 6: Database/Model Best Practices

46

TIP: Jacob Kaplan-Moss' Advice On Writing SQL in Django

Django BDFL Jacob Kaplan-Moss says (paraphrased): "If it's easier to write a query
using SQL than Django, then do it. extra() is nasty and should be avoided; raw() is
great and should be used where appropriate."

Add Indexes As Needed

While adding db_index=True to any model $eld is easy, understanding when it should
be done takes a bit of judgement. Our preference is to start without indexes and add them
as needed.

When to consider adding indexes:

• !e index is used frequently, as in 10-25% of all queries.
• !ere is real data, or something that approximates real data, so we can analyze the

results of indexing.
• We can run tests to determine if indexing generates an improvement in results.

When using PostgreSQL, pg_stat_activity tells us what indexes are actually being
used.

Once a project goes live, the chapter on Finding and Reducing Bottlenecks has information
on index analysis.

Be Careful With Model Inheritance

Model inheritance in Django is a tricky subject. Django provides three ways to do model
inheritance: abstract base classes, multi-table inheritance, and proxy models.

WARNING: Django Abstract Base Classes != Python Abstract Base Classes

Don't confuse Django abstract base classes with the abstract base classes in the Python
standard library's abc module, as they have very different purposes and behaviors.

Chapter 6: Database/Model Best Practices

47

Here are the pros and cons of the three model inheritance styles. To give a complete
comparison, we also include the option of using no model inheritance to begin with:

Model Inheritance Style Pros Cons

No model inheritance: if models
have a common field, give both
models that field.

Makes it easiest to understand at a
glance how Django models map to
database tables.

If there are a lot of fields duplicated
across models, this can be hard to
maintain.

Abstract base classes: tables are
only created for derived models.

Having the common fields in an
abstract parent class saves us from
typing them more than once.

We don’t get the overhead of extra
tables and joins that are incurred
from multi-table inheritance.

We cannot use the parent class in
isolation.

Multi-table inheritance: tables
are created for both parent and
child. An implied
OneToOneField links
parent and child.

Gives each model its own table, so
that we can query either parent or
child model.

Also gives us the ability to get to a
child object from a parent object:
parent.child

Adds substantial overhead since each
query on a child table requires joins
with all parent tables.

We strongly recommend against
using multi-table inheritance. See the
warning below.

Proxy models: a table is only
created for the original model.

Allows us to have an alias of a
model with different Python
behavior.

We cannot change the model’s fields.

WARNING: Avoid Multi-Table Inheritance

Multi-table inheritance, sometimes called ‘concrete inheritance’, is considered by the
authors and many other developers to be a bad thing. We strongly recommend against
using it.

Here are some simple rules of thumb for know which type of inheritance to use and
when:

Chapter 6: Database/Model Best Practices

48

• If the overlap between models is minimal (e.g. you only have a couple of models
that share one or two obvious $elds), there might not be a need for model
inheritance. Just add the $elds to both models.

• If there is enough overlap between models that maintenance of models’ repeated
$elds causes confusion and inadvertent mistakes, then in most cases the code
should be refactored so that the common $elds are in an abstract base class.

• Proxy models are an occasionally-useful convenience feature, but they’re very
different from the other two model inheritance styles.

• At all costs, everyone should avoid multi-table inheritance (see warning above)
since it adds both confusion and substantial overhead. Instead of multi-table
inheritance, use explicit OneToOneFields and ForeignKeys between models so
you can control when joins are traversed.

Model Inheritance in Practice: The TimeStampedModel

It’s very common in Django projects to include a created and modified timestamp
$eld on all your models. We could manually add those $elds to each and every model, but
that's a lot of work and adds the risk of human error. A better solution is to write a
TimeStampedModel to do the work for us:

Code taken with permission from Carl Meyer's
very useful django-model-utils
from django.db import models
from django.utils.timezone import now
from django.utils.translation import ugettext_lazy as _

class AutoCreatedField(models.DateTimeField):
 """
 A DateTimeField that automatically populates itself at
 object creation.

 By default, sets editable=False, default=now

 """
 def __init__(self, *args, **kwargs):

Chapter 6: Database/Model Best Practices

49

 kwargs.setdefault('editable', False)
 kwargs.setdefault('default', now)
 super(AutoCreatedField, self).__init__(*args, **kwargs)

class AutoLastModifiedField(AutoCreatedField):
 """
 A DateTimeField that updates itself on each save() of
 the model.

 By default, sets editable=False and default=now.

 """
 def pre_save(self, model_instance, add):
 value = now()
 setattr(model_instance, self.attname, value)
 return value

class TimeStampedModel(models.Model):
 """
 An abstract base class model that provides self-
 updating ``created`` and ``modified`` fields.

 """
 created = AutoCreatedField(_('created'))
 modified = AutoLastModifiedField(_('modified'))

 class Meta:
 abstract = True

Take careful note of the very last two lines in the example, which turn our example into
an abstract base class:

 class Meta:
 abstract = True

Chapter 6: Database/Model Best Practices

50

By de$ning TimeStampedModel as an abstract base class when we de$ne a new class
that inherits from it, Django doesn’t create a model_utils.time_stamped_model table
when syncdb is run.

Let’s put it to the test:

flavors/models.py
from django.db import models

from model_utils import TimeStampedModel

class Flavor(TimeStampedModel):
 title = models.CharField(max_length=200)

!is only creates one table: the flavors_flavor database table. !at's exactly the
behavior we wanted.

On the other hand, if TimeStampedModel was not an abstract base class (i.e. a concrete
base class), it would also create a model_utils_time_stamped_model table. Not only
that, but all of its subclasses including Flavor would lack the $elds and have implicit
foreign keys back to TimeStampedModel just to handle created/modi$ed timestamps.
Any reference to Flavor that reads or writes to the TimeStampedModel would impact
two tables. (!ank goodness it's abstract!)

Remember, concrete inheritance has the potential to become a nasty performance
bottleneck. !is is even more true when you subclass a concrete model class multiple
times.

Further reading:

• https://docs.djangoproject.com/en/dev/topics/db/models/#model-inheritance

Chapter 6: Database/Model Best Practices

51

https://docs.djangoproject.com/en/dev/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/dev/topics/db/models/#model-inheritance

Use South for Migrations

South is one of those rare third-party packages that almost everyone in the Django
community uses these days. South is a tool for managing data and schema migrations.
Get to know South’s features well.

A few South tips:

• As soon as a new app or model is created, take that extra minute to create the
initial South migrations for that new app or model.

• Write reverse migrations and test them! You can’t always write perfect round-trips,
but not being able to back up to an earlier state really hurts bug tracking and
sometimes deployment in larger projects.

• While working on a Django app, %atten migration(s) to just one before pushing
the new code to production. In other words, commit “just enough migrations” to get
the job done.

• Never remove migration code that's already in production.
• If a project has tables with millions of rows in them, do extensive tests against data

of that size on staging servers before running a South migration on a production
server. Migrations on real data can take much, much, much more time than
anticipated.

WARNING: Don't Remove Migrations From Existing Projects In Production

We're reiterating the bullet on removing migrations from existing projects in production.
Regardless of any justi$cations given for removing migrations, doing so removes the
history of the project at a number of levels. Which means any problems that may be
caused by deletion of migrations may not be detectable for some time.

Django Model Design

One of the most difficult topics that receives the least amount of attention is how to
design good Django models.

Chapter 6: Database/Model Best Practices

52

How do you design for performance without optimizing prematurely? Let’s explore some
strategies here.

Start Normalized

We suggest that readers of this book need to be familiar with database normalization. If
you are unfamiliar with database normalization, make it your responsibility to gain an
understanding, as working with Django projects using Models requires a working
knowledge. Since detailed explanation of the subject is outside the scope of this book, we
recommend the following resources:

• http://en.wikipedia.org/wiki/Database_normalization
• http://en.wikibooks.org/wiki/Relational_Database_Design/Normalization

When you’re designing your Django models, always start off normalized. Take the time to
make sure that no model should contain data already stored in another model.

At this stage, use relationship $elds liberally. Don’t denormalize prematurely. You want to
have a good sense of the shape of your data.

Cache Before Denormalizing

Often, setting up caching in the right places can save you the trouble of denormalizing
your models.

Denormalize Only If Absolutely Needed

It can be tempting, especially for those new to the concepts of data normalization, to
denormalize prematurely. Don’t do it! Denormalization may seem like a panacea for what
causes problems in a project. However it’s a tricky process that risks adding complexity to
your project and dramatically raises the risk of losing data.

Please, please, please explore caching before denormalization.

Chapter 6: Database/Model Best Practices

53

http://en.wikipedia.org/wiki/Database_normalization
http://en.wikipedia.org/wiki/Database_normalization
http://en.wikibooks.org/wiki/Relational_Database_Design/Normalization
http://en.wikibooks.org/wiki/Relational_Database_Design/Normalization

When a project has reached the limits of what the Finding and Reducing Bottlenecks
chapter can address, that’s when research into the concepts and patterns of database
denormalization should begin.

When To Use Null and Blank

When de$ning a model $eld, you have the ability to set the
null=True and the blank=True options. By default, they are
False.

Knowing when to use these options is a common source of
confusion for developers.

We’ve put this chart together to serve as a guide for standard
usage of these model $eld arguments.

Field Type Setting null=True Setting blank=True

CharField, TextField,
SlugField, EmailField,
CommaSeparatedInteger-
Field, etc.

Don’t do this.

Django’s convention is to store
empty values as the empty
string, and to always retrieve
NULL or empty values as the
empty string for consistency.

Okay.

Do this if you want the corresponding
form widget to accept empty values.

If you set this, empty values get stored
as empty strings in the database.

BooleanField Don’t do this.

Use
NullBooleanField
instead.

Don’t do this.

IntegerField,
FloatField,
DecimalField, etc.

Okay if you want to be able to
set the value to NULL in the
database.

Okay if you want the corresponding
form widget to accept empty values. If
so, you will also want to set
null=True.

Chapter 6: Database/Model Best Practices

54

Field Type Setting null=True Setting blank=True

DateTimeField,
DateField, TimeField,
etc.

Okay if you want to be able to
set the value to NULL in the
database.

Okay if you want the corresponding
form widget to accept empty values, or
if you are using auto_now or
auto_now_add. If so, you will
also want to set null=True.

ForeignKey,
ManyToManyField,
OneToOneField

Okay if you want to be able to
set the value to NULL in the
database.

Okay if you want the corresponding
form widget (e.g. the select box) to
accept empty values.

IPAddressField Okay if you want to be able to
set the value to NULL in the
database.

Not recommended. In PostgreSQL,
the native inet type is used here and
cannot be set to the empty string.
(Other database backends use char or
varchar for this, though.)

WARNING: IPAddressField in PostgreSQL

At the time of this writing, there is an open ticket (#5622) for:

 Empty ipaddress raises an error (invalid input syntax for type inet: "") [sic]

Until this is resolved, we recommend using null=True, blank=False for
IPAddressField.

See https://code.djangoproject.com/ticket/5622 for more details.

Model Managers

Every time we use the Django ORM to query a model, we are using an interface called a
model manager to interact with the database. Which means model managers are said to
act on the full set of all possible instances of this model class (all the data in the table) to
restrict the ones you want to work with. Django provides a default model manager for
each model class, but we can de$ne our own.

Chapter 6: Database/Model Best Practices

55

https://code.djangoproject.com/ticket/5622
https://code.djangoproject.com/ticket/5622

Here's a simple example of a custom model manager:

from django.db import models
from django.utils import timezone

class PublishedManager(models.Manager):

 def published(self, *args, **kwargs):
 qs = self.get_query_set().filter(*args, **kwargs)
 return qs.filter(pub_date__lte=timezone.now())

class FlavorReview(models.Model):
 review = models.CharField(max_length=255)
 pub_date = models.DateTimeField()

 # add our custom model manager
 objects = PublishedManager()

Now, if we $rst want to display a count of all of the ice cream %avor reviews, and then a
count of just the published ones, we can do the following:

>>> from reviews.models import FlavorReview
>>> FlavorReview.objects.count()
35
>>> FlavorReview.objects.published().count()
31

Easy, right? Yet wouldn’t it make more sense if you just added a second model manager?
!at way you could have something like:

>>> from reviews.models import FlavorReview
>>> FlavorReview.objects.filter().count()
35
>>> FlavorReview.published.filter().count()
31

Chapter 6: Database/Model Best Practices

56

On the surface, replacing the default models manager seems like the obvious thing to do.
Unfortunately, our experiences in real project development makes us very careful when we
use this method.

First, when you use model inheritance, what manager that is applied to the child model
depends on if the parent model class is abstract or not. Children of abstract base classes
receive their parent’s model manager, and children of concrete base classes do not.

Second, and this represents unusual behavior for Python, the $rst manager applied to a
model class is the one that Django treats as the default. !is can cause what seems to be
unpredictable behavior in your project, since the QuerySets returned by your model’s
manager might not be what you expect.

Which means, in your model class, always manually de$ne objects =

models.Manager() above any custom model manager. Django unfortunately breaks the
normal Python pattern by assigning the $rst model manager de$ned in a model class to
be the default.

WARNING: Know the Model Manager Order of Operations

Always set objects = models.Manager() above any custom model manager that has a
new name.

Additional reading:

• https://docs.djangoproject.com/en/1.5/topics/db/managers/

Summary

Models are the foundation for most Django projects, so take the time to design them
thoughtfully.

Start normalized, and only denormalize if you've already explored other options
thoroughly. You may be able to simplify slow, complex queries by dropping down to raw

Chapter 6: Database/Model Best Practices

57

https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/
https://docs.djangoproject.com/en/1.5/topics/db/managers/

SQL, or you may be able to address your performance issues with caching in the right
places.

Don't forget to use indexes. Add indexes when you have a better feel for how you're using
data throughout your project.

If you decide to use model inheritance, inherit from abstract base classes rather than
concrete models.

Watch out for the "gotchas" when using the null=True and blank=True model $eld
options. Refer to our handy table for guidance.

Finally, use South to manage your data and schema migrations. It's a fantastic tool. You
may also $nd django-model-utils and django-extensions pretty handy.

Our next chapter is all about views.

Chapter 6: Database/Model Best Practices

58

Function- and Class-Based Views

Both function-based views (FBVs) and class-based views (CBVs) are in Django 1.5. We
recommend that you understand how to use both types of views.

TIP: Function-Based Views Are Not Deprecated

!ere was a bit of confusion about this due to the wording of the release notes and
incorrect information on some blog posts. To clarify:

1. Function-based views are still in Django 1.5. No plans exist for removing function-
based views from Django. !ey are in active use, and they are great to have when you
need them.

2. Function-based generic views such as direct_to_template and object_list were
deprecated in Django 1.3 and removed in 1.5.

When to use FBVs or CBVs

Whenever you implement a view, think about whether it would make more sense to
implement as a FBV or as a CBV. Some views are best implemented as CBVs, and others
are best implemented as FBVs.

If you aren't sure which method to choose, on the next page we've included a %ow chart
that might be of assistance. !e %owchart follows our preference for using CBVs over
FBVs.

7

We err on the side of using CBVs for most views, using FBVs to implement only the
complicated views that would be a pain to implement with CBVs.

TIP: Alternative Approach - Staying With FBVs

Some developers prefer is to err on the side of using FBVs for most views and CBVs only
for views that need to be subclassed. !at strategy is $ne as well.

Keep View Logic Out of URLConfs

Responses are routed to views via URLConfs, in a module normally named urls.py. Per
Django’s URL design philosophy (https://docs.djangoproject.com/en/1.5/misc/design-
philosophies/#url-design), the coupling of views with urls is loose, allows for in$nite
%exibility, and encourages best practices.

Chapter 7: Function- and Class-Based Views

60

https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.5/misc/design-philosophies/#url-design

And yet, this is what Daniel feels like yelling every time he sees complex urls.py $les:

“I didn’t write J2EE XML and Zope ZCML con#guration #les back in the day just so you darn
kids could stick logic into Django url #les!”

Django has a wonderfully simple way of de$ning URL routes. Like everything else we
bring up in this book, that simplicity is to be honored and respected. !e rules of thumb
are obvious:

1. !e views modules should contain view logic.
2. !e URL modules should contain URL logic.

Ever see code like this? Perhaps in the Django documentation?

Similar to the Polls example
from django.conf.urls import patterns, url
from django.views.generic import DetailView

from tastings.models import Tasting

urlpatterns = patterns('',
 url(r'^(?P<pk>\d+)/$',
 DetailView.as_view(
 model=Tasting,
 template_name='tastings/detail.html'),
 name='detail'),
 url(r'^(?P<pk>\d+)/results/$',
 DetailView.as_view(
 model=Tasting,
 template_name='tastings/results.html'),
 name='results'),
)

At a glance this code might seem okay, but we argue that it violates the Django design
philosophies:

Chapter 7: Function- and Class-Based Views

61

• Loose coupling between views, urls, and models has been replaced with tight
coupling, meaning you can never reuse the view de$nitions.

• Don’t Repeat Yourself is violated by using the same/similar arguments repeatedly
between CBVs .

• In$nite Flexibility (for URLs) is destroyed. Class inheritance, the primary
advantage of Class Based Views, is impossible using this anti-pattern.

• Lots of other issues: What happens when you have to add in authentication? And
what about authorization? Are you going to wrap each URLConf view with two or
more decorators? Putting your view code into your URLConfs quickly turns your
URLConfs into an unmaintainable mess.

In fact, we've heard from developers that seeing CBVs de$ned in URLConfs this way
was part of why they steered clear of using them.

Alright, enough griping. We'll show our preference on the next page.

Stick To Loose Coupling in URLConfs

Here is how to create URLconfs that avoid the problems we mentioned on the previous
page. First, we write the views:

tastings/views.py
from django.views.generic import DetailView

from .models import Tasting

class TasteDetailView(DetailView):
 model = Tasting

class TasteResultsView(TasteDetailView):
 template_name = 'tastetests/results.html'

!en we de$ne the urls:

tastings/urls.py
from django.conf.urls import patterns, url

Chapter 7: Function- and Class-Based Views

62

from .views import TasteDetailView, TasteResultsView

urlpatterns = patterns('',
 url(
 regex=r'^(?P<pk>\d+)/$',
 view=TasteDetailView.as_view(),
 name='detail'
),
 url(
 regex=r'^(?P<pk>\d+)/results/$',
 view=TasteResultsView.as_view(),
 name='results'
),
)

Your $rst response to my version of this should go something like, “Are you sure this is a
good idea? You changed things to use two #les AND more lines of code! How is this better?”

Well, this is the way we do it. Here are some of the reasons we $nd it so useful:

• Don’t Repeat Yourself: No argument or attribute is repeated between views.
• Loose coupling: Since when did URLConfs become a substitute for views? We

should be able to call our views from one or more URLConfs, and our approach
lets us do just that. Views should be views and URLConfs should be URLConfs.

• URLConfs should do one thing and do it well: Related to our previous bullet, our
URLConf is now focused primarily on just one thing: URL routing. Which means
we aren’t tracking down view logic across both views and URLConfs, we just look
in our views.

• Our views bene"t from being class-based: Our views, by having a formal
de$nition in the views module, can inherit from other classes. Which means
adding authentication, authorization, new content formats, or anything other
business requirement tossed my way is much easier to handle.

• In"nite #exibility yet again: Our views, by having a formal de$nition in the views
module, can implement their own custom logic.

Chapter 7: Function- and Class-Based Views

63

What if we aren't using CBVs?

!e same rules apply.

We've encountered debugging nightmares of projects using FBVs, tricks with the
__file__ attribute of Python modules combined with directory walking and regular
expressions to automagically create URLConfs. If that sounds painful, it was.

Keep logic out of URLConfs.

Summary

!is chapter started with discussing when to use either FBVs or CBVs, and matched our
own preference for the latter. In fact, in the next chapter we'll start to dig deep into the
functionality that can be exploited when using CBVs.

We also discussed keeping view logic out of the URLConfs. We feel view code belongs in
the apps' views.py modules, and URLConf code belongs in the apps' urls.py modules.
Adhering to this practice allows for object inheritance when used with class-based views,
easier code reuse, and greater %exibility of design.

Chapter 7: Function- and Class-Based Views

64

Best Practices for Class-Based Views

Since the release of version 1.3, Django has supported class-based views (CBVs). Early
problems with CBVs have been addressed almost entirely, thanks to improvements in the
core CBV documentation, resources such as Marc Tamlyn’s ccbv.co.uk code inspector, and
the advent of django-braces.

With a little practice, CBVs allow developers to create views at an astonishing pace.
CBVs encourage the reuse of view code, allowing you to create base views and subclass
them. !ey were brought into Django core because of their power and %exibility.

Here is a list of must-read Django CBV documentation:

• https://docs.djangoproject.com/en/1.5/topics/class-based-views/
• https://docs.djangoproject.com/en/1.5/topics/class-based-views/generic-display/
• https://docs.djangoproject.com/en/1.5/topics/class-based-views/generic-editing/
• https://docs.djangoproject.com/en/1.5/topics/class-based-views/mixins/
• https://docs.djangoproject.com/en/1.5/ref/class-based-views/
• Marc Tamlyn's CBV inspector at ccbv.co.uk

THIRD-PARTY PACKAGES: CBVs + django-braces Are Great Together

We feel that django-braces is the missing component for Django CBVs. It provides a set of
clearly coded mixins that make Django CBVs much easier and faster to implement. !e
next few chapters will demonstrate its mixins in various code examples.

!e power of CBVs comes at the expense of simplicity: CBVs come with a complex
inheritance chain that can have up to eight superclasses on import. As a result, trying to
work out exactly which view to use or which method to customize can be very
challenging at times.

8

http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
https://docs.djangoproject.com/en/1.5/topics/class-based-views/
https://docs.djangoproject.com/en/1.5/topics/class-based-views/
https://docs.djangoproject.com/en/1.5/topics/class-based-views/
https://docs.djangoproject.com/en/1.5/topics/class-based-views/
https://docs.djangoproject.com/en/1.5/topics/class-based-views/
https://docs.djangoproject.com/en/1.5/topics/class-based-views/
https://docs.djangoproject.com/en/1.5/topics/class-based-views/generic-editing/
https://docs.djangoproject.com/en/1.5/topics/class-based-views/generic-editing/
https://docs.djangoproject.com/en/1.5/topics/class-based-views/generic-editing/
https://docs.djangoproject.com/en/1.5/topics/class-based-views/generic-editing/
https://docs.djangoproject.com/en/1.5/ref/class-based-views/
https://docs.djangoproject.com/en/1.5/ref/class-based-views/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/
http://ccbv.co.uk/

We follow these guidelines when writing CBVs:

• Less view code is better.
• Never repeat code in views.
• Views should handle presentation logic. Try to keep business logic in Models. Or

Forms.
• Keep your views simple.
• Keep your mixins simpler.

Mixins

In programming, a mixin is a class that provides functionality to be inherited, but isn't
meant for instantiation on its own. In programming languages with multiple inheritance,
mixins are a means of collecting functionality.

When using mixins to composite your own view classes, we recommend these rules of
inheritance provided by Kenneth Love. !e rules follow Python’s method resolution
order, which in the most simplistic de$nition possible, proceeds from left to right:

• !e base view classes provided by Django always go to the right.
• Mixins go to the left of the base view.
• Mixins should inherit from Python’s built-in object type.

Example of the rules in action:

from django.views.generic import TemplateView

class FreshFruitMixin(object):

 def get_context_data(self, **kwargs):
 context = super(FreshFruitMixin,
 self).get_context_data(**kwargs)
 context["has_fresh_fruit"] = True
 return context

Chapter 8: Best Practices for Class-Based Views

66

class FruityFlavorView(FreshFruitMixin, TemplateView):
 template_name = "fruity_flavor.html"

In our rather silly example, the FruityFlavorView class is by inheriting from both
FreshFruitMixin and TemplateView. Since TemplateView is the base view class
provided by Django, it goes on the far right, and to its left we place the
FreshFruitMixin. !is way we know that our methods and properties will execute
correctly.

Which Django CBV Should Be Used For What Task?

It can be challenging to determine which view you should use where. Some views are very
obvious, such as those that perform operations that create, read, update, or delete data, but
others are harder to determine.

Here's a handy chart listing the name and purpose of each Django CBV. All views listed
here are assumed to be pre$xed with django.views.generic (pre$x omitted in order to
save space in the table).

Django CBV Usage Table

Name Purpose Two Scoops Example

View Base view or handy view that
can be used for anything.

See the section called Implementing a
Simple JSON API.

RedirectView Redirect user to another URL Send users who visit ‘/log-in/’ to ‘/login/’.

TemplateView Display a Django HTML
template.

The ‘/about/’ page of our site.

ListView List objects List ice cream flavors.

DetailView Display an object Details on an ice cream flavor.

FormView Submit a form The site's contact or email form.

CreateView Create an object Create a new ice cream flavor.

Chapter 8: Best Practices for Class-Based Views

67

Name Purpose Two Scoops Example

UpdateView Update an object Update an existing ice cream flavor.

DeleteView Delete an object Delete an unpleasant ice cream flavor
like Vanilla Steak.

Generic date views For display of objects that occur
over a range of time.

Blogs are a common reason to use
them. For Two Scoops, we could create a
nice, public history of when flavors were
added to the database.

TIP: The Three Schools of Django CBV Usage

We’ve found that there are three major schools of thought around CBV usage. !ey are:

!e School of “Use all the views”!
!is school of thought is based on the idea that since Django provides functionality to
reduce your workload, why not use that functionality? We tend to belong to this school of
thought to great success, rapidly building and then maintaining a number of projects.

!e School of “Just use django.views.generic.View”
!is school of thought is based on the idea that the base Django CBV does just enough.
While we don't follow this approach ourselves, some very good Django developers do.

!e School of "Avoid them unless you're actually subclassing views"
Jacob Kaplan-Moss says, "My general advice is to start with function views since they're
easier to read and understand, and only use CBVs where you need them. Where do you
need them? Any place where you need a fair chunk of code to be reused among multiple
views."

We belong to the $rst school, but it's good for you to know that there's no real consensus
on best practices here.

Chapter 8: Best Practices for Class-Based Views

68

General Tips for Django CBVs

!is section covers useful tips for all or many Django CBV implementations.

Constraining Django CBV Access to Authenticated Users

While the Django CBV documentation gives a functional example of using
django.contrib.auth.decorators.login_required with CBVs, it’s uncomfortable
to use. Fortunately, django-braces provides a ready implementation that you can attach in
moments. For example, we could do the following in all of the Django CBVs we’ve
written so far:

flavors/views.py
from django.views.generic import DetailView

from braces.views import LoginRequiredMixin

from .models import Flavor

class FlavorDetailView(LoginRequiredMixin, DetailView):
 model = Flavor

TIP: Don't Forget the CBV Mixin Order!

Remember that:

•LoginRequiredMixin must always go on the far left side.

•!e base view class must always go on the far right side.

If you forget and switch the order, you will get broken or unpredictable results.

Chapter 8: Best Practices for Class-Based Views

69

Performing Custom Actions on Views With Valid Forms

When you need to perform a custom action on a view with a valid form, the
form_valid() method is where the CBV work%ow sends the request. !is return value
should be a django.http.HttpResponseRedirect.

from django.views.generic import CreateView

from braces.views import LoginRequiredMixin

from .models import Flavor

class FlavorCreateView(LoginRequiredMixin, CreateView):
 model = Flavor

 def form_valid(self, form):
 # Do custom logic here
 return super(FlavorCreateForm, self).form_valid(form)

Performing Custom Actions on Views With Invalid Forms

When you need to perform a custom action on a view with an invalid form, the
form_invalid() method is where the Django CBV work%ow sends the request. !is
method should return a django.http.HttpResponse.
from django.views.generic import CreateView

from braces.views import LoginRequiredMixin

from .models import Flavor

class FlavorCreateView(LoginRequiredMixin, CreateView):
 model = Flavor

 def form_invalid(self, form):
 # Do custom logic here
 return super(FlavorCreateForm, self).form_invalid(form)

Chapter 8: Best Practices for Class-Based Views

70

Additional References:

• http://pydanny.com/tag/django-CBVs.html
• www.python.org/download/releases/2.3/mro/

Summary

!is chapter covered:

• Mixins
• Which Django CBV should be used for which task
• General tips for CBV usage

!e next chapter will use CBVs along with forms and models.

Chapter 8: Best Practices for Class-Based Views

71

http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://pydanny.com/tag/django-CBVs.html
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/

Common Patterns for Forms

Django forms are powerful, %exible, extensible, and robust. !e Django admin and CBVs
use them extensively. In fact, all the major Django API frameworks use ModelForms as
part of their validation because of these features.

!is means that even if your Django project doesn’t serve HTML, you are probably still
using Django forms.

Interestingly enough, the design that these API frameworks use is some form of class-
based view. !ey might have their own implementation of CBVs (i.e. django-tastypie) or
run off Django’s own CBVs (django-rest-framework), but use of inheritance and
composition is a constant.

We would like to think this is proof of the soundness of both Django forms and the
concept of CBVs.

With that in mind, this chapter goes explicitly into one of the best parts of Django:
forms, models, and CBVs working in concert.

THIRD-PARTY PACKAGES: Useful Form-Related Packages

•django-%oppyforms for rendering Django inputs in HTML5.

•django-crispy-forms for advanced form layout controls. By default, forms are
rendered with Twitter Bootstrap form elements and styles. !is package plays well
with django-%oppyforms, so they are often used together.

•django-forms-bootstrap as a simple tool for rendering Django forms to Twitter
bootstrap. !is package plays well with django-%oppyforms but con%icts with
django-crispy-forms.

9

How Your Views Should Hook Things Together

Using our project's %avors app as an example, let’s chart out some examples of how form-
related views might $t together. First, let’s de$ne a %avors model that we'll use in various
examples throughout this chapter:

flavors/models.py
from django.db import models

class Flavor(models.Model):
 title = models.CharField(max_length=255)
 slug = models.SlugField()
 scoops_remaining = models.IntegerField(default=0)

 @models.permalink
 def get_absolute_url(self):
 return ('flavor_detail', (), {"slug": self.slug})

Views + ModelForm Example

In this example we'll show you how to construct a set of views that will create, update and
display Flavor records. We'll also demonstrate how to provide con$rmation of changes.

!is is a breakdown of the three views corresponding to add and edit %avor forms, as well
as con$rmation pages for both forms.

FlavorCreateView → FlavorDetailView
(CreateView) (DetailView)

FlavorUpdateView → FlavorDetailView
(UpdateView) (DetailView)

In this example, we stick as closely as possible to the Django convention for naming
things, which means the add and edit forms are correspondingly FlavorCreateView and

Chapter 9: Common Patterns for Forms

74

FlavorUpdateView, and the con$rmation page is FlavorDetailView. Writing these
views is easy, here is how we do it:

flavors/views.py
from django.views.generic import (
 CreateView, UpdateView, DetailView
)

from braces.views import LoginRequiredMixin

from .models import Flavor

class FlavorCreateView(LoginRequiredMixin, CreateView):
 model = Flavor

class FlavorUpdateView(LoginRequiredMixin, UpdateView):
 model = Flavor

class FlavorDetailView(DetailView):
 """ Allows even unauthenticated users. """
 model = Flavor

!is looks great! Lots of stuff accomplished for a small bit of code! However, if we wire
these views into a urls.py module and create the necessary templates, we'll uncover a
problem:

!e FlavorDetailView is not a con"rmation page.

For now, that statement is correct. Fortunately, we can $x it quickly with a few
modi$cations to existing views and templates.

!e $rst step in the $x is to use django.contrib.messages to inform the user visiting
the FlavorDetailView that they just added or updated the %avor. We’ll need to override
the FlavorCreateView.form_valid and FlavorUpdateView.form_valid methods.

Chapter 9: Common Patterns for Forms

75

In the previous chapter, we covered a simpler example of how to override form_valid()
within a CBV. Here, we reuse a similar form_valid() override method by creating a
mixin to inherit from in multiple views.

For the con$rmation page $x, we change the flavors/views.py module to contain the
following:

from django.contrib import messages
from django.views.generic import (
 CreateView, UpdateView, DetailView
)

from braces.views import LoginRequiredMixin

from .models import Flavor

class FlavorActionMixin(object):

 def form_valid(self, form):
 msg = 'Flavor {0}!'.format(self.action)
 messages.info(self.request, msg)
 return super(FlavorActionMixin, self).form_valid(form)

class FlavorCreateView(LoginRequiredMixin,
 FlavorActionMixin, CreateView):
 model = Flavor
 action = 'created'

class FlavorUpdateView(LoginRequiredMixin,
 FlavorActionMixin, UpdateView):
 model = Flavor
 action = 'updated'

class FlavorDetailView(DetailView):
 model = Flavor

Chapter 9: Common Patterns for Forms

76

TIP: Mixins Should Inherit From Object

Please take notice that the FlavorActionMixin inherits from Python’s object type
rather than a pre-existing mixin or view. It’s important that mixins have as shallow
inheritance chain as possible. Simplicity is a virtue!

Now, after the %avor is updated, a list of messages is passed to the context of the
FlavorDetailView. We can see these messages if we add the following code to the
views’ template and then update a %avor:

{# templates/flavors/flavor_detail.html #}
{% if messages %}
 <ul class="messages">
 {% for message in messages %}
 <li id="message_{{ forloop.counter }}"
 {% if message.tags %} class="{{ message.tags }}"
 {% endif %}>
 {{ message }}

 {% endfor %}

{% endif %}

TIP: Reuse the Messages Template Code!

It is common practice to put the above code into your project’s base HTML template.
Doing this allows message support for templates in your project.

!is example demonstrated yet again how to override the form_valid() method,
incorporate this into a mixin, how to incorporate multiple mixins into a view, and gave a
quick introduction to the very useful django.contrib.messages framework.

Chapter 9: Common Patterns for Forms

77

Views + Form Example

In this example we'll create a simple Flavor search by creating a HTML form that doesn't
add or edit objects. !e form action will query the ORM and the records found will be
listed on a search results page.

Our intention is that when using our %avor search page, if users do a %avor search for
"Dough", they should be sent to a page listing ice cream %avors like "Chocolate Chip
Cookie Dough," "Fudge Brownie Dough," "Peanut Butter Cookie Dough," and other
%avors containing the string "Dough" in their title.

In this example all we need is a single view:

FlavorListView → FlavorListView
(ListView) (ListView)

In this example we want to follow the standard internet convention for search pages, as
well as accept a ‘GET’ request where the search parameter name is ‘q’. We also need to
modify the standard queryset supplied by the ListView.

To do this we override the ListView’s get_queryset() method. We add the following
code to flavors/views.py:

from django.views.generic import ListView

from .models import Flavor

class FlavorListView(ListView):
 model = Flavor

 def get_queryset(self):
 # Fetch the queryset from the parent get_queryset
 queryset = super(FlavorListView, self).get_queryset()

 # Get the q GET parameter

Chapter 9: Common Patterns for Forms

78

 q = self.request.GET.get('q')
 if q is None:
 # Return the base queryset
 return queryset
 # Return a filtered queryset
 return queryset.filter(title__icontains=q)

Now, instead of listing all of the %avors, we list only the %avors whose titles contain the
search string.

Search forms are unusual in that unlike nearly every other HTML form they specify a
GET request in the HTML form. !is is because search forms are not changing data, but
simply retrieving information from the server. Which means the search form should like
something like this:

{# templates/flavors/_flavor_search.html #}
{% comment %}
 Usage: {% include "flavors/_flavor_search.html" %}
{% endcomment %}
<form action="{% url "flavor_list" %}" method="GET">
 <input type="text" name="q" />
 <button type="submit">search</button>
</form>

TIP: Specify the Form Target in Search Forms

We also take care to specify the URL in the form action, because we've found that search
forms are often included in several pages. !is is why we pre$x them with '_' and create
them in such a way as to be included in other templates..

Once we get past overriding the ListView’s get_queryset() method, the rest of this
example is just a simple HTML form. We like this kind of simplicity.

Chapter 9: Common Patterns for Forms

79

Common Form Patterns

We like to have fun combining forms, models, and views because they allow us to get a lot
of work done for little effort. In fact, once you get the hang of it, Django provides the
ability to create an amazing amount of stable, robust functionality at a an amazing pace.
We're going to go over $ve patterns that should be in every Django developer's toolbox.

Pattern 1: Simply Using a ModelForm With Default Validators

!e simplest data changing form we can make is a ModelForm that uses several default
validators as-is, without modi$cation. In fact, we already relied on default validators in the
$rst example of this chapter, "Views + ModelForm Example", of which the code below is
a snippet:

flavors/views.py
from django.views.generic import CreateView, UpdateView

from braces.models import LoginRequiredMixin
from .models import Flavor

class FlavorCreateView(LoginRequiredMixin, CreateView):
 model = Flavor

class FlavorUpdateView(LoginRequiredMixin , UpdateView):
 model = Flavor

 To summarize the snippet:

1. FlavorCreateView and FlavorUpdateView are assigned Flavor as their model.
2. Both views auto-generate a ModelForm based on the Flavor model.
3. !ose ModelForms rely on the default $eld validation rules of the Flavor model.

Django gives us a lot of great defaults for data validation, but that's never enough. Which
means the next pattern will demonstrate how to create a custom validator.

Chapter 9: Common Patterns for Forms

80

Pattern 2: Custom Validators on Form Fields in Model Forms

What if we wanted to be certain that every use of the title $eld across our project's edible
item apps started with the word ‘Delicious’? !is would be a great reason to use a custom
validator!

In this pattern we'll cover how to create custom validators and demonstrate how to add
them to both abstract models and forms. As described near the start of this chapter, the
Flavor model has a title $eld. For the purpose of this example, we'll assume we have a
WaffleCone model which also has a title $eld.

To validate all editable model titles, we start by creating a validators.py module:

core/validators.py
from django.core.exceptions import ValidationError

def validate_delicious(value):
 """ Raise a ValidationError if the value doesn't start
 with the word 'delicious'
 """
 if not value.lower().startswith(u'delicious'):
 msg = u"Enter a value starting with 'Delicious'"
 raise ValidationError(msg)

In Django, a custom $eld validator is simply a function that raises an error if the
submitted argument doesn't pass its test. Our validate_delicious() validator
function does a simple string check, but validators can become quite complex.

TIP: Test Your Validators

Since validators are critical in keeping corruption out of Django project databases, it's a
good idea to write tests for them.

In order to use our validate_delicious() validator function, we're going to $rst add it
to an abstract model called DeliciousTitleAbstractModel, which we plan to use

Chapter 9: Common Patterns for Forms

81

across our project. In fact, we'll create a core/models.py module and place the
DeliciousTitleAbstractModel there.

core/models.py
from django.db import models

from .validators import validate_delicious

class DeliciousTitleAbstractModel(models.Model):

 title = models.CharField(max_length=255,
 validators=[validate_delicious])

 class Meta:
 abstract = True

!e last two lines of the above example code for core/models.py make
DeliciousTitleAbstractModel an abstract model, which is what we want. Let's alter
the original flavors/models.py Flavor code to use it as the parent class:

flavors/models.py
from django.db import models

from core.models import DeliciousTitleAbstractModel

class Flavor(DeliciousTitleAbstractModel):
 slug = models.SlugField()
 scoops_remaining = models.IntegerField(default=0)

 @models.permalink
 def get_absolute_url(self):
 return ('flavor_detail', (), {"slug": self.slug})

!is works with the Flavor model, and will work with any other food-based model such
as a WaffleCone or Cake model. Any of these inheriting from the parent

Chapter 9: Common Patterns for Forms

82

DeliciousTitleAbstractModel class will throw a validation error if users attempt to
have a title that doesn’t start with ‘Delicious’.

Now...

• What if we wanted to use validate_delicious() in just forms?
• What if we wanted to assign it to other $elds besides the title?

To support this behavior, we need to create a custom FlavorForm that utilizes our
custom validator:

flavors/forms.py
from django import forms

from core.validators import validate_delicious
from .models import Flavor

class FlavorForm(forms.ModelForm):
 def __init__(self, *args, **kwargs):
 super(FlavorForm, self).__init__(*args, **kwargs)
 self.fields['title'].validators = [validate_delicious]
 self.fields['slug'].validators = [validate_delicious]

 class Meta:
 model = Flavor

One thing nice about both examples of validator usage in this pattern is that we haven't
had to change the validate_delicious() code at all, we just import and use it in new
places.

Attaching the custom form to the views is our next step. !e default behavior of Django
model based edit views is to auto-generate the ModelForm based on the view's model
attribute. We are going to override that default and pass in our custom FlavorForm. !is
occurs in the flavors/views.py module, where we alter the create and update forms as
demonstrate on the next page:

Chapter 9: Common Patterns for Forms

83

flavors/views.py
from django.contrib import messages
from django.views.generic import (
 CreateView, UpdateView, DetailView
)

from braces.views import LoginRequiredMixin

from .models import Flavor
from .forms import FlavorForm

class FlavorActionMixin(object):

 def form_valid(self, form):
 msg = 'Flavor {0}!'.format(self.action)
 messages.info(self.request, msg)
 return super(FlavorActionMixin, self).form_valid(form)

class FlavorCreateView(LoginRequiredMixin, FlavorActionMixin,
 CreateView):
 model = Flavor
 action = 'created'
 # Explicitly attach the FlavorForm class
 form_class = FlavorForm

class FlavorUpdateView(LoginRequiredMixin, FlavorActionMixin,
 UpdateView):
 model = Flavor
 action = 'updated'
 # Explicitly attach the FlavorForm class
 form_class = FlavorForm

!e FlavorCreateView and FlavorUpdateView views now use the new FlavorForm to
validate incoming data. !e Flavor model can be the identical to how we began this
chapter, or can be the altered one inheriting from DeliciousTitleAbstractModel.

Chapter 9: Common Patterns for Forms

84

Pattern 3: Override clean() in CBV / Form

In this example, we'll discuss the clean() method and how to validate against persistent
data.

After the default and custom $eld validators are run, Django provides a second stage and
process for validating incoming data, this time via the clean() and
<field_name>_clean() methods. You might wonder why Django provides more hooks
for validation, so here are our two favorite arguments:

• !e clean() method is the place to validate two or more $elds against each other.
• !e clean validation stage is a better place to attach validation against persistent

data. Since the data already has some validation, you won’t waste as many database
cycles on needless queries.

Let’s make a simple example out of ice cream. Perhaps we want to implement an ice
cream ordering form, where users could specify the %avor desired, add toppings, and then
come to our store and pick them up. Since we want to avoid users ordering %avors that are
out of stock we’ll put in a clean_flavor() method, our form might look like:

flavors/views.py
from django import forms
from flavors.models import Flavor

class IceCreamOrderForm(forms.Form):
 """ Normally done with forms.ModelForm, we use forms.Form here
 to demonstrate that these sorts of techniques work on
 every type of form.
 """

 flavor = forms.ChoiceField()
 toppings = forms.CharField()

 def __init__(self, *args, **kwargs):
 super(IceCreamOrderForm, self).__init__(*args,
 **kwargs)

Chapter 9: Common Patterns for Forms

85

 # We dynamically set the choices here rather than
 # in the flavor field definition Setting them in
 # the field definition means status updates won't
 # be reflected in the form without server restarts.
 self.fields['flavor'].choices = [
 (x.slug, x.title) for x in Flavor.objects.all()
]
 # NOTE: We could filter by whether or not a flavor
 # has any scoops, but this is an example of
 # how to use clean_flavor, not filter().

 def clean_flavor(self):
 flavor = self.cleaned_data['flavor']
 if Flavor.objects.get(slug=flavor).scoops_remaining <= 0:
 msg = u"Sorry, we are out of that flavor."
 raise forms.ValidationError(msg)
 return flavor

For HTML powered views, the clean_%avor() method in our example, upon throwing an
error, will attach a "Sorry, we are out of that %avor" message to the %avor HTML input
$eld. !is is a great shortcut for writing HTML forms!

Now imagine if we get common customer complaints about orders with too much
chocolate. Yes, it’s silly and quite impossible, but we’re just using ‘too much chocolate’ as a
completely mythical example for the sake of making a point. In any case, let’s use the
clean() method to validate the %avor and toppings $elds against each other.

 # attach this code to the previous example
 def clean(self):
 cleaned_data = super(IceCreamOrderForm, self).clean()
 flavor = cleaned_data.get("flavor", "")
 toppings = cleaned_data.get("toppings", "")

 # Silly "too much chocolate" validation example
 if u'chocolate' in flavor.lower() and \
 u'chocolate' in toppings.lower():

Chapter 9: Common Patterns for Forms

86

 msg = u'Your order has too much chocolate.'
 raise forms.ValidationError(msg)
 return cleaned_data

!ere we go, an implementation against the impossible condition of too much chocolate!

Pattern 4: Overloading Form Fields (2 CBVs, 2 Forms, 1 Model)

!is is where we start to get fancy. We're going to cover a situation where two views/
forms correspond to one model.

It’s not uncommon to have users create a record that contains a few empty $elds which
need additional data later. An example might be a list of stores, where we want each store
entered into the system as fast as possible, but want to add more data such as phone
number and description later. Here's our IceCreamStore model:

stores/models.py
from django.db import models

class IceCreamStore(models.Model):
 title = models.CharField(max_length=100)
 block_address = models.TextField()
 phone = models.CharField(max_length=20, blank=True)
 description = models.TextField(blank=True)

 def get_absolute_url(self):
 return ("store_detail", [self.pk,])

!e default ModelForm for this Model forces the user to enter the title and
block_address $eld, but lets the user skip the phone and description $elds. !at’s great
for initial data entry, but as mentioned earlier, we want to have future updates of the data
to require the phone and description $elds.

!e way we (the authors) overloaded forms before we began to delve into their
construction was to overload the entire phone and description $elds in the edit form.
Which made our code look like this:

Chapter 9: Common Patterns for Forms

87

stores/forms.py
from django import forms

from .models import IceCreamStore

class IceCreamStoreUpdateForm(forms.ModelForms):
 # Don't do this! You're duplicating the Model field!
 phone = forms.CharField(required=True)
 # Don't do this! You're duplicating the Model field!
 description = forms.TextField(required=True)

 class Meta:
 model = IceCreamStore

!is form should look very familiar. Why?

We’re nearly copying the IceCreamStore model!

!is is just a simple example, but when dealing with a lot of $elds on a model the
duplication becomes extremely challenging to manage. In fact, what tends to happen is
copy/pasting of code from models right into forms, which is a gross violation of DRY.

Want to know how gross? Using the above approach, if we adds a help_text attribute to
the description $eld in the model, it will not show up in the template until we also
modify the description $eld de$nition in the form. If that sounds confusing, that’s
because it is.

A better way is to rely on useful little detail that's good to remember about Django
Forms: Instantiated form objects store #elds in a dict-like attribute called fields. Which
means, instead of copy/pasting $eld de$nitions from models to forms, we simply apply
new attributes to each $eld:

stores/forms.py
Call phone and description from the self.fields dict-like object

Chapter 9: Common Patterns for Forms

88

from django import forms

from .models import IceCreamStore

class IceCreamStoreUpdateForm(forms.ModelForms):

 class Meta:
 model = IceCreamStore

 def __init__(self, *args, **kwargs):
 # Call the original __init__ method before assigning
 # field overloads
 super(IceCreamStoreUpdateForm, self).__init__(*args,
 **kwargs)
 self.fields['phone'].required = True
 self.fields['description'].required = True

!is approach allows us to stop copy/pasting code and instead focus on just the $eld-
speci$c settings.

An important point to remember is that when it comes down to it, Django forms are just
Python classes. !ey get instantiated as objects, they can inherit from other classes, and
they can act as superclasses. However, none of this applies when inheriting the Meta class on
forms.

Which means we can’t rely on inheritance to trim the line count in our Ice Cream Shop
forms:

stores/forms.py
from django import forms

from .models import IceCreamStore

class IceCreamStoreCreateForm(forms.ModelForm):

 class Meta:

Chapter 9: Common Patterns for Forms

89

 model = IceCreamStore
 fields = ("title", "block_address",)

class IceCreamStoreUpdateForm(forms.ModelForm):

 def __init__(self, *args, **kwargs):
 super(IceCreamStoreUpdateForm,
 self).__init__(*args, **kwargs)
 self.fields['phone'].required = True
 self.fields['description'].required = True

 class Meta:
 # Ignored in ModelForm inheritance, so we have to
 # define it again.
 model = IceCreamStore
 # show all the fields!
 fields = ("title", "block_address", "phone",
 "description",)

WARNING: Use Meta.fields and Never Use Meta.excludes

We use Meta.fields instead of Meta.excludes so we know exactly what $elds we are
exposing. See the chapter on Security.

We've got our form classes, so let's use them in the IceCreamStore views:

from django.views.generic import CreateView, UpdateView

from .forms import IceCreamStoreCreateForm
from .forms import IceCreamStoreUpdateForm
from .models import IceCreamStore

class IceCreamCreateView(CreateView):
 model = IceCreamStore
 form_class = IceCreamStoreCreateForm

Chapter 9: Common Patterns for Forms

90

class IceCreamUpdateView(UpdateView):
 model = IceCreamStore
 form_class = IceCreamStoreUpdateForm

We now have two views and two forms that work with one model.

Pattern 5: Simple Search Mixin View (1 Mixin, 2 CBV, 1 Form, 2 Models)

In this example we're going to cover how to use a single form and view that corresponds
to two different models. First, we're going to assume that both models have a $eld called
‘title’ (this pattern also demonstrates why naming standards in projects is a good thing). We’ll
demonstrate how a single Class Based View can be used to provide simple search
functionality on both the Flavor and IceCreamStore models.

We'll start by creating a simple search Mixin for our view:

core/views.py
class TitleSearchMixin(object):

 def get_queryset(self):
 # Fetch the queryset from the parent's get_queryset
 queryset = super(TitleSearchMixin, self).get_queryset()

 # Get the q GET parameter
 q = self.request.GET.get('q')
 if q is None:
 # No q is specified so we return queryset
 return queryset
 # return a filtered queryset
 return queryset.filter(title__istartswith=q)

!e above code should look very familiar as we used it almost verbatim in the Forms +
View example. Here’s how you make it work with both the Flavor and IceCreamStore
views. First the %avor views:

add to flavors/views.py

Chapter 9: Common Patterns for Forms

91

from django.views.generic import ListView

from core.views import TitleSearchMixin
from .models import Flavor

class FlavorListView(TitleSearchMixin, ListView):
 model = Flavor

And we'll add it to the Ice Cream store views

add to stores/views.py
from django.views.generic import ListView

from core.views import TitleSearchMixin
from .models import Store

class IceCreamStoreListView(TitleSearchMixin, ListView):
 model = Store

!e form? Just de$ne it in HTML for each ListView:

{# form to go into flavors/flavor_list.html template #}
<form action="" method="GET">
 <input type="text" name="q" />
 <button type="submit">search</button>
</form>

and

{# form to go into stores/store_list.html template #}
<form action="" method="GET">
 <input type="text" name="q" />
 <button type="submit">search</button>
</form>

Now we have the same mixin in both views.

Chapter 9: Common Patterns for Forms

92

Mixins are a good way to reuse code, but using too many mixins in a single class makes
for very hard to maintain code. As always, try to keep your code as simple as possible.

Chapter 9: Common Patterns for Forms

93

More Things To Know About Forms

 95% of Django projects should use ModelForms
 91% of all Django projects use ModelForms
 80% of ModelForms require trivial logic
 20% of ModelForms require complicated logic

 -- pydanny made up statistics

Django’s forms are really powerful, but there are edge cases that can cause a bit of
anguish.

If you understand the structure of how forms are composed and how to call them, most
edge cases can be readily overcome.

Use the POST Method in HTML Forms

Every HTML form that alters data must submit its data via the POST method:

<form action="{% url "flavor_add" %}" method="post">

!e only exception you’ll ever see to using POST in forms is with search forms, which
typically submit queries that don’t result in any alteration of data. Search forms that are
idempotent should use the GET method.

Don't Disable Django's CSRF Protection

!is is covered in the Security chapter's section on "CSRF protection". Also, please
familiarize yourself with Django’s documentation on the subject: https://
docs.djangoproject.com/en/1.5/ref/contrib/csrf/

10

https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/

Know How Form Validation Works

Form validation is one of those areas of Django where knowing the inner workings will
drastically improve your code. Let’s take a moment to dig into form validation and cover
some of the key points.

When you call form.is_valid(), a lot of things happen behind the scenes. !e
following things occur according to this work%ow:

1. If the form has bound data, form.is_valid() calls the form.full_clean()
method.

2. form.full_clean() iterates through the form $elds and each $eld validates itself:
2.1. Data coming into the $eld is coerced into Python via the to_python()

method or raises a ValidationError.
2.2. Data is validated against $eld-speci$c rules, including custom validators.

Failure raises a ValidationError.
2.3. If there are any custom clean_<field>() methods in the form, they are

called at this time.
3. form.full_clean() executes the form.clean() method.
4. If it’s a ModelForm instance, form._post_clean() does the following:

4.1. Sets ModelForm data to the Model instance, regardless of whether
form.is_valid() is True or False.

4.2. Calls the model’s clean() method. For reference, saving a model instance
through the ORM does not call the model’s clean() method.

If this seems complicated, just remember it gets simpler in practice and all of this
functionality lets us really understand what’s going on with incoming data. Let’s go over
an example in the section below:

Chapter 10: More !ings To Know About Forms

96

Form Data Is Saved to the Form, Then the Model Instance

We like to call this the ‘WHAT?!?’ of form validation.

In a ModelForm, form data is saved in two distinct steps:
• First, form data is saved to the form instance.
• Later, form data is saved to the model instance.

At $rst glance form data being set to the form instance might seem like a bug. However,
since ModelForms don’t save to the Model Instance until they are activated by the
form.save() method, we like to think of this as a useful feature.

For example, perhaps you need to catch the details of attempts to use a form, saving both
the user-supplied form data as well as the intended model instance changes. A simple,
perhaps simplistic way of capturing that data is as follows:

First we’ll create a form failure history model in core/models.py:

core/models.py
from django.db import models

class ModelFormFailureHistory(models.Model):
 form_data = models.TextField()
 model_data = models.TextField()

Second, we’ll add the following to the FlavorActionMixin in flavors/views.py:

import json

from django.contrib import messages
from django.core import serializers

from core.models import ModelFormFailureHistory

Chapter 10: More !ings To Know About Forms

97

class FlavorActionMixin(object):

 def form_valid(self, form):
 msg = 'Flavor {0}!'.format(self.action)
 messages.info(self.request, msg)
 return super(FlavorActionMixin, self).form_valid(form)

 def form_invalid(self, form):
 """ Save form and model data for later reference"""
 form_data = json.dumps(form.cleaned_data)
 model_data = serializers.serialize("json",
 [form.instance])[1:-1]
 ModelFormFailureHistory.objects.create(
 form_data=form_data,
 model_data=model_data
)
 return super(FlavorActionMixin,
 self).form_invalid(form)

Summary

Once you dig into forms, keep yourself focused on clarity of code and testability. Forms
are one of the primary validation tools in your Django project, an important defense
against attacks and accidental data corruption.

Chapter 10: More !ings To Know About Forms

98

Building REST APIs in Django

Today’s internet is much more than HTML-powered websites. Developers need to
support AJAX and the mobile web. Having tools that support easy creation of JSON,
YAML, XML, and other formats is important. By design, a Representational State
Transfer (REST) Application Programming Interface (API) exposes application data
to other concerns.

THIRD-PARTY PACKAGES: For crafting APIs we recommend

•django-tastypie is the most senior in our list. It's a feature-rich, mature, powerful,
stable tool for creating APIs from Django models by the developer behind django-
haystack, the most commonly used Django search library.

•django-rest-framework builds off of Django CBVs and has a similar feature set to
it’s older sibling django-tastypie, adding a wonderful browsable API feature.

•django-braces isn’t an API library in itself, but can be used to render content into
JSON views. Also, because it’s a lighter framework, it’s arguably easier to
incorporate non-Model data. Finally, it’s trivial to incorporate directly into existing
views.py modules.

We highly recommend the following reading:

• http://en.wikipedia.org/wiki/REST
• http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
• http://jacobian.org/writing/rest-worst-practices/

11

http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/
http://jacobian.org/writing/rest-worst-practices/

Fundamentals of Basic REST API Design

When designing a REST API, use the appropriate HTTP method for each type of
action:

Statement HTTP method Rough SQL equivalent

Looking at resource GET SELECT

Adding resource PUT INSERT

Updating resource POST UPDATE or INSERT

Deleting resource DELETE DELETE

!ese are HTTP status codes common to REST API design and how they relate the
HTTP methods:

HTTP Status Code Success/Failure Meaning

HTTP Status Code Success/Failure Meaning

200 OK Success GET - Return resource
POST - Provide status message
or return resource

201 Created Success PUT - Provide status message or
return newly created resource

204 No Content Success DELETE

304 Unchanged Redirect ANY - Indicates no changes
since the last request. Used for
checking Last-Modified and
Etag headers to improve
performance.

400 Bad Request Failure PUT, POST - Return error
messages, including form
validation errors.

Chapter 11: Building REST APIs in Django

100

HTTP Status Code Success/Failure Meaning

401 Unauthorized Failure ALL - Authentication required
but user did not provide
credentials.

403 Forbidden Failure ALL - User attempted to access
restricted content

404 Not Found Failure ALL - Resource is not found

405 Method Not Allowed Failure ALL - An invalid HTTP method
was attempted.

Implementing a Simple JSON API

Even on sites that are almost entirely HTML, it’s not uncommon for developers to need
simple JSON APIs tied to the standard Django authentication system for providing easy
access to Django models or other resources. In this sort of limited case, django-tastypie
and django-rest-framework are overkill, adding a lot of machinery for no reason.

!is is when django-braces excels as a lightweight API library.

For example, using the flavors app example, let’s say that after a %avor is created via the
HTML form, we want to provide the capability to update the %avor via an AJAX call.
We’ll want to support the HTTP GET and POST methods, and incorporate the same,
proven FlavorForm we use in other chapters:

flavors/forms.py
from django import forms

from .models import Flavor

class FlavorForm(forms.ModelForm):

 class Meta:
 model = Flavor
 fields = ('title', 'slug',)

Chapter 11: Building REST APIs in Django

101

!is is where the advantage of using Meta.fields over Meta.excludes becomes
obvious. !e form explicitly accepts values only for title and slug, meaning that we
don’t have to worry about other $elds being modi$ed, such as created, modified, or
owner.

WARNING: Always Use Meta.fields. Never Use Meta.excludes.

!e use of Meta.excludes is considered a security risk. We can’t stress it strongly
enough. Do not use Meta.excludes.

Let’s create the $rst part of our view by writing a CBV that has a get() method which
corresponds exactly with the HTTP GET method:

flavors/views.py
from django.views.generic import View
from django.views.generic.detail import SingleObjectMixin

from braces.views import JSONResponseMixin

from .models import Flavor
from .forms import FlavorForm

class FlavorObjectApiView(JSONResponseMixin, SingleObjectMixin,
 View):
 model = Flavor

 def get(self, request, *args, **kwargs):
 """ Returns a single JSON object in a JSON list
 representing the Flavor.
 """
 instance = [self.get_object()]
 return self.render_json_object_response(instance)

Chapter 11: Building REST APIs in Django

102

SingleObjectMixin provides the get_object method, which is what CBVs such as
django.views.generic.DetailView use to get a single model instance based on
either a slug or PK provided by the request. In our example, we place the result into a list
to match Django’s behavior for supplying JSON responses.

!e JSONResponseMixin provided by django-braces comes with the
render_json_object_response() method, which converts lists of Django model
instances (i.e. QuerySets) into JSON and then puts the result into a
django.http.HttpResponse object.

While the GET part of our view was interesting, the post() implementation for the
HTTP POST method is fascinating:

 # add to the FlavorObjectApiView view
 def post(self, request, *args, **kwargs):
 """ Updates a single object in a JSON list
 representing the Flavor
 """
 instance = self.get_object()
 form = FlavorForm(self.request.POST,
 instance=instance)
 if form.is_valid():
 instance = form.save()
 return self.render_json_object_response([instance])

 response = self.render_json_response(form.errors)
 response.status_code = 400 # Bad request
 return response

Again, we start the method by using SingleObjectMixin's get_object() method
to fetch the %avor object. !en, because this method is only called on HTTP POST
requests, we can pass in a self.request.POST object into the FlavorForm along with
the model instance. At this point, we reach a decision point:

Chapter 11: Building REST APIs in Django

103

•If form.is_valid() == True, we save the form and then convert the model
instance to a JSON response.

•If form.is_valid() == False, we render the form.errors as a JSON response,
change the status code to 400 Bad Request, and send the results back.

Now we’ll wire this into our flavors/urls.py module:

from django.conf.urls.defaults import patterns, url

from flavors import views

urlpatterns = patterns('',
 url(
 regex=r'^api/(?P<slug>[-\w]+)/$',
 view=views.FlavorObjectApiView.as_view(),
 name='flavor_object_api'
),
)

!is is great! !e next page covers moving the code to a Mixin, making it easy to reuse
the code across multiple pages.

Chapter 11: Building REST APIs in Django

104

Reusing Our Simple JSON API

!e FlavorObjectApiView is interesting, but there is a good chance that we may need
to create several similar views. !is is the use case for mixins and aptly illustrates the
power of Django CBVs.

In order to reuse the code for FlavorObjectApiView, here we're going to replace the
flavors app speci$c code with more generic code and move it to our core app.

core/views.py
from django.views.generic.detail import SingleObjectMixin

from braces.views import JSONResponseMixin

class ObjectApiMixin(JSONResponseMixin, SingleObjectMixin):

 @property
 def model(self):
 msg = "model needs to be defined for ObjectApiView"
 raise NotImplementedError(msg)

 @property
 def form_class(self):
 msg = "form_class not defined for ObjectApiView"
 raise NotImplementedError(msg)

 def get(self, request, *args, **kwargs):
 """ Returns a single JSON object in a JSON list
 representing the model instance
 """
 instance = [self.get_object()]
 return self.render_json_object_response(instance)

 def post(self, request, *args, **kwargs):
 """ Updates a single object.
 If successful, returns 200 and serialized instance.

Chapter 11: Building REST APIs in Django

105

 If not, returns 400 and serialized form errors.
 """
 instance = self.get_object()

 form = self.form_class(self.request.POST,
 instance=instance)
 if form.is_valid():
 instance = form.save()
 return self.render_json_object_response([instance])

 response = self.render_json_response(form.errors)
 response.status_code = 400
 return response

!e most important change is the inclusion of two properties: model and form_class.
!ese properties raise NotImplemented if called. We do this to provide more helpful
error messages if we neglect to include the required model and form_class attributes
during usage of this Mixin.

Speaking of usage: suppose we replace the current FlavorObjectApiView with the
following. Imports are included here for the sake of clarity:

flavors/views.py
from django.views.generic import View

from core.views import ObjectApiMixin
from .models import Flavor
from .forms import FlavorForm

class FlavorObjectApiView(ObjectApiMixin, View):
 model = Flavor
 form_class = FlavorForm

Now, if we wanted to support more resources displayed this way, it’s a matter of de$ning
new views using existing models and form classes.

Chapter 11: Building REST APIs in Django

106

Please note that ObjectApiMixin does not inherit directly from View. We do this
because mixins should never be able to run on their own and there might be other view
classes that could run with ObjectApiMixin.

API Creation Libraries

If you need to expose a lot of model resources as RESTful APIs, you might consider
using an API framework. As mentioned earlier, we can recommend both django-tastypie
and django-rest-framework. !ey are powerful libraries for exposing resources for a
variety of uses, mobile development to service oriented architecture and much more.
!ese libraries and others include built-in functionality like throttling, pagination,
documentation, OAuth support, and the power of their active communities is invaluable.

We prefer to use these tools when we require a dedicated REST API that works directly
with Django models. For example, we need to have a API version of the site and need
throttling to block malicious users, or are provided read-only access for all the models on
our site.

On the other hand, these libraries do become challenging when you are trying to display
data that is not based off of models, or just need to support a few API calls.

Summary

In this chapter we covered:

• Fundamentals of Basic REST API Design
• Implementing a Simple JSON API
• Reusing Our Simple JSON API
• API Creation Libraries

In the next chapter we'll switch back to HTML rendering via Templates.

Chapter 11: Building REST APIs in Django

107

Templates: Best Practices

One of Django's early design decisions was to limit the functionality of the template
language. !is heavily constrains what can be done with Django templates, which is
actually a very good thing since it forces us to keep business logic in the Python side of
things.

!ink about it: the limitations of Django templates force us to put the most critical,
complex and detailed parts of our project into .py $les rather than into template $les.
Python happens to be one of the most clear, concise, elegant programming languages of
the planet, so why would we want things any other way?

We recommend taking a minimalist approach to your template code. Treat the so-called
limitations of Django templates as a blessing in disguise. Use those constraints as
inspiration to $nd simple, elegant ways to put more of your business logic into Python
code rather than into templates.

Taking a minimalist approach to templates also makes it much easier to adapt your
Django apps to changing format types. When your templates are bulky and full of nested
looping, complex conditionals, and data processing, it becomes harder to reuse business
logic code in templates, not to mention impossible to use the same business logic in
template-less views such as API views. Structuring your Django apps for code reuse is
especially important as we move forward into the era of increased API development,
since APIs and web pages often need to expose identical data with different formatting.

To this day, HTML remains a critical expression of content, and therein lies the practices
and patterns for this chapter.

Before you read this chapter, we recommend that you have read about the syntax of the
Django template language: https://docs.djangoproject.com/en/dev/topics/templates/

12

https://docs.djangoproject.com/en/dev/topics/templates/
https://docs.djangoproject.com/en/dev/topics/templates/

Exploring Template Inheritance

Let's dive into some useful details about template inheritance. We're $rst going to explore
a very simple base.html $le then inherit it from another template. !e base.html $le
contains the following features:

• A title block containing: "Two Scoops of Django".
• A stylesheets block containing a link to a project.css $le used across our site.
• A content block containing "<h1>Two Scoops</h1>".

While this $le is too simple to serve in a real project, it's ideal for getting across some of
the options available with template inheritance. See below:

{% load staticfiles %}
<html>
<head>
 <title>
 {% block title %}Two Scoops of Django{% endblock title %}
 </title>
 {% block stylesheets %}
 <link rel="stylesheet" type="text/css"
 href="{% static "css/project.css" %}">
 {% endblock stylesheets %}
</head>
<body>
 <div class="content">
 {% block content %}
 <h1>Two Scoops</h1>
 {% endblock content %}
 </div>
</body>
</html>

Our example relies on just three template tags, which we'll summarize in a table on the
next page.

Chapter 12: Templates: Best Practices

110

base.html template tags table

Template Tag Purpose

{% load %} Loads the staticfiles built-in template tag library

{% block %} Since base.html is a parent template, these define which child blocks can be filled in by
child templates. We place links and scripts inside them so we can override if necessary.

{% static %} Resolves the named static media argument to the static media server.

To demonstrate the base.html $le in use, we'll use a simple about.html template. !is
$le will extend or inherit the base.html template in order to display the following:

• A custom title.
• !e original stylesheet and an additional stylesheet.
• !e original header, a sub header, and paragraph content.
• !e use of child blocks.
• !e use of the {{ block.super }} template variable.

{% extends "base.html" %}
{% load staticfiles %}
{% block title %}About Audrey and Daniel{% endblock %}
{% block stylesheets %}
 {{ block.super }}
 <link rel="stylesheet" type="text/css"
 href="{% static "css/about.css" %}">
{% endblock stylesheets %}
{% block content %}
 {{ block.super }}
 <h2>About Audrey and Daniel</h2>
 <p>They enjoy eating ice cream</p>
{% endblock %}

Let's assume we've got a view ready to render this template. We call it and the resulting
rendered html is what you see on the next page...

Chapter 12: Templates: Best Practices

111

<html>
<head>
 <title>
 About Audrey and Daniel
 </title>
 <link rel="stylesheet" type="text/css"
 href="/static/css/project.css">
 <link rel="stylesheet" type="text/css"
 href="/static/css/about.css">
</head>
<body>
 <div class="content">
 <h1>Two Scoops</h1>
 <h2>About Audrey and Daniel</h2>
 <p>They enjoy eating ice cream</p>
 </div>
</body>
</html>

Notice how the rendered HTML has our custom title, the additional stylesheet link, and
more material in the body?

We'll use the table below to review the template tags and variables in the about.html
template.

Template Object Purpose

{% extends %} Informs Django that about.html is inheriting or extending from base.html

{% block %} Since about.html is a child template, block overrides the content provided by base.html.
For example, this means our title will render as <title>Audrey and Daniel</title>.

{{ block.super }} When placed in a child template's block, it ensures that the parent's content is also
included in the block. For example, in the content block of the about.html template, this
will render <h1>Two Scoops</h1>.

Chapter 12: Templates: Best Practices

112

Take note that the {% block %} tag is used differently in about.html than in
base.html, serving to override content. In blocks where we want to preserve the
base.html content, we use {{ block.super }} variable to display the content from the
parent block. !is brings us to the next topic, {{ block.super }}.

{{ block.super }} gives the power of control

Let's imagine that we have a template which must inherit everything from the base.html
but must replace the projects' link to the project.css $le with a link to dashboard.css.
!is use case might occur when you have a project with one design for normal users, and
a dashboard for staff.

If we aren't using {{ block.super }}, this often involves writing a whole new base
$le, often named something like base_dashboard.html. For better or for worse, we now
have two template architectures to maintain.

If we are using {{ block.super }}, we don't need a second (or third or fourth) base
template. Assuming all templates extend from base.html we use {{ block.super }} to
assume control of our templates. Here are three examples:

1. A template using both the project.css link and a custom CSS link.
2. A dashboard template with a custom CSS link to dashboard.css. !e template

excludes the project.css.
3. A template that uses just the standard project.css link.

Example 1: Template using both project.css and a custom link
{% extends "base.html" %}
{% block stylesheets %}
 {{ block.super }} {# this brings in project.css #}
 <link rel="stylesheet" type="text/css"
 href="{% static "css/custom" %}" />
{% endblock %}

Chapter 12: Templates: Best Practices

113

Example 2: Dashboard template that excludes the project.css link.
{% extends "base.html" %}
{% block stylesheets %}
 <link rel="stylesheet" type="text/css"
 href="{% static "css/dashboard.css" %}" />
 {% comment %}
 By not using {{ block.super }}, this block overrides the
 stylesheet block of base.html
 {% endcomment %}
{% endblock %}

Example 3: Template just linking the project.css $le.
{% extends "base.html" %}
{% comment %}
 By not using {% block stylesheets %}, this template uses the
 default project.css link.
{% endcomment %}

!ese three examples demonstrate the amount of control {{ block.super }} provides.
!e variable serves a good way to reduce template complexity, but can take a little bit of
effort to fully comprehend.

Tip: {{ block.super }} is similar but not the same as super()

For those coming from an object oriented programming background, it might help to
think of the behavior of the {{ block.super }} variable to be like a very limited
version of the Python built-in function, super(). In essence, the {{ block.super }}
variable and the super() function both provide access to the parent.

Just remember that they aren't the same. For example, the {{ block.super }} variable
doesn't accept arguments. It's just a nice mnemonic that some developers might $nd
useful.

Chapter 12: Templates: Best Practices

114

Flat Is Better Than Nested

Did you know that the Zen of Python says “%at is better than nested”? Don’t forget that
when you’re coding your Django templates.

TIP: The Zen of Python

At the command line, do the following:
$ python
>>> import this

What you'll see is the Zen of Python, an eloquently-expressed set of guiding principles
for the design of the Python programming language.

Complex template hierarchies make it exceedingly difficult to debug, modify, and extend
HTML pages and tie in CSS styles. When template block layouts become unnecessarily
nested, you end up digging through $le after $le just to change, say, the width of a box.

Giving your template blocks as shallow an inheritance structure as possible will make
your templates easier to work with and more maintainable. If you're working with a
designer, your designer will thank you.

Chapter 12: Templates: Best Practices

115

!at being said, there's a difference between excessively-complex template block
hierarchies and templates that use blocks wisely for code reuse. When you have large,
multi-line chunks of the same or very similar code in separate templates, refactoring that
code into reusable blocks will make your code more maintainable.

We've found that for our purposes, simple 2-tier or 3-tier template architectures are
ideal. !e difference in tiers is how many levels of template extending needs to occur
before content in apps is displayed. See the examples below:

2-tier template architecture example
templates/
 base.html
 dashboard.html # extends base.html
 profiles/
 profile_detail.html # extends base.html
 profile_form.html # extends base.html

3-tier template architecture example
templates/
 base.html
 dashboard.html # extends base.html
 profiles/
 base_profiles.html # extends base.html
 profile_detail.html # extends base_profile.html
 profile_form.html # extends base_profile.html

As can be seen, in the 2-tier architecture, everything inherits from the root base.html $le.
In the 3-tier architecture, apps inherit from a base_<app_name>.html template. !is is
extremely useful when we want HTML to look or behave differently for a particular
section of the site that groups functionality.

Don't Bother Making Your Generated HTML Pretty

Bluntly put, no one cares if the HTML generated by your Django project is attractive. In
fact, if someone were to look at your rendered HTML, they’d do so through the lens of a

Chapter 12: Templates: Best Practices

116

browser inspector, which would realign the HTML spacing anyway. !erefore, if you
shuffle up the code in your Django templates to render pretty HTML, you are wasting
time obfuscating your code for an audience of yourself.

And yet, we’ve seen code like the following. !is evil code snippet generates nicely
formatted HTML but itself is an illegible, unmaintainable template mess:

{% comment %}Don't do this! This code bunches everything together
to generate pretty HTML.{% endcomment %}
{% if list_type=="unordered" %}{% else %}{% endif %}
 {% for syrup in syrup_list %}<li
class="{{ syrup.temperature_type|roomtemp }}"><a href="{% url
'syrup_detail' syrup.slug %}">{% syrup.title %}
 {% endfor %}
{% if list_type=="unordered" %}{% else %}{% endif %}

A better way of writing the above snippet is to use indentation and one operation per line
to create a readable, maintainable template:

{# Use indentation/comments to ensure code quality #}
{# start of list elements #}
{% if list_type=="unordered" %}

{% else %}

{% endif %}

{% for syrup in syrup_list %}
 <li class="{{ syrup.temperature_type|roomtemp }}">

 {% syrup.title %}

{% endfor %}

{# end of list elements #}

Chapter 12: Templates: Best Practices

117

{% if list_type=="unordered" %}

{% else %}

{% endif %}

Are you worried about the volume of whitespace generated? Don’t be. First of all,
experienced developers favor readability of code over obfuscation for the sake of
optimization. Second, there are compression and mini$cation tools that can help more
than anything you can do manually here. See the Finding and Reducing Bottlenecks chapter
for more details.

Useful Things to Consider

!e following are a series of smaller things we keep in mind during template
development.

Our Naming Practices

• We don’t use the ‘dash’ character in blocks to link values together. We prefer the
use of underscore because many text editors won’t let you double click select the
associated words.

• We rely on clear, intuitive names for blocks. {% block extra_js %} is good.
• We include the name of the block tag in the endblock. Never write just {%
endblock %}, include the whole {% endblock extra_js %}.

• Templates called by other templates are pre"xed with '_'. !is applies to
templates called via {% includes %} or custom template tags. It does not apply
to templates inheritance controls such as {% extends %} or {% block %}.

Limit Looping

TODO: Looping over large querysets in your templates is usually a bad idea. Show
example snippet of looping and checking for various "if " conditions, and how that code
can be improved by moving it to a model manager.

Debugging Complex Templates

Chapter 12: Templates: Best Practices

118

A trick recommended by Lennart Regebro is that when templates are complex and it
becomes difficult to determine where a variable is failing, you can force more verbose
errors through the use of the TEMPLATE_STRING_IF_INVALID setting:

settings/local.py
TEMPLATE_STRING_IF_INVALID = 'INVALID EXPRESSION: %s'

Use URL Names Instead of Hardcoded Paths

A common developer mistake is to hardcode URLs in templates like this:

!e problem with this is that if the URL patterns of the site need to change, all the URLs
across the site need to be addressed. !is impacts HTML, Javascript, and even RESTful
APIs. Instead, we use the URL tag and references the names in our URLconf $les:

Use Named Context Objects

When you use generic display CBVs, you have the option of using the generic
{{ object_list }} and {{ object }} in your template. Another option is to use the
ones that are named after your model.

For example, if you have a Topping model, you can use {{ topping_list }} and
{{ topping }} in your templates, not {{ object_list }} and {{ object }}.
Which means both of the the following template examples will work:

{# toppings/topping_list.html #}
{# Using implicit names #}

{% for object in object_list %}
 {{ object }}
{% endfor %}

Chapter 12: Templates: Best Practices

119

{# toppings/topping_list.html #}
{# Using explicit names #}

{% for topping in topping_list %}
 {{ topping }}
{% endfor %}

Avoid Coupling Styles Too Tightly to Python Code

Aim to be able to control the styling of all rendered templates entirely via CSS and JS.

Use CSS for styling whenever possible. Never hardcode things like menu bar widths and
color choices into your Python code. Avoid even putting that type of styling into your
Django templates.

Here are some tips:

• If you have magic constants in your Python code that are entirely related to visual
design layout, you should probably move them to a CSS $le.

• !e same applies to Javascript.

Using Javascript Templates in Django Templates

Many developers enjoy the use of Javascript templates libraries such as handlebars.js, since
they are often a component of sophisticated Javascript frameworks. Unfortunately,
Javascript templates often con%ict with how Django templates render context variables.
Fortunately, version 1.5, Django provides the {% verbatim %} built-in template tag.
Simply wrap the Javascript language and generate verbatim content:

{% verbatim %}
 Ice Cream {{if melted}}melted{{/if}}.
{% endverbatim %}

Location, Location, Location!

Chapter 12: Templates: Best Practices

120

Templates should usually go into the root of the Django project, at the same level as the
apps. !is is the most common convention, and it’s an intuitive, easy pattern to follow.

!e only exception is when you bundle up an app into a third-party package. !at
packages template directory should go into app directly. We’ll explore this in the chapter
on How to Release Your Own Django Packages.

Don't Replace the Django Template Engine

If you need Jinja2 or any other templating engine for certain views, then it's easy enough
to use it for just those views without having to replace Django templates entirely.

For more details, see the Tradeoffs of Replacing Core Components chapter for a case study
about replacing the Django template engine with Jinja2.

Chapter 12: Templates: Best Practices

121

Summary

In this chapter we covered the following:

• Template Inheritance including the use of {{ block.super }}.
• Writing legible, maintainable templates.
• Easy methods to optimize template performance.

In the next chapter we'll examine Template Tags and Filters.

Chapter 12: Templates: Best Practices

122

Template Tags and Filters

 "Please stop writing so many template tags. !ey are a pain to debug."

-- Audrey Roy, while debugging Daniel Greenfeld’s code.

Django provides dozens of default template tags and $lters, all of which all share several
common traits:

• All of the defaults have clear, obvious names.
• All of the defaults do just one thing.
• None of the defaults alter any sort of persistent data.

!ese traits serve as very good best practices when you have to write your own
templatetags.

Our Problems With Template Tags and Filters

Odds are that the opening quote for this chapter was a pretty good sign that we $nd
template tags and $lters problematic. We’ve done a lot of work with them, and have
found that they can be the source of unpleasantness:

• Template tags and to a lesser extent $lters of any complexity can be challenging to
debug.

• Template tags and $lters can have a signi$cant performance cost.
• It can be difficult to consistently apply the same effect as a template tag on

alternative output formats used by an API or in PDF/CSV generation.

!ese days, we’re very cautious about adding new template tags and $lters, and consider
two things before writing them:

13

• Anything that causes a read/write of data might be better placed in a model or
object method.

• Since we implement a consistent naming standard across our projects, we can add
an abstract base class model to our core.models module which adds the method/
property.

When should you write new template tags or "lters?
Only when you must. When there is no other option. Our preference for writing them is
that they are only responsible for rendering of HTML.

Custom template tags should be written with caution. Why? Well, they only work in
templates, the writing of compiler/renderers is complex because ‘they can do anything’,
and you have to make sure that the template tag is thread-safe. See https://
docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-
considerations

You could use the {% include "app_name/_box_items.html" %} built-in template
tag. !e only downside of this approach is that unless you also pass in the 'only'
argument, the included template is passed the entire context of the parent, which can be
confusing in complex template hierarchies.

Filters are okay. !ey are essentially just functions with decorators that make usable
inside of Django templates. !is means can be called as normal functions (although we
prefer to have our $lters call functions imported from helper modules).

TIP: We Do Use Template Tags

Interestingly enough, Daniel has been involved at least three prominent libraries that
make extensive use of template tags.

Chapter 13: Template Tags and Filters

124

https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations
https://docs.djangoproject.com/en/dev/howto/custom-template-tags/#thread-safety-considerations

Naming Your Template Tag Modules

!e convention we follow is <app_name>_tags.py. Using the twoscoops example, we
would have $les named thus:

• flavors_tags.py

• blog_tags.py

• events_tags.py

• tickets_tags.py

!is makes determining the source of a template tag library trivial to discover.

WARNING: Don't Use Your IDE's Features as an Excuse to Obfuscate Your Code

Do not rely on your text editor or IDE’s powers of introspection to determine the name
of your templatetag library.

Loading Your Template Tag Modules

In your template, right after {% extends "base.html" %} is where you load them:

{% extends "base.html" %}

{% load flavors_tags %}

Simplicity itself ! Explicit loading of functionality! Hooray!

Watch Out for This Crazy Anti-Pattern

Unfortunately, there is an obscure anti-pattern that will drive you mad with fury each and
every time you encounter it:

Chapter 13: Template Tags and Filters

125

Don’t use this code! It’s an evil anti-pattern!
from django import template
template.add_to_builtins(
 "flavors.templatetags.flavors_tags"
)

!e anti-pattern replaces the explicit load method described above with an implicit
behavior which supposedly $xes a “Don’t Repeat Yourself ” (DRY) issue. However, any
DRY ‘improvements’ it creates are destroyed by the following:

• It will add some overhead due to the fact this literally loads the templatetag library
into each and every template loaded by django.template.Template. Which
means every inherited template, template {% include %}, inclusion_tag, and
more will be impacted. While we have cautioned against premature optimization,
we are also not in favor of adding this much unneeded extra computational work
into our code when better alternatives exist.

• Because the templatetag library is implicitly loaded, it immensely adds to the
difficulty in introspection and debugging. Per the Zen of Python, ‘Explicit is better
than Implicit’.

• !e add_to_builtins method has no convention for placement. Which means
it’s typically placed in an __init__ module or template tag, either of which can
cause unexpected problems.

Fortunately, this is obscure because beginning Django developers don’t know enough to
make this mistake and experienced Django developers get really angry when they have to
deal with it.

Chapter 13: Template Tags and Filters

126

Tradeoffs of Replacing Core
Components

!ere’s a lot of hype around swapping out core parts of Django’s stack for other pieces.
Should you do it?

Short Answer: Don’t do it. Even Instagram says these days on Forbes.com it’s completely
unnecessary: http://www.forbes.com/sites/limyunghui/2012/04/09/inspiring-insights-by-
instagram-ceo-kevin-systrom-the-man-who-built-a-1-billion-startup/2/

Long Answer: It’s certainly possible, since Django modules are simply just Python
modules. Is it worth it? Well, it’s worth it only if:

• You are okay with sacri$cing your ability to use third-party Django packages.
• You have no problem giving up the powerful Django admin.
• You have already made a determined effort to build your project with core Django

components, but you are running into walls that are major blockers.
• You’ve explored all other options including caching, denormalization, etc.
• Your project is a real, live production site with tons of users. In other words, you’re

certain that you’re not just optimizing prematurely.
• You’re willing to accept the fact that upgrading Django will be extremely painful or

impossible going forward.

!at doesn’t sound so great anymore, does it?

The Temptation To Build FrankenDjango

Every year, a new fad leads waves of developers to replace some particular core Django
component. Here’s a summary of some of the fads we’ve seen come and go.

14

http://www.forbes.com/sites/limyunghui/2012/04/09/inspiring-insights-by-instagram-ceo-kevin-systrom-the-man-who-built-a-1-billion-startup/2/
http://www.forbes.com/sites/limyunghui/2012/04/09/inspiring-insights-by-instagram-ceo-kevin-systrom-the-man-who-built-a-1-billion-startup/2/
http://www.forbes.com/sites/limyunghui/2012/04/09/inspiring-insights-by-instagram-ceo-kevin-systrom-the-man-who-built-a-1-billion-startup/2/
http://www.forbes.com/sites/limyunghui/2012/04/09/inspiring-insights-by-instagram-ceo-kevin-systrom-the-man-who-built-a-1-billion-startup/2/

Fad Reasons

Replacing the database/ORM with a NoSQL
database and corresponding ORM
replacement.

Not okay: “I have an idea for a social network for ice cream
haters. I just started building it last month. I need it to be web-
scale!!!1!”

Okay: “Our site has 50M users and I’m hitting the limits of what
I can do with indexes, query optimization, caching, etc. We’re
also pushing the limits of our Postgres cluster. I’ve done a lot of
research on this and am going to try storing a simple
denormalized view of our activity feed data in Redis to see if it
helps.”

Replacing Django’s template engine with
Jinja2, Mako, or something else.

Not okay: “I read on Hacker News that Jinja2 is faster. I don’t
know anything about caching or optimization, but I need
Jinja2!”

Not okay: “I hate having logic in Python modules. I just want
logic in my templates!”

Sometimes okay: “I have a small number of views which
generate 1MB+ HTML pages designed for Google to index!”

Case Study: Replacing the Django Template Engine

Let’s take a closer look at one of the most common examples of replacing core Django
components: replacing the Django template engine with Jinja2.

Excuses, Excuses

!e excuse for doing this used to be performance. !at excuse is no longer quite as valid.
A lot of work has gone into improving the performance of Django’s templating system,
and newer benchmarks indicate that performance is greatly improved.

Chapter 14: Tradeoffs of Replacing Core Components

128

A common excuse for replacing the Django template engine is to give you more
%exibility. !is is a poor excuse because your template layer should be as thin as possible.
Case in point, adding '%exibility' to templates also means adding complexity.

What if I'm Hitting the Limits of Templates?

Are you really? You might just be putting your logic in the wrong places:

• If you are putting tons of logic into templates, template tags, and $lters, consider
moving that logic into model methods or helper utilities.

• Whatever can’t put into model methods might go into views.
• Template tags and $lters should be a last resort. We’ll cover this in more detail in

the Models, Revisited and the Template Tags and Filters chapters, so don’t worry if
you don’t fully understand this yet.

What About My Unusual Use Case?

Okay, but what if I need to generate a 1 MB+ HTML page for Google to index?

Interestingly enough, this is the only use case we know of for replacing Django 1.5
templates. !e size of these pages can and will crash browsers, so it’s really meant for
machines to read from each other. !ese giant pages require tens of thousands of loops to
render the $nal HTML, and this is a place where Jinja2 (or other template engines)
might provide a noticeable performance bene$t.

However, besides these exceptions, we've found we don’t need Jinja2. So rather than
replace Django templates across the site, we use Jinja2 in only the affected view:

flavors/views.py
import os
from django.conf import settings
from django.http import HttpResponse

from jinja2 import Template, Environment, FileSystemLoader

from syrup.models import Syrup

Chapter 14: Tradeoffs of Replacing Core Components

129

JINJA2_TEMPLATES_DIR = os.path.join(
 settings.PROJECT_ROOT,
 'templates',
 'jinja2'
)
JINJA2_LOADER = FileSystemLoader(JINJA2_TEMPLATES_DIR)
JINJA2_ENV = Environment(loader=JINJA2_LOADER)

def big_syrup_list(request):
 template = JINJA2_ENV.get_template('big_syrup_list.html')
 object_list = Syrup.objects.filter()
 content = template.render(object_list=object_list)
 return HttpResponse(content)

As we demonstrate, it's pretty easy to bring in the additional performance of Jinja2
without removing Django templates from a project.

Summary

Always use the right tool for the right job. We prefer to go with stock Django
components, just like we prefer using a scoop when serving ice cream. However, there are
times when other tools make sense.

Just don't follow the fad of using a fork for ice cream!

Chapter 14: Tradeoffs of Replacing Core Components

130

Working With the Django Admin

When people ask, “What are the bene$ts of Django over other web frameworks?” the
admin is what usually comes to mind.

Imagine if every gallon of ice cream came with an admin interface. You’d be able to not
just see the list of ingredients, but also add/edit/delete ingredients. If someone was
messing around with your ice cream in a way that you didn’t like, you could revoke their
access.

Pretty surreal, isn’t it? Well, that’s what web developers coming from another background
feel like when they $rst use the Django admin interface. It gives you so much power over
your web application automatically, with little work required.

It's Not for End Users

!e Django admin interface is designed for site administrators, not end users. It’s a place
for your site administrators to add/edit/delete data and perform site management tasks.

Although it’s possible to stretch it into something that your end users could use, you
really shouldn’t. It’s just not designed for that.

Admin Customization vs. New Views

It’s usually not worth it to heavily customize the admin. Sometimes, creating a simple
view or form from scratch results in the same desired functionality with a lot less work.

We’ve always had better results with creating custom management dashboards for client
projects than we have with modifying the admin to $t clients’ needs.

15

Secure It Well

It’s worth the effort to take the few extra steps to prevent hackers from accessing the
admin, since the admin gives you so much power over your site. See the Security chapter
for details.

Chapter 15: Working With the Django Admin

132

Dealing With the User Model

!e best practices for this have changed signi$cantly in Django 1.5. !e ‘right way’ before
Django 1.5 was a bit confusing, and there’s still confusion around pre-1.5, so it’s especially
important that what we describe here is only applied to Django 1.5.

So let’s brie%y go over best practices for Django 1.5 or higher.

Use Django's Tools for Finding the User Model

From Django 1.5 onwards, the advised way to get to the user class is as follows:

Stock user model definition
>>> from django.contrib.auth import get_user_model
>>> get_user_model()
<class 'django.contrib.auth.models.User'>

Custom user model definition
>>> from django.contrib.auth import get_user_model
>>> get_user_model()
<class 'profiles.models.UserProfile'>

It is now possible to get two different User model de$nitions depending on the project
con$guration. !is doesn’t mean that a project can have two different User models, it
means that every project can customize its own User model. Which is new in Django 1.5
and a radical departure from earlier versions of Django.

Use settings.AUTH_USER_MODEL for foreign keys to User
From Django 1.5 onwards, the advised way to attach ForeignKey, OneToOneField, or
ManyToManyField to user is as follows:

16

from django.conf import settings
from django.db import models

class IceCreamStore(models.Model):

 owner = models.OneToOneField(settings.AUTH_USER_MODEL)
 title = models.CharField(max_length=255)

Custom User Fields for Projects Starting at Django 1.5

In Django 1.5, as long as you incorporate the necessary required methods and attributes,
you can create your own user model with it’s own $elds. You can still do things the old pre
Django 1.5 way, but you’re not stuck with having a User model with just email,
$rst_name, last_name, and username $elds for identity.

WARNING: Migrating From Pre-1.5 User Models to 1.5's Custom User Models.

At the time we wrote this book, the best practices for this are still being determined. We
suggest that you carefully try out option #1 below, as it should work with a minimum of
effort. For Django 1.5 style custom User model de$nitions, we recommend option #2 and
option #3 for new projects only.

!is is because custom User model de$nitions for option #2 and option #3 adds new User
tables to the database that will not have the existing project data. Unless project-speci$c
steps are taken to address matters, migration means ORM connections to related objects
will be lost.

When best practices for migrating between User model types have been established by
the community, we’ll publish errata and update future editions of this book. In the
meantime, we look forward to any suggestions for good practices or patterns to follow.

Chapter 16: Dealing With the User Model

134

Option 1: Linking Back From a Related Model

!is code is very similar to pre-Django 1.5 projects. You continue to use User (called
preferably via django.contrib.auth.get_user_model) and keep your related $elds in
a separate model (e.g. Pro$le). Here’s an example:

from django.conf import settings
from django.db import models

class UserProfile(models.Model):

 # If you do this you need to either have a post_save signal or
 # redirect to a profile_edit view on initial login.
 user = models.OneToOneField(settings.AUTH_USER_MODEL)
 favorite_ice_cream = models.CharField(max_length=30)

TIP: For Now, You Can Still Use the user.get_profile() Method.

The user.get_profile() method is deprecated as of Django 1.5. Instead,

We advise using a standard Django ORM join instead, for example
user.userprofile.favorite_ice_cream.

Option 2: Subclass AbstractUser

Choose this option if you like Django’s User model $elds the way they are, but need extra
$elds.

WARNING: Third-Party Packages Should Not Be Defining the User Model

Unless the express purpose of the third-party package is to provide a new User model,
third-party packages should never use option #2 to add $elds to the User model.

Here’s an example of how to subclass AbstractUser:

Chapter 16: Dealing With the User Model

135

profiles/models.py
from django.contrib.auth.models import AbstractUser
from django.db import models
from django.utils.translation import ugettext_lazy as _

class KarmaUser(AbstractUser):
 karma = models.PositiveIntegerField(_('karma'),
 default=0, blank=True)

It’s much more elegant than the pre-1.5 way, isn’t it?

!e other thing you have to do is set this in your settings:

AUTH_USER_MODEL = 'profiles.KarmaUser'

Option 3: Subclass AbstractBaseUser

AbstractBaseUser is the bare-bones option with only 3 $elds: password, last_login, and
is_active.

Choose this option if:

• You’re unhappy with the $elds that the User model provides by default, such as
first_name and last_name.

• You prefer to subclass from an extremely bare-bones clean slate but want to take
advantage of the AbstractBaseUser sane default approach to storing passwords.

WARNING: Third-Party Packages Should Not Be Defining the User Model

Unless the express purpose of the third-party package is to provide a new User model,
third-party packages should never use option #3 to add $elds to the User model

Let’s try it out with a custom User model for the Two Scoops project. Here are our
requirements:

Chapter 16: Dealing With the User Model

136

• We need an email address.
• W e n e e d t o h a n d l e p e r m i s s i o n s p e r t h e t r a d i t i o n a l
django.contrib.auth.models use of PermissionsMixin; providing standard
behavior for the Django admin.

• We don’t need the $rst or last name of a user.
• We need to know their favorite ice cream topping.

Looking over the Django 1.5 documentation on customizing the User model, we notice
there is a full example (https://docs.djangoproject.com/en/1.5/topics/auth/customizing/
#a-full-example). It doesn’t do exactly what we want, but we can modify. Speci$cally:

We’ll need to add PermissionMixin to our custom User model.

• We’ll need to implement a favorite toppings $eld.
• We’ll need to ensure that the admin.py fully supports our custom User model.

Unlike the example in the documentation, we do want to track groups and
permissions.

Let's do it! We'll call our new User model, TwoScoopsUser.

Before we start writing our new TwoScoopsUser model, we need to write a custom
TwoScoopsUserManager. !is is generally required for custom User models as the auth
system expects certain methods on the default manager, but the manager for the default
user class expects $elds we are not providing.

profiles/models.py
from django.db import models

from django.contrib.auth.models import (
 BaseUserManager, AbstractBaseUser, PermissionsMixin
)

class TwoScoopsUserManager(BaseUserManager):
 def create_user(self, email, favorite_topping,

Chapter 16: Dealing With the User Model

137

https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#a-full-example)

 password=None):
 """
 Creates and saves a User with the given email,
 favorite topping, and password.
 """
 if not email:
 msg = 'Users must have an email address'
 raise ValueError(msg)

 if not favorite_topping:
 msg = 'Users must have a favorite topping'
 raise ValueError(msg)

 user = self.model(
 email=TwoScoopsUserManager.normalize_email(email),
 favorite_topping=favorite_topping,
)

 user.set_password(password)
 user.save(using=self._db)
 return user

 def create_superuser(self,
 email,
 favorite_topping,
 password):
 """
 Creates and saves a superuser with the given email,
 favorite topping and password.
 """
 user = self.create_user(email,
 password=password,
 favorite_topping=favorite_topping
)
 user.is_admin = True
 user.is_staff = True
 user.is_superuser = True

Chapter 16: Dealing With the User Model

138

 user.save(using=self._db)
 return user

With our TwoScoopsUserManager complete, we can write the TwoScoopsUser class.

profiles/models.py (after the TwoScoopsUserManager)
class TwoScoopsUser(AbstractBaseUser, PermissionsMixin):
 """ Inherits from both the AbstractBaseUser and
 PermissionMixin.
 """
 email = models.EmailField(
 verbose_name='email address',
 max_length=255,
 unique=True,
 db_index=True,
)
 favorite_topping = models.CharField(max_length=255)

 USERNAME_FIELD = 'email'
 REQUIRED_FIELDS = ['favorite_topping',]

 is_active = models.BooleanField(default=True)
 is_admin = models.BooleanField(default=False)
 is_staff = models.BooleanField(default=False)

 objects = TwoScoopsUserManager()

 def get_full_name(self):
 # The user is identified by their email and
 # favorite topping
 return "%s prefers %s" % (self.email,
 self.favorite_topping)

 def get_short_name(self):
 # The user is identified by their email address
 return self.email

Chapter 16: Dealing With the User Model

139

 def __unicode__(self):
 return self.email

Boom! !ere’s no first_name or last_name, which is probably what you wanted if
you’re choosing this option. !e permissions are in place and most importantly, users have
a favorite ice cream topping!

Like the $rst option, don’t forget to set this in your settings:

settings/base.py
AUTH_USER_MODEL = 'profiles.TwoScoopsUser'

Upon syncdb this will create a new User table and various other references. We ask that
you try this on a new database rather than an existing one.

Once the table has been created, we can create a superuser locally via the shell:

$ python manage.py createsuperuser
Email address: hello@twoscoopsofdjango.com
Favorite topping: rainbow sprinkles
Password:
Password (again):
Superuser created successfully.

With our new superuser account in hand, let’s create the profiles/admin.py so we can
see the results.

Again, we follow the lead of the example in the Django documentation. We modify it to
include the permissions and favorite toppings $elds. !e results:

profiles/admin.py
from django import forms
from django.contrib import admin
from django.contrib.auth.admin import UserAdmin
from django.contrib.auth.forms import ReadOnlyPasswordHashField

Chapter 16: Dealing With the User Model

140

mailto:hello@twoscoopsofdjango.com
mailto:hello@twoscoopsofdjango.com

from .models import TwoScoopsUser

class TwoScoopsUserCreationForm(forms.ModelForm):
 """A form for creating new users. Includes all the
 required fields, plus a repeated password.
 """
 password1 = forms.CharField(
 label='Password',
 widget=forms.PasswordInput)
 password2 = forms.CharField(
 label='Password confirmation',
 widget=forms.PasswordInput)

 class Meta:
 model = TwoScoopsUser
 fields = ('email', 'favorite_topping')

 def clean_password2(self):
 # Check that the two password entries match
 password1 = self.cleaned_data.get("password1")
 password2 = self.cleaned_data.get("password2")
 if password1 and password2 and password1 != password2:
 msg = "Passwords don't match"
 raise forms.ValidationError(msg)
 return password2

 def save(self, commit=True):
 # Save the provided password in hashed format
 user = super(TwoScoopsUserCreationForm,
 self).save(commit=False)
 user.set_password(self.cleaned_data["password1"])
 if commit:
 user.save()
 return user

class TwoScoopsUserChangeForm(forms.ModelForm):

Chapter 16: Dealing With the User Model

141

 """ A form for updating users. Includes all the fields
 on the user, but replaces the password field with
 admin's password hash display field.
 """
 password = ReadOnlyPasswordHashField()

 class Meta:
 model = TwoScoopsUser

 def clean_password(self):
 # Regardless of what the user provides, return the
 # initial value. This is done here, rather than on
 # the field, because the field does not have access
 # to the initial value
 return self.initial["password"]

class TwoScoopsUserAdmin(UserAdmin):
 # Set the add/modify forms
 add_form = TwoScoopsUserCreationForm
 form = TwoScoopsUserChangeForm

 # The fields to be used in displaying the User model.
 # These override the definitions on the base UserAdmin
 # that reference specific fields on auth.User.
 list_display = ('email', 'is_staff', 'favorite_topping')
 list_filter = ('is_staff', 'is_superuser',
 'is_active', 'groups')
 search_fields = ('email', 'favorite_topping')
 ordering = ('email',)
 filter_horizontal = ('groups', 'user_permissions',)
 fieldsets = (
 (None, {'fields': ('email', 'password')}),
 ('Personal info', {'fields':
 ('favorite_topping',)}),
 ('Permissions', {'fields': ('is_active',
 'is_staff',
 'is_superuser',

Chapter 16: Dealing With the User Model

142

 'groups',
 'user_permissions')}),
 ('Important dates', {'fields': ('last_login',)}),
)
 add_fieldsets = (
 (None, {
 'classes': ('wide',),
 'fields': ('email', 'favorite_topping',
 'password1', 'password2')}
),
)

Register the new TwoScoopsUserAdmin
admin.site.register(TwoScoopsUser, TwoScoopsUserAdmin)

Now if you go to your admin home and login, you’ll be able to create and modify the
TwoScoopsUser model records.

Summary

!e new User model makes this an exciting time to be involved in Django. We are getting
to participate in a major infrastructure change with wide-ranging implications. We are
the ones who get to pioneer the best practices.

In this chapter we covered the new method to $nd the User model and de$ne our own
custom ones. Depending on the needs of a project, can either continue with the current
way of doing things or customize the actual user model.

!e next chapter begins our three chapter series on Testing, starting with Testing Stinks
and Is a Waste of Money.

Chapter 16: Dealing With the User Model

143

Django's Secret Sauce: Third-Party
Packages

!e real power of Django is more than just the framework and documentation available
at http://djangoproject.com. It’s the vast, growing selection of third-party Django and
Python packages provided by the open source community. !ere are many, many open-
source packages available for your Django projects. !ird-party packages do an incredible
amount of work for you. !ese packages have been written by people from all walks of
life, and power much of the world today.

Much of professional Django and Python development is about the incorporation of
third-party packages into Django projects. If you try to write every single tool that you
need from scratch, you'll have a hard time getting things done.

!is is especially true for us in the consulting world, where client projects consist of many
of the same or similar building blocks.

Examples of Third-Party Packages

Appendix A: Packages Mentioned In !is Book covers all of the packages mentioned
throughout this book. !is list is a great starting point if you're looking for highly-useful
packages to consider adding to your projects.

Note that not all of those packages are Django-speci$c, which means that you can use
some of them in other Python projects. (Generally, Django-speci$c packages have names
pre$xed with "django-", but there are many exceptions.)

17

http://djangoproject.com
http://djangoproject.com
http://djangoproject.com
http://djangoproject.com
http://djangoproject.com
http://djangoproject.com
http://djangoproject.com
http://djangoproject.com
http://djangoproject.com
http://djangoproject.com

Know About the Python Package Index

!e Python Package Index (http://pypi.python.org/pypi) is a repository of software for
the Python programming language. As of the start of 2013, it lists over 27,000 packages,
including Django itself.

For the vast majority of Python community, no open-source project release is considered
official until it occurs on the Python Package Index.

!e Python Package Index (PyPI) is much more than just a directory. !ink of it as the
world's largest center for Python package information and $les. Whenever you use pip to
install a particular release of Django, pip downloads the $les from PyPI. Most Python
and Django packages are downloadable from PyPI as well via pip.

Know about DjangoPackages.com

Django Packages (www.djangopackages.com) is a directory of reusable apps, sites, tools
and more for your Django projects. Unlike the Python Package Index, it doesn't store the
packages themselves, instead providing a mix of hard metrics gathered from PyPI,
GitHub, BitBucket, Read!eDocs, and "soft" data entered by user.

Django Packages is best known as a comparison site for evaluating package features. On
Django Packages, packages are organized into handy grids so they can be compared
against each other.

Django Packages also happens to have been created by the authors of this book, with
contributions from numerous folks in the Python community. We continue to maintain
and improve it as a helpful resource for Django users.

Know Your Resources

Django developers unaware of the critical resources of Django Packages and the Python
Package Index are denying themselves one of the most important advantages of using
Django and Python. If you are not aware of these tools, it’s well worth the time you spend
educating yourself.

Chapter 17: Django's Secret Sauce: !ird-Party Packages

146

http://pypi.python.org/pypi
http://pypi.python.org/pypi
http://pypi.python.org/pypi
http://pypi.python.org/pypi
http://pypi.python.org/pypi
http://pypi.python.org/pypi
http://pypi.python.org/pypi
http://pypi.python.org/pypi
http://pypi.python.org/pypi
http://pypi.python.org/pypi
http://pypi.python.org/pypi
http://pypi.python.org/pypi
http://pypi.python.org/pypi
http://pypi.python.org/pypi
http://pypi.python.org/pypi
http://pypi.python.org/pypi
http://pypi.python.org/pypi
http://pypi.python.org/pypi
http://www.djangopackages.com
http://www.djangopackages.com

As a Django (and Python) developer, make it your mission to use third-party libraries
instead of reinventing the wheel whenever possible. !e best libraries have been written,
documented, and tested by amazingly competent developers working around the world.
Standing on the shoulders of these giants is the difference between amazing success and
tragic downfall.

As you use various packages, study and learn from their code. You'll learn patterns and
tricks that will make you a better developer.

Tools For Installing and Managing Packages

To take full advantage of all the packages available for your projects, having virtualenv
and pip installed isn’t something you can skip over—it’s mandatory.

Refer to !e Optimal Django Environment Setup for more details.

Package Requirements

As we mentioned earlier in Settings and Requirements Files, we manage our Django/
Python dependencies with requirements $les. !ese $les go into the requirements/
directory that exists in the root of our projects.

TIP: Researching Third-Party Packages To Use

If you want to learn more about the dependencies we list in this and other chapters,
please reference Appendix A: !ird-Party Packages We Use.

Wiring Up Django Packages: The Basics

When you $nd a third-party package that you want to use, follow these steps:

1. Read the Documentation for the Package

Chapter 17: Django's Secret Sauce: !ird-Party Packages

147

Are you sure you want to use it? Make sure you know what you’re getting into before you
install any package.

2. Add Package and Version Number to Your Requirements

If you recall from the chapter on Django’s Secret Sauce: !ird-Party Packages, a
requirements/_base.txt $le looks something like this (but probably longer):

https://www.djangoproject.com/download/1.5c1/tarball/
coverage==3.6
django-discover-runner==0.2.2
django-extensions==0.9
django-floppyforms==1.0

Note that each package is pinned to a speci$c version number. ALWAYS pin your
package dependencies to version numbers.

What happens if you don’t pin your dependencies? You are almost guaranteed to run into
problems at some point when you try to reinstall or change your Django project. When
new versions of packages are released, you can’t expect them to be backwards-compatible.

Our sad example: Once we followed a Software-as-a-Service’s instructions for using their
library. As they didn’t have their own Python client, but an early adopter had a working
implementation on GitHub, those instructions told us to put the following into our
requirements/_base.txt:

-e git+https://github.com/erly-adptr/py-junk.git#egg=py-jnk

Our mistake. We should have known better and pinned it to a particular git revision
number.

Not the early adopter’s fault at all, but they pushed up a broken commit to their repo.
Once we had to $x a problem on a site very quickly, so we wrote a bug$x and tested it
locally in development. It passed the tests. !en we deployed it to production in a process
that grabs all dependency changes; of course the broken commit was interpreted as a valid
change. Which meant, while $xing one bug, we crashed the site.

Chapter 17: Django's Secret Sauce: !ird-Party Packages

148

Not a fun day.

!e purpose of using pinned releases is to add a little formality and process to our
published work. Especially in Python, GitHub and other repos are a place for developers
to publish their work-in-progress, not the $nal, stable work upon which our projects
depend.

3. Install the Requirements Into Your Virtualenv

Assuming you already in a working virtualenv and are at the <repo_root> of your
project:

$ pip install -r requirements/_base.txt

If this is the $rst time you’ve done this for a particular virtualenv, it’s going to take a while
for it to grab all the dependencies and install them.

4. Follow the Package's Installation Instructions Exactly

Resist the temptation to skip steps unless you’re very familiar with the package. Since
Django developers love to get people to use their efforts, most of the time the installation
instructions they’ve authored make it easy to get things running.

Troubleshooting Third-Party Packages

Sometimes you run into problems setting up a package. What should you do?

First, make a serious effort to determine and solve the problem yourself. Pore over the
documentation and make sure you didn’t miss a step. Search online to see if others have
run into the same issue. Be willing to roll up your sleeves and look at the package source
code, as you may have found a bug.

If it appears to be a bug, see if someone has already reported it in the package repository’s
issue tracker. Sometimes you’ll $nd workarounds and $xes there. If it’s a bug that no one
has reported, go ahead and $le it.

Chapter 17: Django's Secret Sauce: !ird-Party Packages

149

If you still get stuck, try asking for help in all the usual places: StackOver%ow, IRC
#django, the project’s IRC channel if it has its own one, and your local Python user group.
Be as descriptive and provide as much context as possible about your issue.

How To Create and Release Your Own Django Packages

Whenever you write a particularly useful Django app, consider packaging it up for reuse
in other projects.

!e best way to get started is to follow Django’s Advanced Tutorial: How to Write Reusable
Apps for the basics: https://docs.djangoproject.com/en/1.5/intro/reusable-apps/

In addition to what is described in that tutorial, we recommend that you also:

1. Create a public repo containing the code. Most Django packages are hosted on
GitHub these days, so it’s easiest to attract contributors there, but various alternatives
exist (Sourceforge, Bitbucket, Launchpad, Gitorious, Assembla, etc.).

2. Release the package on PyPI, the Python package index (http://pypi.python.org).
Follow the PyPI submission instructions: http://2scoops.org/submit-to-pypi

3. Add the package to Django Packages: http://www.djangopackages.com
4. Use Read the Docs (http://rtfd.org) to host your Sphinx documentation.

TIP: Where Should I Create A Public Repo?

!ere are websites that offer free source code hosting and version control for open-source
projects. As mentioned in !e Optimal Django Environment Setup, GitHub or Bitbucket
are two popular options.

When choosing a hosted version control service, keep in mind that pip only supports Git,
Mercurial, Bazaar, and Subversion.

What Makes a Good Django Package?

Chapter 17: Django's Secret Sauce: !ird-Party Packages

150

https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
http://pypi.python.org
http://pypi.python.org
http://2scoops.org/submit-to-pypi
http://2scoops.org/submit-to-pypi
http://www.djangopackages.com
http://www.djangopackages.com
http://rtfd.org
http://rtfd.org

Here’s a checklist for you to use when releasing a new open-source Django package.
Much of this applies to Python packages that are not Django-speci$c.

!is checklist is also helpful for when you’re evaluating a Django package to use in any of
your projects.

!is section is adapted from our DjangoCon 2011 talk, “Django Package !underdome: Is
Your Package Worthy?” http://www.slideshare.net/audreyr/django-package-thunderdome-
by-audrey-roy-daniel-greenfeld

Purpose

Your package should do something useful and do it well. !e name should be descriptive.
!e package’s repo root folder should be pre$xed with django- to help make it easier to
$nd.

If part of the package’s purpose can be accomplished with a related Python package, then
create a separate Python package and use it as a dependency.

Scope

Your package’s scope should be tightly focus on one small task. !is means that your
application logic will be tighter, and users will have an easier time patching or replacing
the package.

Documentation

A package without documentation is a pre-alpha package. Docstrings don’t suffice as
documentation.

As described in the Documentation: Be Obsessed chapter, your docs should be written in
ReStructuredText. A nicely-formatted version of your docs should be generated with
Sphinx and hosted publicly. We encourage you to use https://readthedocs.org/ with
webhooks so that your formatted Sphinx documentation automatically updates whenever
you make a change.

Chapter 17: Django's Secret Sauce: !ird-Party Packages

151

http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
http://www.slideshare.net/audreyr/django-package-thunderdome-by-audrey-roy-daniel-greenfeld
https://readthedocs.org/
https://readthedocs.org/
https://readthedocs.org/
https://readthedocs.org/
https://readthedocs.org/
https://readthedocs.org/
https://readthedocs.org/
https://readthedocs.org/
https://readthedocs.org/
https://readthedocs.org/
https://readthedocs.org/
https://readthedocs.org/

If your package has dependencies, they should be documented. Your package’s installation
instructions should also be documented. !e installation steps should be bulletproof.

Tests

Your package should have tests. Tests improve reliability, make it easier to advance
Python/Django versions, and make it easier for others to contribute effectively. Write up
instructions on how to run your package’s test suite. If you or any contributor can run
your tests easily before submitting a pull request, then you’re more likely to get better
quality contributions.

Activity

Your package should receive regular updates from you or contributors if/when needed.
When you update the code in your repo, you should consider uploading a minor or major
release to the Python Package Index.

Community

Great Django packages often end up receiving contributions from other developers in the
Django community. All contributors should receive attribution in a CONTRIBUTORS.rst
$le and/or in a README.rst $le.

Be an active community leader if you have contributors or forks of your package. If your
package is forked by other developers, pay attention to their work. Consider if there are
ways that parts or all of their work can be merged into your fork. If the package’s
functionality diverges a lot from your package’s purpose, be humble and consider asking
the other developer to give their fork a new name.

Modularity

Your package should be as easily pluggable into any Django project that doesn’t replace
core components (templates, ORM, etc) with alternatives. Installation should be
minimally invasive. Be careful not to confuse modularity with over-engineering, though.

Availability on PyPI

Chapter 17: Django's Secret Sauce: !ird-Party Packages

152

All major and minor releases of your package should be available for download from PyPI
(the Python Package Index). Developers who wish to use your package should not have to
go to your repo to get a working version of it. Use proper version numbers.

License

Your package needs a license. Preferably, it should be licensed under the BSD or MIT
licenses, which are generally accepted for being permissive enough for most commercial
or noncommercial uses.

Create a LICENSE.rst $le in your repo root, mention the license name at the top, and
paste in the appropriate text from http://opensource.org/licenses/category for the license
that you choose.

Clarity of Code

!e code in your Django package should be as clear and simple as possible, of course.
Don’t use weird, unusual Python/Django hacks without explaining what you are doing.

Summary

Django's real power is in the vast selection of third-party packages available to you for use
in your Django projects.

Make sure that you have pip and virtualenv installed and know how to use them, since
they're your best tools for installing packages on your system in a manageable way.

Get to know the packages that exist. !e Python Package Index and Django Packages are
a great starting point for $nding information about packages.

Package maturity, documentation, tests, and code quality are good starting criteria when
evaluating a Django package.

Finally, we've provided our base requirements $le to give you ideas about the packages
that we use.

Chapter 17: Django's Secret Sauce: !ird-Party Packages

153

http://opensource.org/licenses/category
http://opensource.org/licenses/category
http://opensource.org/licenses/category
http://opensource.org/licenses/category
http://opensource.org/licenses/category
http://opensource.org/licenses/category
http://opensource.org/licenses/category
http://opensource.org/licenses/category
http://opensource.org/licenses/category
http://opensource.org/licenses/category
http://opensource.org/licenses/category
http://opensource.org/licenses/category
http://opensource.org/licenses/category
http://opensource.org/licenses/category
http://opensource.org/licenses/category
http://opensource.org/licenses/category
http://opensource.org/licenses/category
http://opensource.org/licenses/category

Installation of stable packages is the foundation of Django projects big and small. Being
able to use packages means sticking to speci$c releases, not just the trunk or master of a
project. Barring a speci$c release, you can rely on a particular commit. Fixing problems
that a package has with your project takes diligence and time, but remember to ask for
help if you get stuck.

Chapter 17: Django's Secret Sauce: !ird-Party Packages

154

Testing Stinks and Is a Waste of
Money!

!ere, got you to this chapter.

Now you have to read it.

We’ll try and make this chapter interesting.

Testing Saves Money, Jobs, and Lives

Daniel’s Story: Ever hear the term “smoke test”?

Gretchen Davidian, a Management and Program Analyst at NASA, told me that when
she was still an engineer, her job as a tester was to put equipment intended to get into
space through such rigorous conditions that they would begin emitting smoke and
eventually catch on $re.

!at sounds exciting! Employment, money, and lives were on the line, and knowing
Gretchen's intelligence and attention to detail, I'm sure she set a lot of hardware on $re.

Keep in mind that for a lot of us developers the same risks are on the line as NASA. I
recall in 2004 while working for a private company a single miles-vs-kilometers mistake
cost a company hundreds of thousands of dollars in a matter of hours. Quality Assurance
(QA) staff lost their jobs, which meant money and health bene$ts. In other words,
employment, money, and possibly lives. While the QA staff were very dedicated,
everything was done via manually clicking through projects, and human error simply
crept into the testing process.

18

Today, as Django moves into a wider and wider set of applications, the need for
automated testing is just as important as it was for Gretchen at NASA and for the poor
QA staff in 2004. Here are some cases where Django is used today that have similar
quality requirements:

• Your application handles medical information.
• Your application provides life-critical resources to people in need.
• Your application works with other people’s money.

Who cares? We Don't Have Time for Tests!

"Tests are the Programmer’s stone, transmuting fear into boredom." - Kent Beck

Let's say you are con$dent of your coding skill and decide to skip testing to increase your
speed of development. Or you feel lazy. It’s easy to argue that even with test generators
and using tests instead of the shell, they can increase the time to get stuff done.

Oh really?

What about when it's time to upgrade?

!at’s when the small amount of work you did up front to add tests saves you a lot of
work.

For example, in the summer of 2012, Django 1.2 was the standard when we started
Django Packages (http://www.djangopackages.com). Since then we've stayed current with
new Django versions, which has been really useful. Because of our pretty good test
coverage, moving up a version of Django (or the various dependencies) has been easy. Our
path to upgrade:

1. Increase the version in a local instance of Django Packages.
2. Run the tests.
3. Fix any errors that are thrown by the tests.
4. Do some manual checking.

Chapter 18: Testing Stinks and Is a Waste of Money!

156

http://www.djangopackages.com
http://www.djangopackages.com
http://www.djangopackages.com
http://www.djangopackages.com
http://www.djangopackages.com
http://www.djangopackages.com
http://www.djangopackages.com
http://www.djangopackages.com
http://www.djangopackages.com
http://www.djangopackages.com
http://www.djangopackages.com
http://www.djangopackages.com
http://www.djangopackages.com
http://www.djangopackages.com

If Django Packages didn't have tests, any time we upgraded ANYTHING we would have
to click through dozens and dozens of scenarios manually, which is error prone. We doubt
any lives are on the line with Django Packages, but as it does have a decent pro$le in the
developer community, which means any time a signi$cant error comes up in production
we certainly hear about it on Twitter and email.

!is is the bene$t of having tests.

The Game of Test Coverage

A great, fun game to play is trying get test coverage as high as possible. Every work day
we increase our test coverage is a victory, and every day the coverage goes down is a loss.

THIRD-PARTY PACKAGES

We prefer coverage.py and django-discover-runner.

What these tools do is provide a clear insight into what parts of your code base are
covered by tests. You also get a handy percentage of how much of your code is covered by
tests. Even 100% coverage doesn’t guarantee a bug-free application, but it helps.

We want to thank Ned Batchelder for his incredible work in maintaining coverage.py. It’s
a superb project and it’s useful for any Python related project.

Setting Up the Test Coverage Game

Yes, we call Test Coverage a game. It’s a good tool for developers to push themselves. It’s
also a nice metric that both developers and their clients/employers/investors can use to
help evaluate the status of a project.

We advocate following these steps because most of the time we want to only test our own
project’s apps, not all Django and the myriad of third-party libraries that are the building
blocks of our project. Testing those ‘building blocks’ takes an enormous amount of time,
which is a waste because most are already tested or require additional setup of resource.

Chapter 18: Testing Stinks and Is a Waste of Money!

157

Step 1: Set Up A Test Runner

In our settings directory, we create a test.py module and add the following:

"""Local test settings and globals which allows us to run our
test suite locally."""

from settings.base import *

########## TEST SETTINGS
TEST_RUNNER = 'discover_runner.DiscoverRunner'
TEST_DISCOVER_TOP_LEVEL = PROJECT_ROOT
TEST_DISCOVER_ROOT = PROJECT_ROOT
TEST_DISCOVER_PATTERN = "*"

########## IN-MEMORY TEST DATABASE
DATABASES = {
 "default": {
 "ENGINE": "django.db.backends.sqlite3",
 "NAME": ":memory:",
 "USER": "",
 "PASSWORD": "",
 "HOST": "",
 "PORT": "",
 },
}

TIP: It's Okay To Use SQLite3 to Speed Up Tests

For tests we like to use an in-memory instance of SQLite3 to expedite the running of
tests. We can have Django use PostgreSQL or MySql (or other databases) but after years
of writing tests for Django we’ve yet to catch problems caused by SQLite3’s loose $eld
typing.

Step 2: Run Tests and Generate Coverage Report

Let’s try it out! In the command-line, at the <project_root>, type:

Chapter 18: Testing Stinks and Is a Waste of Money!

158

$ coverage run manage.py test --settings=twoscoops.settings.test

If we have nothing except for the default tests for two apps, we should get a response that
looks like:

Creating test database for alias 'default'...
..

Ran 2 tests in 0.008s

OK

Destroying test database for alias 'default'...

!is doesn’t look like much, but what it means is that we’ve constrained our application to
only run the tests that you want. Now it’s time to go and look at and analyze our
embarrassingly low test coverage numbers.

Step 3: Generate the report!
coverage.py provides a very useful method for generating HTML reports that don’t just
provide percentage numbers of what’s been covered by tests, it also shows us the places
where code is not tested. In the command-line, at the <project_root>:

$ coverage html --include="<project-root>*" --omit="admin.py"

Ahem... Don’t forget to change <project-root> to match your development machine’s
structure and don’t forget the trailing asterisk (the ‘*’ character)! For example, depending
on where one does things, the <path-to-project-root> could be:

• /Users/audreyr/code/twoscoops/twoscoops/

• /Users/pydanny/projects/twoscoops/twoscoops/

• c:\twoscoops\

After this runs, in the <project_root> directory you’ll see a new directory called
htmlcov/. In the htmlcov/ directory open the index.html $le using any browser.

Chapter 18: Testing Stinks and Is a Waste of Money!

159

What is seen in the browser is the test results for your test run. Unless you already wrote
some tests, the total on the front page will be in the single digits, if not at 0%. Click into
the various modules listed and you should see lots of code colored red.

Red is bad.

Let’s go ahead and admit that our project has a low coverage total. If your project has a
low coverage total, you need to admit it as well. It’s okay just so long as we also resolve to
improve the coverage total.

In fact, there is nothing wrong in saying publicly that you are working to improve a
project’s test coverage. !en, other developers (including ourselves) will cheer you on!

Playing the Game of Test Coverage

!e game has a single rule:

Mandate that no commit can lower test coverage.

So if we go to add a feature and coverage is 65% when we start, we can't merge our thing
in until coverage it at least 65% again. At the end of each day, if your test coverage goes
up by any amount, you are winning.

Keep in mind that the gradual increase of test coverage can be a very a good thing over
huge jumps. Gradual increases can mean that we developers aren’t putting in bogus tests
to bump up coverage numbers - instead we are improving the quality of the project.

How to Structure Tests

Let’s say we’ve just created a new Django app. !e $rst thing we do is delete the default
but useless tests.py module that django-admin.py startapp creates.

Chapter 18: Testing Stinks and Is a Waste of Money!

160

In its place, we create a tests directory and place an __init__.py $le in it so it becomes a
valid Python module. !en, inside the new tests module, because most apps need them,
we create forms.py, models.py, views.py modules. Tests that apply to forms go into
forms.py, model tests go into models.py, and so on.

Here’s what it looks like:

popsicles/
 tests/
 __init__.py
 forms.py
 models.py
 views.py

Also, if we have other $les besides forms.py, models.py and views.py that need
testing, we create corresponding test $les and drop them into the tests/ directory too.

Summary

All of this might seem silly, but testing can be very serious business. In a lot of developer
groups this game is taken very seriously. Lack of stability in a project can mean the loss of
clients, contracts, and even employment.

In the next chapter we cover a common obsession of Python developers, Documentation.

Chapter 18: Testing Stinks and Is a Waste of Money!

161

Documentation: Be Obsessed

Given a choice between ice cream and writing great documentation, most Python
developers would probably choose to write the documentation, believe it or not. !at’s
how obsessed the Python community is with documentation.

When you have great documentation tools like Sphinx, you actually can’t help it but want
to add docs to your projects.

Formatting Your Docs

You’ll want to learn and follow the standard Python best practices for documentation.

Use reStructuredText Markup To Write Up Python Docs

!ese days, reStructuredText (RST) is the most common markup language used for
documenting Python projects. It looks like this:

Section Header
==============

Subsection Header

#) An enumerated list item

#) Second item

Study the documentation for reStructuredText and learn at least the basics: http://
docutils.sourceforge.net/rst.html

19

http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html

Use Sphinx To Generate Documentation From reStructuredText

Sphinx is a tool for generating nice-looking docs from your .rst $les. Output formats
include HTML, LaTeX, manual pages, and plain text.

We recommend pip installing Sphinx systemwide, as you’ll want to have it handy for
every Django project.

Follow the instructions to generate Sphinx docs: http://sphinx-doc.org/.

TIP: Build Your Sphinx Documentation At Least Weekly

You never know when bad cross-references or invalid formatting can break the Sphinx
build. Rather than discover that the documentation is unbuildable at an awkward
moment, just make a habit of creating it on a regular basis.

What Docs Should Your Django Project Contain?

Developer facing documentation are notes and guides that developers need in order to
maintain a project. !is includes notes on installation, deployment, architecture, how to
run tests or submit pull requests, and more. We've found it really helps to place this
documentation in all our projects, private or public.

On the next page we provide a table that describes what we consider the absolute
minimum documentation.

Chapter 19: Documentation: Be Obsessed

164

http://sphinx-doc.org/
http://sphinx-doc.org/
http://sphinx-doc.org/
http://sphinx-doc.org/
http://sphinx-doc.org/
http://sphinx-doc.org/
http://sphinx-doc.org/
http://sphinx-doc.org/
http://sphinx-doc.org/
http://sphinx-doc.org/
http://sphinx-doc.org/
http://sphinx-doc.org/
http://sphinx-doc.org/
http://sphinx-doc.org/
http://sphinx-doc.org/
http://sphinx-doc.org/

Required Project Documentation

Filename or Directory Reason Description or Instructions

README.rst Every Python project you begin
should have a README.rst file in
the repository root.

Provide at least a short paragraph
describing what the project does.
Also, link to the installation
instructions in the docs/ directory.

docs/ Your project documentation
should go in one, consistent
location. This is the Python
community standard.

A simple directory

docs/deployment.rst This file lets you take a day off. A point-by-point set of instructions
on how to install/update the
project into production, even if it's
done via something powered by
Ruby, Chef, Fabric, or a Makefile.

docs/installation.rst This is really nice for new people
coming into a project or when you
get a new laptop and need to set
up the project.

A point-by-point set of instructions
on how to onboard yourself or
another developer with the
software setup for a project.

docs/architecture.rst A guide for understanding what
things evolved from as a project
ages and grows in scope.

This is how you imagine a project
to be in simple text and it can be
as long or short as you want.
Good for keeping focused at the
beginning of an effort.

Using a Wiki or other documentation methods

For whatever reason, if you can't place developer facing documentation in the project
itself, you should have other options. While wikis, online document stores, and word
processing documents don't have the feature of being placed in version control, they are
better than no documentation.

Chapter 19: Documentation: Be Obsessed

165

Please consider creating documents within these other methods with the same names as
the ones we suggested in the table on the previous page.

Summary

In this chapter we went over the following:

• Introduced the use of reStructuredText and Markdown to write documentation in
plaintext format.

• Introduced the use Sphinx to render your documentation in HTML or PDF
formats.

• Advised on the required project documentation.

In the next chapter we dive into the Finding and Reducing Bottlenecks.

Chapter 19: Documentation: Be Obsessed

166

Finding and Reducing Bottlenecks

!is chapter covers a few basic strategies for identifying bottlenecks and speeding up your
Django projects.

Should You Even Care?

Remember, premature optimization is bad. If your site is small- or medium-sized and the
pages are loading $ne, then it’s okay to skip this chapter.

On the other hand, if your site’s user base is growing steadily or you’re about to land a
strategic partnership with a popular brand, then read on.

Get the Most Out of Your Database

First, Frank Wiles of Revsys taught us that there are two things that should never go into
any large site's relational database:

1. Don’t add logs to the database. Logs may seem OK on the surface, especially in
development. Yet adding this many writes to a production database will slow their
performance. When the ability to easily perform complex queries against your logs is
necessary, we recommend third-party services such as splunk.com or loggly.com or
even use of document based NoSQL databases including MongoDB or CouchDB.

2. Don’t add ephemeral data. What this means is data that requires constant rewrites is
not ideal for use in relational databases. !is includes examples such as
django.contrib.sessions, django.contrib.messages, and metrics. Instead,
move this data to things like Memcached, Redis, Riak, and other non-relational
stores.

20

TIP: Frank Wiles on binary data in databases

Frank actually taught us three things to never store in a database, but storing of binary
data in databases is addressed by django.db.models.FileField, which does the work
of storage of binary data on $le servers like AWS CloudFront or S3 for you.

Second, understand what your indexes are actually doing in production. Development
machines will never perfectly replicate what happens in production, so learn how to
analyze and understand what’s really happening with your database.

Getting the Most Out of PostgreSQL

If using PostgreSQL, be certain that PostgreSQL is set up correctly in production. As this
is outside the scope of the book, we recommend the following articles:

•http://wiki.postgresql.org/wiki/Detailed_installation_guides
•http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
•http://www.revsys.com/writings/postgresql-performance.html

We also recommend the following books:

•PostgreSQL 9.0 High Performance

Getting the Most Out of MySQL

It’s easy to get MySQL running, but optimizing production installations requires
experience and understanding. As this is outside the scope of this book, we recommend
the following books my MySQL experts to help you:

•High Performance MySQL

Chapter 20: Finding and Reducing Bottlenecks

168

http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.revsys.com/writings/postgresql-performance.html
http://www.amazon.com//dp/184951030X/?ie=UTF8&tag=cn-001-20
http://www.amazon.com//dp/184951030X/?ie=UTF8&tag=cn-001-20
http://www.amazon.com//dp/184951030X/?ie=UTF8&tag=cn-001-20
http://www.amazon.com//dp/184951030X/?ie=UTF8&tag=cn-001-20
http://www.amazon.com//dp/184951030X/?ie=UTF8&tag=cn-001-20
http://www.amazon.com//dp/184951030X/?ie=UTF8&tag=cn-001-20
http://www.amazon.com//dp/184951030X/?ie=UTF8&tag=cn-001-20
http://www.amazon.com//dp/184951030X/?ie=UTF8&tag=cn-001-20
http://www.amazon.com//dp/184951030X/?ie=UTF8&tag=cn-001-20
http://www.amazon.com//dp/184951030X/?ie=UTF8&tag=cn-001-20
http://www.amazon.com/dp/1449314287/?ie=UTF8&tag=cn-001-20
http://www.amazon.com/dp/1449314287/?ie=UTF8&tag=cn-001-20
http://www.amazon.com/dp/1449314287/?ie=UTF8&tag=cn-001-20
http://www.amazon.com/dp/1449314287/?ie=UTF8&tag=cn-001-20
http://www.amazon.com/dp/1449314287/?ie=UTF8&tag=cn-001-20
http://www.amazon.com/dp/1449314287/?ie=UTF8&tag=cn-001-20
http://www.amazon.com/dp/1449314287/?ie=UTF8&tag=cn-001-20
http://www.amazon.com/dp/1449314287/?ie=UTF8&tag=cn-001-20
http://www.amazon.com/dp/1449314287/?ie=UTF8&tag=cn-001-20
http://www.amazon.com/dp/1449314287/?ie=UTF8&tag=cn-001-20

TIP: How to tell what your database is really doing:

For PostgreSQL, a great and current (as of Django 1.5) guide for achieving this
understanding is Craig Kerstiens post on the subject:

•www.craigkerstiens.com/2012/10/01/understanding-postgres-performance/

•www.craigkerstiens.com/2013/01/10/more-on-postgres-performance/

For MySQL, we recommend using and understanding the EXPLAIN command:

•http://dev.mysql.com/doc/refman/5.6/en/explain.html

Use django-debug-toolbar To Find Query-Heavy Pages

You can use django-debug-toolbar to help you determine where most of your queries are
coming from. You’ll $nd bottlenecks such as:

• Duplicate queries in a page.
• ORM calls that resolve to many more queries than you expected.

You probably have a rough idea of some of the URLs to start with. For example, which
pages don’t feel snappy when they load.

Install django-debug-toolbar if you don’t have it yet. Con$gure it to include the
SQLDebugPanel. !en run your project locally, open it in a web browser, and expand the
debug toolbar. It’ll show you how many queries the current page contain.

Once you are looking into the number of queries being done, $gure out ways to reduce
them. Some of the things you can attempt:

• Try using select_related() in your ORM calls, as it follows ForeignKey
relations and combines more data into a larger query. If using CBVs, django-braces
makes this doing this trivial with the SelectRelatedMixin. Beware queries that
get too large!

Chapter 20: Finding and Reducing Bottlenecks

169

http://www.craigkerstiens.com/2012/10/01/understanding-postgres-performance/
http://www.craigkerstiens.com/2012/10/01/understanding-postgres-performance/
http://craigkerstiens.com/2013/01/10/more-on-postgres-performance/
http://craigkerstiens.com/2013/01/10/more-on-postgres-performance/
http://dev.mysql.com/doc/refman/5.6/en/explain.html
http://dev.mysql.com/doc/refman/5.6/en/explain.html

• If the same query is being generated more than once per view, move the query into
the Python view, add it to the context as a variable, and point the template ORM
calls at this new context variable.

• Implement caching using a key/value store such as Memcached. !en...
• ...write tests to assert the number of queries run in a view. See https://

d o c s . d j a n g o p r o j e c t . c o m / e n / 1 . 5 / t o p i c s / t e s t i n g / o v e r v i e w /
#django.test.TestCase.assertNumQueries

• Read up on Django ORM optimization: https://docs.djangoproject.com/en/1.5/
topics/db/optimization/

Cache Queries With Memcached or Redis

You can get a lot of mileage out of simply setting up Django’s built-in caching system
with Memcached or Redis. You will have to install one of these tools, install a package
that provides Python bindings for them, and con$gure your project.

You can easily set up the per-site cache, or you can cache the output of individual views or
template fragments. You can also use Django’s low-level cache API to cache Python
objects.

Reference material:

• https://docs.djangoproject.com/en/1.5/topics/cache/
• https://github.com/sebleier/django-redis-cache/

Identify Specific Places to Cache

Deciding where to cache is like being $rst in a long line of impatient customers at Ben
and Jerry’s on free scoop day. You are under pressure to make a quick decision without
being able to see what any of the %avors actually look like.

Chapter 20: Finding and Reducing Bottlenecks

170

https://docs.djangoproject.com/en/1.5/topics/testing/overview/#django.test.TestCase.assertNumQueries
https://docs.djangoproject.com/en/1.5/topics/testing/overview/#django.test.TestCase.assertNumQueries
https://docs.djangoproject.com/en/1.5/topics/testing/overview/#django.test.TestCase.assertNumQueries
https://docs.djangoproject.com/en/1.5/topics/testing/overview/#django.test.TestCase.assertNumQueries
https://docs.djangoproject.com/en/1.5/topics/testing/overview/#django.test.TestCase.assertNumQueries
https://docs.djangoproject.com/en/1.5/topics/testing/overview/#django.test.TestCase.assertNumQueries
https://docs.djangoproject.com/en/1.5/topics/db/optimization
https://docs.djangoproject.com/en/1.5/topics/db/optimization
https://docs.djangoproject.com/en/1.5/topics/db/optimization
https://docs.djangoproject.com/en/1.5/topics/db/optimization
https://docs.djangoproject.com/en/1.5/topics/cache/
https://docs.djangoproject.com/en/1.5/topics/cache/
https://github.com/sebleier/django-redis-cache/
https://github.com/sebleier/django-redis-cache/

Here are things to think about:

• Which views/templates contain the most queries?
• Which URLs are being requested the most?
• When should a cache for a page be invalidated?

Let’s go over the tools that will help you with these scenarios.

THIRD-PARTY PACKAGES: We use this to aid in performance analysis

•django-debug-toolbar - !is critical development tool can also be an invaluable
aid in cache analysis. We recommend adding ‘django-cache-panel’ to your project,
but only con$gured to run when settings/dev.py module is called. !is will increase
visibility into what your cache is doing.

•newrelic is a third-party library provided by newrelic.com. !ey provide a free
service that really helps in performance analysis of staging or production sites.
Newrelic’s for-pay service is amazing, and often worth the investment.

Consider Third-Party Caching Packages

!ird-party packages will give you additional features such as:

• Caching of QuerySets.
• Cache invalidation settings/mechanisms.
• Different caching backends.
• Alternative or experimental approaches to caching.

A couple of the popular Django packages for caching are:

• django-cache-machine
• johnny-cache

See www.djangopackages.com/grids/g/caching/ for more options.

Chapter 20: Finding and Reducing Bottlenecks

171

http://newrelic.com
http://newrelic.com
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/
http://www.djangopackages.com/grids/g/caching/

WARNING: Third-Party Caching Libraries Aren't Always the Answer

Having tried many of the third-party Django cache libraries we have to ask our readers to
test them very carefully and be prepared to drop them. !ey are cheap, quick wins, but can
lead to some hair-raising debugging efforts at the worst possible time. Cache invalidation
is hard and in our experience magical cache libraries are better for projects with more
static content. By-hand caching is a lot more work, but leads to better performance in the
long run and doesn't risk those terrifying moments.

Compression and Minification of HTML, CSS, and Javascript

When a browser renders a web page, it usually has to load HTML, CSS, Javascript, and
images $les. Each of these $les consumes the bandwidth of the user, slowing down page
loads. One way to reduce bandwidth consumption is via compression and mini$cation,
and Django even provides tools for you (GZipMiddleware and the {% spaceless
%} template tag). !rough the at-large Python community, we can even use WSGI
middleware that performs the same task.

!e problem with making Django and Python do the work is that compression and
mini$cation takes up system resources, which can create bottlenecks of their own. A
better approach is to use Apache and Nginx web servers con$gured to compress the
outgoing content. If you are building your own web servers, this is absolutely the way to
go.

A very common middle approach that we endorse is to use a third-party Django library
to compress and minify the CSS and Javascript in advance. Our preference are django-
pipeline which comes recommended by Django core developer Jannis Leidel.

Tools and libraries to reference:

• Apache and Nginx compression modules
• django-pipeline
• django-htmlmin

Chapter 20: Finding and Reducing Bottlenecks

172

• https://docs.djangoproject.com/en/1.5/ref/templates/builtins/#spaceless
• ht tp s : / /doc s .d j angopro j e c t . com/en/1 .4 / re f /midd l e ware /#modu le-

django.middleware.gzip
• www.djangopackages.com/grids/g/asset-managers/

Use Upstream Caching or a Content Delivery Network

Upstream caches such as Varnish are very useful. !ey run in front of your web server
and speed up web page or content serving signi$cantly. See www.varnish-cache.org/.

Content Delivery Networks like Akamai and Amazon Cloudfront serve static media
such as images, video, CSS, and Javascript $les so your webserver can focus on delivering
content.

Other Resources

Advanced techniques on scaling, performance, tuning, and optimization are beyond the
scope of this book, but here are some starting points.

On general best practices for web performance:

• YSlow’s Web Performance Best Practices and Rules: http://developer.yahoo.com/
yslow/

• Google’s Web Performance Best Practices: https://developers.google.com/speed/
docs/best-practices/rules_intro

On scaling large Django sites:

• David Cramer often writes and speaks about scaling Django at Disqus. Read his
blog and keep an eye out for his talks, Quora posts, comments, etc. http://
justcramer.com/

• Watch videos and slides from past DjangoCons and PyCons about different
developers’ experiences. Scaling practices vary from year to year and from company
to company: http://lanyrd.com/search/?q=django+scaling

Chapter 20: Finding and Reducing Bottlenecks

173

https://docs.djangoproject.com/en/1.5/ref/templates/builtins/#spaceless
https://docs.djangoproject.com/en/1.5/ref/templates/builtins/#spaceless
https://docs.djangoproject.com/en/1.4/ref/middleware/#module-django.middleware.gzip
https://docs.djangoproject.com/en/1.4/ref/middleware/#module-django.middleware.gzip
https://docs.djangoproject.com/en/1.4/ref/middleware/#module-django.middleware.gzip
https://docs.djangoproject.com/en/1.4/ref/middleware/#module-django.middleware.gzip
http://www.djangopackages.com/grids/g/asset-managers/
http://www.djangopackages.com/grids/g/asset-managers/
https://www.varnish-cache.org/
https://www.varnish-cache.org/
https://www.varnish-cache.org/
https://www.varnish-cache.org/
https://www.varnish-cache.org/
https://www.varnish-cache.org/
https://www.varnish-cache.org/
https://www.varnish-cache.org/
https://www.varnish-cache.org/
https://www.varnish-cache.org/
https://www.varnish-cache.org/
https://www.varnish-cache.org/
https://www.varnish-cache.org/
https://www.varnish-cache.org/
https://www.varnish-cache.org/
https://www.varnish-cache.org/
http://developer.yahoo.com/yslow/
http://developer.yahoo.com/yslow/
http://developer.yahoo.com/yslow/
http://developer.yahoo.com/yslow/
https://developers.google.com/speed/docs/best-practices/rules_intro
https://developers.google.com/speed/docs/best-practices/rules_intro
https://developers.google.com/speed/docs/best-practices/rules_intro
https://developers.google.com/speed/docs/best-practices/rules_intro
http://justcramer.com
http://justcramer.com
http://justcramer.com
http://justcramer.com
http://lanyrd.com/search/?q=django+scaling
http://lanyrd.com/search/?q=django+scaling

Summary

In this chapter we explored a number of bottleneck reductions strategies including:

• Should you even care?
• Getting the most out of databases
• Using django-debug-toolbar
• Caching queries
• Identifying what needs to be cached
• Compression of HTML, CSS, and Javascript
• Exploring other resources

In the next chapter, we'll go over the basics of securing Django project.

Chapter 20: Finding and Reducing Bottlenecks

174

Security Best Practices

When it comes to security, Django has a pretty good record. !is is due to security tools
provided by Django, solid documentation on the subject of security, and a core developer
team extremely responsive to security issues. However, it’s up to individual Django
developers such as ourselves to understand how to properly secure Django-powered
applications.

!is chapter contains a list of things helpful for securing your Django application. !is
list is by no means complete. Consider it a starting point.

Harden Your Servers

Search online for instructions and checklists for server hardening. Server hardening
measures include but are not limited to things like changing your SSH port and
disabling/removing unnecessary services.

Use django-secure

One of the core Django developers, Carl Meyer, wrote an application called django-
secure which checks to make sure a number of absolutely critical settings are set
appropriately.

Follow the instructions at https://github.com/carljm/django-secure/.

21

https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/
https://github.com/carljm/django-secure/

Use SSL/HTTPS in Production

It is always better to deploy a site behind HTTPS. Not having HTTPS means that
malicious network users can sniff authentication credentials between your site and end
users. In fact, all data sent between your site and end users is up for grabs.

TIP: Jacob Kaplan-Moss on HTTPS vs HTTP

One of the BDFL of Django told us, “Your whole site should only be available via
HTTPS, not HTTP at all. !is prevents getting "$resheeped" (having a session cookie
stolen when served over HTTP). !e cost is usually minimal.”

Setting up SSL/HTTPS for production sites is outside the scope of this book.

Additional reading: https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https

Always Use CSRF Protection With Forms That Modify Data

Django comes with Cross-Site-Forgery-Protection (CSRF) built-in, and usage of it is
actually introduced in Part 4 of the Django introductory tutorial. It’s easy to use and
Django even throws a friendly warning during development when you forget to use it.

In our experience, the only use cases for turning off CSRF protection across a site is for
creating machine accessible APIs. API frameworks such as django-tastypie and django-
rest-framework do this for you. If you are writing an API from scratch that accepts data
changes it’s a good idea to become familiar with Django’s CSRF documentation at
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/.

TIP: HTML Search Forms

Since HTML search forms don’t change data, they use the HTTP GET method. Which
means they don’t trigger Django’s CSRF protection.

Chapter 21: Security Best Practices

176

https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/

Prevent Against Cross Site Scripting (XSS) Attacks

XSS attacks occurs when users enter malignant Javascript that is then rendered into a
template directly. Fortunately for us, Django by default escapes a lot of speci$c characters
meaning most attacks fail.

However, Django gives developers the ability to mark content strings as ‘safe’, meaning
that it’s own safeguards are taken away. Also, if you allow users to set individual attributes
of HTML tags, that gives them a venue for injecting malignant Javascript.

!ere are other avenues of attack that can occur, so educating yourself is important.

Additional reading:

• http://2scoops.org/django-docs-on-html-scraping
• http://en.wikipedia.org/wiki/Cross-site_scripting

Don't Run Arbitrary Python Code

Beware of the eval(), exec(), and execfile() built-ins.

!ere was once a project where the Django requests coming into the site were converted
from django.http.HttpRequest objects directly into strings via creative use of the
str() function, then saved to a database table. Periodically, these archived Django
requests would be taken from the database and converted into Python dicts via the
eval() function.

Which meant that arbitrary Python code could be run on the site at any time.

Needless to say, upon discovery the alarm was raised and the critical security %aw was
quickly removed. !is just goes to show that no matter how secure Django might be, we
always need to be aware that certain shortcuts are incredibly dangerous.

Chapter 21: Security Best Practices

177

http://2scoops.org/django-docs-on-html-scraping
http://2scoops.org/django-docs-on-html-scraping
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting

Don't use ModelForms.Meta.excludes

When using ModelForms, always use Meta.fields. Never use use of Meta.excludes.
!e use of Meta.excludes is considered a security risk. We can’t stress this strongly
enough. Do not use Meta.excludes.

One common reason we want to avoid the Meta.excludes attribute is that it's behavior
implicitly allows all model $elds to be changed except for those that we specify. When
using the excludes attribute, if the model changes after the form is written, we have to
remember to change the form. If we forget to change the form to match the model
changes, we risk catastrophe.

Let's use an example to show how this mistake could be made. We'll start with a simple
Ice Cream Store model:

stores/models.py
from django.conf import settings
from django.db import models

class Store(models.Model):
 title = models.CharField(max_length=255)
 slug = models.SlugField()
 owner = models.ForeignKey(settings.AUTH_USER_MODEL)
 # Assume 10 more fields that cover address and contact info.

Here is the wrong way to de$ne the ModelForm $elds for this Model:

DON'T DO THIS!
from django import forms

from .models import Store

class StoreForm(forms.ModelForm):

 class Meta:
 model = Store

Chapter 21: Security Best Practices

178

 # DON'T DO THIS: Implicit definition of fields.
 # Too easy to make mistakes!
 excludes = ('pk', 'slug', 'modified',
 'created', 'owner')

!e right way to de$ne ModelForm $elds:

from django import forms

from .models import Store

class StoreForm(forms.ModelForm):

 class Meta:
 model = Store
 # Explicitly specifying the fields we want
 fields = (
 'title', 'address_1', 'address_2', 'email',
 'usstate', 'postal_code', 'city', ''
)

!e $rst code example, as it involves less typing, appears to be the better choice. It's not,
as when you add a new model $eld you now you need to track the $eld in multiple
locations (one model and one or more forms).

Let's demonstrate this in action. Perhaps after launch we decide we need to to have a way
of tracking store co-owners, who have all the same rights as the owner. !ey can access
account information, change passwords, place orders, and specify banking information
!e store model receives a new $eld as shown on the next page:

Chapter 21: Security Best Practices

179

stores/models.py
from django.conf import settings
from django.db import models

class Store(models.Model):
 title = models.CharField(max_length=255)
 slug = models.SlugField()
 owner = models.ForeignKey(settings.AUTH_USER_MODEL)
 co_owners = models.ManyToManyField(settings.AUTH_USER_MODEL)
 # Assume 10 more fields that cover address and contact info.

!e $rst form code example which we warned against using relies on us to remember to
alter it to include the new co_owners $eld. If we forget, then anyone accessing that
store's HTML form can add or remove co-owners. While we might remember a single
form, what if we have more than one ModelForm for a Model? In complex applications
this is not uncommon.

On the other hard, in the second example, where we used Meta.fields we know exactly
what $elds each form is designed to handle. Changing the model doesn't alter what the
form exposes, and we can sleep soundly knowing that Ice Cream Stores are more secure.

Beware of SQL Injection Attacks

Django’s ORM will handle most, if not all, of the database queries necessary for your
project. !e ORM generates properly-escaped SQL which will protect your site from
users attempting to execute malignant, arbitrary SQL code.

Django also lets you touch the database more directly through raw SQL. Use these
features sparingly, and be especially careful to escape your SQL code properly.

Chapter 21: Security Best Practices

180

Never Store Credit Card Data

Unless you have a strong understanding of the PCI-DSS security standards (https://
www.pcisecuritystandards.org/) and adequate time/resources/funds to validate your PCI
compliance, storing credit card data is too much of a liability and should be avoided.

Instead, we recommend using third-party services like Stripe, Balanced Payments, PayPal,
and others that handle storing this information for you, and allow you to reference the
data via special tokens. Most of these services have great tutorials, are very Python and
Django friendly, and are well worth the time and effort to incorporate into your project.

TIP: Read the Source Code of Open Source E-Commerce Solutions

If you are planning to use one of the existing open source Django e-commerce solutions,
examine how the solution handles payments. If credit card data is being stored in the
database, even encrypted, then please consider using another solution.

Secure the Django Admin

Since the Django admin gives your site admins special powers that ordinary users don’t
have, it’s good practice to make it extra secure.

Only Allow Access Via HTTPS

!is is already implied in the “Use SSL/HTTPS in Production” section, but we want to
especially emphasize here that your admin needs to be SSL-secured.

Without SSL, if you log into your Django admin on an open WiFi network, it’s trivial for
someone to sniff your admin username/password.

Limit Access Based on IP

Con$gure your web server to only allow access to the Django admin to certain IP
addresses. Look up the instructions for your particular web server.

Chapter 21: Security Best Practices

181

https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/

An acceptable alternative is to put this logic into middleware. It’s better to do it at the
web server level because every middleware component adds an extra layer of logic
wrapping your views, but in some cases this can be your only option. For example, your
PaaS might not give you $ne-grain control over web server con$guration.

Change the Default Admin URL

By default, the admin URL is yoursite.com/admin/. Change it to something that’s long
and difficult to guess.

TIP: Jacob Kaplan-Moss' Talks About Changing the Admin Url

Django BDFL Jacob Kaplan-Moss says (paraphrased), “It's an easy additional layer of
security to come up with a different name (or even different domain) for the admin. It
also prevents attackers from easily pro$ling your site. For example, I can tell which version
of Django you're using, sometimes down to the point level, by examining the content of /
admin/ URL on a project.”

Use django-admin-honeypot

If you’re particularly concerned about people trying to break into your Django site,
django-admin-honeypot is a package that puts a fake Django admin login screen at
admin/ and logs information about anyone who attempts to log in.

See https://github.com/dmpayton/django-admin-honeypot for more information.

Summary

Please use this chapter as a starting point for Django security, not the ultimate reference
guide. Django comes with a good security record due to the diligence of its community
and attention to detail. !is is one of those areas where it's a very good idea to ask for
help.

Chapter 21: Security Best Practices

182

https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot
https://github.com/dmpayton/django-admin-honeypot

Logging: Tips and Tools

Logging is one of those areas of Django which really bene$ts from being part of the
Python programming language. Because Django shares the same logging tool as non-
Django related tools frequently used in web projects, tracking what is going on across
your project at all levels is possible.

Don't Use Print Statements

It’s tempting to put print statements all over the place while debugging, but don’t get into
this habit. Here’s why:

• Depending on the web server, a forgotten print statement can bring your site down.
• Print statements are not recorded. If you don’t see them, then you miss what they

were trying to say.

Logging Tips

• Control the logging in settings $les per the Django documentation on logging:
https://docs.djangoproject.com/en/1.5/topics/logging/

• While debugging, use the Python logger at DEBUG level.
• After running tests at DEBUG level, try running them at INFO and WARNING

levels. !e reduction in information you see may help you identify upcoming
deprecations for third-party libraries.

• Don’t wait until it’s too late to add logging. You’ll be grateful for your logs if and
when your site fails.

22

https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/

Necessary Reading Material

•https://docs.djangoproject.com/en/1.5/topics/logging/
•http://docs.python.org/2/library/logging.html
•http://docs.python.org/2/library/logging.con$g.html
•http://docs.python.org/2/library/logging.handlers.html

Useful Third-Party Tools

•Sentry (https://www.getsentry.com/) aggregates errors for you.
•loggly.com simpli$es log management and provides excellent query tools.

Summary

Logging records the happenings of your project as they occur - but only if you take the
time and effort to add logging to your project.

In the next chapter we'll discuss Signals, which become much easier to write and debug
when using Logging.

Chapter 22: Logging: Tips and Tools

184

https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
https://docs.djangoproject.com/en/1.5/topics/logging/
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/library/logging.handlers.html
https://www.getsentry.com/
https://www.getsentry.com/
https://www.getsentry.com/
https://www.getsentry.com/
https://www.getsentry.com/
https://www.getsentry.com/
https://www.getsentry.com/
https://www.getsentry.com/
https://www.getsentry.com/
https://www.getsentry.com/
https://www.getsentry.com/
https://www.getsentry.com/
https://www.getsentry.com/
https://www.getsentry.com/
https://www.getsentry.com/
https://www.getsentry.com/
http://loggly.com
http://loggly.com
http://loggly.com
http://loggly.com
http://loggly.com
http://loggly.com

Signals: Use Cases and Avoidance
Techniques

!e Short Answer: Use signals as a last resort.

!e Long Answer: Often when new Djangonauts $rst discover signals, they get signal-
happy. !ey start sprinkling signals everywhere they can and feeling like real experts at
Django. !ey claim mastery of the Observer Pattern, Aspect Oriented Programming, and
a bunch of other powerful buzzwords.

After coding this way for awhile, projects start to turn into confusing, knotted hairballs
that can’t be untangled. Signals are being dispatched everywhere and hopefully getting
received somewhere, but at that point it’s hard to tell what exactly is going on.

Many developers also confuse signals with asynchronous message queues such as what
Celery (http://www.celeryproject.org/) provides. Make no mistake, signals are
synchronous and are blocking, and calling performance heavy processes via signals
provide absolutely no bene$t from a performance or scaling perspective. In fact, moving
such unnecessary processes to signals is considered code obfuscation.

Signals can be useful, but they should be used as a last resort, only when there’s no good
way to avoid using them.

When To Use and Avoid Signals

Do not use signals when:

• !e signal relates to one particular model and can be moved into one of that
model’s methods, especially save().

23

http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/

• !e signal relates to a particular view and can be moved into that view.

It might be okay to use signals when:

• Your signal receiver needs to make changes to more than one model.
• You want to dispatch the same signal from multiple apps and have them handled

the same way by a common receiver.
• You want to invalidate a cache after a model save.
• You have an unusual scenario that needs a callback, and there’s no other way to

handle it besides using a signal. For example, you want to trigger something based
on the save() or init() of a third-party app’s model. You can’t modify the third-
party code and extending it might be impossible, so a signal provides a trigger for a
callback.

Signal Avoidance Techniques

Let’s go over some scenarios where you can simplify your code and remove some of the
signals that you don’t need.

Validate Your Model Elsewhere

If you’re using a pre_save signal to trigger input cleanup for a speci$c model, try write a
custom validator for your $eld(s) instead.

If validating through a ModelForm, try overriding your model’s clean() method instead.

Override Your model's save() or delete() Method Instead

If you’re using pre_save and post_save signals to trigger logic that only applies to one
particular model, you might not need those signals. You can often simply move the signal
logic into your model’s save() method.

!e same applies to overriding delete() instead of using pre_delete and
post_delete signals.

Chapter 23: Signals: Use Cases and Avoidance Techniques

186

What About Those Random Utilities?

Create a Core App for Your Utilities

Sometimes we end up writing shared classes or little general-purpose utilities that are
useful everywhere. !ese bits and pieces don’t belong in any particular app. We don’t just
stick them into a sort-of-related random app, because we have a hard time $nding them
when we need them. We also don’t like placing them as ‘random’ modules in the root of
the project.

Our way of handling our utilities is to place them into a Django app called ‘core’ that
contains modules which contains functions and objects for use across a project. (Other
developers follow a similar pattern and call this sort of app 'common', 'generic', 'util', or
'utils') .

For example, perhaps our project has both a custom Model Manager and a custom View
Mixin used by several different apps. Our core app would therefore look like:

core/
 __init__.py
 managers.py # contains the custom model manager
 models.py
 views.py # Contains the custom view mixin

TIP: Django Apps Boilerplate: The models.py Module.

Don't forget that in order to make a Python module be considered a Django App, a
models.py module is required! However, you only need to make the core module a
Django app if you need to do at least one of the following:

•Have non-abstract models in core.

24

•Need admin auto-discovery to work in core.

•Have template tags and $lters.

Now, if we want to import our custom Model Manager and/or View Mixin we import
using the same pattern of imports we use for everything else:

from core.managers import PublishedManager
from core.views import IceCreamMixin

Django's Own Swiss Army Knife

!e Swiss Army Knife is a multi-purpose tool that is compact and useful. Django has a
number of useful helper functions that don’t have a better home than the django.utils
package. It’s tempting to dig into the code in django.utils and start using things, but don’t.
Most of those modules are designed for internal use and their behavior or inclusion can
change between Django version. Instead, read https://docs.djangoproject.com/en/1.5/ref/
utils/ to see which modules in there are stable.

TIP: Malcolm Tredinnick On Django's Utils Package.

Django core developer Malcolm Tredinnick likes to think of django.utils as being in the
same theme as Batman’s utility belt: indispensable tools that are used everywhere
internally.

!ere are some gems in there that have turned into best practices:

django.utils.html.remove_tags(value, tags)

When you need to accept content from users and want to strip out a list of tags, this
function removes those tags for you while keeping all other content untouched.

django.utils.html.strip_tags(value)

Chapter 24: What About !ose Random Utilities?

188

https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/
https://docs.djangoproject.com/en/1.5/ref/utils/

When you need to accept content from users and have to strip out anything that could be
HTML, this function removes those tags for you while keeping all the existing text
between tags.

django.utils.text.slugify(value)

Whatever you do, don’t write your own version of the slugify function; as any
inconsistency from what Django does with this function will cause subtle yet nasty
problems. Instead, use the same function that Django uses and slugify consistently.

django.utils.timezone

It’s good practice for you to have time zone support enabled. Chances are that your users
live in more than one time zone.

When you use Django’s time zone support, date and time information is stored in the
database uniformly in UTC format and converted to local time zones as needed.

django.utils.translation

Much of the non-English speaking world appreciates use of this tool, as it provides
Django’s i18n support.

Summary

We learned the practice of putting often reused $les into utility packages while writing
code in C++ and Java. We carried this practice into Python and enjoy being able to
remember where we placed our code. Many Python libraries often follow this pattern, and
we covered some of the more useful utility functions provided by Django.

Chapter 24: What About !ose Random Utilities?

189

Deploying Django Projects

Deployment of Django projects an in-depth topic that could $ll an entire book on its
own. Here, we touch upon deployment at a high-level.

Using Your Own Web Servers

You should deploy your Django projects with WSGI.

Django 1.5’s startproject command now sets up a wsgi.py $le for you. !is $le contains
the default con$guration for deploying your Django project to any WSGI server.

!e most commonly-used WSGI deployment setups are 1) Gunicorn behind a Nginx
proxy, and 2) Apache with mod_wsgi. Here’s a quick summary comparing the two.

Setup Advantages Disadvantages

Gunicorn
(sometimes
with Nginx)

Apache with
mod_wsgi

Gunicorn is written in pure Python.
Supposedly this option has slightly
better memory usage, but your
mileage may vary. Has built-in
Django integration.

Documentation is brief for nginx (but
growing). Not as time-tested, so you may
run into confusing configuration edge
cases and the occasional bug.

Has been around for a long time and
is tried and tested. Very stable. Lots of
great documentation, to the point of
being kind of overwhelming.

Apache configuration can be overly
complex and painful for some. Lots of
crazy conf files.

WARNING: Do not use mod_python

25

As of June 16th, 2010 the mod_python project is officially dead. !e previous maintainer
of mod_python and the official Django documentation explicitly warns against using
mod_apache and we concur.

!ere’s a lot of debate over which option is faster. Don’t trust benchmarks blindly, as
many of them are based on serving out tiny “Hello World” pages, which of course will
have different performance from your own web application.

Ultimately, though, both choices are in use in various high volume Django sites around
the world. Con$guration of any high volume production server can be very difficult, and
if your site is busy enough it’s worth investing time in learning one of these options very
well.

!e disadvantage of setting up your own web servers is the added overhead of extra
sysadmin work. It’s like making ice cream from scratch rather than just buying and eating
it. Sometimes you just want to buy ice cream so that you can focus on the enjoyment of
eating it.

Using a Platform as a Service

If you’re working on a small side project or are a founder of a small startup, you’ll
de$nitely save time by using a Platform as a Service (PaaS) instead of setting up your own
servers. Even large projects can bene$t from the advantages of using them.

First, a public service message:

TIP: Never Get Locked Into a Single Hosting Provider

!ere are amazing services which will host your code, databases, media assets, and also
provide a lot of wonderful accessories services. !ese services, however, can go through
changes that can destroy your project. !ese changes include crippling price increases,
performance degradation, unacceptable terms of service changes, untenable service license
agreements, sudden decreases in availability, or can simply go out of business.

Chapter 25: Deploying Django Projects

192

Which means, do your best to avoid being forced into architectural decisions based on the
needs of your hosting provider. Be ready to be able to move from one provider to another
without major restructuring of your project.

We make certain none of our projects are intrinsically tied to any hosting solution,
meaning we are not locked into a single vendor.

As a WSGI-compliant framework, Django is supported on a lot of Platform as a Service
providers. If you go with a PaaS, choose one that can scale with little or no effort as your
traffic/data grows.

!e most commonly-used ones as of this writing that specialize in automatic/practically
automatic scaling are:

• Heroku (heroku.com) is a popular option in the Python community because of its
wealth of documentation and easy ability to scale. If you choose this option, read
http://www.deploydjango.com/ and http://www.theherokuhackersguide.com/ by
Randall Degges.

• Gondor.io (gondor.io) - Developed and managed by two Django core developers,
James Tauber and Brian Rosner, Gondor.io was designed for people who want to
deploy their Python sites early and often.

• DotCloud (dotcloud.com) is a Python powered Platform as a Service with a
sandbox tier that lets you deploy an unlimited number of applications.

TIP: Read the Platform as a Service Documentation

We originally wanted to provide a quick and easy mini-deployment section for each of
the services we listed. However, we didn't want this book to become quickly outdated, so
instead we ask the reader to follow the deployment instructions listed on each site.

See each of these services' individual documentation for important details about how your
requirements $les, environment variables, and settings $les should be set up when using a
Platform as a Service. For example, most of these services insist on the placement of a
requirements.txt $le in the root of the project.

Chapter 25: Deploying Django Projects

193

http://heroku.com/
http://heroku.com/
http://www.deploydjango.com
http://www.deploydjango.com
http://www.theherokuhackersguide.com
http://www.theherokuhackersguide.com
http://dotcloud.com
http://dotcloud.com

Summary

In this chapter we gave some guidelines and advice for deploying Django projects. We
also suggested the use of Platforms as a Service, and also advised not to alter your
application structure too much to accommodate a provider.

Chapter 25: Deploying Django Projects

194

Where and How to Ask Django
Questions

All developers get stuck at one point or another on something that’s impossible to $gure
out alone. When you get stuck, don’t give up!

What to Do When You're Stuck

Follow these steps to increase your chances of success:

1. Troubleshoot on your own as much as possible. For example, if you’re having issues
with a package that you just installed, make sure the package has been installed into your
virtualenv properly, and that your virtualenv is active.

2. Read through the documentation in detail, to make sure you didn’t miss something.

3. See if someone else has had the same issue. Check Google, mailing lists, and
StackOver%ow.

4. Can’t $nd anything? Now ask on StackOver%ow. Construct a tiny example that
illustrates the problem. Be as descriptive as possible about your environment, the package
version that you installed, and the steps that you took.

5. Still don’t get an answer after a couple of days? Try asking on the django-users mailing
list or in IRC.

26

How to Ask Great Django Questions in IRC

IRC stands for Internet Relay Chat. !ere are channels like #python and #django on the
Freenode IRC network, where you can meet other developers and get help.

A warning to those who are new to IRC: sometimes when you ask a question in a busy
IRC channel, you get ignored. Sometimes you even get trolled by cranky developers.
Don’t get discouraged or take it personally!

!e IRC #python and #django channels are run entirely by volunteers. You can and
should help out and answer questions there too, whenever you have a few free minutes.

1. When you ask something in IRC, be sure that you’ve already done your homework. Use
it as a last resort for when StackOver%ow doesn’t suffice.

2. Paste a relevant code snippet and traceback into https://gist.github.com/ (or another
pastebin).

3. Ask your question with as much detail and context as possible. Paste the link to your
code snippet/traceback. Be friendly and honest.

TIP: Use a Pastebin!

Don't ever paste code longer than a few characters into IRC. Seriously, don't do it. You'll
annoy people. Use a pastebin!

4. When others offer advice or help, thank them graciously and make them feel
appreciated. A little gratitude goes a long way. A lot of gratitude could make someone’s
day. !ink about how you would feel if you were volunteering to help for free.

Chapter 26: Where and How to Ask Django Questions

196

https://gist.github.com/
https://gist.github.com/
https://gist.github.com/
https://gist.github.com/
https://gist.github.com/
https://gist.github.com/
https://gist.github.com/
https://gist.github.com/
https://gist.github.com/
https://gist.github.com/
https://gist.github.com/
https://gist.github.com/
https://gist.github.com/
https://gist.github.com/
https://gist.github.com/
https://gist.github.com/

Insider Tip: Be Active in the Community

!e biggest secret to getting help when you need it is simple: be an active participant in
the Python and Django communities.

!e more you help others, the more you get to know people in the community. !e more
you put in, the more you get back.

10 Easy Ways To Participate

1. Attend Python and Django user group meetings. Join all your local groups listed on
http://wiki.python.org/moin/LocalUserGroups. Search meetup.com for Python and
join all the groups near you.

2. Attend Python and Django conferences in your region and country. Learn from the
experts. Stay for the entire duration of the sprints and contribute to open-source
projects. You’ll meet other developers and learn a lot.

3. Contribute to open source Django packages and to Django itself. Find issues and
volunteer to help with them. File issues if you $nd bugs.

4. Join #python and #django on IRC Freenode and help out.
5. Find and join other smaller niche Python IRC channels. !ere’s #pyladies, and there

are also foreign-language Python IRC channels listed on http://www.python.org/
community/irc/.

6. Answer Django questions on StackOver%ow.
7. Meet other fellow Djangonauts on Twitter. Be friendly and get to know everyone.
8. Join the Django group on LinkedIn, comment on posts, and occasionally post things

that are useful to others.
9. Volunteer for diversity efforts. Get involved with PyLadies and help make the Python

community more welcoming to women.
10. Subscribe to Planet Django, an aggregated feed of blog posts about Django.

Comment on blogs and get to know the community. http://www.planetdjango.org/

Chapter 26: Where and How to Ask Django Questions

197

http://wiki.python.org/moin/LocalUserGroups
http://wiki.python.org/moin/LocalUserGroups
http://www.python.org/community/irc/
http://www.python.org/community/irc/
http://www.python.org/community/irc/
http://www.python.org/community/irc/
http://www.planetdjango.org
http://www.planetdjango.org

Summary

One of the strengths of Django is the human factor of the community behind the
framework. Assume a friendly, open stance when you need guidance and odds are the
community will rise to the task of helping you. !ey won't do your job for you, but in
general they will reach out and attempt to answer questions or point you in the right
direction.

Chapter 26: Where and How to Ask Django Questions

198

Closing Thoughts

[Illustration on a door closing]

While we’ve covered a lot of ground here, this is also just the tip of the iceberg. We plan
to add more material and revise the existing material as time goes on, with a new edition
released whenever a new version of Django is released.

If this book does well, we may write other books in the future.

We’d genuinely love to hear from you. Email us and let us know:

• Did you $nd any of the topics unclear or confusing?
• Any errors or omissions that we should know about?
• What additional topics would you like us to cover in a future edition of this book?

We hope that this has been a useful and worthwhile read for you.

Cheers to your success with your Django projects!

Daniel Greenfeld
pydanny@cartwheelweb.com
Twitter: @pydanny

Audrey Roy
audreyr@cartwheelweb.com
Twitter: @audreyr

27

mailto:pydanny@cartwheelweb.com
mailto:pydanny@cartwheelweb.com
mailto:pydanny@cartwheelweb.com
mailto:pydanny@cartwheelweb.com
mailto:pydanny@cartwheelweb.com
mailto:pydanny@cartwheelweb.com
mailto:pydanny@cartwheelweb.com
mailto:pydanny@cartwheelweb.com
mailto:pydanny@cartwheelweb.com
mailto:pydanny@cartwheelweb.com
mailto:audreyr@cartwheelweb.com
mailto:audreyr@cartwheelweb.com
mailto:audreyr@cartwheelweb.com
mailto:audreyr@cartwheelweb.com
mailto:audreyr@cartwheelweb.com
mailto:audreyr@cartwheelweb.com
mailto:audreyr@cartwheelweb.com
mailto:audreyr@cartwheelweb.com
mailto:audreyr@cartwheelweb.com
mailto:audreyr@cartwheelweb.com

Appendix A: Packages Mentioned In This Book

!is is a list of the third-party Python and Django packages that we've described or
mentioned in this book.

As for the packages that we're currently using in our own projects: the list has some
overlap with this list but is always changing. Please don't use this as the de$nitive list of
what you should and should not be using.

Package Reason Link

Django The web framework for
perfectionists with deadlines

http://djangoproject.com

Pillow Friendly installer for the Python
Imaging Library

http://pypi.python.org/pypi/Pillow

South Easy database migrations for
Django

http://south.readthedocs.org

celery Distributed Task Queue http://www.celeryproject.org/

coverage Checks how much of your code is
covered with tests

django-braces Drop-in mixins that really
empower Django’s Class Based
Views

django-celery Celery integration for Django

django-crispy-forms Rendering controls for Django
forms

http://djangoproject.com
http://djangoproject.com
http://pypi.python.org/pypi/Pillow
http://pypi.python.org/pypi/Pillow
http://south.readthedocs.org/
http://south.readthedocs.org/
http://www.celeryproject.org/
http://www.celeryproject.org/

Package Reason Link

django-pipeline Compression of CSS and JS. Use
with cssmin and jsmin packages

django-debug-toolbar Display panels used for
debugging Django HTML views

django-discover-runner Test runner based off unittest2

django-extensions Provides shell_plus management
command and a lot of other
utilities.

django-floppy-forms Form field, widget, and layout that
can work with django-crispy-
forms.

django-haystack Full-text search that works with
SOLR, Elasticsearch, and more.

django-heroku-memcacheify Easy Memcached settings
configuration for Heroku.

django-heroku-postgresify Easy PostgreSQL settings
configuration for Heroku.

django-model-utils Useful model utilities including a
time stamped model

django-skel Django project template
optimized for Heroku
deployments

https://github.com/rdegges/
django-skel

django-social-auth Easy social authentication and
registration for Twitter, Facebook,
Google, and lots more.

django-registration Email and username registration
made easy, but it lacks sample
templates.

Appendix A: !ird Party Packages We Use

202

https://github.com/rdegges/django-skel
https://github.com/rdegges/django-skel
https://github.com/rdegges/django-skel
https://github.com/rdegges/django-skel

Package Reason Link

django-secure Helps you lock down and your
site’s security

django-tastypie Expose Model and non-Model
resources as a RESTful API

psycopg2 PostgreSQL database adapter

requests Easy-to-use HTTP library that
replaces Python’s urllib2 library

http://docs.python-requests.org

sentry Exceptional error aggregation http://getsentry.com

Sphinx Documentation tool

newrelic Realtime logging and aggregation
platform

http://newrelic.com

Appendix A: !ird Party Packages We Use

203

http://docs.python-requests.org/
http://docs.python-requests.org/
http://getsentry.com
http://getsentry.com
http://newrelic.com
http://newrelic.com

Appendix B: Troubleshooting

!is appendix contains tips for troubleshooting common Django installation issues.

Identifying the Issue

Often, the issue is one of:
• !at Django isn't on your system path, or
• !at you're running the wrong version of Django

Run this at the command line:

python -c "import django; print django.get_version()"

If you're running Django 1.5, you should see the following output:

1.5

Don't see the same output? Well, at least you now know your problem. Read on to $nd a
solution.

Our Recommended Solutions

!ere are all sorts of different ways to resolve Django installation issues (e.g. manually
editing your PATH environment variable), but the following tips will help you $x your
setup in a way that is consistent with what we describe in !e Optimal Django
Environment Setup.

Check Your Virtualenv Installation

Is virtualenv installed properly on your computer? At the command line, try creating a
test virtual environment and activating it.

If you're on a Mac or Linux system, verify that this works:

$ virtualenv testenv
$ source testenv/bin/activate

If you're on Windows, verify that this works:

C:\code\> virtualenv testenv
C:\code\> testenv\Scripts\activate

Your virtualenv should have been activated, and your command line prompt should now
have the name of the virtualenv prepended to it.

On Mac or Linux, this will look something like:

(testenv) $

On Windows, this will look something like:

(testenv) >

Did you run into any problems? If so, study the Virtualenv documentation
(www.virtualenv.org) and $x your installation of Virtualenv.

If not, then continue on.

Check If Your Virtualenv Has Django 1.5 Installed

With your virtualenv activated, check your version of Django again:

python -c "import django; print django.get_version()"

If you still don't see 1.5, then try using pip to install Django 1.5 into testenv:

Appendix B: Troubleshooting

206

http://www.virtualenv.org/
http://www.virtualenv.org/

(testenv) $ pip install Django==1.5

Did it work? Check your version of Django again. If not, check that you have pip
installed correctly as per the official documentation (http://www.pip-installer.org).

Check For Other Problems

Follow the instructions in the official Django docs for troubleshooting problems related
to running django-admin.py : https://docs.djangoproject.com/en/1.5/faq/
troubleshooting/

Appendix B: Troubleshooting

207

http://www.pip-installer.org/
http://www.pip-installer.org/
https://docs.djangoproject.com/en/1.5/faq/troubleshooting/
https://docs.djangoproject.com/en/1.5/faq/troubleshooting/
https://docs.djangoproject.com/en/1.5/faq/troubleshooting/
https://docs.djangoproject.com/en/1.5/faq/troubleshooting/

About This Book

Acknowledgements

!is book was not written in a vacuum. We would like to express our thanks to everyone
who had a part in putting it together.

The Python and Django Community

!e Python and Django communities are an amazing family of friends and mentors.
!anks to the combined community we met each other, fell in love, and were inspired to
write this book.

Technical Reviewers

We can't begin to express our gratitude to our technical editors. Without them this book
would have been littered with inaccuracies and broken code. Special thanks to Malcolm
Tredinnick for providing an amazing wealth of technical editing and oversight, Kenneth
Love for his constant editing and support, Jacob Kaplan-Moss for his honesty, Randall
Degges for pushing us to do it, Lynn Root for her pinpoint observations, Jeff Triplett for
keeping our stuff agnostic, and Preston Holmes for his contributions to the User model
chapter.

Malcolm Tredinnick lives in Sydney, Australia and seems to travel internationally more
than is probably healthy. A Python user for over 15 years and Django user since just after
it was released to the public in mid-2005, he’s been a Django core developer since 2006.
A user of many programming languages, he still feels Django is one of the better web
libraries/frameworks he has used professionally and is glad to see its incredibly broad
adoption over the past years.

Kenneth Love is a full-stack, freelance web developer who focuses mostly on Python and
Django. He works for himself at Gigantuan and, with his long-time development partner
Chris Jones, at Brack3t. Kenneth created the Getting Started with Django tutorial series
for getting people new to Django up to speed with best practices and techniques. He also
created the django-braces package which brings several handy mixins to the generic class-
based views in Django.

Lynn Root is an engineer for Red Hat on the freeIPA team, known for breaking VMs
and being loud about it. Living in San Francisco, she is the founder & leader of
PyLadiesSF, and the de facto missionary for the PyLadies word. Lastly, she has an
unhealthy obsession for coffee, Twitter, and socializing.

Barry Morrison is a self-proclaimed geek, lover of all technology. Multidiscipline
Systems Administrator with more than 10 years of professional experience with
Windows, Linux and storage in both the Public and Private sectors. He is also a Python
and Django a$cionado and Arduino tinkerer.

Jacob Kaplan-Moss is the co-BDFL of Django and a partner at Revolution Systems
which provides support services around Django and related open source technologies.
Jacob previously worked at World Online, where Django was invented, where he was the
lead developer of Ellington, a commercial Web publishing platform for media companies.

Jeff Triplett is an engineer, photographer, trail runner, and KU Basketball fan who works
for Revolution Systems in Lawrence, Kansas where he helps businesses and startups scale.
He has been working with Django since early 2006 and he previously worked at the
Lawrence Journal-World, a Kansas newspaper company, in their interactive division on
Ellington aka "!e CMS" which was the original foundation for Django.

Lennart Regebro created his $rst website in 1994, and has been working full time with
open source web development since 2001. He is an independent contractor based in
Kraków, Poland and the author of "Porting to Python 3".

Preston Holmes a recovering scientist now working in education. Passionate about open
source and Python, he is one of Django's newest core developers. Preston was involved in
the development of some of the early tools for the web with Userland Frontier.

About !is Book

209

Randall Degges is a happy programmer with a passion for building API services for
developers. He is an owner and Chief Hacker at Telephony Research, where he uses
Python to build high performance web systems. Randall authored !e Heroku Hacker's
Guide, the only Heroku book yet published. In addition to writing and contributing to
many open source libraries, Randall also maintains a popular programming blog.

Sean Bradley is a developer who believes Bach's Art of the Fugue and Knuth's Art of
Computer Programming are different chapters from the same bible. He is founder of
Bravo%ix, the $rst online video subscription service in the U.S. dedicated exclusively to
the performing arts, and founder of BlogBlimp, a technology consultancy with a passion
for Python. In addition, Sean runs Concert Talent, a production company providing
corporate entertainment, engagement marketing, comprehensive educational outreach, as
well as international talent management and logistical support for major recording and
touring artists. When he isn't busy coding, he's performing on stages in China, spending
time above the treeline in the Sierras, and rebooting music education as a steering
committee member for the Los Angeles Arts Consortium.

Alpha Reviewers

During the Alpha release an amazing number of people sent us corrections and cleanups.
!is list includes: Brian Shumate, Myles Braithwaite, Robert Węglarek, Lee Hinde, Gabe
Jackson, Jax, Baptiste Mispelon, Matt Johnson, Kevin Londo, Esteban Gaviota, Kelly
Nicholes, Jamie Norrish, Amar Šahinović, Patti Chen, Jason Novinger, Dominik Aumayr,
Hrayr Artunyan, Simon Charettes, Joe Golton, Nicola Marangon, Farhan Syed, Florian
Apolloner, Rohit Aggarwa, Vinod Kurup, Mickey Cheong, Martin Bächtold, Phil Davis,
Michael Reczek, Prahlad Nrsimha Das, Peter Heise, Russ Ferriday, Carlos Cardoso,
David Sauve, Maik Hoepfel, Timothy Goshinski, Florian Apolloner

If your name is not on this list please send us an email so we can make corrections!

About !is Book

210

