
BOUT++ code structure

Ben Dudson
benjamin.dudson@york.ac.uk

Department of Physics, University of York, Heslington, York YO10 5DD, UK
Lawrence Livermore National Laboratory

14th September 2011

B. D. Dudson, University of York BOUT++ code structure (1 of 27)

BOUT++ conventions

Before getting into the code, there are some conventions used
throughout:

The X direction is usually ψ, and has boundaries called core,
pf and sol (also xinner and xouter)
The Y direction is along the field-line (for Clebsch coordinate
operators). Boundaries called target, or yupper and ylower
The Z direction is axisymmetric, so all metric tensors are
constant in Z and FFTs can be used easily

The BOUT++ code is divided into two parts:

The BOUT++ library, which provides generic routines for
manipulating data, calculating differential operators,
integrating ODEs etc.

The physics module which describes a particular set of
equations, coordinate system, and normalisation.

Aim is to separate out all the generic code, so this can be tested
and not re-written every time. Physics code becomes smaller and
more understandable.

B. D. Dudson, University of York BOUT++ code structure (2 of 27)

BOUT++ conventions

Before getting into the code, there are some conventions used
throughout:

The X direction is usually ψ, and has boundaries called core,
pf and sol (also xinner and xouter)
The Y direction is along the field-line (for Clebsch coordinate
operators). Boundaries called target, or yupper and ylower
The Z direction is axisymmetric, so all metric tensors are
constant in Z and FFTs can be used easily

The BOUT++ code is divided into two parts:

The BOUT++ library, which provides generic routines for
manipulating data, calculating differential operators,
integrating ODEs etc.

The physics module which describes a particular set of
equations, coordinate system, and normalisation.

Aim is to separate out all the generic code, so this can be tested
and not re-written every time. Physics code becomes smaller and
more understandable.

B. D. Dudson, University of York BOUT++ code structure (2 of 27)

BOUT++ repository layout

The repository contains the following main directories:

manual/ contains documentation

User manual, introduction to BOUT++, installing and
running
Developer manual, describes the internals of BOUT++
Coordinates manual, a collection of useful derivations in the
field-aligned coordinate system used for tokamak simulations

src/ contains BOUT++ library code

examples/ contains several physics modules, including

tools/ contains pre- and post-processing codes

include/ and lib/ contain header files and BOUT++ library

B. D. Dudson, University of York BOUT++ code structure (3 of 27)

BOUT++ repository layout

The repository contains the following main directories:

manual/ contains documentation

src/ contains BOUT++ library code

field/ memory handling and arithmetic used throughout the
codeoperations
fileio/ Binary file input and output
invert/ Inversion routines, particularly Laplacian inversion
mesh/ Handling of mesh topology, metric tensor and MPI
communication
physics/ Miscellaneous routines useful for writing physics
modules, such as gyro-averaging operators
solver/ Time-integration solvers
sys/ Miscellaneous low-level routines

examples/ contains several physics modules, including

tools/ contains pre- and post-processing codes

include/ and lib/ contain header files and BOUT++ library

B. D. Dudson, University of York BOUT++ code structure (3 of 27)

BOUT++ repository layout

The repository contains the following main directories:

manual/ contains documentation

src/ contains BOUT++ library code

examples/ contains several physics modules, including

drift-instability/, resistive drift wave instability
interchange-instability/, resistive interchange mode
shear-alfven-wave/, Shear Alfvén wave
sod-shock/, standard 1D fluid shock problem
orszag-tang/, 2D MHD problem
uedge-benchmark/, 2D benchmark against UEDGE code
elm-pb/, ELM simulation code

tools/ contains pre- and post-processing codes

include/ and lib/ contain header files and BOUT++ library

B. D. Dudson, University of York BOUT++ code structure (3 of 27)

BOUT++ repository layout

The repository contains the following main directories:

manual/ contains documentation

src/ contains BOUT++ library code

examples/ contains several physics modules, including

tools/ contains pre- and post-processing codes

idllib/ lots of useful routines for reading and writing data,
collecting and plotting the output from BOUT++
pylib/ Beginnings of a library of Python routines
slab/ Sheared slab grid generator
tokamak grids/ codes for generating and converting tokamak
equilibria and grid files

include/ and lib/ contain header files and BOUT++ library

B. D. Dudson, University of York BOUT++ code structure (3 of 27)

BOUT++ repository layout

The repository contains the following main directories:

manual/ contains documentation

src/ contains BOUT++ library code

examples/ contains several physics modules, including

tools/ contains pre- and post-processing codes

include/ and lib/ contain header files and BOUT++ library

B. D. Dudson, University of York BOUT++ code structure (3 of 27)

BOUT++ components

BOUT++ consists of some low-level data handling classes, and a
collection of independent routines for manipulating them built on
top

Base classes and interfaces: Field, FieldData

Classes representing scalar fields:

Field2D, representing quantities varying in X and Y. This
includes metric tensor components, and usually equilibrium
plasma quantities
Field3D represents a 3D array in X, Y and Z.
FieldPerp

Classes representing vector fields: Vector2D, Vector3D

Log file output: Output class

Debugging message stack: MsgStack class

Binary data input and output

B. D. Dudson, University of York BOUT++ code structure (4 of 27)

Field classes

The main function of the field classes is to provide automatic
memory management, and looping over array indices.

Before being used, must first be allocated, or assigned a
value. Catches use of uninitialised data.

When fields are destroyed, memory will automatically be
free’d or re-used. Field3D’s internally use pointers to avoid
data copying, allocation and freeing

Fields have lots of overloaded operators, to allow expressions
like

Field3D a, b, c;
...
a = b + (c^2) / b

Each operation is calculated separately, looping over the mesh

Isolates loops, making the rest of the code clearer

B. D. Dudson, University of York BOUT++ code structure (6 of 27)

Field classes

The main function of the field classes is to provide automatic
memory management, and looping over array indices.

Before being used, must first be allocated, or assigned a
value. Catches use of uninitialised data.

When fields are destroyed, memory will automatically be
free’d or re-used. Field3D’s internally use pointers to avoid
data copying, allocation and freeing

Fields have lots of overloaded operators, to allow expressions
like

Field3D a, b, c;
...
a = b + (c^2) / b

Each operation is calculated separately, looping over the mesh

Isolates loops, making the rest of the code clearer

B. D. Dudson, University of York BOUT++ code structure (6 of 27)

Log file output

To write messages to a log file, there is the Output class and
global instance output. This can be used either like C’s printf:

output.write("Message text", ...);

or using C++ streams:

output << "Message text" << ...;

Whatever is sent to output is sent to a file BOUT.log.# where ’#’
is the processor number. The output from processor 0 is also sent
to stdout.

Source code in: src/sys/output.cxx
Global object in include/globals.hxx, line 124

B. D. Dudson, University of York BOUT++ code structure (8 of 27)

Debugging messages

To help find bugs, BOUT++ uses a class called MsgStack with a
single global instance msg stack.

At the beginning of a function or section of code, a message
can be put onto the stack:

msg_stack.push("Message text", ...);

which has the same syntax as C’s printf function.

To remove the last message from the stack

msg_stack.pop();

In the event of a segmentation fault, this is caught by
bout signal handler (src/bout++.cxx, line 632) and the
message stack is printed to the log file by calling

msg_stack.dump();

Source code in: src/sys/msg stack.cxx
Global object in include/globals.hxx, line 186

B. D. Dudson, University of York BOUT++ code structure (10 of 27)

Binary data input and output

To read and write binary data, BOUT++ has the Datafile class
in include/datafile.hxx and src/fileio/datafile.cxx.

Variables are first added. The Datafile object stores a pointer
to the variable, so it must not be destroyed before the datafile
is used

Datafile file;
Field3D var;
file.add(var, "name");

The variable can then be read or written to file

file.read("input_data.nc");

file.write("file_%d.nc", 10);

Datafile also handles time-dependent data, allowing files to be
appended.

B. D. Dudson, University of York BOUT++ code structure (12 of 27)

Binary data input and output

Reading: The Mesh class handles splitting the mesh between
processors, reading data from the input file, and communications.
To read a variable from the mesh file:

Field2D Ni0;
mesh->get(Ni0, "Ni0");

A shorthand if the name of the variable and the name in the input
file are the same is

GRID_LOAD(Ni0);

Writing: There is a global Datafile object dump defined in
include/globals.hxx, line 127. The macros

SAVE_ONCE(var); // Output once
SAVE_REPEAT(var2); // Every time-step

save variables into the output file. Also SAVE ONCE2...SAVE ONCE6
and SAVE REPEAT2...SAVE REPEAT6

B. D. Dudson, University of York BOUT++ code structure (14 of 27)

Binary data input and output

Currently BOUT++ supports PDB and NetCDF file formats. This
is done by having a common interface to file formats:

include/dataformat.hxx defines which members must be
defined

The PDB file format is implemented in
src/fileio/pdb format.hxx and
src/fileio/pdb format.cxx

The NetCDF format is implemented in
src/fileio/nc format.hxx and
src/fileio/nc format.cxx

To add a new file format, create a new class which
implements all the interface functions in
include/dataformat.hxx. Add some code to the
data format function in src/fileio/datafile.cxx to
detect the new format from the file name.

B. D. Dudson, University of York BOUT++ code structure (15 of 27)

Input options

Options are handled using a tree structure of Options
objects, defined in include/options.hxx and
src/sys/options.cxx

There is a root object defined as a singleton in
include/options.hxx, line 88. Obtain using

Options *options = Options->getRoot()

The getSection() and get() methods extract values:

int setting;
options->getSection("mysection")->get("mysetting",
setting, 1);

This will fetch a value called “mysetting” in a section
“mysection”, and attempt to convert it to an integer. If the
setting isn’t found, then the default value (1 here) will be
used.

B. D. Dudson, University of York BOUT++ code structure (16 of 27)

Input options shorthand

Usually the name of the variable, and the name of the setting are
the same, so to save typing there are some shortcut macros defined
in globals.hxx, line 62
First get the section you want

Options *options = Options->getRoot(); // Get root
options = options->getSection("mysection");

then use macros to get the options:

int a;
OPTION(options, a, 4);
BoutReal b;
OPTION(options, b, 3.14);

To read several options, there are additional macros

int a, b;
OPTION2(options, a, b, 4);

for up to 6 variables: OPTION2 ... OPTION6.
B. D. Dudson, University of York BOUT++ code structure (17 of 27)

Solving physics problems

The Field classes, text and binary data input and output, and
error handling provide the basic functionality on which the rest of
the BOUT++ code is built

Time-integration solvers, such as RK4 and interfaces to
external timestepping routines in SUNDIALS and PVODE

Mesh handling, communications

Boundary conditions

Differential operators, combining differencing methods with
metric tensor components

B. D. Dudson, University of York BOUT++ code structure (18 of 27)

Time-integration

To advance the time, the time-derivative of all quantities needs to
be calculated. To store this data, every field variable contains a
pointer to another field which contains it’s time-derivative. This
can be accessed using the timeDeriv() method:

Field3D var;
Field3D *deriv = var.timeDeriv();

The time integration solvers supply the system state in var, and
expect the time-derivative values to be in deriv. As a shorthand,,
a macro is defined in include/globals.hxx, line 231:

#define ddt(f) (*((f).timeDeriv()))

which allows us to use ddt(var) as a variable, e.g:

ddt(var) = ...

B. D. Dudson, University of York BOUT++ code structure (20 of 27)

Time-integration

To tell BOUT++ that a variable should be evolved, there are the
functions:

bout_solve(Ni, "density");

defined in src/bout++.cxx at line 567. This just calls
solver->add, associating the variable with its time-derivative.
As with the file input/output and options, there is a shorthand
macro if the name of the variable and the name of the output are
the same:

SOLVE_FOR(Ni);

and also SOLVE FOR2 ... SOLVE FOR6
There is no limit on the number of variables which can be evolved,
apart from memory and run-time.

B. D. Dudson, University of York BOUT++ code structure (22 of 27)

Time-integration

Like the binary data files, BOUT++ defines an interface which
solvers must implement. Multiple solvers are compiled into the
library, and can be switched at run-time.

Solver base class provides generic routines for solvers, such
as loading data to and from variables and time-derivatives.
Defined in include/solver.hxx and
src/solver/solver.cxx

Time-integration solvers implemented in src/solver/impls/

See Euler and RK4 solvers to see how they work. More
tomorrow on solvers

B. D. Dudson, University of York BOUT++ code structure (24 of 27)

Differential operators

Differential operators such as ∇|| or b×∇f · ∇g are handled in
two levels:

Low-level differentials, which just calculate ∂/∂x
These are in src/sys/derivs.cxx

High-level operations, which combine differentials and metric
tensor components into physical operators like ∇|| and
b×∇f · ∇g
These are in src/mesh/difops.cxx and
src/field/vecops.cxx

B. D. Dudson, University of York BOUT++ code structure (25 of 27)

Adding a new differencing scheme

If the differencing operator can be implemented as a 1D operator
(MOL), then it is in src/sys/derivs.cxx

The function needs to be defined on a stencil, see existing
implementations at top of src/sys/derivs.cxx

Define a new DIFF METHOD code for your method.
bout types.hxx line 39

To translate between input strings and DIFF METHOD
codes, put your method into DiffNameTable in
src/sys/derivs.cxx, line 374

Add your function to a lookup table corresponding to the type
of derivative, starting in src/sys/derivs.cxx at line 386

If your method needs more information than a single stencil, define
it in src/mesh/difops.cxx. See the bracket function there for
some examples e.g. Arakawa scheme.

B. D. Dudson, University of York BOUT++ code structure (26 of 27)

Summary

BOUT++ is a collection of classes and routines which allow
plasma fluid simulations to be quickly developed and different
numerical methods tried

Generic data handling, and input/output facilities

On top of these are built differential operators and interfaces
to time-integration solvers

Separation into interfaces and implementations, allowing
methods to be chosen at run-time using options

Allows a lot of common code to be written and debugged
once then re-used many times

Improvements to the core BOUT++ library can be used by all
physics codes without any changes (if backwards-compatible)

B. D. Dudson, University of York BOUT++ code structure (27 of 27)

