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Introduction

The goal of the SMS_BP package is 3 fold:
1. Simulate motion of molecules with 3 properties:

(@) Follow FBM (fractional brownian motion)
(b) Be bounded (3D by the cell boundary)
(c) Molecule motion can change in time based on some user input probability of change to/from

2
states (allowable states are the Diffusivity (#5-) and the Hurst exponent characterizing the
correlations in the process’ increments ().

2. Model the motion of condensates (and their size). This dictates a preferential location inside the cell
where the probability of observing a molecule is higher than the rest of the cell. Multiple number of
condensates can coexist and move independently. The probability of finding a molecule is then set
to a user defined value of the partition coefficient of the condensates.

3. Combine these two underlying processes and create realistic Single Molecule Tracking Photoacti-
vatible Localization Microscopy movies and images which can be used to train tracking methods
or analysis methods for molecule trajectories and cluster detection. These need to incorporate the
photo-physics of the probe used, along with the optics of the microscopy and camera detection.
Namely, it needs to allow for:

(a) motion blur
(b) defocus intensity decay

(¢) defocus PSF deformation
(d) blinking (ON/OFF) of the probe.

Info: This is not a technical document. I am not discussing how these features are implemented (i
think i came up with really nice solutions and would love to talk about it) but to display the large
functionality of this code base and how you the user can interact with and use it for your own means.

1 Simulation of Bounded FBM (n-dimensional)

The first order of business is to confirm that SMS_BP can simulate BM,FBM given some boundary. Here
boundary conditions are implemented as reflecting. For the included plots im showing only 2D motion
because it’s easier to visualize but don’t worry, the real simulation is 3D! In fact using the nice property of
stationary increments of FBM you can use this to simulate n-dimensional motion (why you would want to
do this I don’t know, but you can)!
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Figure 1: Example of an effectively unconfined random motion where the increments are so small and the
duration is not large enough to encounter the boundary. We can simulate the correct D, a! Don’t worry
the boundary is not set in stone and can be user defined. However it must be rectangular.
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Figure 2: Example of an effectively unconfined subdiffusive motion where the increments are so small and
the duration is not large enough to encounter the boundary. We can simulate the correct D, «!
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Figure 3: Example of an confined superdiffusive motion where the increments are large enough to en-

counter the boundary. We can simulate the correct D, a!
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Figure 4: Example of an confined superdiffusive motion where the increments are large enough to be
totally confined by the boundary. We can simulate the correct D, « but the extracted fits suffer because of

the interactions at the boundary interface!
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Figure 5: Example of an confined transitioning motion. Here there are 4 states: 2 unique D, and 2 unique
Hurst. The ensemble MSD is now a population average of for these and will greatly depend on the D,H
values but also on the proportion of each state!
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Figure 6: The example of Figure 5 showed the transitioning ability of the simulation. Here I show if the
user (you) gives the rates of transitioning from one state to another (and itself) SMS_BP can accurately
simulate the correct transitioning proportions. As a note, this is assuming the process is Markovian and as
such is implemented under-the-hood as a MCMC (Markov chain monte carlo).

I want to emphasize that I only used 4 unique states here. In fact the user can ask for any combination
of these (as many as you want) and the probabilities are all handled under-the-hood. You do not need to
worry about typing anything other than the input parameters. I will discuss in future sections how you
can define the parameters of the simulations and run it! By this point we have shown that the first goal is
accomplished. Lets move on to the condensate!

2 Condensate Definitions and Movement

So far we have worked with individual trajectories and let them start at the origin. What if we want to
simulate many trajectories (molecule motion) but starting at different places in the cells? One choice is to
randomly sample the cellular space and start the observation of a molecule. But if the underlying space is



heterogeneous in the density of molecules we are tracing we can define the cellular space as a probability
space. Each spatial element defines the expected probability of finding a molecule in that region. This
framework leads to the definition of a condensate!

A condensate in the framework of SMS BP is defined as a circular/spherical region in the cell which
has a higher probability per unit volume to find a molecule. That it, so simple! The nice consequence of
using this simple definition is that we can also model the motion of the condensate by using the probability
space. By letting the probability space be time dependent Figure 7 shows that we can treat the condensate
as a moving trajectory itself and using the framework we developed previously to model its motion as BM
or FBM! Isn’t that cool?

2 Condensates in a confined space
One with Hurst 0.7 and Diffusion 1, the other with Hurst 0.2 and Diffusion 0.5
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Figure 7: Here we can simulate any number of condensates (here I show 2). Implementation wise, their
motion is independent of one another. But using the framework of the FBM from before we can model
the condensates motion in anyway we like. Here one condensate is subdiffusive with a small diffusion
coefficient and one which is super-diffusive with a larger diffusion coefficient. The blue lines represent
the motion of the centre of each condensate. The red circles show the extent of the condensate boundary.
In this case the size (radius) of the condensate does not change in time. But rest assured, SMS_BP allows
you to change this as you like! Since these objects are built on the same framework as the FBM, they share
all the features of the molecule motion we outlined before.

Again you should think of the condensate as a probability space which is time and space dependent,
p(s,t). This condensate movement occurs in the background of the true molecule simulation and informs
the location of the individual molecule positions as they turn on to their fluorescent state. This is param-
eterized by a probability density defined by the user which we will talk about later. For now bask in the
glory that is SMS_BP.

3 Conversion of Backend Trajectories to Observable PALM-like Im-
ages

Okay all of the previous features are considered the backend of the simulation. They define what process
are occurring. Our job now is to express these processes in a way which is similar to what an experimenter
would observe from a typical SMT experiment. There are 3 things to consider: getting the photo-physics
(intensities, PSF, etc ..) correct, modelling the effect of motion blurring, and the affect of the focal depth.

The first is not that hard, assuming we have knowledge of the properties of the PSF and the intensities
(photon counts) of individual molecule localizations (at a given exposure) we can define the mean photons
emitted and captured at the detector in a time frame. The issue is the motion blurring. Since this is affected
by fast motion and corresponding long exposures we actually sample the motion of the trajectories at a



smaller time resolution than the exposure time! For example, if the exposure time is 100 ms the camera
is on for 100 ms capturing photons emitted. Meanwhile the underlying molecule is still moving so rather
than simulating the motion at 100 ms intervals we can simulate it at a smaller interval (¢ < 100ms) and
integrate the photons over the exposure time, 100ms. For fast moving molecules which would resemble
comet tails as the intensity (the photons) would leave a trail of photons in its wake over the time the
detector is on.

SMS_BP allows the user to define the smaller sample time, ¢. For example, in Figure 8 I show the
effect of a sample time smaller than the exposure time. For visual aid I have cranked up the mean photons
emitted/captured to make the comet tail readily apparent. You can change all these parameters, and we
will do this in the final section.

Figure 8: Here the motion of a molecule is sampled every 1 ms. The exposure time is 20 ms and there is
no interval time between measurements. All three of these parameters ca be user defined! Notice at this
particualar frame the PSF of the molecule appears distorted? This is because of motion blur and defocus
modelled by SMS_BP. For visual aid I have artificially increased the mean photons emitted/captured for
this molecule. The image is slightly ugly due to png compression, but you will get to make your own
simulations and appreciate the details.



Figure 9: Here the motion of a molecule is sampled every 20 ms. The exposure time is 20 ms and there
is no interval time between measurements. Notice there is no PSF deformation in this frame, since the
molecule is modelled every 20 ms from the point of view of the simulation nothing occurs in the interval.
This is because of there is no modelled motion blur and defocus by SMS_BP. Compared to Figure 8 the
only difference is that the over sampling (the ¢ I discuss in the text) is the same as the exposure time in
this particular case. For visual aid I have artificially increased the mean photons emitted/captured for this
molecule.

4 Working With the Code

First things first: use the installing instructions in the main README.md to get the conda environment
created and the package installed on your system. This allows you to use the functionality of SMS_BP
from anywhere since the path is appended to the main python search path.

There are 2 different ways to interact with the code.

1. The first is to use a configuration file which stores all the relevant parameters and passing it to a
CLI-like file. The provided configuration file is sim_config.json. The python file which takes this as
an argument is called run_cell simulation.

2. In the install we also install a CLI command run_SMS_BP which will work globally (you do not need
to be in the directory of the project). You will need to provide a config file location to this command
or it will be unhappy with you. You can run run_SMS_BP -h to see uses. The simplest way to use it
is provided in the README and repeated here: run_SMS BP [PATH TO CONFIG FILE ABSOLUTE].

3. The second is to use the actual code itself through import. We can do this since we have installed
the code as a package.

To keep it simple for now let’s focus on the first method. Let’s go to the config file in SMS_BP/sim_config.json
and open it in your text editor of choice. You will see a nested dictionary with a bunch of parameters and as-
sociated values. We will go over each of these and what values are allowable. The document sim_config.md
is a text file describing each parameter and the units of each parameter in our main sim_config.json. Use
it as a reference if you want to change any of the parameters later on.

First of all. Let’s change one parameter in the sim_config.json. Find the set of parameters called
"Output_Parameters". Inside you will find a parameter called "output_path". Currently it contains a place-
holder. Change this to a string which is the absolute path of the place you want SMS_BP to store the final
results. So to reiterate change the string "<YOUR-PATH-HERE-CAN-BE-ABSOLUTE-OR-RELATIVE>" to
the path you want.



We can keep the rest of the parameters the same for now and let’s just run the simulation. First way:
run the run_cell simulation.py by evoking python run_cell simulation.py sim_config.json. Else you
can run it as: python run_cell simulation.py and the logic will try to find the sim_config.json file in
the current directory. Once the simulation finishes you will find a new folder created at the path you
specified and inside a few files and folders. For now ignore the folders. The .tiff file is the movie of the
simulation. params_dump.json is a copy of the sim config.json used to create this particular simulation,
it is also provided as a pickle file. The final file Track_dump.pkl is the true simulation of the underlying
motion we did in section 1. This allows you to track the PSFs in the movie and compare back to the true
positions of the molecules to see how well you did!

Let’s redo this but now with the variable oversample motion_time equal to the exposure time. Set
both to 20 (ms). Notice any difference in the two output movies? This is all I did to create figures 8-9.

To do further changes in the simulation I recommend reading the sim_config.md file explaining the
role of each parameter in the sim_config.json file. If required I might make tutorials for other features I
did not discuss here.



