12 United States Patent
Offer et al.

US008539484B1

US 8,539,484 B1
Sep. 17, 2013

(10) Patent No.:
45) Date of Patent:

(54) MULTI-PLATFORM COMPUTER SYSTEM
MANAGEMENT FOR VIRTUALIZED
ENVIRONMENTS

(75) Inventors: Richard Offer, San Jose, CA (US);
Lynn LeBlanc, San Jose, CA (US)

(73) Assignee: HotLink Corporation, San Jose, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 2477 days.

(21) Appl. No.: 13/115,008

(22) Filed: May 24, 2011

Related U.S. Application Data

(60) Provisional application No. 61/348,445, filed on May
26, 2010.

(51) Int.Cl.
GOGF 9/455

(52) U.S.CL
USPC e 718/1

(58) Field of Classification Search
USPC e 718/1
See application file for complete search history.

(2006.01)

(56) References Cited
U.S. PATENT DOCUMENTS
2002/0016166 Al1* 2/2002 Uchidaetal. 455/419
2005/0188144 Al1l* 8/2005 Parketal 710/315
2007/0038703 Al* 2/2007 Tendjoukian etal. 709/206
2008/0215793 Al* 9/2008 Hashimoto etal. 711/6
2008/0282243 Al* 11/2008 Segumetal. 718/1
2009/0327643 Al* 12/2009 Goodmanetal. 711/173
2010/0107162 Al1* 4/2010 Edwardsetal. 718/1

* cited by examiner

Primary Ikxaminer — Emerson Puente
Assistant Examiner — Steven Do
(74) Attorney, Agent, or Firm — PetersVerny, LLP

(57) ABSTRACT

A virtual machine management system 1s configured to man-
age a plurality of computing systems each configured to sup-
port virtual machines. The virtual management system 1s
configured to transparently manage the computing systems
even 1n cases where the virtual machines are supported by
different hypervisors. In some embodiments, this capability
simplifies the management of cloud computing systems
including software provided by different virtual machine ven-
dors.

27 Claims, 8 Drawing Sheets

DBMS 730
/

Management Server

6154

Management Server

6158

Transform Server 620

Engine

4]

Transformation

Storage

S

Transform &_gent

Transform Agent
7158

715A1 computer System 6358

Storage 720

VMM 725

\

Management Server

§15¢

U.S. Patent Sep. 17, 2013 Sheet 1 of 8 US 8,539,484 B1

100 i« > | 132 133
"] 134 | 135
131
\ 141 1| 143 | | 145 || 145
E \ .
110 111 | E 2
14 144
13 —
120 —
102 || 103 | | 104 iesi
— > 132 133
P
134 13
134 45¢ 135
141 || 143 || 145 | | 145
141 6144
150 —
» 132 133
-
134 135
5 171
Figure 1 143 | | 145
(Prior Art)
141)
170 L__._.._

U.S. Patent

Sep. 17,2013 Sheet 2 of 8 US 8.539.484 B1
110 111
< >
Bmégm 220 | 240
|
210
120 |
260
~
251 | 252 | | 253 | | 254
250
Figure 2

(Prior Art)

U.S. Patent Sep. 17, 2013 Sheet 3 of 8 US 8,539,484 B1
100 1«
320 360 . 361
:
] |
i
| 311 || 313 || 312
110 11|, -
14j 315 |«
S LA,
T T
310
102 | 103 104 || 105
101
132 133 332 333 | |
| - . |
141 | | 143 | | 145 || 145 141 | | 143 | | 145 | | 145
141 144 141 15
130 — 29U -

Figure 3

U.S. Patent

v

-

i'
%
:

E

Open Connection

{o target
hypervisor
datastore

>

—p—_— Airbiri =] i — e -—— L e ol bl bt sl —— p—— ——— PR — — — L]

) 4

L.ocate data
object of
| interest

i
f

h 4

Parse data object
into neutral
representation

el kbl

B . o I T o T T P T

Convert data object
into destination
server representation

Sep. 17, 2013

Sheet 4 of 8
Other | Open connection
management to destination
-~ servers management
- server of choice

oSteps duplicated for other
management servers

P RS AR AR GWWHR el bkl sk skl et wjeleld wbbebs el sy sppphl e e e SRR TREET TTEY TRUEE TP B BT "

ya N

,,f«f- N Yes, Insert
~Does data object~.

. hew object

—»< already exist in

‘_.._-"r

“._mgmt server?

bl delesbble deleleskk wheleleieh ——l

H\\ // vy
>~ Write data object

f » 1O Management

No. Update server data store

existing object

Monitor
cdatastore for
changes

i

._-__,.- x“'.._
- N

"
:-"-.-'- \H'-'H.
- .,
- -
o L
” -
- -
- LN
- .
- v
- .
o~ - .
H‘-\.._ __.-""'
. ~
T "
~ A
\\"\. v'\.'
- o
- s
~ ey

~ e
~
- _._,.-'"'.-.
-
e
o ._:-"'

Figure 4

US 8,539,484 B1

US 8,539,484 B1

Sheet 5 of 8

Sep. 17, 2013

U.S. Patent

G ainbig

<pinn/>"gigsyie<pinn:

<M/>

<My>
<juixg >

<}SOY/>

<nda/sjejuj<ndos
<pPlf>L<pl>
<}SoY >
<JWIX¢ >

201] ¢ WIOJE|d PI'ISOH
0Z61EY98.Yoe-61 O
180
-GGEZ-PEGR-GZIASTIE b ¢ W05EId Pr3sSoH

Ble(] uoissag

P, _..,.r?._,..ﬁ...

/

“wdogeld

BuULiS=pI IS0y
adAl
pINN‘ MY JusWwa|g

MY JUsSLWS|=

| Wiojeid

Lol buiddepny

Jui=prrisoy :9dA |
pPrisoy jusuisi4

1SOY JusWsig

| Wioneid

outbug LI8X

<3}SOU/>

<ndo/sjejuj<cndox
<pPl/>L<pl>
<}SoY>
<JULIX ¢ >

U.S. Patent Sep. 17, 2013 Sheet 6 of 8 US 8,539,484 B1
Manager Client Manager Client
% 610A 6108
Management Server | Management Server
615A 6158
Transform Server 620
Transformation
Enai Storage
ngine 530
| 625 =
| l
Computer Computer Computer Computer
System System System System
635A 6358 635C 635D

Figure 6

U.S. Patent Sep. 17, 2013 Sheet 7 of 8

o~

|

/ DBMS 73C

Management Server
615A

US 8,539,484 B1

Management Server

6158

Engine
625

Transformation |

Tran;;orm Server 620

Storage
630

Transform Agent

Transform Agent

{1941 Computer System 635B

Storage 720 |

I

VMM 725

iveriiwivrrarassresiill

7158

Figure 7

A

' Management Server

615C

U.S. Patent Sep. 17, 2013 Sheet 8 of 8 US 8,539,484 B1

Receive
810

Determine
815

Convert
Command

Redirect
820

850

Convert Apply
Command 855
825

_ Update Data
| Communicate | | 360

830

Process

835
Figure 8

Convert Result |
_ 840 _

Update Data
845

US 8,539,434 B1

1

MULTI-PLATFORM COMPUTER SYSTEM
MANAGEMENT FOR VIRTUALIZED
ENVIRONMENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims benefit and priority of U.S. Provi-
sional Patent Application Ser. No. 61/348,445 filed May 26,
2010. The disclosure of this provisional application 1s hereby
incorporated herein by reference.

BACKGROUND

1. Field of the Invention

The invention 1s 1n the field of computer system manage-
ment and more specifically, the management of virtualized
and cloud-based computer system resources.

2. Related Art

Virtualized computing using machine hypervisors such as
VMware’s vSphere, VMware Workstation, Microsoit’s
Hyper-V and the open source hypervisors, Xen and KVM,
have become a popular way to provide computing resources
not only 1nside the computer data center but also form a key
component of cloud-based computer resources. Using
machine hypervisors allows many virtualized computer oper-
ating system environments (“guests” or virtual machines) to
be executed 1n 1solation from each other on a single physical
hardware computer system.

As the number of virtualized environments and machine
hypervisors increased, new computer system management
tools were required 1 order to maintain the increasingly
complex datacenter. The tools are typically supplied by the
hypervisor vendor and normally implemented as separate
management clients and servers. The client-server communi-
cation protocol 1s typically a mix of public and private APIs
that are proprietary to the platform vendor. In this case pro-
prietary 1s used to mean that an imndustry or other standards
body does not control the APIs, rather than closed vs. open
source. Those management tools that support multiple hyper-
visors do so by replacing the management client and access-
ing each hypervisor’s functionality using 1ts public manage-
ment API.

FIG. 1 1llustrates a typical management inirastructure for
virtualized environments of the prior art.

Management Client 100 communicates to a management
service 120 executing on the computer 101 comprising CPU
102, memory 103, network I/O 104 and storage 103, using the
platform’s native public APIs 110 or native private APIs 111.
The management service 120 communicates to remote hyper-
visors 131, 151, 171 each running on their own computer
system 130, 150, 170 respectively. Each computing system
130, 150, 170 comprises a CPU 141, memory 143, storage
144 and network I/O 145. The protocol used for communica-
tion between the management service 120 and the hypervi-
sors 131, 151, 171 1s platiorm specific. Management Client
100 may directly communicate with hypervisors 131, 151,
171 for high performance, low latency data streams such as a
virtual machine’s remote console. Hypervisor 131 may itself
expose a set of public APIs 132 or private APIs 133 for use by
the management server 120 or the Management Client 100.
The APIs 132, 133 expose virtualized views of the physical
resources of the hypervisor such as CPU 141, memory 143,
storage 144 and networking interfaces 145. The APIs may
also expose logical resources such as virtual machines 134,
virtual networking 135 and configuration data for the various
software components that make up the hypervisor platform.

10

15

20

25

30

35

40

45

50

55

60

65

2

Hypervisors 131, 151, 171 may communicate with the man-
agement server 120 directly, rather than waiting for the man-

agement server to poll them for new data.

FIG. 2 1llustrates the typical components of Management
Service 120 as found 1n the prior art.

Management Service 120 typically comprises a datastore
210, authentication service 220, web-based management
console 230. The datastore 210 stores both permanent con-
figuration information and time-based performance metrics
for aggregating and reporting. The data 1n datastore 210 may
be stored as records 1n a SQL database, a flat file or other
storage layout. The datastore maybe co-located with the man-
agement service 120, or as part of a remote datastore 260
executing on computing system 250, itself comprising CPU
251, memory 2352, network I/O 233 and storage 254. The
authentication service 220, may use remote authentication
services 240

Each hypervisor vendor has adopted 1ts own architecture
for implementing 1ts public APIs. Each follows a different and

non-compatible route. For example VMware utilizes a SOAP
based API, Microsoft uses WMI, Xen uses XML-RPC, Red

Hat KVM a client-server API, while the Amazon cloud ser-
vice currently supports both a SOAP and non-XML REST-
based interface. Even with the technology, each has unique
API implementation details that make supporting multiple
hypervisor platforms a complex and incomplete task, includ-
ing the use of private or undocumented APIs.

SUMMARY

Embodiments of the mvention include systems and meth-
ods that allow for the efficient management of multiple dii-
terent computer platiorms including virtualized, physical and
cloud based resources using the “native” unmodified man-
agement client of choice and 1ts corresponding management
server. As used herein, the term “native” means that 1f the user
wanted to manage VMware’s vSphere hypervisor the user
would use VMware’s management client, as an alternative to
or 1n addition to a third party client. A variety of hypervisors,
from different vendors, can be managed from a single utility
on a management client. Further, a specific hypervisor may be
managed by management clients from different vendors.

In some embodiments, extending the functionality of the
existing, platform management client and servers without
moditying eirther 1s achuieved using a combination of auto-
matic data object transformation and native service brokers
typically integrated using a message bus or other iter-pro-
cess communication architecture. In some embodiments,
extending the functionality of platform management clients
and servers includes using a transiform agent to intercept
communications between a management server and a hyper-
VISOr.

Various embodiments of the invention include a system
comprising a first computer system including non-volatile
storage and a first hypervisor, the first hypervisor configured
to support a plurality of virtual machines on the first computer
system and to receive commands according to a first hyper-
visor protocol; a second computer system including non-
volatile storage and a second hypervisor, the second hypervi-
sor configured to support a plurality of virtual machines on
the second computer system and to receive commands
according to a second hypervisor protocol, the first hypervi-
sor protocol and the second hypervisor protocol having first
and second command spaces, respectively; a first manage-
ment server configured to manage the first hypervisor accord-
ing to the first hypervisor protocol; and a transform server
configured to process a command sent from the first manage-

US 8,539,434 B1

3

ment server to the second computer system, the processing
being based on virtual machine data stored on the non-volatile

storage the second computer system.

Various embodiments of the invention include a method of
managing a virtual machine, the method comprising receiv-
ing a command from a virtual machine management server
configured to manage a first hypervisor, the command being
directed toward a computing system configured to host a
plurality of virtual machines; determining that processing of
the command 1s dependent on data stored on the computing
system; redirecting the received command to a transforma-
tion engine disposed on a transform server, based on the
determination that the processing of the command 1s depen-
dent on the data; and processing the command on the trans-
formation engine using a copy of the data stored on the
computing system.

Various embodiments of the mvention include a system
comprising a first management server including management
logic configured to manage a hypervisor according to a first
hypervisor protocol, and first metadata storage configured to
store metadata characterizing the hypervisor according to the
first hypervisor protocol, the hypervisor being configured to
support one or more virtual machines; a second management
server including management logic configured to manage the
hypervisor according to a second hypervisor protocol, and
second metadata storage configured to store metadata char-
acterizing the hypervisor according to the second hypervisor
protocol, the first hypervisor protocol having a different com-
mand space than the second hypervisor protocol; a transior-
mation engine configured to recerve the first metadata from a
first transform agent, to transform the first metadata to a form
that characterizes the hypervisor according to the second
hypervisor protocol, and to send the transformed metadata to
a second transform agent, the second transform agent being
configured to communicate the transformed metadata to a
second management server according to a second hypervisor
protocol; and a computer system including the hypervisor, the
first transform agent, the second transform agent, and virtual
machine data. the transform of the first metadata by the trans-
formation engine being based on the virtual machine data. In
these embodiments the first transform agent 1s optionally
configured to communicate the first metadata to the transfor-
mation engine in real-time, and the transformation engine 1s
configured to transform the first metadata to the second
hypervisor protocol 1n real-time.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 illustrates a typical management infrastructure for
virtualized environments of the prior art.

FI1G. 2 illustrates the typical components of Management
Service 120 as found 1n the prior art.

FI1G. 3 illustrates typical components and connections of a
cloud based computing system, according to various embodi-
ments of the invention.

FIG. 4 1llustrates methods of multi-platiorm data-driven
transformation, according to various embodiments of the
invention.

FIG. 5 illustrates an XML Translation including dynamic
session aware data insertion, according to various embodi-
ments of the invention.

FIG. 6 illustrates an agent based virtual machine manage-
ment system, according to various embodiments of the inven-
tion.

FI1G. 7 1llustrates a transform agent configured to facilitate
communication to and from a computing system, according
to various embodiments of the invention.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 8 1llustrates methods of processing a virtual machine
command, according to various embodiments of the mven-
tion.

DETAILED DESCRIPTION

A hypervisor, also called virtual machine manager
(VMM), 1s one of many hardware virtualization techmques
that allow multiple operating systems, termed guests, to run
concurrently on a host computer. It 1s so named because it 1s
conceptually one level higher than a supervisory program.
The hypervisor presents to the guest operating systems a
virtual operating platform and manages the execution of the
guest operating systems. Multiple mstances of a varnety of
operating systems may share the virtualized hardware
resources. Hypervisors are typically installed on server hard-
ware whose only task 1s to run guest operating systems.
Non-hypervisor virtualization systems are used for similar
tasks on dedicated server hardware, but also commonly on
desktop, portable and even handheld computers.

FIG. 3 illustrates typical components and connections of a
cloud based computing system, according to various embodi-
ments of the invention.

Management client 100 accesses the native management
server 120 using the native management APIs 110 and 111.

Management server 120 stores its view of the complete
virtualized environment including details of the various
hypervisor host computer systems, the virtual machines and
how each 1s configured 1n the datastore 210.

Management server 120 and hypervisor 130 are compat-
ible, the server has built-in support for the hypervisor, in this
case no data transformation or brokers are required and server
120 can simply use the APIs 132, 133. The hypervisor 130
stores 1ts configuration data in the hypervisor datastore, 341.

Hypervisor 331 represents a platiorm that 1s not natively
compatible with management server 120; 1n this case, the data
reader 315 reads the hypervisor datastore 340 and presents the
data to the message bus 310 for further routing and transior-
mation. In some embodiments, data reader 315 may use APIs
332 and 333 to access the hypervisors data where the hyper-
visor store 1s available on the hypervisor platiorm.

Message bus 310 may include message parser 311, trans-
formation engine 313, message router 312 and data writer
314.

Native service broker 320 accesses the transformed data
via the message bus 310, and may need to commumnicate direct
with hypervisor 331 for high performance, low latency data
streams, such as remote console display using a combination
of public and private APIs, 332 and 333 respectively.

Service brokers 360, 361 represent additional network ser-
vices that may make use of the multi-platform data available
via the bus 310. An example being the aggregation of perfor-
mance metrics across the computer environments in the data
center without using any additional agents on each environ-
ment.

Each of the components comprising the service brokers
and bus may be executed on a dedicated computer system, or
multiple components may be combined and executed two or
more computer systems. Performance requirements outside
of the mvention may dictate the specific configuration of
computers systems and network interconnections.

The native service brokers receive messages from the
natrve management inirastructure (clients or servers) and pro-
vide commonality of features across two or more different
platforms by using the broker’s own implementation for those
features any given platform 1s missing. An example of use 1s
to support a different platform’s remote console protocol

US 8,539,434 B1

S

within the users’ management client of choice, specifically,
with the VMware management client accessing the remote
console of a Xen-based virtual machine, the broker performs
a real-time bi-directional translation of Xen’s VINC remote
console protocol to VMware’s MKS display protocol.

Some embodiments may utilize multiple native service
brokers on different ports or utilizing different protocols.
Some embodiments may use a different native broker for each
platform.

Each hypervisor management platform typically relies on a
permanent store of meta data that typically describes the
configuration of the hypervisor, the number and configuration
of any virtual machines and any other platform specific
resources such as networking and storage. The meta data may
also include time-based performance and usage measure-
ments of the hypervisor, virtual machines, networking or
storage resources.

The format and storage of the meta data inside datastore
340 varies between the platforms, 1 some 1t may be
expressed as a series of rows and tables 1n a SQL database, 1n
others a textural representation in a tlat text file. Other poten-
tial formats may include binary formatted files, object-based
databases or other non-SQL database. The meta data 1s typi-
cally locally stored on the physical machine running the
hypervisor 331 or management service 120, but 1n some
implementations it may be stored on a remote, network acces-
sible store. Storage of the meta data on a storage area network
device 1s commonly considered to be local storage.

Collecting the meta data from the hypervisor or hypervisor
management server typically may involve a series of SQL
queries against the datastore or the parsing of a binary data file
on a remote machine. In some hypervisor platiforms the datas-
tore maybe held 1n the memory of the running hypervisor,
which may require using public or private APIs 332 or 333
respectively to collect the meta data.

FI1G. 4 illustrates methods of multi-platiorm data-driven
transformation, according to various embodiments of the
invention. These methods are optionally performed by the
message parser 311, transformation engine 313 and data
writer 314.

Once data reader 315 has read the platform specific meta
data from the hypervisor, it 1s parsed into an abstract, but
platiorm aware representation by the data parser 311. The
transformation engine 313 can then translate the meta data
into any of the various formats required by the native man-
agement servers. An embodiment typically chooses the trans-
lation mechanism that is closest to the abstract representation
of the data that the message parser 311 generates. For
example an embodiment that used XML to store the abstract
representation may very well choose to use Extensible
Stylesheet Language Transformations (XSTL) to transform
one platforms XML abstract representation into a different
platform’s representation. The typical transformation cannot
normally be a simple syntactic translation, but needs to
include dynamic modification to insert session-based infor-
mation or references to other objects. The original data read
by the data reader 313 typically references identifiers and
cross-references other meta data objects, that when trans-
formed 1nto the various other formats need to replaced with
cach platforms typical representation of the corresponding
piece of data. This may include a combination of re-naming or
re-typing. If platform 1 represented a unique hypervisor host
with an integer 1d, while platform 2 represented 1ts hypervi-
sors hosts with a universal-unique identifier (UUID), then an
example of a rename and retyping 1s converting an 1dentifier
from a field name of *“1d” and type “integer” to a field name of
“unid” and type “string”’. The corresponding values associ-

10

15

20

25

30

35

40

45

50

55

60

65

6

ated with each of these fields also needs to be stored for the
lifetime of the original meta data 1n a bi-directional lookup
table so that when accessing the representation of the any of
the objects from any native management client that references
to the object representing the corresponding original meta
data are readily available.

FIG. 5 illustrates an XML Translation including dynamic
session aware data insertion, according to various embodi-
ments of the mvention. This translation optionally includes
automatic object transformation.

Abstract data 510 1s supplied by the data parser to the
transformation engine 313, comprising an XSL'T engine 520,
a mapping definition description 530 and session data store
540.

For every message containing meta data that the transfor-
mation engine 313 receives, the XSLT engine uses the map-
ping definition description 530 to transform the XML format-
ted abstract data into a new XML formatted document for the
other platforms. The XSLT engine also inserts the corre-
sponding platform specific session data obtained from the
session data store into the XML document prior to creating
the new document 550. In some embodiments the transior-
mation engine may create multiple output documents, 550,
551 from a single mnput document.

Alternative embodiments of the mvention include using
other formats of representing the data, such as JavaScript
Object Notation (JSON), with a corresponding change 1n the
transformation engine.

Some embodiments may implement the abstract data rep-
resentation as executable code, including both the data and
the methods of transformation 1nto an object-orientated rep-
resentation. The transformation methods may be imple-
mented dynamically, or the embodiment may pre-calculate
the transformation mappings needed and compile them 1nto
the executable code. The transformation methods typically
still have to handle the object specific session data.

In some embodiments, a single network service broker
may broker services for multiple hypervisor hosts using a
combination of multiple network ports, name-based virtual
hosts, network address translation or other common applica-
tion proxy-ing techniques.

FIG. 6 illustrates an agent based virtual machine manage-
ment system, according to various embodiments of the inven-
tion. The components illustrated 1n FIG. 6 are typically con-
nected by a computing network, such as the internet, and may
be disposed 1n different locations. The system of FIG. 6
includes one or more Manager Clients 610, individually
labeled 610A, 610B, etc. Each of Manager Clients 610 1s
configured for a user to access one or more Management
Servers 615, individually labeled, 615A, 6135B, etc. Manager
Clients 610 are optionally personal computers and may
include an internet browser for accessing the Management
Servers 615.

Each of Management Servers 615A includes hypervisor
management logic (e.g., hardware, firmware and/or software
stored on a computer readable medium) configured to man-
age at least one type of hypervisor. For example, Manager
Client 615A may include software configured to manage the
Xen hypervisor and Manager Client 615B may include soft-
ware configured to manage the vSphere, VMware Worksta-
tion, Hyper-V, Xen and KVM hypervisors. This software 1s
optionally prior art software each configured to manage one
specific brand of hypervisor. In these cases, the management
logic configured to communicate using a particular hypervi-
sor protocol compatible with the hypervisor being managed.
In some embodiments, more than one type of management
software 1s disposed on a single member of Manager Servers

US 8,539,434 B1

7

615. Manager Clients 610 are optional 1n embodiments 1n
which a user enters commands directly into one or more of
Management Servers 615.

A hypervisor protocol includes a set of virtual machine
commands that can be used 1n one or more syntax. A hyper-
visor protocol 1s also characterized by a command space. A
command space represents the functionality of all the com-
mands 1n the hypervisor protocol. Two different hypervisor
protocols may have different sets of commands but the same
command space 1f therr commands are capable of being
mapped on a 1-to-1 basis 1n terms of their functionality. This
can occur when commands differ merely in their names, but
not their syntax and/or operation. Hypervisor protocols have
different command spaces when the functionality of their
commands cannot be mapped on a 1-to-1 basis. A virtual
machine command 1s a command to a hypervisor, the com-
mand being configured to control a hypervisor and a state of
or operation of a virtual machine supported by the hypervisor.
For example, virtual machine commands may be configured
to create virtual machines, save virtual machine states, dis-
mount virtual machines, move virtual machines, allocate
resources to a virtual machine, power virtual machines on and
off, power hypervisors on and off, allocate hypervisor
resources, hypervisor configuration, and/or the like. Virtual
machine commands can also operate on groups of hypervi-
sors or virtual machines disposed on different computing
devices (hardware). Examples include, virtual machine
migration, automatic fault tolerance, resource scheduling,
andautomatic positioning,

The system of FIG. 6 further includes a plurality of Com-
puter Systems 635, individually labeled 635A, 6358, cftc.
Computer Systems 635 each include a hypervisor configured
to support a plurality of virtual machines on the individual
member of Computer Systems 635. Computer Systems 635
cach include a server blade, a member of a cloud computing
network, and/or the like. Computer Systems 6335 are con-
nected to one or more of Managements Servers 615 via a
communication network, such as the internet.

Members of Computer Systems 635 can include different
or the same hypervisors. For example, different members of
Computer Systems 635 can include any mixture of the
VMware vSphere, Microsoit Hyper-V, Citrix Xen or Red Hat
KVM hypervisors, or other hypervisor. Each of the hypervi-
sors included on Computer Systems 635 are typically config-
ured to recetve commands according to their own specific
hypervisor protocol. The different hypervisors may have their
own, different, command spaces.

In various embodiments the hypervisor management logic
executing on Management Server 615A may be configured to
use the hypervisor protocols used by the hypervisor of none of

Computer Systems 635, used by Computer System 635A but
not 635B-635C, used by Computer Systems 635A and 63358

but not 635C and 635D, or used by Computer Systems 6335 A-
635C but not 635D.

The system of FIG. 6 further includes a Transform Server
620. Transform Server 620 includes a central processing unit
(not shown), a Transformation Engine 6235 and an optional
Storage 630. Transformation Engine 625 1s configured to
process a virtual machine command sent from one of Man-
agement Servers 615 to one or more of Computer Systems
635. Transformation Engine 625 1s further configured to pro-
cess virtual machine commands whose execution 1s depen-
dent on a state ol one or more of Computer Systems 635. This
state 1s typically represented by virtual machine data stored
on the respective member of Computer Systems 635. For
example, a command intended to reconfigure the hardware
virtualized by a virtual machine can require the use of data

10

15

20

25

30

35

40

45

50

55

60

65

8

representative of a current configuration of the virtual
machine, also, adding additional virtual resources to a hyper-
visor can require data representative of the hypervisor con-
figuration.

States on which the execution of virtual machine com-
mands are dependent can include the states of one or more
members of Computer Systems 633 as well as the states of
virtual machines executing on the one or more members of
Computer Systems 635. For example, a command to move a
virtual machine between two members of Computer Systems
635 may be dependent on the 1dentity of applications running,
within the virtual machine and what resources are already
allocated on the destination Computer System 635.

When processing of a command 1s dependent on virtual
machine data, the functionality of the command can be
dependent on the virtual machine data. As such, commands
whose processing 1s dependent on virtual machine data can-
not simply be mapped from one command set to another. The
virtual machine data must be used to determine the function-
ality of the command. Only after this functionality 1s deter-
mined can the command be transformed from a command
space ol one hypervisor protocol to the command space of
another hypervisor protocol. Transformation Engine 625 1s
configured to do more than merely translate a command from
the command set of one hypervisor to the command set of
another hypervisor, Transformation Engine 625 1s configured
to transform a command based on virtual machine data such
that the functionality of the command 1s properly represented
in the result.

In some embodiments, Transformation Engine 625 is con-
figured to process commands that are members of different
hypervisor protocols. For example, Transform Agent 715A
may be configured to redirect virtual machine commands
received using a first virtual machine protocol to Transforma-
tion Engine 625 while Transform Agent 715B 1s configured to
redirect virtual machine commands recerved using a second
virtual machine protocol. In embodiments wherein both
Transtorm Agent 715A and Transform Agent 715B both for-
ward the virtual machine commands directly to Transforma-
tion Engine 625, Transformation Engine 625 1s configured to
receive commands of two different virtual machine protocols,
and optionally of two different command spaces. As such,
Transformation Engine 625 1s configured to recerve com-
mands 1n a command space that 1s at least a union of the
command spaces of the two virtual machine protocols that the
Transtorm Agents 715A and 715B are configured to recerve.

Storage 630 1s configured to store the virtual machine data
used 1n processing virtual machine commands. Storage 630 1s
typically, non-volatile storage such as a hard drive, flash
memory, magnetic memory, optical memory, and/or the like.
Typically, the virtual machine data stored in Storage 630
includes copies of virtual machine data stored on members of
Computer Systems 635. For example, in some embodiments,
Storage 630 includes a copy of virtual machine data stored on
Computer System 635A, a copy of virtual machine data
stored on Computer System 635B and/or a copy of virtual
machine data stored on Computer System 635C. Storage 630
1s optional 1n embodiments wherein Transformation Engine
625 1s configured to read and write data directly from mem-
bers of Computer Systems 635. Virtual machine data copied
from different members of Computer Systems 633 15 option-
ally stored on different parts of Storage 630, respectively.

FIG. 7 illustrates Transform Agents 715 configured to
facilitate communication to and from a computing system,
according to various embodiments of the invention. Trans-
form Agents 715 are individually labeled 715 A, 715B etc. and

are each associated with one or more members of Computer

US 8,539,434 B1

9

Systems 533. In typically embodiments, Transform Agents
715 1include hardware, firmware and/or software (stored on a
computer readable medium) that 1s included 1n a member of
Computer Systems 5335. More than one of Transform Agents
715 can be included 1n a single member of Computer Systems
535.

In some embodiments, Transtorm Agent 715A 1s config-
ured to redirect commands recerved from Management Sever
615A and Transform Agent 715B 1s configured to redirect
commands recerved from Management Server 615B. Parts of
Transtorm Agents 715A and 715B are optionally included 1n
the same logic. Communications from Transform Agents
715A or 715B typically include an identifier and/or address of
the specific member of Transform Agents 715 from which the
communication 1s sent.

In some embodiments, Transform Agents 715 are config-
ured to redirect all received virtual machine commands to
Transformation Engine 625. In other embodiments, Trans-
form Agents 715 are configured to determine whether or not
processing of a received virtual machine command 1s depen-
dent on virtual machine data stored on the associated member
of Computer Systems 635. For example, Transform Agent
715A may be configured to determine 1f processing of a
received virtual machine command 1s dependent on virtual
machine data stored 1n a Storage 720. Storage 720 includes a
non-volatile storage such as those discussed elsewhere
herein.

In some embodiments, Transtform Agent 715A 1s config-
ured to determine whether or not processing of a command
received from Management Server 615 A 1s dependent on the
virtual machine data stored 1n Storage 720. If the command 1s
dependent on this data, then Transform Agent 715A 1s con-
figured to redirect the command to Transformation Engine
625. If the command 1s not dependent on the virtual machine
data, then Transform Agent 715A 1s configured to translate
the command from the command space of one hypervisor to
the command space of another hypervisor. Because process-
ing of the command i1s not dependent on the virtual machine
data, the translation can be performed by a direct mapping of
the command from one command space to another, while still
maintaining functionality of the command. This translation
optionally occurs on Computer System 635B.

In one example, Management Server 615 1s configured to
send virtual machine command to Computer System 635B,
this command 1s 1n a command space of a first hypervisor for
which Management Server 615A 1s configured to manage.
Transtorm Agent 715 1s configured to intercept this command
and determine 11 virtual machine data 1s required to determine
functionality of the command. If the virtual machine data 1s
required then the command 1s redirected from

Iransform
Agent 715A to Transformation Engine 625. If the virtual
machine data 1s not required then Transform Agent 715 1s
configured to translate the command to the command space of
a hypervisor executing on Computer System 635A, e.g., a
hypervisor VMM 725. The translated command 1s then com-
municated to VMM 723 for execution.

Prior to redirecting commands to Transformation Engine
625, Transform Agent 715 A 1s optionally configured to trans-
late the commands to a generic hypervisor protocol. The
generic hypervisor protocol 1s typically a union of the plural-
ity ol commands 1n hypervisor protocols used by the hyper-
visors disposed on Computer Systems 635. As such, the
generic hypervisor protocol includes at least one command
representative of each of the virtual machine data dependent,
commands that the Transform Agents 715 can be expected to
receive from Management Servers 615. The command space
of the generic hypervisor protocol 1s, likewise, a union of the

5

10

15

20

25

30

35

40

45

50

55

60

65

10

command spaces of the hypervisor protocols used by Man-
agement Servers 615 and/or Computer Systems 635.

Transtorm Server 620 i1s configured to synchronize the
virtual machine data stored 1n Storage 630 with that stored in
Storage 720. When a data dependent command 1s processed
on Transform Server 620, any resulting change 1n the data 1s
stored in both Storage 630 and Storage 720. Transform Server
620 1s optionally further configured to synchronize virtual
machine data stored 1n Storage 630 and/or Storage 720 with a
master copy of the virtual machine data stored 1n a remote
location, such as a database DBMS 730.

In some embodiments, Transformation Engine 625 1s con-
figured to transform virtual machine metadata 1n addition to
virtual machine commands. Virtual machine metadata 1s data
that characterizes virtual machine data. For example, virtual
machine metadata can include information about data format
and/or data types. Like virtual machine commands, the inter-
pretation of virtual machine metadata can be dependent on
the state of a virtual machine. Some metadata operations,
therefore, require consideration of virtual machine state and
virtual machine data. Virtual machine metadata may, for
example, characterize a format 1n which virtual switch con-
figuration data 1s expected. How this format 1s expressed can
depend on whether there are any virtual switches defined
between virtual machines on Computer System 635B.

As with virtual machine commands, Management Servers
615A and 615B are optionally configured to handle virtual
machine metadata according to specific hypervisor protocols.
This virtual machine metadata 1s optionally stored on one or
more static storage of Management Servers 615. In one
example, Management Server 615A 1s configured to store
virtual machine metadata according to a first hypervisor pro-
tocol and Management Server 615B 1s configured to store
virtual machine metadata according to a second hypervisor
protocol (optionally having a different command space). The
virtual machine metadata, even though expressed 1n a differ-
ent protocol, may represent the same hypervisor installed on
the same device, e.g., VMM 7235 on Computer System 635.
There can, theretfore, be more than one set of virtual machine
metadata, 1 different protocols, that represent the same
hypervisor.

If virtual machine metadata representing VMM 725 1s
modified, using for example Management Server 615A, then
it 1s desirable to update/synchronize any other virtual
machine data that may be stored by other Management Serv-
ers 615 and also represent VMM 725. For example, 11 Man-
agement Server 615A and Management Server 615B both
store virtual machine metadata characterizing VMM, then it
1s desirable to keep this characterization synchronized.

The synchronization 1s optionally performed using Trans-
formation Engine 625. For example, in some embodiments,
Transformation Engine 625 1s configured to receive first vir-
tual machine metadata modified using Management Server
615A and sent to Computer System 635B. At Computer Sys-
tem 6358 the modified virtual machine data 1s redirected to
Transform Server 620 by Transform Agent 715A. Transform
Agent 715A 1s optionally configured to first analyze whether
or not conversion of the virtual machine metadata from the
first protocol (of Management Server 613A) to the second
protocol (ol Management Server 615B) 1s dependent on the
actual virtual machine data that 1s characterized by the meta-
data. At Transform Server 620 the virtual machine metadata is
transformed from the first to the second protocols using
Transtormation Engine 625 based on virtual machine data
stored 1n Storage 630 and/or Storage 720. The transformed

US 8,539,434 B1

11

virtual machine metadata 1s then sent from Transform Server
620 to Management Server 615B, optionally via Transform
Agent 715B.

Using the above process, virtual machine metadata can be
kept synchronized on two or more Management Servers 615,
In some embodiments different versions of virtual machine
metadata that characterizes the same hypervisor using differ-
ent protocols are stored on DBMS 730. Synchronization 1s
optionally performed 1n real-time and/or using data locking
techniques that prevent the data from being improperly
manipulated by two different members of Management Serv-
ers 615 at the same time. For example, Transform Agent 715A
1s optionally configured to communicate the virtual machine
metadata to the Transform Server 620 1n real-time, and the
Transformation Engine 625 1s optionally configured to trans-
form the virtual machine metadata between hypervisor pro-
tocols 1n real-time. Transformation Engine 6235 1s optionally
configured to transform the virtual machine metadata to a
plurality of protocols.

FIG. 8 illustrates methods of processing a virtual machine
command, according to various embodiments of the mven-
tion.

In a Receive Step 810, a virtual machine command 1s
received by Transform Agent 715 A from Management Sever
615A. The recetved command 1s 1n a first hypervisor protocol.
The received command 1s directed at Computer System 635
and 1s configured to manage a hypervisor.

In a Determine Step 813, Transtform Agent 715A 1s used to
determine whether or not the functionality and/or processing
of the command 1s dependent on virtual machine data stored
in Storage 720. If the functionality 1s not dependent, then the
method precedes though Steps 850-860. I the Tunctionality 1s
dependent, then the method precedes through Steps 825-845.
The determination 1s optionally based on a table of com-
mands that that lists which commands are dependent and
which are not.

In a Convert Command Step 850, the command 1s trans-
lated from the hypervisor protocol of Management Sever 6135
to the hypervisor protocol of VMM 7235.

In an Apply Step 855, the translated command 1s applied to
VMM 725. If virtual machine data 1s changed as a result of the
command, then in an optional Update Data Step 860, the
virtual machine data stored at Storage 720 and/or 630 1s
updated accordingly.

In an optional Convert Command Step 8235, the virtual
machine command recerved 1n Receive Step 810 1s translated
to a command of generic virtual machine protocol. The com-
mand space of the generic virtual machine protocol 1s typi-
cally at least a union of the command space of all virtual
machine data dependent commands that can be expected to be
received from Management Servers 613 included 1n the sys-
tem.

In a Communicate Step 830, the command, translated or
not, 1s communicated from Transform Agent 715A to Trans-
formation Engine 6235. In a Process Step 835 the command
processed by Transformation Engine 6235 using the virtual
machine data on which its functionality depends. In some
embodiments, Process Step 835 uses a copy of the virtual
machine data stored on Storage 630. In other embodiments,
Process Step 835 uses the virtual machine data stored on
Storage 720 and/or DBMS 730. Communicate Step 830 typi-
cally includes communicating the command over a computer
network such as the internet.

In an optional Convert Result Step 840, the results of the
processing are optionally converted back to the command
protocol of Management Server 615A. For example, the pro-
cessing of the command may result in communication back to

10

15

20

25

30

35

40

45

50

55

60

65

12

Management Server 615. In Convert Result Step 840 this
communication 1s converted to the proper command protocol
for receipt by Management Sever 615A. In various embodi-
ments, converted or not, the result of the processing 1s com-
municated to VMM 7235.

In an optional Update Data Step 845, virtual machine data
stored at Storage 720, Storage 630 and/or DBMS 730 1s
updated as a result of the processing of the command.

Several embodiments are specifically illustrated and/or
described herein. However, 1t will be appreciated that modi-
fications and variations are covered by the above teachings
and within the scope of the appended claims without depart-
ing from the spirit and intended scope thereof. For example all
or part of the Transformation Engine 625 may be embedded in
the transform agent; or all or part of the transform agent may
be embedded 1n the transform server. In some embodiments,
a combination of network level proxies and/or Ethernet
aliases are configured to make one or more of management
servers 6135 believe they are communicating directly with
computer systems 6335 when all commands are, 1in fact, being
handled by Transtorm Server 620. Implementation specific
architecture 1s dependent on the precise environment such as
network bandwidth and processing power of each of the cor-
responding computer systems. More than one of Transform
Agents 713 are optionally disposed 1n a single logical

The embodiments discussed herein are illustrative of the
present invention. As these embodiments of the present inven-
tion are described with reference to illustrations, various
modifications or adaptations of the methods and or specific
structures described may become apparent to those skilled 1n
the art. All such modifications, adaptations, or variations that
rely upon the teachings of the present invention, and through
which these teachings have advanced the art, are considered
to be within the spirit and scope of the present invention.
Hence, these descriptions and drawings should not be con-
sidered 1in a limiting sense, as it 1s understood that the present
invention 1s in no way limited to only the embodiments 1llus-
trated.

What 1s claimed 1s:

1. A system comprising;:

a first computing system including non-volatile storage
and a first hypervisor, the first hypervisor configured to
support a plurality of virtual machines on the first com-
puting system and to receive commands according to a
first hypervisor protocol;

a second computing system including non-volatile storage
and a second hypervisor, the second hypervisor config-
ured to support a plurality of virtual machines on the
second computing system and to recetve commands
according to a second hypervisor protocol, the first

hypervisor protocol and the second hypervisor protocol

having first and second command spaces, respectively;

a first management server configured to manage the first
hypervisor according to the first hypervisor protocol;
and

a transform server configured to process a command sent
from the first management server to the second comput-
ing system, the processing being based on virtual
machine data stored on the non-volatile storage the sec-
ond computing system, the second computing system
including a first transform agent configured to:

a) redirect commands received from the first manage-
ment server to the transform server,

b) determine whether or not processing of the command
1s dependent on the virtual machine data, and

¢) translate the command 1nto a command within the
command space of the second hypervisor and to com-

US 8,539,434 B1

13

municate the translated command to the second
hypervisor, if the processing 1s not dependent on the
virtual machine data.

2. The system of claim 1, wherein the first transform agent
1s configured to redirect the command to the transform server
if the command 1s dependent on the virtual machine data.

3. The system of claim 2, where 1n the first transform agent
1s configured to translate the command from a first hypervisor
protocol to a second protocol prior to redirecting the com-
mand to the transform server.

4. The system of claim 3, wherein the second protocol
includes a command space that includes at least a union of the
first and second command spaces.

5. The system of claim 1, wherein the first computing
system 1ncludes a second transform agent configured to
receive commands 1n the second command space.

6. The system of claim 1, wherein the second computing
system further includes a second transform agent configured
to redirect the command to the transform server, the first and
second transform agents being configured to receive com-
mands of different command spaces.

7. The system of claim 6, wherein the second transform
agent 1s configured to translate commands from the second
hypervisor protocol.

8. The system of claim 1, wherein the transform server 1s
configured to recerve commands in a command space that 1s
at least a union of the first and second command spaces.

9. The system of claim 1, further comprising a second
management server configured to manage the second hyper-
visor according to the second hypervisor protocol, wherein
the first computing system includes a second transform agent
configured to receive commands according to the second
hypervisor protocol and to redirect the recerved commands to
the transiorm server.

10. The system of claim 1, wherein the second computing
system 1ncludes the first transform agent configured to
receive commands from the first management server accord-
ing to the first hypervisor protocol and includes a second
transform agent configured to recetve commands from a sec-
ond management server according to the second hypervisor
protocol.

11. The system of claim 10, wherein the first and second
transform agents are each configured to translate received
commands 1nto a command space that 1s at least a union of the
first and second command spaces.

12. The system of claim 1, wherein the command 1s 1n the
command space of the first hypervisor protocol but not in the
command space of the second hypervisor protocol.

13. The system of claim 1, wherein the first and second
command spaces are disjoint relative to each other.

14. The system of claim 1, wherein the transform server 1s
configured to store a copy of the virtual machine data stored
on the non-volatile storage of the second computing system.

15. A system comprising:

a first computer system including non-volatile storage and
a first hypervisor, the first hypervisor configured to sup-
port a plurality of virtual machines on the first computer
system and to receive commands according to a first
hypervisor protocol;

a second computer system including non-volatile storage
and a second hypervisor, the second hypervisor config-
ured to support a plurality of virtual machines on the
second computer system and to recerve commands
according to a second hypervisor protocol, the first

hypervisor protocol and the second hypervisor protocol
having different first and second command spaces,
respectively;

5

10

15

20

25

30

35

40

45

50

55

60

65

14

a first management server configured to manage the first
hypervisor using a third hypervisor protocol, the third
hypervisor profile being different from the first and sec-
ond hypervisor protocols; and
a transform server configured to process a command sent
from the first management server to the second com-
puter system, the processing being based on virtual
machine data stored on the non-volatile storage of the
second computer system, the second computing system
including a first transform agent configured to:
a) redirect commands received from the first manage-
ment server to the transform server,
b) determine whether or not processing of the first com-
mand 1s dependent on the virtual machine data, and
¢) translate the command into a command within the
command space of the second hypervisor and to com-
municate the translated command to the second
hypervisor, 1f the processing 1s not dependent on the
virtual machine data.
16. A transform server comprising;
storage configured to store a copy of first virtual machine
data from a first computing system configured to support
a plurality of virtual machines;

storage configured to store a copy of second virtual
machine data from a second computing system config-
ured to support a plurality of virtual machines; and
a transformation engine configured to process a command
received from any one of a plurality of transform agents,
the plurality of transform agents configured to recerve
commands using different hypervisor protocols and to
redirect the received commands to the transformation
engine, each of the hypervisor protocols having a differ-
ent command space, the command being a member of a
command space that includes at least a union of com-
mand spaces of the different hypervisor protocols, the
processing including translating the recerved command
to a command in the command space of one of the
hypervisor protocols.
17. The transform server of claim 16, wherein the transfor-
mation engine 1s configured to process commands 1n a plu-
rality of hypervisor protocols.
18. A method of managing a virtual machine, the method
comprising:
recerving a command from a virtual machine management
server configured to manage a {irst hypervisor, the com-
mand being directed toward a computing system config-
ured to host a plurality of virtual machines;

determining that processing of the command 1s dependent
on data stored on the computing system;

redirecting, using a transform agent, the recerved com-

mand to a transformation engine disposed on a trans-
form server, based on the determination that the process-
ing ol the command 1s dependent on the data, wherein
the transform agent 1s configured to determine whether
or not processing of the command 1s dependent on the
data; and

processing the command using the transformation engine

and a copy of the data stored on the computing system,
the processing including translating the command 1nto a
command within the command space of a second hyper-
visor and communicating the translated command to the
second hypervisor.

19. The method of claim 18, wherein the command 1s
received at a translation agent disposed on the computing
system.

20. The method of claim 18, further comprising converting,
the command from a form compatible with the first hypervi-

US 8,539,434 B1

15

sor to a generalized form, the generalized form including a
command space comprising a union of at least two hypervisor
command spaces.

21. The method of claim 20, wherein the command 1s
converted by a translation agent disposed on the computing
system.

22. The method of claim 20, wherein the command 1s
redirected to the transformation engine 1n the converted form.

23. The method of claim 18, further comprising commu-
nicating a result of the processing of the command from the
transformation engine to the computing system and forward-
ing the result from the computing system to the virtual
machine management server.

24. The method of claim 23, wherein translating the com-
mand into the command within the command space of the
second hypervisor includes converting the result from a gen-
cralized form to a form compatible with the first hypervisor,
the generalized form 1including a command space comprising,
a union of at least a command space of the first hypervisor and
the command space of a second hypervisor.

25. The method of claim 24, wherein the result 1s commu-
nicated from the transformation engine to the computing
system 1n the generalized form and communicated from the
computing system to the virtual machine management system
in the form compatible with the first hypervisor.

26. The method of claim 18, further comprising updating,
the data stored on the computing system based on a result of
the processing of the command.

27. The method of claim 18, wherein the data stored on the
computing system 1s configured to characterize a state of a
virtual machine operating on the computing system.

G e x Gx ex

10

15

20

25

30

16

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,539,484 Bl Page 1 of 3
APPLICATION NO. : 13/115008

DATED . September 17, 2013

INVENTORC(S) : Richard Ofter and Lynn LeBlanc

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the drawings,

Sheet 5, Fig. 5, correct as shown on attached page.

Sheet 8, Fig. 8, correct as shown on attached page.

In the specification,

Column 4, lines 30 and 33, the reference numeral “130”°, each occurrence, should read -131-.
Column 4, line 41, the phrase “is available™” should read -1s not available-.

Column 6, line 54, “Management Servers 615A” should read -Management Servers 615-.
Column 6, line 58, “Client 615A” should read -Client 610A-.

Column 6, line 59, “Client 615B” should read -Client 610B-.

Column 6, line 67, “Manager Servers” should read -Management Servers-.

Column 7, line 29, “andautomatic positioning’”’ should read -and automatic positioning-.
Column 9, lines 1, 4 and 6, the reference numeral “535”, each occurrence, should read -635-.
Column 9, line 25, “stored 1n a Storage™ should read -stored 1n Storage-.

Column 12, line 25, after logical, msert --system--.

Signed and Sealed this
Twenty-fourth Day of November, 2013

Decbatle X Lo

Michelle K. Lee
Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued)

U.S. Patent

LS T 1k
<hngt>
D Cidxq<]lide

<?xmi>
<hosti>
i <id>1<fid>
<cpurintei<fepus
| <fiost> T
 <hirost S 1T
L e amammain
[
k
i
.

i X3LT Engine
al S

_ o B Sy

E LIPR

(1 S _:r.::::f."_r_ _
i

i Bl ™ o —
- -— e E _|!__ ——eeer s

<cpu>lntal</cpu>

</hasi>

1 Ll

5
!

Sep.

17,2013

Sheet S of 8

I_ Mapping Definition _3?3 {
Platform 1 F"lalfnrmjl’f__ (Platform ;
S SN et L . ;
Element. host Element: hw
% E— - .
/ . Element: hostid | " Elﬂme;-'[: i‘?""uu'd
i Type: host.id=int ype.
ot host id=siring |
L — F P]
3
Session Data LAY e |
N . . S
o | Hoat.id Platform 2 | afd58f25-ab34.2355. | .
™ B T . 4519-2c4786431820 |
| Host ic! | Platform3 | 102 '
LT P— - _ - _ v e
<P xmi> ;
< >

Page 2 of 3

8,539,484 B1

<Hhwer

'_‘.-_I. -l

L.
_t

i <uuide-afd58f2. . <funid>

- ﬂ_
I."..'l -

S E—— L .

LN

Figure 5

CERTIFICATE OF CORRECTION (continued) Page 3 of 3
U.S. Patent Sep. 17, 2013 Sheet 8 of 8 3,.539.484 B1

Recoive
810
B —
Datatirimms 1
818
l Cnﬂ;.fert .
{ Redirect | Command i
324 854
Convert | Apply
Comemand f 853
_ j Update Data
Commuynicate 860
836
Process
333
. Figure B

| Convert Resuit

B840

Lipcate Bata ;
245

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

