Somoclu Python Documentation
Release 1.6

Peter Wittek, Shi Chao Gao

January 10, 2016

CONTENTS

Introduction

I.1 Copyrightand License i e e 1
1.2 Acknowledgment L e e e e e e e e e 1
Download and Installation 3
2.1 Dependencies e e e e e e e 3
Examples 5
3.1 Planarmapso o e e e e e e e e e e e e e e e e e e 6
3.2 Toroid topology, hexagonal grid L 9
3.3 Evolving maps ot e e e e e e e e e e e e e 11
Function Reference 15
4.1 SomocluClass e 15

CHAPTER
ONE

INTRODUCTION

Somoclu is a massively parallel implementation of self-organizing maps. It relies on OpenMP for multicore execution,
MPI for distributing the workload, and it can be accelerated by CUDA. A sparse kernel is also included, which is useful
for training maps on vector spaces generated in text mining processes. The topology of map is either planar or toroid,
the grid is rectangular or hexagonal. Currently a subset of the command line version is supported with this Python
module.

Key features of the Python interface:
* Fast execution by parallelization: OpenMP and CUDA are supported.
e Multi-platform: Linux, OS X, and Windows are supported.
* Planar and toroid maps.
* Rectangular and hexagonal grids.
 Gaussian or bubble neighborhood functions.
* Visualization of maps, including those that were trained outside of Python.
The documentation is available online. Further details are found in the following paper:

Peter Wittek, Shi Chao Gao, Ik Soo Lim, Li Zhao (2015). Somoclu: An Efficient Parallel Library for Self-Organizing
Maps. arXiv:1305.1422.

1.1 Copyright and License

Somoclu is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.

Somoclu is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

1.2 Acknowledgment

This work is supported by the European Commission Seventh Framework Programme under Grant Agreement Number
FP7-601138 PERICLES and by the AWS in Education Machine Learning Grant award.

http://arxiv.org/abs/1305.1422
http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/gpl-3.0.html
http://pericles-project.eu/

Somoclu Python Documentation, Release 1.6

2 Chapter 1. Introduction

CHAPTER
TWO

DOWNLOAD AND INSTALLATION

The package is available in the Python Package Index, containing the source, documentation, and examples. The latest
development version is available on GitHub.

2.1 Dependencies

The module requires Numpy and matplotlib. The code is compatible with both Python 2 and 3.

2.1.1 Installation

The code is available on PyPI, hence it can be installed by

‘$ sudo pip install somoclu

If you want the latest git version, follow the standard procedure for installing Python modules:

’$ sudo python setup.py install

2.1.2 Build on Mac OS X

Before installing using pip, gcc should be installed first. As of OS X 10.9, gce is just symlink to clang. To build
somoclu and this extension correctly, it is recommended to install gcc using something like:

$ brew install gcci48

and set environment using:

export CC=/usr/local/bin/gcc
export CXX=/usr/local/bin/g++
export CPP=/usr/local/bin/cpp
export LD=/usr/local/bin/gcc
alias c++=/usr/local/bin/c++
alias g++=/usr/local/bin/g++
alias gcc=/usr/local/bin/gcc
alias cpp=/usr/local/bin/cpp
alias 1ld=/usr/local/bin/gcc
alias cc=/usr/local/bin/gcc

Then you can issue

https://pypi.python.org/pypi/somoclu/
https://github.com/peterwittek/somoclu
http://www.numpy.org/
http://www.matplotlib.org/

Somoclu Python Documentation, Release 1.6

‘$ sudo pip install somoclu

2.1.3 Build with CUDA support on Linux and OS X:

If the CUDAHOME variable is set, the usual install command will build and install the library:

’$ sudo python setup.py install

2.1.4 Build with CUDA support on Windows:

You should first follow the instructions to build the Windows binary with MPI disabled with the same version Visual
Studio as your Python is built with.(Since currently Python is built by VS2008 by default and CUDA v6.5 removed
VS2008 support, you may use CUDA 6.0 with VS2008 or find a Python prebuilt with VS2010. And remember to
install VS2010 or Windows SDK?7.1 to get the option in Platform Toolset if you use VS2013.) Then you should copy
the .obj files generated in the release build path to the Python/src folder.

Then modify the win_cuda_dir in setup.py to your CUDA path and run the install command

$ sudo python setup.py install

Then it should be able to build and install the module.

4 Chapter 2. Download and Installation

https://github.com/peterwittek/somoclu

CHAPTER
THREE

EXAMPLES

Self-organizing maps are computationally intensive to train, especially if the original space is high-dimensional or
the map is large. Very large maps where the number of neurons is at least five times the number of data points
are sometimes called emergent-self organizing maps — these are especially demanding to train. Somoclu is a highly
efficient, parallel and distributed algorithm to train such maps, and its Python interface was recently updated. This
enables fast training of self-organizing maps on multicore CPUs or a GPU from Python, albeit only on dense data, and
the distributed computing capability is also not exposed. The Python interface also lets you process the output files of
the command-line version, so if the data is sparse or the map was trained on a cluster, you can still use the module for
visualization. Here we take a quick look at how to train and visualize a small map.

First, we import the necessary modules:

import numpy as np

import matplotlib.pyplot as plt
import somoclu

$matplotlib inline

Then we generate and plot some random data in three categories:

cl = np.random.rand (50, 2)/5

c2 = (0.2, 0.5) + np.random.rand (50, 2)/5

c3 = (0.4, 0.1) + np.random.rand (50, 2)/5

data = np.float32 (np.concatenate((cl, c2, c3)))
colors = ["red"] = 50

colors.extend(["green"] = 50)

colors.extend (["blue™] = 50)

plt.scatter (datal:, 0], datal:, 1], c=colors)
labels = range (150)

http://peterwittek.github.io/somoclu/

Somoclu Python Documentation, Release 1.6

D E T T T 1

0.7

fu o
L X
i e
Er L]
s 0%
o &

0.6
L
0.5 e :"l- °*

04t i

0.0 o I'l'ﬁ‘ﬁ' |

_Dl i i i i i i i
-0.1 0.0 01 02 03 04 0.5 0.6 0.7

3.1 Planar maps

We train Somoclu with default parameter settings, asking for a large map that qualifies as an emergent self-organizing
map for this data:

n_rows, n_columns = 100, 160
som = somoclu.Somoclu(n_columns, n_rows, data=data)
$time som.train ()

CPU times: user 6.62 s, sys: 10 ms, total: 6.63 s
Wall time: 4.76 s

We plot the component planes of the trained codebook of the ESOM:

som.view_component_planes ()

6 Chapter 3. Examples

Somoclu Python Documentation, Release 1.6

We can plot the U-Matrix, together with the best matching units for each data point. We color code the units with the
classes of the data points and also add the labels of the data points.

3.1. Planar maps 7

Somoclu Python Documentation, Release 1.6

‘som.view_umatrix(bestmatches:True, bestmatchcolors=colors,

labels=1labels)

We can also zoom into a region of interest, for instance, the dense lower right corner:

som.view_umatrix (bestmatches=True, bestmatchcolors=colors,
zoom=((50, n_rows), (100, n_columns)))

labels=1labels,

Chapter 3. Examples

Somoclu Python Documentation, Release 1.6

3.2 Toroid topology, hexagonal grid

We can repeat the above with a toroid topology by specifying the map type as follows:

som = somoclu.Somoclu(n_columns, n_rows, data=data, maptype="toroid")
som.train ()

som.view_umatrix (bestmatches=True, bestmatchcolors=colors)

3.2. Toroid topology, hexagonal grid 9

Somoclu Python Documentation, Release 1.6

Notice how the edges of the map connect to the other side. Hexagonal neurons are also implemented:

som.train ()

som.view_umatrix (bestmatches=True,

som = somoclu.Somoclu(n_columns, n_rows, data=data,

bestmatchcolors=colors)

gridtype="hexagonal")

10

Chapter 3. Examples

Somoclu Python Documentation, Release 1.6

The separation of the individual points is more marked with these neurons.

3.3 Evolving maps

One of the great advantages of self-organizing maps is that they are incremental, they can be updated with new data.
This is especially interesting if the data points retain their old label, that is, the properties of the vectors change in the
high-dimensional space. Let us train again a toroid rectangular emergent map on the same data:

som = somoclu.Somoclu(n_columns, n_rows, data=data, maptype="toroid")
som.train ()

Next, let us assume that the green cluster moves to the left, the other points remaining invariant:

c2_shifted = c2 - 0.2
updated_data = np.float32 (np.concatenate((cl, c2_shifted, c3)))
plt.scatter (updated_datal:,0], updated_datal:,1], c=colors)

<matplotlib.collections.PathCollection at 0x7fb962be9908>

3.3. Evolving maps 11

Somoclu Python Documentation, Release 1.6

0.6 : T T T T T T
ol Y LA 1
04l '-‘,ﬂ " |
™ ‘-‘I f‘,-.
03| o F 5 " . .]
) ’l e ‘o
[]
02 ’ ...' e . .';. [-I- T
o P ®)
01k '.I1‘ ‘ ::; qt ‘I.:.H..:ﬂl!r L]
_ @
L oe . .i
0.0 . .
0.1 - - - - - - -

-01 0.0 01 02 0.3 0.4 0.5 0.6 0.7

We can update the map to reflect this shift. We plot the map before and after continuing the training:

som.
.update_data (updated_data)
som.
som.

som

view_umatrix (bestmatches=True, bestmatchcolors=colors, labels=labels)

train (epochs=2, radius0=20, scale0=0.02)
view_umatrix (bestmatches=True, bestmatchcolors=colors, labels=labels)

12

Chapter 3. Examples

Somoclu Python Documentation, Release 1.6

As a result of the shift, the blue points do not move around much. On the other hand, the relationship of the red and
green clusters is being redefined as their coordinates inched closer in the original space.

3.3. Evolving maps 13

Somoclu Python Documentation, Release 1.6

14 Chapter 3. Examples

CHAPTER
FOUR

FUNCTION REFERENCE

4.1 Somoclu Class

15

	Introduction
	Copyright and License
	Acknowledgment

	Download and Installation
	Dependencies

	Examples
	Planar maps
	Toroid topology, hexagonal grid
	Evolving maps

	Function Reference
	Somoclu Class

