Introduction to BOUT 4+

Ben Dudson

benjamin.dudson@york.ac.uk

Department of Physics, University of York, Heslington, York YO10 5DD, UK

LLNL, 14" September 2011
THE UNIVERSITYW

Lg Lawrence Livermore
National Laboratory

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (1 of 13)



The BOUT++ code

0.5

0.4F

0.3F

0.2

0.1F

0

@ Plasma fluid simulation framework?!

@ Solves an arbitrary number of fluid equations in curvilinear
coordinates

o Finite difference with implicit or explicit timestepping.
Methods can be changed at run-time, and include 4th-order
Central differencing, Arakawa, and 3rd-order WENO.

o Written in C++, open source (LGPL)?

‘TllI'l’)l‘ll(—‘ll(tP‘ in LAPD

125 Parallel scaling

10 100 1,000 10,000

.0 . . . . . . .
0.0 0.1 0.2 0.3 0.4 0.5 Number of processors h 2 3 n

!B.D.Dudson et. al. Comp. Phys. Comm. 180 (2009), pp. 1467-1480
2Available at http://github.com/bendudson/BOUT
Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (2 of 13)



What is BOUT++

e Framework for writing fluid / plasma simulations in curvilinear
geometry

@ Finite-difference code, variety of numerical methods and
time-integration solvers

o Written from scratch in C4++, borrowing some ideas from the

original BOUT code

@ Intended to be quite modular, enabling fast testing of
numerical methods

@ Can evolve any number of equations, with equations
appearing in a readable form

Primarily designed and tested with reduced plasma fluid
models in mind

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (3 of 13)



What isn’'t BOUT++

@ Not a general parallel simulation library. Better tools such as
PETSc exist for that

@ Not a magic bullet. It doesn't automate the process of
choosing an appropriate numerical scheme, just makes it
easier to implement and test different ones

@ Not suitable for every problem. The numerical methods
currently implemented are quite general, but cannot cover all
problems

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (4 of 13)



Overall aims

@ Started with the aim of simulating ELMs. Appropriate physics
model not known. Wanted to make the code easy to change

@ Large codes often hard to understand, so wanted to isolate
the model-specific code into a small number of lines

@ Still hard to understand whole code, but clearer what problem
is being solved

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (5 of 13)



Overall aims

@ Started with the aim of simulating ELMs. Appropriate physics
model not known. Wanted to make the code easy to change

@ Large codes often hard to understand, so wanted to isolate
the model-specific code into a small number of lines

@ Still hard to understand whole code, but clearer what problem
is being solved

Now becoming more widely used, and aim is to build a community
to use and develop the code further
Separated into model-specific and general code, so we can

@ Work on multiple different physics problems separately

@ Benefit from each other’s improvements to the core code

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (5 of 13)



Status and capabilities

e Equations appear in a form which is (reasonably) clear e.g.
ddt (Apar) = - Grad_par(phi);

@ Can simulate a variety of fluid models. Mainly subsets of
Braginskii, but also full MHD and compressible gas equations

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (7 of 13)



Status and capabilities

e Equations appear in a form which is (reasonably) clear e.g.
ddt (Apar) = - Grad_par(phi);
@ Can simulate a variety of fluid models. Mainly subsets of
Braginskii, but also full MHD and compressible gas equations

@ Usually uses a field-aligned Clebsch coordinate system, but
most operators are general. Only needs the metric tensor
components to be specified.

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (7 of 13)



Status and capabilities

e Equations appear in a form which is (reasonably) clear e.g.
ddt (Apar) = - Grad_par(phi);
@ Can simulate a variety of fluid models. Mainly subsets of
Braginskii, but also full MHD and compressible gas equations

@ Usually uses a field-aligned Clebsch coordinate system, but
most operators are general. Only needs the metric tensor
components to be specified.

e Contains a library of different numerical differencing methods,
and time-integration schemes. Simple schemes built-in, but
uses external libraries such as SUNDIALS and PETSc for
advanced methods

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (7 of 13)



Status and capabilities

e Equations appear in a form which is (reasonably) clear e.g.
ddt (Apar) = - Grad_par(phi);
@ Can simulate a variety of fluid models. Mainly subsets of
Braginskii, but also full MHD and compressible gas equations

@ Usually uses a field-aligned Clebsch coordinate system, but
most operators are general. Only needs the metric tensor
components to be specified.

e Contains a library of different numerical differencing methods,
and time-integration schemes. Simple schemes built-in, but
uses external libraries such as SUNDIALS and PETSc for
advanced methods

@ Promising results for turbulence and ELM simulations. Xu will
talk more about this next...

@ For typical ELM simulations the code scales well to a few
thousand cores

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (7 of 13)



Work in progress

@ Coupling to the PETSc library for time-stepping working and
under development

@ Gyro-fluid extensions (gyro-averaging operators) working and
being tested

@ Pre-processing routines to prepare equilibria functional, but
needs improvement

@ Test cases: many example problems, and some unit tests.
More needed to allow regular regression testing

@ Documentation. Quite extensive manuals, but lags behind

code

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (8 of 13)



Future developments

@ Preconditioning methods, including physics-based

@ More advanced numerical methods, both differencing and
time-integration

@ Improved handling of highly non-uniform meshes

o Additional differential operators to model effects like Landau
damping

@ Coupling to external databases or codes to model things like
atomic physics, fuelling and interactions with core and walls

@ Better visualisation tools, in languages other than IDL

@ Use of external libraries (e.g. PETSc, hypre) for linear and
nonlinear solvers

@ Scalability beyond 10,000 cores

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (9 of 13)



Access to BOUT++

The BOUT++ code is open source, and publically available at
github.com

http://github.com/bendudson/BOUT J

For this workshop, we have created a “stable” version 1.0, which
may be updated with bugfixes, but no new features

http://github.com/bendudson/BOUT-1.0 |

Anyone can download a copy, but to make changes you will need
to set up an account and SSH keys on github. Sean Farley will
cover this after coffee...

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (10 of 13)



Why use Git?

@ Git was written by Linus Torvalds with Linux development in
mind, so can easily handle very large collaborations and
complicated merging

@ Doesn't enforce any particular way of working, and doesn't
have the concept of a “central” server - all copies of the code
are equivalent

@ A particular copy of BOUT++ is only “the” version by
consent (or diktat)

This can seem strange coming from SVN, but makes it easier to
work independently on features, then merge changes together
afterwards.

= Hopefully a help, rather than a hinderance to collaboration

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (11 of 13)



Use of BOUT++

Contributing:

@ BOUT+++ is under the LGPL license, so code which uses it
can be proprietry. Modifications to the BOUT++ library do
come under the LGPL

@ You're free to take and modify BOUT++ for any purpose

@ We would appreciate it if you contributed back improvements
you make to the code

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (12 of 13)



Use of BOUT++

Contributing:

@ BOUT+++ is under the LGPL license, so code which uses it
can be proprietry. Modifications to the BOUT++ library do
come under the LGPL

@ You're free to take and modify BOUT++ for any purpose

@ We would appreciate it if you contributed back improvements
you make to the code

Support:
@ We're happy to help, but our time is limited

@ One aim of this workshop is to get a group of people
comfortable with using BOUT++ and (eventually) help
support each other

@ There is a BOUT++ development mailing list. Please let me
know if you'd like to join it

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (12 of 13)



@ BOUT++ is a fluid simulation framework designed with
plasma edge simulations in mind

@ Less general than libraries like PETSc, still very flexible for
plasma applications

@ A tool to speed up development of new plasma models and
numerical methods

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (13 of 13)



@ BOUT++ is a fluid simulation framework designed with
plasma edge simulations in mind

@ Less general than libraries like PETSc, still very flexible for
plasma applications

@ A tool to speed up development of new plasma models and
numerical methods

o Not perfect...
| look forward to working with you to improve it

Ben Dudson benjamin.dudson@york.ac.uk Introduction to BOUT++ (13 of 13)



