
Recommendations for securing Internet of Things
devices using commodity hardware.

Steven J. Johnston, Mark Scott, Simon J. Cox
Faculty of Engineering and the Environment,

University of Southampton,
United Kingdom

Email: sjj698@zepler.org

Abstract—The Internet of Things (IoT) describes a world
where ubiquitous devices such as sensors are all capable of com-
municating with the Internet. The concept of Internet enabling
devices is not new, however the popularity of IoT promises to
increase the number of connected devices considerably.

Ubiquitous IoT devices have serious security implications as
they occur in large numbers, are geographically distributed and
can be difficult to physically secure. These devices may contain
sensitive or commercially valuable data making them attractive
to various forms of attack.

In this paper we provide an overview of the state-of-the-
art hardware available and recommend ways for reducing
the IoT attack surface. We utilise the most relevant security
technologies and make four recommendations for consideration
when developing end-to-end IoT systems (full disk encryption,
cryptoprocessor, bootloader signing and bootloader encryption)
providing a discussion of the benefits and limitations with
reference to currently available commodity hardware.

Index Terms—TPM; Secureboot; TrustZone; IoT; cryptopro-
cessor; signed bootloader; encrypted bootloader;

I. INTRODUCTION

The Internet of Things (IoT) describes a world where
ubiquitous devices such as sensors are all capable of com-
municating with the Internet. This is not a new concept and
has existed across multiple areas such as retail, automotive
and industrial applications for many years. Many safety and
security systems such as medical devices, CCTV cameras
and smoke detectors are already IoT devices, connected to
networks which have the capability to process, store and
manage the data produced by each of the sensors. The
IoT ecosystem is changing and becoming attractive across a
wider range of disciplines, hence their emergence in popular
technology. The key driver in this uptake is the plummeting
cost of small, powerful, energy efficient processors that are
capable of being embedded in almost every single electronic
device ever manufactured. Excluding PCs, smartphones and
tablets, some sources predict that the IoT will exceed 26
billion devices by 2020 [1]. Even if this unimaginatively large
number of devices is an overestimate, there is no escaping
that we already exist in an IoT world and that this world is
expanding rapidly. Metcalfe’s law [2] states that “the value of
a telecommunications network is proportional to the square of
the number of connected users of the system”, indicating that
as the number of IoT devices increases we can expect newer
capabilities and greater insights.

Adding devices to such an ecosystem has security implica-
tions especially as the devices are physically difficult to secure,
and standards and guidelines from organisations such as the
International Telecommunication Union (ITU) and the Trusted
Computing Group (TCG) are still topics of discussion [?].

In this paper we look at an IoT architecture for custom
devices and provide recommendations to improve security.

The things behind the Internet of Things can be a wide
variety of data producing applications, devices, sensors or
custom objects, ranging from new to already existing devices.
Many already produce useful data, for example cars and
elevators, which can help with maintenance intervals and
already exist in their millions. These mainly just lack Internet
connectivity and back end services to process the data. We
can assume that many new IoT devices will have Internet
connectivity built into them and will be produced in large
quantities in an IoT enabled state, but many IoT devices will be
custom or community produced, using commodity hardware
such as the Raspberry Pi, Hummingboard, Beaglebone.

In this paper we focus on producing custom IoT devices
from commodity hardware, ensuring secure data collection
storage and transmission to an online server. The security
of online cloud providers and social engineering attacks are
deemed out of scope for this paper.

Figure 1 shows a generic high-level IoT architecture. At the
lowest level we have IoT devices which collect or produce data
and can have limited storage. These devices in themselves may
be connected directly to the Internet but, often due to power,
size, connectivity or RF range restrictions, they might connect
via a local wired or wireless network to an IoT Gateway.
These gateways act as local data buffers, signal boosters and
usually have Internet connectivity. Ultimately the data ends
up on a server or data warehouse with enough storage and
processing capability to manage the streams and bursts of data
from potentially millions of devices. These servers could be
a cloud provider or in-house solution which ultimately serves
and processes the data for end-user applications.

Client access to data held in a data centre or cloud provider
is a well understood problem and is considered out of scope for
this paper. For ubiquitous IoT computing to become a reality
we need to establish the validity and authenticity of the data
from the producer/sensors to the back end data centre/cloud
servers. This can be divided into two areas of concern 1)



IoT 
devices

IoT Gateway

Client
Or 

End user

Backend 
storage and 
processing 

(Cloud)

Internet

Local or 
adhoc

network

IoT 
devices

IoT 
devices

Fig. 1. IoT architecture overview

transmitting the data to the data store and 2) building an IoT
device that is secure.

II. BUILDING A SECURE IOT DEVICE

In this section we discuss strategies that would help to
secure an IoT device, summarised in Figure 2. Building a
secure IoT device requires careful consideration as there are
many angles of attack; regardless of the application, reducing
this attack surface is paramount, despite of the perceived
value of the data. IoT devices differ from many traditional
technology deployments in that protecting the device from
physical intrusion may not be possible, especially on remote
installs.

Although it can also be assumed that physical access to
a device will result in a compromise [3], reducing the attack
surface increases the cost and effort. In this paper we consider
an IoT device as an embedded device running an OS (probably
Linux) and custom applications.

The structure of this section is cumulative, the final rec-
ommendation assumes the implementation of the previous
recommendations. Multiple recommendations are provided to
offer a degree of flexibility as some require hardware specific
features.

Recommendation 1 – Full disk encrypted storage

In order to secure data, we recommend that the IoT device
file systems held are encrypted. Encryption usually requires
entry of a password or provision of a key at the necessary
point in the boot process. The implications of this for IoT
devices – which are often in remote locations – must be
considered, as password entry on every reboot may prove

1) Full disk encryption
2) Sealed key storage and system integrity verifica-

tion
• A secure cryptoprocessor
• A trusted measured boot
• A disk encryption key, sealed by the crypto-

processor
• A trusted measured operating system

3) Signed boot loader
4) Encrypted boot loader

Fig. 2. Recommendations for securing an IoT device

difficult or impractical. Storing an encryption key on a locally
accessible SD card or unencrypted partition on the device
would invalidate the protection provided by the encrypted
storage as an attacker would also have access to the key.
A secure cryptoprocessor provides a less vulnerable way of
storing the key and is discussed below.

Recommendation 2 – Use a cryptoprocessor to store encryp-
tion key and modify boot loader to verify system integrity

A cryptoprocessor can help with the provision of a key in
a safer manner by encrypting the key in such a way that it
cannot be used unless the IoT device is in a known state – a
process known as sealing. With this approach, manual entry
of a password is no longer required.

We tested this with a Trusted Platform Module (TPM), an
international standard for a secure cryptoprocessor [4]; in our
case, we used an Atmel AT97SC3204T. TPMs have a number



of Platform Configuration Registers (PCRs) – at least sixteen
to meet the Trusted Computing Group’s specification for a
TPM [5] – which are shielded locations that are 160 bits (20
bytes) each and store a SHA-1 cryptographic hash [6], [7],
with all bits set to zero at boot. PCRs cannot be reset or given
a specific value, they can only be extended with another SHA-
1 hash which is done by concatenating the previous and new
hashes and then creating a new hash of the resultant 40 byte
value.

Data sealed by the TPM can only be decrypted if the
chosen PCRs are in a specific state. This means that decryption
keys can be stored in a sealed state and only be released if
the required extensions of the PCRs have been made. The
measurements of the system would normally be done by the
boot loader and would include the firmware, boot loader image
and the kernel being booted. The encryption key would be
released by customising the boot sequence. We tested with
Arch Linux and an encrypted LUKS root partition by creating
a custom initial RAM disk (initrd) to retrieve and unseal
the encryption key during the boot process, using the IBM
software TPM library (ibmswtpm).

The security of this approach relies on the correct measure-
ments being made in the correct order as well as the security of
the operating system’s disk encryption method and the security
of the TPM hardware.

The verification of the system involves establishing a chain
of trust from the start of the boot process to ensure that
unauthorised software cannot be executed before the key is
released. Where this chain of trust begins depends on the
hardware available. One potential attack would be to reverse
engineer the boot loader and then bypass the secure boot loader
with their own, but perform the same measurements, giving
access to the encrypted keys. We will therefore now present
two other configurations, each improving the trustworthiness
of the device, but each limiting the choice of hardware for the
IoT device.

Recommendation 3 – Use hardware where the boot ROM
verifies boot loader signature

The first part of the chain of trust is provided by the boot
ROM. If it can arbitrarily execute any boot loader, an attacker
can circumvent our first approach to trusted boot. Using a
boot ROM that can verify the boot loader by checking its
signature before executing it provides protection against an
attacker’s custom boot loader. Even by reverse engineering
the boot loader to discover what measuring needs to be done,
these measurements cannot be performed to trick the TPM
into revealing its encryption keys because a secure boot ROM
will not execute the boot loader if it has not been authorised,
verified by a signature. These keys are permanently embedded
in the hardware and cannot be modified once written.

This approach is still not foolproof though because physical
disassembly of the hardware and attachment of the TPM
to another system may permit the necessary measurements
(again, determined by reverse engineering) to be performed
and encryption keys to be discovered.

Data Storage

Recommendation 4

Recommendation 1

Recommendation 2

Recommendation 3

Applications

Operating system

Boot loader

Firmware

No hardening

Vulnerable to attack
Attack mitigated

Fig. 3. IoT recommendation vulnerabilities overview

Recommendation 4 – Use hardware that supports an encrypted
boot loader with a key known to boot ROM

To provide protection of boot loader code from reverse engi-
neering, some hardware supports encryption of the boot loader
code. This feature improves the security of the trusted boot
greatly. Combined with only executing signed boot loaders,
this makes compromising the system non-trivial.

The security of this recommendation relies on the hardware
implementation to ensure that the boot loader encryption keys
remain protected.

III. DISCUSSION

A. IoT device

An approach following these recommendations would im-
prove the security of the stored data and increase the trustwor-
thiness of the IoT device to the rest of the system, although
TPM attacks have been demonstrated [8]–[10].

The trusted boot recommendations rely on creating what is
known as a Static Root of Trust Measurement (SRTM) with the
later recommendations having a more dependable root of trust,
as shown in Figure 3. For these to work reliably, the chain of
trust should extend from the boot ROM into the operating
system. Any weaknesses in the chain of trust would reduce its
effectiveness.

The component that measures itself and the rest of the
BIOS in an SRTM is the Core Root of Trust for Measurement
(CRTM). A well implemented CRTM is critical [11] and
must meet the requirements of the Trusted Computing Group’s
BIOS specification [12]; recommendation 2 does not, as the
boot loader can be replaced. A more appropriate approach
might be to use a Dynamic Root of Trust Measurement
(DRTM) which gives the ability to create a trusted environ-
ment dynamically even without a reliable CRTM. This is done
with support from a CPU and a TPM with special PCRs that
can only be reset by the CPU running trusted code. Intel call
this technology Trusted Execution Technology (TXT) [13] and



AMD have a corresponding technology with Secure Virtual
Machine (SVM) [14].

Some ARM chips, used by many IoT devices, use a different
approach known as TrustZone which allows the system to run
two operating systems alongside each other, one secure and
one non-secure. Applications in the non-secure environment
can communicate with the secure environment with a Secure
Monitor Call (SMC) instruction [15].

AMD and Intel use the TPM as the root of trust. With
ARM’s TrustZone, a key or a software TPM embedded in
the secure world [16] can be used as the root of trust for the
device, for example secure boot on the Nokia Lumia [17],
[18].

The objective of IoT devices is to communicate with online
servers and there needs to be reassurances about the data
collected. The data needs to be stored and transmitted con-
fidentially, ensuring data is not leaked and the data provider
needs to be authenticated ensuring that the data has originated
from the IoT device. An often overlooked requirement is
around data integrity, the receiver needs to know that it has
not been tampered with – injecting fake or false data can be
hard to detect. For an IoT device to be useful non-repudiation,
authentication, integrity and confidentiality must be confirmed.

The operating system and application layer are considered
out of scope for this paper, but are vulnerable to an attack
which could result in compromising the entire system. General
good practice is to select an OS with continued support and a
well know hardening model, disable unutilised services and
ensure the OS is kept updated as new vulnerabilities are
discovered. The application layer attack surface can be more
difficult to assess as it often contains custom code, libraries
and open communication ports. It is important that the security
implications at these two layers is well understood.

Securing the communication channel may be harder than
it appears since technologies such as SSL, SSH, Enveloped
Public Key Encryption (EPKE) rely on a private key, hash or
certificate that resides on the IoT device, making the device
vulnerable to various attacks. Improvements can be made by
storing any private keys in a TPM and further enhanced by
using one of the recommendations in Section II to measure the
system and use the TPM’s Attestation Identity Key (AIK) to
confirm the state of the system. TPM version 1.2 also supports
Direct Anonymous Attestation (DAA) which offers a degree
of privacy.

Encrypting the IoT device storage ensures that both the
operating system, applications and data remain secure. In this
work we used the Linux Unified Key Setup (LUKS) for full
disk encryption as it encrypts the OS and applications, without
the users having to customise their IoT device application
layer.

Regardless of the technology employed, the encrypted data
will require unlocking using a private key which is a potential
attack point, especially since the IoT device needs to reboot
without user intervention.

IV. CONCLUSION

Creating IoT devices using commodity off-the-shelf hard-
ware should be done cautiously especially where removable
storage is used. Regardless of the technology adopted, physical
access to a device means that the security can be compromised,
hardening a device only raises the effort required. However
there is a big difference between reading data from an un-
encrypted removable SD card and extracting keys from a
cryptoprocessor, subverting the boot process or emulating a
CPU using a FPGA.

In this paper we recommend four technologies to harden
an IoT device, i) disk encryption ii) cryptoprocessor iii)
signed boot and iv) encrypted boot. As the security of custom
embedded devices becomes more of a focus [19] we can expect
newer hardware to include a richer set of features, such as
TrustZone on ARM.

This work explores the currently available technologies
applicable to hardening IoT devices, in future work we will
show further applications using example commodity hardware.

Publication dataset: DOI:10.5258/SOTON/402140

REFERENCES

[1] P. Middleton, P. Kjeldsen, and J. Tully, “Forecast: The internet of things,
worldwide,” 2013.

[2] B. Metcalfe, “Metcalfe’s Law: A network becomes more valuable as it
reaches more users,” 1995.

[3] J. Brossard, “Hardware backdooring is practical,” in Blackhat Briefings
and Defcon conferences, Las Vegas, 2012.

[4] ISO, Geneva, “Information technology – trusted platform module,” 2009.
[5] TCG, TPM Main Specification Level 2 Version 1.2, Revision 116: Part

1 - Design Principles, 2011.
[6] R. Rivest, “The MD5 message-digest algorithm,” RFC 1321 (Informa-

tional), Internet Engineering Task Force, 1992.
[7] NIST, “Secure hash standard (SHS),” 2012.
[8] E. R. Sparks, “A security assessment of trusted platform modules,” De-

partment of Computer Science, Dartmouth College, Tech. Rep. TR2007-
597, 2007.

[9] B. Kauer, “OSLO: Improving the security of trusted computing,” in
USENIX Security, vol. 7, 2007.

[10] J. Winter and K. Dietrich, “A hijacker’s guide to the LPC bus,” in Public
Key Infrastructures, Services and Applications. Springer, 2012, pp.
176–193.

[11] J. Butterworth, C. Kallenberg, X. Kovah, and A. Herzog, “BIOS chrono-
mancy: Fixing the core root of trust for measurement,” in Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications
Security. New York: ACM, 2013.

[12] TCG, TCG PC Client Specific Implementation Specification for Conven-
tional BIOS, Version 1.21 Errata, 2012.

[13] Intel, “Intel Trusted Execution Technology: Software development
guide,” 2014.

[14] AMD, “AMD64 architecture programmer’s manual volume 2: System
programming,” 2011.

[15] ARM, “ARM security technology: Building a secure system using
TrustZone technology,” 2009.

[16] S. Zhao, Q. Zhang, G. Hu, Y. Qin, and D. Feng, “Providing root of
trust for ARM TrustZone using on-chip SRAM,” in Proceedings of the
4th International Workshop on Trustworthy Embedded Devices. New
York: ACM, 2014, pp. 25–36.

[17] Nokia, “Trusted computing in Nokia Lumia,” in RSA 2013 – Trusted
Computing: Billions of Secure Endpoints in 10 Years, 2013.

[18] J.-E. Ekberg, K. Kostiainen, and N. Asokan, “Trusted execution envi-
ronments on mobile devices,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. New York: ACM,
2013.

[19] J. Watson, “Internet of Things: potential risk of crime and how to prevent
it,” Home office, 2014.


