Outlier Detection in Heterogeneous Datasets using
Automatic Tuple Expansion

Clément Pit--Claudel, Zelda Mariet, Rachael Harding, Sam Madden
MIT CSAIL
Email: {cpitcla,zmariet,rhardin,madden} @csail.mit.edu

Abstract—Rapidly developing areas of information technology
are generating massive amounts of data. Human errors, sensor
failures, and other unforeseen circumstances unfortunately tend
to undermine the quality and consistency of these datasets
by introducing outliers — data points that exhibit surprising
behavior when compared to the rest of the data. Characterizing,
locating, and in some cases eliminating these outliers offers
interesting insight about the data under scrutiny and reinforces
the confidence that one may have in conclusions drawn from
otherwise noisy datasets.

In this paper, we describe a tuple expansion procedure which
reconstructs rich information from semantically poor SQL data
types such as strings, integers, and floating point numbers. We
then use this procedure as the foundation of a new user-guided
outlier detection framework, dBoost, which relies on inference and
statistical modeling of heterogeneous data to flag suspicious fields
in database tuples. We show that this novel approach achieves
good classification performance, both in traditional numerical
datasets and in highly non-numerical contexts such as mostly
textual datasets. Our implementation is publicly available, under
version 3 of the GNU General Public License.

I. INTRODUCTION

Sensor glitches, data-entry errors, and malicious activities
are a few examples of events that can lead to the appearance
of outliers in a dataset. If undetected, these values can skew
statistics, support invalid conclusions, slow database operations,
and cause otherwise avoidable expenses. On the other hand,
careful analysis of these values can yield new insight about
the data, prevent undesirable events, and generally improve the
reliability of the data [1].

Previous literature has generally defined an outlier as “an
observation which deviates so much from the other observations
as to arouse suspicions that it was generated by a different
mechanism” [9], and has suggested a number of ways to
detect and in some cases eliminate suspicious values. Previous
approaches to outlier detection include modeling numerical data
using Gaussian Mixture Models [15], [17], [18], Histogram
modeling [8], [20], and k-nearest neighbors [16].

Little work, however, has focused on developing generic
methods for user-guided outlier detection that work with widely
diverse and heterogeneous data stored in typical relational
database management systems. The relative inexpressivity of
basic SQL types — integers, strings, and doubles in particular —
might be to blame: strings, for example, can be used to store
information as diverse as city names, email addresses, or phone
numbers; typically it is the job of application logic to encode
the semantically rich domains of these values as one of the basic
SQL data types. This paucity of semantic information leaves

outlier detection algorithms that run inside of the database with
very little information to work with.

This paper presents dBoost, a new approach for detecting
outliers in highly heterogeneous datasets. Our tool systemati-
cally expands the limited space of SQL types to derive richer
information. This is done automatically, by applying a library
of possible transformations (“expansions”) to the values of each
column in a table to find rules that are consistent with the bulk
of the values that appear in the column. For example, integers
can expanded into dates and times by considering them as Unix
timestamps, and into sets of booleans by considering them as
bit vectors. If an expansion of an integer column to a the day
of week from a date found that most of the dates reconstructed
from an integer column fall on the same day of the week, then
values falling on other days might be flagged as suspicious. As
in this example, these expansions can be used to detect outliers
that are difficult or impossible to detect using raw data and
provide detailed reports to the user.

Hence, our main contribution is a method that automatically
applies expansion rules (type-dependent transformations) to
create a set of derived attributes for every tuple. These derived
attributes are then processed by several outlier detection models
to efficiently learn soft constraints about the individual attributes,
and to detect soft functional dependencies between derived
attributes, enabling multidimensional models to detect of a
broad class of data inconsistencies. By extracting numerical or
highly structured attributes from unstructured data (for example,
by extracting casing information from strings), our method
makes it significantly easier to detect inconsistencies that would
have escaped sophisticated outlier detection systems.

We designed our system to be both fast and memory
efficient; it proceeds in three online passes over the data,
keeping no more information than strictly necessary (in general,
no more than a few dozen values per field in the database
schema). The architecture is parallelizable, the analysis can be
distributed over multiple computation nodes, and information
can be kept from one run to the next so as to eliminate the
first and possibly the second pass.

In summary, this paper makes the following contributions:

1) We present tuple expansion, a novel method that recon-
structs structured and semantically rich information
from raw data using a user-extensible library of type-
dependent expansion rules. We also describe a library
of broadly applicable expansion rules that have proven
useful for flagging outliers in heterogeneous datasets.

2)  We show that these expansions can be fed to both
single and multi-variate models to accurately detect



outliers without making strong assumptions about
the original data'. In addition to typical Gaussian
modeling strategies, we present useful criteria to detect
outlying values in histograms, and a novel combination
of attribute-based partitioning and modeling.

3)  We show that tuple expansion rules can be used as
a lightweight mechanism to express soft constraints
between database columns, and flag rows violating
these constraints.

4)  We integrate these techniques in an easy-to-use, user-
extensible toolkit for outlier detection, dBoost, and
demonstrate its effectiveness on several synthetic and
real-world datasets (including numerical and non-
numerical data and homo- and heterogeneous datasets).
Specifically, we show that after tuple-expansion, well-
known statistical models are enough to detect many
data inconsistencies, whereas these inconsistencies
would have remained hidden if expansion had not
been applied.

The rest of this paper is structured as follows: In Section II
we present an overview of the dBoost framework. We then detail
our tuple expansion method in Section III, before applying it
to outlier detection in Section IV. We evaluate our tool on
synthetic and real-world datasets in Section V, and we describe
related work in Section VI. Finally, we conclude in Section VII.

II. DBOOST OVERVIEW

The overall design of the dBoost system can be seen in
Figure 1. The first step is to perform fuple expansion, where
additional semantically rich candidate features are added on to
each tuple. Examples of features include the length of a string,
the parity of an integer, or the range of dates an integer column
can represent when it is interpreted as a Unix time stamp. This
process is described in Section III.

These expanded tuples are then analyzed in order to obtain
simple statistical information, and to detect soft functional
dependencies between different fields. The expanded tuples
are then used to train one of three data models (Histograms,
Gaussian, or Mixtures), with the help of the statistics and
correlation hints gathered at the previous stage.

Finally, the trained model is used to classify tuples into
regular records and outliers; these tuples can be the ones the
model was trained with, or future inputs to the database system.

From a high level view, our pipeline is implemented as a
three-pass streaming algorithm, requiring no memory beyond
that required to train the individual models.

The different components of our system are summarized
as follows and described in detail in the following sections:

1)  Tuple expansion — Tuples are expanded using knowl-
edge about the database schema and field types
(Section III).

2)  Statistical analysis — The expanded data is analysed
to gather basic statistics, along with correlation infor-
mation. These statistics are used for modeling and
outlier detection (Section IV-A).

For example, we do not restrict the types used to store the data: we are
able to find outliers in textual data

3) Data modeling — We apply various machine-learning
algorithms (Histograms, Gaussian, and Mixtures) to
build models of the data (Section IV-B).

4)  Outlier detection — Using the models built in the
previous stage and user-provided sensitivity thresholds,
we report outliers identified by the models trained
during the previous stage (Section I'V-C).

Table I illustrates these ideas on a very small dataset that
includes a transaction ID, a registration date (Reg. date), and a
social security number (SSN). We read the data row-by-row,
and expand the registration date and SSN values into additional
columns. The particular expansion rules are based on the type
of each values: Reg. date is an INT, so it gets expanded, among
others, into a year and a weekday. SSN is a STRING, and gets
expanded into among others a length and a copy of the string
with numbers stripped out and replaced by <num>.

Tuple expansions are not materialized in the database, but
rather fed into the model one-by-one as the engine processes
each row. After being processed, the expanded tuples are
discarded. Thus, tuples must be expanded before each stage of
the engine’s pipeline.

III. TUPLE EXPANSION

What if you need to store a date and time value
with subsecond resolution? MySQL currently does
not have an appropriate data type for this, but
you can use your own storage format: you can
use the BIGINT data type and store the value
as a timestamp in microseconds, or you can use
a DOUBLE and store the fractional part of the
second after the decimal point.

High-Performance MySQL, 3" edition (2012), p. 127

Data stored in databases often has rich semantics encom-
passing dates and times, highly stuctured datatypes such as
phone numbers, addresses, and GIS data. The semantics of
plain SQL, however, are not expressive enough to properly
store these rich data types. Programmers are thus forced to
revert to simpler types, relying on application logic to parse
the data.”

Unfortunately, structural information on the data is what
tasks such as outlier detection would most benefit from. For
example, the day of the week in a date may be relevant
information in a banking application in which transactions
are only completed on weekdays, but unless the programmer
explicitly duplicates this information in a separate column, it
remains inaccessible to an automated outlier detector.

To reconstruct this lost information we expand database
tuples by enriching each field with a collection of extracted
features. The particular rules that are used to expand each
field are selected from an extensible library provided with our
tool, based on the field’s data type. Figure 2 lists some of the
rules that our library provides for three common data types.
These rules serve as a starting point for tuple expansion, but
we expect users of our toolbox to expand this set of rules to

2A number of database systems let user define their own data types, but
these are not often used, and migrating an entire database to a different data
representation is generally a costly and time-consuming process.
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Fig. 1: The dBoost pipeline

Original Data Expansions of Reg. Date (not materialized) Expansions of SSN (not materialized)
XID Reg. Date SSN [ Year Weekday ] Length Strip Numbers

1 1416497422 783-345-2351 2014 Thursday ... 12 <num>-<num>-<num>
2 1418201134 773-746 2014 ‘Wednesday e 8 <num>-<num>
3 1420359855  773-289-5552 2015 Sunday ... 12 <num>-<num>-<num>
4 1421575392 849-843-2729 2015 Sunday ... 12 <num>-<num>-<num>
5 01302015 773-387-9201 1970 Friday . 12 <num>-<num>-<num>
6 1424866716 821-322-1857 2015 Wednesday ... 12 <num>-<num>-<num>
7 1425059692 822-971-1892 2015 Friday 12 <num>-<num>-<num>
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TABLE [: An example dataset showing outliers based on a histogram model. The rows detected as outliers are highlighted in red.
The row with XID=2 is flagged due to its “Length” and “Strip Numbers” expansions: as seen in the corresponding histograms,
the values 8 and <num>-<num> are seen few enough times in the data that they are flagged as suspicious. The row with XID=5
is also flagged as an outlier due to its incorrect registration date: indeed, the histogram analyzing the years shows that 1970 does

not occur in the database frequently.

add insight specific to their application domain. Expressing
rules as simple functions mapping a value of a given type to a
tuple of features makes it possible to express soft constraints
about the data easily: instead of specifying hard constraints,
users state that a certain way of looking at attributes should
be consistent across the rows of the table. In addition, since
expansions are never materialized in the database, users are
free to experiment with various rules.

The rules presented in Figure 2 are fairly general rules,
likely to apply to be suitable to many datasets. For example,
the strip numbers rule takes a string, and replaces any
sequence of digits by the string <num>. Such a rule is useful
to check that a column is formatted consistently, allowing for
variations only in the numbers: a database of legislative citations,
for example, could contain entries such as S.933, H.R. 21,
P.L.107-155, or P.L.88-352; applying the strip
numbers rule to this data yields S.<num>, H.R.<num>,
P.L.<num>-<num>, or P.L.<num>-<num>; this reduces
the whole dataset to a small number of patterns that can be
easily analyzed using data models.

The signature rule is equally interesting: to extract
the signature of a string, our tools replace each character
by the name of its Unicode class: uppercase Latin letters
are Lu, lowercase Latin letters are L1, digits are Nd, and

punctuation signs are among others Po, Pe, Ps, and Pd.

Such a rule is useful to check the consistency of various

length: 7
signature: NdANdPdLuNdNdNd

string: uppercase: True (1)

"32-G414" — < lowercase: False (0)
email ok: False (0)
stripped: <num>-G<num>
title case: True (1)
date: (2014,12,10)

, time: (14, 35)

int:

1418222134 . weekday: Wed (2)
weekend: False (0)
binary: 0b10101...010
mod-10: 4
intpart: 1418222134

float:
fracpart: 0.325

1418222134.325 — A
millis: 325
date, ...:

Fig. 2: Selected tuple expansion rules.

fixed-width formats such as ISO 8061 timestamps, birth
dates, or phone numbers. As a more detailed example, a
column in a database could be used to record references



to particular sections, subsections, and paragraphs in a text:
entries would be in the form §901.04 (a), §853.02(d),
or §910.45. Extracting the signature of these entries would
yield PoNdNdNdPoNdNdPsL1Pe for the first two entries,
and PoNdNdNdPoNdNd for the last one. Just like before,
this reduces the dataset to a small set of patterns, making it
easy to detect discrepancies.

IV. DATA MODELING AND OUTLIER DETECTION

Once a tuple is expanded, it is fed into a statistical analyzer
which consolidates statistics on the data as well as correlations
for use in the data models and subsequent outlier detection.
This section provides details for each stage of this process.

A. Statistical Analysis

The first stage in our engine is analyzing the expanded
tuples. This phase collects simple statistics including average,
variance, standard deviation, and approximate cardinality on
each column of the table and estimates which sets of columns
are correlated.

These statistics have three purposes. First, they are used to
detect univariate outliers, for example values that are several
standard deviations from the mean in numerical attributes, or
that have never occurred before in low cardinality attributes.
Second, they are used to determine which columns in the table
are correlated. Third, these statistics precompute parameters
required by certain data models, thus speeding up the training
phase of the models.

We focus on two inter-column correlation strategies:

e For mostly non-numerical datasets, we use a
cardinality-based measure, flagging groups of expanded
columns as correlated when their joint cardinality is
below a user-specified threshold. When two columns
are correlated (e.g., when one is computed directly
from the other), the number of distinct pairs in the
columns is similar to the number of distinct items in
either column. On the other hand, when two columns
are independent, the number of distinct pairs is close
to the product of the number of distinct values in each
column.

e For mostly-numerical datasets, we use Pearson’s
product-moment correlation. It relies on the Pearson
correlation coefficient, which measures linear depen-
dencies between two vectors.

Given two column vectors X and Y, Pearson’s coeffi-
cient R is given by the following formula:

R Covar(X,Y) )

v/ Var(X) Var(Y)

R’s value always lies between —1 and 1. An R value
close to 0 indicates little or no correlation, while values
close to +1 or —1 indicate strong positive or negative
correlations, respectively. Pairs of columns with a value
of R above a user-specified threshold are added to a
list of correlation hints, for use by the models.

It is debatable whether correlations between expanded
tuple fields from the same original value lead to better outlier

detection. On the one hand such dependencies may provide
valuable insight about the data (e.g., an event that occurs every
Monday of May and every Thursday of June). On the other
hand, taking these subtuple correlations into account vastly
increases the size of the search space, and may add spurious
hits to the results. Experimentally, we found that disregarding
intra-field correlations made the entire process faster and more
robust, and did not hurt accuracy on our test sets.

All aforementioned statistics and correlation hints can be
computed using a single pass over the data: the expanded
tuples are analyzed one row at a time, and the final statistics
and correlations are computed after the last tuple has been
processed. This contrasts with more advanced approaches to
the detection of correlations and soft functional dependencies,
such as the one used in CORDS [11]. Our simpler approaches
yields a lower specificity, but still achieves good classification
results, in part because each model only uses correlation hints
as a guideline for interesting groups of columns to analyze.
An excessive number of hints can thus affect performance, but
does not significantly diminish the quality of the results. On
the other hand, missing a correlation causes models to not
analyze the corresponding group of columns, and thus to fail
to uncover potential outliers. As with the other parts of our
system, the correlation detector used in the statistical analysis
phase is modular and could be replaced by any other scheme,
including CORDS.

The results of the analysis pass are available to all models
used at later stages in the tool.

B. Data modeling

The current implementation of dBoost contains three data
modeling strategies. First, histograms provide a way to study
discrete heterogeneous distributions. Although histograms are
widely used to capture statistics in databases, we present
a simple pruning heuristic to limit the number and size of
histograms that we construct for outlier detection purposes. We
also provide standard statistical Gaussians and mixture models
that handle continuous data well, but assume that it follows a
uni- or multi-modal Gaussian distribution. The effectiveness of
these basic models comes from the rich information exposed
by the expanded tuples, which allows them to be competitive
with more complex models.

In addition to uniformly modeling of entire datasets, dBoost
is capable of automatically clustering data using expanded
attributes, generating different models for different subsets
of the data. We call this novel approach to outlier detection
meta-modeling.

The next four subsections describe these ideas in more
detail.

1) Histogram-based Modeling: The histogram model (Fig-
ure 3a) does not make any assumption about the data under
study. Instead, it counts the occurrences of each unique value
in each column of the expanded tuple and for each set of
potentially correlated sub-tuples (as suggested by the analysis
module). These counts, accumulated over the entire dataset,
provide a de facto distribution of the data in each field and set
of correlated fields. This makes histograms a powerful model
for non-numerical and heterogeneous data.
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Fig. 3: Simple visualization of the outlier detection strategy
employed by each model. Possible outlier values are shown in
red.

To limit memory usage, and to speed up the modeling
phase, we discard histograms as soon as they reach a certain
size — say, 16 bins. Discarding histograms when their number
of bins reaches a fixed threshold is just one of a number of
heuristics that could be implemented here; the idea is that
a profusion of different values, all repeating infrequently, is
unlikely to provide valuable insight as far as outlier detection is
concerned (as an extreme example, the histogram of an attribute
with no repeated values would only have one value per bin,
and would not yield any insight about the data). With this
discarding heuristic applied, histograms are quick to generate
and extremely memory efficient.

Histograms also have the valuable property of treating sets
of fields (obtained via correlation analysis) and single fields in
the exact same way, thus permitting to model single columns
or groups of attributes indifferently. Finally, because they make
no assumption about the data they manipulate (aside from the
requirement that it be of small cardinality), histograms are able
to accurately describe a broad class of discrete distributions.

2) Simple Gaussian Modeling: Univariate Gaussians (Fig-
ure 3b) are a widely used statistical model for data. They treat
each value x; of the expanded tuples as random sample drawn
from a normal distribution N (p;, o).

The model’s parameters (a pair (u, o) for each numerical
column) are computed as each column’s mean and standard
deviation. In the common case where the dataset has not
significantly changed between the analysis and the modeling
passes, the information obtained during the statistical analysis
pass is sufficient to derive these parameters.

Despite its simplicity, this model presents the attractive
property of requiring extremely little memory — on the order
of the size of one expanded tuple.

3) Mixture Modeling: Multivariate Gaussian Mixture mod-
els (Figure 3c) are another standard statistical model. They take
advantage of the correlation hints supplied by the statistical
analysis pass to model sub-tuples of the expanded tuples as
samples from multivariate Gaussian mixtures (GMMs), creating
one model per group of correlated columns.

For example, if the statistical analysis phase outlines a pair
of fields (fi, f2) as good candidate for joint modeling, then
the Mixture modeling strategy will learn a particular GMM
to model this correlation. Pairs of values (X7, X5) are here
assumed to have been produced by random sampling off a

distribution of the form
N
> N (5, %)
j=1

where N is the number of individual components that
the GMM comprises (/N is a user-defined value in our
implementation, but abundant literature exists on the subject
of choosing N [19] [3]), and 7, u; and X; are parameters of
the GMM learned as part of the modeling pass [7].

Unlike simple Gaussian models, the expectation maximiza-
tion algorithm used in inferring the optimal model parameters
for Gaussian mixtures does require retaining some data in
memory. Still, most of the fields obtained after expanding each
tuple are discarded after the relevant ones are extracted for
learning purposes; in most cases we expect the set of values
retained to be much smaller than the set of all attributes, thus
limiting the memory usage.

In addition, when dealing with large amounts of data, it is
possible — and indeed, preferable — to train the Mixture model
on a randomly sampled subset of the data before running the
full analysis. This approach is particularly relevant when using
the Mixture model, but can be applied to all models to shorten
the learning phase when dealing with very large datasets.

4) Meta-modeling through attribute-based partitioning: The
models presented above treat attributes and sets of correlated
attributes as a whole. In some cases, however, it is possible
to identify sub-populations of tuples by scrutinizing certain
expanded attributes of the data; these sub-populations can then
be studied separately, yielding more insight and better outlier
classification performance.

As an example, consider the case of an airline adjusting
status levels for its frequent fliers, using the number of flights for
each passenger as well as their status level. A non-partitioned
analysis may not return any interesting information, but a
partitioned analysis could single out passengers in lower status
levels traveling significantly more than average, or passengers
with higher status traveling rarely. This would work even if
statuses were stored as textual data, with no indication of their
relative rankings.

The general approach, given a dataset and a pre-existing
model, therefore consists of extracting sets of attributes based
on correlation hints provided by earlier stages of the pipeline,
and dividing each group of attributes between a single key (in
the example, the status level) and one or more sub-population
attributes (in the example, the number of flights). One instance
of the selected model is then built for each value of the key. For
example, if the statistical analysis phase highlights a correlation
between columns A (status levels) and B (number of flights),
and column A contains values aq,...,a, (bronze, silver,
gold,...), then we distribute the pairs (A, B) into n partitions
based on the value of A; values of B in each of these partitions
are then modeled independently (in the example, this yields a
different model of flights count for each status level).

This type of approach is useful when the distribution for
an attribute or set of attributes is multi-modal. A high-level
non-partitioned analysis will reveal values that fall in none of
the classes; a partitioned approach, on the other hand, may



more easily reveal discrepancies by suppressing interference
between each class.

In addition to providing better classification accuracy, parti-
tioning may lead to better runtime performance by diminishing
the size of the dataset covered by each model. These benefits
are especially important when model construction performance
does not scale linearly, and when data volumes are too large
to be analyzed on a single machine.

Finally, attribute-based partitioning allows for previously
impossible analysis. Assuming for example that a dataset with
two columns has 4 classes identified by the value in the first
column, each with 10 distinct expected values in the second
column, a generic histogram-based analysis would discard the
histogram for the pair of values as having too many buckets
(40). A partitioned analysis, on the other hand, would allow
the construction of four histograms, each with 10 regular bins
and potentially a few outliers.

In our prototype implementation, we focused on partitioning
applied to the discrete histogram case; the technique, however,
generalizes to all the models presented above.

C. Outlier Detection

Models, once properly trained, are used for classification and
detection of outliers — either in incoming INSERT operations
on a running system, or in existing rows (possibly but not
necessarily the ones used during the model training phase).

Given that databases can contain tables with tens or
hundreds of columns, simply flagging a row as an outlier is
insufficient: users cannot be expected to painstakingly analyze
each outlying row. Instead, dBoost automatically indicates
which values in the row caused it to be flagged as an outlier.

The inter-column correlations are also taken into account
during modeling: if the statistical analysis phase detected a
correlation between two columns a and b, each tuple ¢ will be
augmented by an additional field that contains the corresponding
pair (t4,ty). This field is treated as a single, multidimensional
value, and is analyzed similarly to the other values by the
models.

As for statistical modeling, the heuristics that we employ
for simple Gaussian and mixture modeling are not new; our
contribution rests in the heuristics that we use for histograms
(IV-C1), and in the description of meta-modeling.

1) Histogram Modeling: The histogram-based modeling
strategy proceeds in two phases to detect outliers.

First, after running through the learning phase, it decides for
each histogram whether that histogram is “peaked” (i.e. showing
a few strong modes) enough to be used to detect outliers. The
aim of this phase is to discard histograms where most bins
have a similar number of values, and are thus not useful for
outlier detection. In practice, we use a simple statistical test
to determine whether a histogram is sufficiently modal: if the
number of elements that fall into the most populated (“top”)
bins is less than some user-specified proportion, the histogram
is discarded. Finding how many bins to include in the set of
top bins is the most challenging part, and for this paper we
explored two thresholding strategies (Figure 4):

e Distribution-independent — Given a histogram with
N bins, we count only the values in the top bin if
1 < N <3, in the top 2 bins if 4 < N < 5, and in the
top 3 bins for 3 < N < 16 (histograms with N > 16
bins were previously discarded). This method is stable
when the set of bins is static (week days, booleans,
...), but it is sensitive to the addition of removal of
bins.

e Distribution-dependent — We sort the bins in increasing
order of bin size b;, and find the index 7.« such that
the ratio r = bi+1/p, is maximal (this calculation is
safe, because the bin sizes are non-zero integers). If
that ratio is under a user-defined threshold, we reject
the histogram; otherwise, we consider bins ¢,,,x..end
to be “top” bins.

Figure 4 shows various types of histograms, and lists the
conclusions that each of these two approaches yield.

After identifying a relevant set of histograms (this operation
only needs to run once, at the very beginning of the last
pass), we proceed to the actual detection phase. We classify an
expanded tuple X as an outlier if any of its values (or set of
values, as grouped according to the correlation hints previously
obtained) x, verifies:

ha(za) < €Y ha(k) )
k

where h,(z) designates the number of tuples with value = for
field a, and € is a user-chosen sensitivity parameter.

In this model, identifying and reporting the outlying
attributes is simply a matter of remembering which values
z, failed test (2).

2) Simple Gaussian Modeling: The simple Gaussian model
measures how much each value differs from the mean computed
in the preceding pass. Given a tolerance parameter 6, a row is
deemed an outlier if at least one of its attributes a has a value
v, such that

|Ua_,ua| >0-0, 3)

where 1, and o, are the model’s parameters for column a, as
described in Section IV-B2.

In this model, detecting which values are responsible for
the outlier flag is simply a matter of keeping track of which
attributes satisfy Equation (3). The simple Gaussian model does
not take correlation hints into account, and thus reports only
single-attribute outliers.

3) Mixture Modeling: In the Mixture model, the likelihood
of each (possibly multidimensional) field is evaluated using the
corresponding GMMThis model operates under the assumption
that data is accurately modeled by the chosen number of
components in the GMM, and in particular that each non-
outlying data point is well modeled by one of the Gaussians
of the GMM.

This makes it possible to assign a Gaussian component to
each tuple, and then flag as outliers the tuples that are not
sufficiently well explained by their corresponding Gaussian
(see [18]). Given a tuple ¢ and its corresponding Gaussian c,
this means rejecting ¢ if
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Fig. 4: Sample histograms, and corresponding decisions with distribution-dependent (D-independent) and distribution-independent
(D-independent) thresholds. Each figure shows a sorted histogram, with the top bins hatched (in dotted green in the distribution-
independent case, and in solid orange in the distribution-dependent case). The vertical arrows show the small value » = 3 in the
distribution-dependent case. The weaknesses of the distribution-independent-model show in the third and fourth plots: in the third
one the distribution-dependent strategy correctly rejects because of the small r; in the fourth the distribution-independent strategy

yields an incorrect threshold.

7o - Pr(dist(t, pe) > do) < 0 4

where 6 is a user-defined parameter between 0 and 1, and dy
is the Mahalanobis distance of ¢ to the Gaussian.

As in the Gaussian Model, providing the user with a
list of attributes that caused the row to be flagged as an
outlier is simply a matter of tracking correlations that satisfied
equation (4).

4) Partition-based modeling: In the partition-based case,
outliers are detected by the underlying models. To classify
a given expanded tuple, each group of correlated attributes
is divided between a one-attribute key and a group sub-
population attributes. This group of attributes is then passed
to the underlying model corresponding to the given value of
the key, and the whole original tuple is reported as an outlier
if any of its groups of sub-population attributes is marked as
such by the underlying models.

V. EVALUATION

We implemented dBoost as a library that runs on top of a
standard relational database or set of structured data files. Our
code is publicly available on GitHub under version 3 of the
GNU Public License’. The program is made of two parts: a
library, and a number of data acquisition front-ends (CSV and
SQL are currently supported). The library provides functions
for each of the phases previously described, and includes a
collection of expansion rules from Section III.

This section presents the results of running our tool on the
following real and synthetic datasets.

e  Synthetic datasets
Fizz-Buzz A mixed textual-numerical dataset in which
each record contains two entries: a number, and either
“Fizz” if the number is divisible by 3, “Buzz” if the

3https://github.com/cpitclaudel/dBoost

number is divisible by 5, “FizzBuzz” if it is divisible
by both, and the number itself (as a string) otherwise.
Outliers appear when the second column does not
respect these rules; this can be a misplaced “Fizz”, a
missing “Buzz”, or even a totally different string (e.g.
“Woof!”).

Web logins A series of three non-numeric datasets in
which entries contain the login time and connection
location for different users. Each user has different
connection habits, leading to different types of outliers.

e  Real-world datasets

CSAIL Directory A publicly-accessible directory of
researchers, in which each record may include a first
and a last name, a phone number, an office number,
an email, and a job title. Outliers are hard to define
mathematically in this case, and we instead demonstrate
how the ideas exposed in previous sections of the paper
come together to allow for efficient detection of unusual
values.

Intel lab data A publicly-available numerical dataset
of temperature, light, humidity and voltage measure-
ments. Outliers are due mostly to sensor glitches.

These datasets showcase the power of our methods, both in
terms of classification power and expressiveness and succinct-
ness when adding new rules to the system*. Where relevant we
include performance measurements. These numbers intend to
demonstrate that our approach is computationally reasonable
and that our models scale linearly given a fixed training size. We
show in Section V-E how our prototype requires on the order
of a few minutes to process a million elements using a high-
level single-threaded scripting language. A production-ready
implementation would run one or two orders of magnitude
faster by taking advantage of the inherent parallelizability of

“Indeed, the set of rules used for tuple expansion is user-configurable, and
new rules can be easily added; thus, specific knowledge about the data can
be taught to the system by users, expressing some soft form of data integrity
constraints.
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the models, using an efficient on-disk representation of the
data, and relying on a lower-level language with an efficient
optimizing compiler.

The following subsections describe each of the test sets and
associated results in greater detail.

A. Soft constraint specifications: Fizz-Buzz

We start with an extremely simple example, highlighting
how easy our system makes it to encode and check data integrity
constraints. The Fizz-Buzz programming exercise is based on
a children’s game and frequently found in programming inter-
views. The synthetic dataset we generated obeys the following
rules: for each record x,y, x is a number between 0 and 1000,
and y is “Fizz” if * mod 3 = 0, “Buzz” if x mod 5 = 0,
“FizzBuzz” if + mod 15 = 0, and z otherwise. In our synthetic
dataset we introduced three outliers: (25, "Fizz"), (28,
"Woof!"), (30, "Buzz").Each demonstrates a different
error, namely swapping “Fizz” and “Buzz”, producing entirely
incorrect output, and failing to recognize that a number is
divisible by both 3 and 5.

A traditional way of checking that all tuples verify the
production rule outlined above is to encode this rule itself
as a database integrity constraint. This requires encoding the
full complexity of the exercise in the rule, and would require
manual adjustments if the rules were to change. Instead, a user
might want to specify the bare minimum for the system to
infer the rules; in this case, it is sufficient to add one extraction
rule, mapping integers to two booleans denoting whether they
are divisible by 3 or 5. In dBoost, this is expressed as:

@rule
def divisibleBy3or5(x: int) ->
return (x $ 3 == 0, x % 5 == 0)

Running the discrete statistical analyzer on the synthetic
datasets suggests that the two columns are correlated, and
using the histogram model flags the aforementioned outliers.
The output of the program for the (30, "Buzz") line, for
example, is similar to:

30 Buzz
> Values (30, 'Buzz') do not

match features ('div 3', 'strip numbers')
e histogram for ('div 3', 'strip numbers'):

[532] sl (False, '<num>')
[133] (False, 'Buzz')

[ 1] B (False, 'Fizz')

[ 1] B (False, 'Woof!')

[ 1] @ (True, 'Buzz')

[267] EZzZzzzzzzzzzz7d (True, 'Fizz')

[ 66] (True, 'FizzBuzz')

Using the partitioned histogram model produces similar
output:

30 Buzz
> Values (30, 'Buzz') do not
match features ('div 3', 'strip numbers')

e histogram for ('strip numbers',) if 'div 3' = True:
[ 1] @ ('"Buzz',)
[267] € 1('Fizz',)
[ 66] ('"FizzBuzz',)
. if 'div 3' = False:
[532] € 1 ("<num>', )
[133] ('Buzz',)
[ 1] @ ('Fizz',)
[ 1] B ("Woof!',)

B. Logins: a more realistic partitioned dataset

Our web activity synthetic datasets are comprised of two
columns: a Unix timestamp stored as an INT, and a country.
Each dataset is supposed to track the connections of a registered
user on a website; such a dataset could be obtained by selecting
the relevant rows out of a large table listing all connections of
all users. Each user exhibits a different connection pattern:

e One user always connects from the same country;
values that do not match this country are outliers.

e  The second connects from one country during the week,
and from another during the week-end; outliers in this
case are connections from a country that doesn’t match
the country for that day of the week.

e The third user connects from a set of three countries,
with no discernible pattern. This should not return any
outliers.

The datasets are randomly generated sets of 2000 connec-
tions, listed in no particular order. The target outlier rate is 5 %
in each generated dataset.

("div 3", "div 5"s;in the Fizz-Buzz example, numerical models are useless

here, whereas histogram-based models produce good results.
In the first case, a histogram-based model with no correlation
analysis is sufficient to flag the outliers (analysis time: 0.08s,
training time: 0.14s, total runtime: 0.38s)°. In the second case,
the discrete statistical analysis phase singles out interesting pairs
of correlated columns, including (date # day of week,
country) and (date#is weekend, country). A
histogram-based model is sufficient to successfully flag outliers,
without resorting to partitioning.

Mixing data from two or more users, however, shows
the limits of the non-partitioned histogram approach. If we
only look at two-columns correlations the individual behavior
patterns become less apparent, and if we look at three-column
correlations the histograms become too large and spurious
hits start to appear due to the many discrete correlations
hints returned by the analyzer. The partitioned histograms
model, on the other hand, can handle the three-users without
particular difficulties, by highlighting (among others) the triplet
(user, date#is weekend, country) (analysis time:
0.14 s, training time: 0.19s, total runtime: 0.56 s).

SAll runtime results were obtained using a 4 core i7-4810MQ CPU @
2.80GHz and 32GB of RAM.



C. CSAIL Directory

The CSAIL directory is an online directory of about 1000
faculty, staff and students in the MIT Computer Science
and Artificial Intelligence Laboratory®. Each entry contains
a person’s name, phone number, office number, email address,
and position.

Some entries, such as a phone number, may be missing
from the directory. Nonetheless, we expect our framework to
be useful in flagging discrepancies between different records.
Since the notion of what constitutes an outlier here is imprecise
at best, we also expect the tool to allow the user to explore
different sets of parameters. To illustrate the process, we present
the results returned by two iterations of the tool in the next
subsection, each with increasingly strict limits on the number
of outliers returned. Because the CSAIL test set is exclusively
textual, we use the histogram model for evaluation; continuous
models would not fare as well, since only part of the expanded
tuples are numeric. We also manually annotated the dataset for
outliers to determine the accuracy of our system.

1) Initial run: low specificity filtering: The search for out-
liers is initiated with parameters 6 = 0.8, ¢ = 0.2 (analysis time:
0.36's, training time: 0.11's, total runtime: 0.60s). Correlation
detection is disabled for these experiments.

This invocation produces a long list of outliers; a small
subset of these is presented below. For privacy reasons, names,
phone numbers, office numbers, and emails have been omitted
or anonymized in the following listings.

Hacker, Alyssa, 32-D968,
aph@CSATL.MIT.EDU, Postdoctoral Associate
> Value 'aph@CSAIL.MIT.EDU' doesn't match feature '
lower case'

Bitdiddle, Ben, NE47-989,
bbitdid@mit.edu, Graduate Student
> Value 'NE47-989' doesn't match feature 'signature'

Lu-ater, Eva, 32-G972,
eva@csail.mit.edu, Research Scientist
> Value 'Lu-ater' doesn't match feature 'title case'

Tweakit, , 32-G699,
twktem@mit.edu, Administrative Assistant
> Value ' ' doesn't match feature 'empty'

In total, 451 entries contain outliers, out of a total of
1000. Office numbers are often flagged, as well as names
and email addresses. By changing the input parameters to
# = 0.8,¢ = 0.05, most of the outliers due to office
numbers disappear due to the lower sensitivity. Hacker,
Alyssa disappears from the list, since e-mails with inconsistent
capitalization occur frequently enough in the database that they
are not considered outliers at sensitivity level ¢ = 0.05. After
tuning these parameters, we are left with 68 outliers.

In addition to identifying outliers, dBoost is equipped with
tools that provide the user with additional feedback on why
features were identified as outliers.

Bitdiddle, Ben, NE47-989,
bbitdid@csail.mit.edu, Graduate Student

> Value 'NE47-223' doesn't match feature 'signature'
e histogram for ('signature',):

[2660] Ezzzzzzzzzzzza<empty>

[ 1] @ Ly,Luy,Nd,Nd,Pd,Nd,Nd,Nd

[ 1] @ Luy,Nd,Nd,Pd,Nd,Nd,Nd

[ 2] B8 Nd,Nd,Luy,Pd,Nd,Nd,Nd

[485] Ezzzzzzzzzzzzzz777777777777721Nd, Nd, Pd, Lu, Nd, Nd, Nd
[ 51] EZNd,Nd,Pd, Ly, Nd, Nd, Nd, Lu

[155] EzzZzzzaNd, Nd, Pd, Nd, Nd, Nd

[ 36] ®©@Nd,Nd,Pd,Nd,Nd, Nd, Lu

[ 3] @ Nd,Nd,Pd,Nd,Nd,Nd,Nd

[ 1] B8 Nd,Pd,Nd,Nd,Nd

Lu-ater, Eva, 32-G972,

eva@csail.mit.edu, Research Scientist
> Value 'Lu-ater' doesn't match feature 'title case'
e histogram for ('title case',):

[ 15] OFalse

[986] [777777777777777777777777777774 True

Tweakit, , 32-G699,
twktem@mit.edu, Administrative Assistant ...

> Value ' ' doesn't match feature 'empty'
e histogram for ('empty',):

[1000] EZzzzzzzzzzzzzzz777777777777AFal se

[ 1] B True

Our tool highlights the incorrect field, and prints the
corresponding histogram. The bin in which the suspicious value
falls is also highlighted. The signature case is particularly
interesting: recall that to extract the signature of a string, our
tools replace each character by the name of its Unicode class;
hence the string NE47-989 is converted to Lu, Lu,Nd, Nd
,Pd,Nd,Nd,Nd (two letters, two numbers, one dash, three
numbers), which does not fall in any of the dominant bins
(the most frequent case, Nd, Nd, Pd, Lu, Nd, Nd, Nd, describes
office numbers like 32-G804, the predominant form of office
numbering in the Stata Center).

Manual inspection of the results reveal that most of the
outliers reported are actually bad inputs. There are, however, a
number of false positives, such as:

DefFect, Cy, 32-D597,

cydf@csail.mit.eduy, Graduate Student
> Value 'DeFect' doesn't match feature 'title case'
e histogram for ('title case',):

[ 15] OFalse

[986] I

1True

The case of DeFect is correct, but our tool notes that it
does not adhere to the casing standard derived from other tuples,
and thus reports it.

We compared dBoost’s output to a manually annotated
version of the CSAIL directory to analyze its accuracy; the
results are shown in Figure 5.

D. Intel Lab Data

We also evaluated our outlier detection framework on sensor
data from the publicly available Intel Lab Data set’. The
Intel Lab Data contains data collected from 54 sensors spread
throughout the Intel Berkeley Research Lab. Each data entry

Ohttps://www.csail.mit.edu/peoplesearch

7http://db.csail. mit.edu/labdata/labdata.html
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Fig. 5: Accuracy of dBoost on the CSAIL dataset, evaluated by comparison to manual annotation of outliers in the directory.
Outliers were detected using 6 = 0.8 and € = 0.025; the tuples are sorted according to why they are — or are flagged as — outliers.
The false positives in the last category are due to names whose proper capitalization is not title case. Green represents region of
agreement between the output of dBoost and manual annotation, red shows outliers in the manual annotation that dBoost did not
find, orange shows records that dBoost flagged as outliers that the manual annotation did not, and grey indicates values that could
not manually be categorized with complete certainty as either outlying or non-outlying.

contains information including temperature, humidity, light

and voltage taken from a Mica2Dot sensor and weatherboard.

The dataset contains a total of approximately 2.3 million
measurements.

The Intel lab dataset has known outliers from faulty sensor
readings due to periods of critically low voltage. During
these periods, the sensors go haywire and produce faulty
measurements. For example, the temperature may be registered
as over 120 degrees Celsius, which is obviously abnormal
behavior in a human environment such as where the sensors
were deployed.

We analyzed a sample of 1000 data points selected at
random from the sensor data; due to the numerical nature
of this data, the Simple Gaussian and Mixture models are
better-suited to analyzing it than the Histogram model.

We also compare the results of our models to Local Outlier
Factors, a common outlier detection methodology, in this
section.

1) Simple Gaussian Model: The results from running the
sensor data set through the Simple Gaussian model are shown
in Figure 7a. The data is plotted in light green, and the outliers
are marked by dark red crosses.

In this experiment we flag the entries with column values
that fall outside 1.5 standard deviations of the mean of that
particular column as outliers. This model runs relatively fast,
as no correlations are computed (analysis time: 0.03 s, training
time: Os, total runtime: 0.125s).

2) Mixture Model: We set the statistical threshold to 0.7,
which produces two correlations between temperature and
humidity and between temperature and voltage. Figure 7b shows
the results when using a single Gaussian component. Points
flagged as outliers have a likelihood of less than 7.5% of being
produced by the Gaussian generated by the model (analysis
time: 0.03 s, training time: 0.34 s, total runtime: 0.73s).

This model is able to detect values with high temperature
and low voltage as outliers.

Figure 7c shows the results obtained using the Mixture
model with two components, using the same 1000 randomly
selected data points. Flagged values have a likelihood of less
than 7.5% under their dominant Gaussian (analysis time: 0.03 s,

training time: 0.35s, total runtime: 0.78s). When using two
Gaussians, the points clustered around the temperature 120
degrees Celsius are no longer detected as outliers: they are
modeled by their own Gaussian (although this Gaussian’s
weight is smaller than its counterpart). This model highlights
the points within normal sensor operation that have outlying
results.

3) Local Outlier Factors: In this section we compare
the results of our Gaussian and Mixture models to Local
Outlier Factors (LOF) [5], a frequently used method for outlier
detection. LOF measures the degree to which a data point is an
outlier by comparing each data point’s reachability to those of
its k nearest neighbors. The higher the LOF, the more isolated
the data point relative to its local neighborhood and therefore
the more likely the point is to be an outlier.

One downside of LOF compared to dBoost is that it can
only evaluate two-dimensional data. The original algorithm also
has significant computation complexity in order to calculate the
distance to the nearest neighbors of each data point. One benefit
of LOF, however, is that the algorithm returns a continuous
value that indicates the degree to which a point is an outlier,
as opposed to a binary value.

Figure 7d shows the outliers detected by LOF when k = 2.
We observe that contrary to the Gaussian and Mixture models,
the outliers detected by LOF are scattered throughout the data.
The outliers are not necessarily the points one would intuitively
assume are outliers. This is because points that are within the
normal range of the data will be selected as outliers if they
are far enough away from the other points nearest to them.
We find that LOF is not as useful at pointing out the tagged
outliers in the sensor data set.

E. Scalability

We measure the total runtime of our system, including
the data modeling and outlier detection phases for the Simple
Gaussian, Mixtures with 2 Gaussians, and Histograms. We
used the Intel sensor data set from Section V-D to evaulate
the Gaussian and Mixture models, and the CSAIL directory
from Section V-C to evaluate the Histograms. We use random
sampling to provide training sets of 1 thousand and 10 thousand
elements from the Intel dataset to build the data models. We
test them on all 2+ million elements in the dataset. To provide
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Fig. 6: The scalability of the Gaussian and Mixture Models
produced with different training sample sizes (listed next to
the model in the legend) as the test set size increases.

a more comprehensive study of the scalability of the Histogram
model, we replicated the rows of the CSAIL directory to
increase the training and test set sizes.

In Figure 6, we show the runtime of our prototype. Each
line shows a model trained with a different training set size.
As shown in the figure, runtime scales linearly as the test set
size increases. Applying additional optimizations such as using
a lower-level language or enabling parallism would improve
runtime performance to production-ready levels.

VI. RELATED WORK

There has been substantial research in how to build models
to detect outliers [2], including how to detect outliers in
high-dimensional data by searching the subspaces of the data
[23][12]. However many of these algorithms are complex and
can require substantial computation to determine whether a
new data point lies outside the data.

Several algorithms exist in the data mining community to
determine outliers when doing data analysis. Local outlier factor
measures the degree to which a data point is an outlier [5].
Other techniques include k-nearest neighbor [16] and cluster
analysis.

Research has been done to attempt to explain why outliers
exist given properties of the original data [22]. Unlike our tool,
Scorpion starts with user-defined outliers and works backwards
to find potential explanations as to why the data points are
outliers.

Statistical methods have been used to detect dependencies
between columns of relational databases for the purpose of
informing the query optimizer of potential data dependencies
[11]. These methods require only a small sample of the
data to detect functional dependencies with high probability

of correctness. The relatively low computation required by
these algorithms makes them more amenable to detecting data
anomalies in real time. However, these methods are better suited
for numerical data [10]

Gaussian Mixture Models have been used for outlier
detection in multiple contexts [15], [17], [18].

Histograms are used in conjunction with local outlier factors
to detect outliers [8], [20], in cases of numerical or categorical
data.

To the extent of our knowledge, the literature regarding
outlier detection on non-numerical data is much less extensive.
Some common approaches include identifying outliers using
a similarity measure [6], Probabilistic Suffix Trees [21] and
sequence alignment [4].

Some specialized work has focused on inferring domain-
specific rules on highly specific data such as a sequence of
UNIX commands [13], [14]. By contrast, we take on a general-
purpose approach that is capable of dealing with data as diverse
as a set of names and office numbers to real-valued sensor
data. Additionally, we analyze data without any additional
information on its structure.

Overall, we differ from previous approaches in that we are
capable of analyzing a very wide range of data and do not
use predefined rules for outlier detection — although adding
user-defined rules is possible in our framework.

VII. CONCLUSION

In this paper we presented dBoost, a toolkit that leverages
tuple expansion to detect outliers in both numerical and
heterogeneous data sets. We demonstrated that well-known
machine-learning strategies could be used to flag spurious
numerical and to a lesser extent non-numerical data. We also
demonstrated that simple correlation modeling is useful in
inferring data dependencies and improving the accuracy of
outlier detection procedures. We discussed histogram-based
models, and showed that they provided a useful tool in analyzing
mostly textual data.

We showed that our toolkit performs well on real-world
problems, including identifying potentially wrong entries in a
people directory and flagging erroneous values generated by
faulty sensors. Our toolkit and its source code are available
for public use under a permissive license, with the hope of
allowing database users to formulate their own type-based rules
and find discrepancies in their own data. Once a large library
of rules is developed, we anticipate new challenges such as
how to select expansion rules for efficient analysis.
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