General theorems U?%ﬂﬁ

Olivier Spalla
CEA Saclay
IRAMIS/LIONS

-SAS probes the structure of materials at the mesoscopic scale (1Tnm-1um)

-Average physical quantities over the whole sample
-Sensitive to the form of particles
-Volume fraction and specific surface can be extracted
independently of specific models



Theoretical aspects
-Definition of the scattered intensity
-Systems made of particles

-General theorems
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Sample
thickness e,

AQ |detection AN(u)

<l

source
:
D,=N,/S T=®/®, Transmission
v/cm?/s
Differential scattering | dx 1 dG( )_ 1
Cross- section dQ vV dO N, Te.AQ

per unit volume
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= General expression of the scattered field

Theoretlca/asPECts 1 -Definitions 2-Systems made of particles 3-Genera | theorems

Theoretical side: the interaction occurs with the field

A.. e—iIZd a
C,l e bi -
ﬂ A
0 — >
K

A

i ki ~k, =——n Elastic scattering

A o Abei(wt—lz.r)
X-ray convention of sign nN=1-0— |,B Refractive index of the Sample
0 < 10°(X-ray)

. scattering length
of the element i
defines the degree of interaction
between the element i and the beam

X-rays :one electron in the small angle approximation

b=r,=2.82 10> m

Licas
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Theoretical aspects
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General expression of the scattered field l%s

1-Definitions

2-Systems made of particles 3-Genera | theorems

A7 sin(6
g = 4zsin(@)

Phase difference

between volumes (.

1land 2

A

Summation over the volume

o ® ;
£
. |\
9

A‘sc (q) — % e_

27zﬂe
A

"y p(F)e

q

r-’

dr

p(F) =D pi(Mb;j (cm?)

Density of scattering length

A(Q)
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Theoretical aspects

General expression of

1-Definitions
By definition AN = A_(§)A,
AQ = Adet %: A e Eh
=0, T
- L A@A (@) >

Introducing the correlation function v(T)

leads to

the scattered intensity

2-Systems made of particles

LA

3-Genera | theorems

(@) Aver
j j 2(F) p(F )™ " drdr

j j o (F)p(F e drdr

- j Jy A7) p(F )" drdr

10=<P"> 4 . g=2n/d

Y(F) —F\ll fy P(F)p(F+P)dT

y(0) =<p>*

iq.r

I(q) =K, (e

The scattered intensity
is the Fourier transform
of the spatial correlation function



e Fluctuations of p Ii[;@@ﬂ&

Theoretical aspects 1-Definitions 2-Systems made of particles 3-General theorems
Fluctuation of scattering length density Normalized correlation function y
SR 2 Lo
n(®) =p(r)-<p> <n >Yo(r)—vaﬂ(r n(r+r')dr
= 2
AVAVANYNYA (f)—}((r)_<p>
Uy T <p > o <n?>
1
2 .2 2 ’YO
<N >=<p >—<p>
r

_ , __igF e
1(G@) =<7" >}y 7, (F)e  dr+<p>"5(q)

/o, \

The fluctuations of density The mean density produces
are the source of the scattering a signal in the forward direction only




e

Theoretical aspects 1-Definitions

For one position x of the particle

-
-

wig f, Te T aF =4x] " T ()P '”(r sinar),

oneges  1,(@) =<7> > 47 [ 7, (0)F
0

Introducing the pair distance distribution function

Auto-correlation function lm

2-Systems made of particles 3-General theorems

Average over the positions of the particle

<7, (F) >=y,(r)

q
, sin(gr) d
qr
7/0(r)r2 = p(r)
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Theoretical aspects 1-Definitions

Importance of the contrast

2-Systems made of particles 3-Genera | theorems

Ap=p,-p,=contrast

<n2 >=<p2>—<p>2

<n? >=D(1-D)(Ap)?

+00

0

10(0) = DA~ ®)(Ap)? [ p(r) T
gr




= Density of scattering length l%’s

Theoretical aspects

1 -Definitions 2-Systems made of particles 3-General theorems
e2
by Thomson scattering length for an electron bt = > = 2.8210 °m
4megmeC
2y = N(e)
Px (Cm ) - * Db
Vmolecular T
Example : polystyrene in water
M,,, = 18.0152 g/mol
d=1g/cm? 0.334 e/A3=>p, ..., = 9.38 1010 cm2 3
Ne =8+2=10
> Ap =0.253 1010 cm2
Mgyrene = 104.15 g/mol

N e =8*6+8 =56

dyromo = 1.5 g/cm® 0.444 e1A3=> py o nostyrene = 12.47 1010 cm2 - Ap = 3.09 10%%cm2

CH
cHy \@ N e = 8*6+7+35=90
Br
I Ap multiplied by 12
(Ap)? multiplied by 150

chy e \@ dgyrene = 1.06 glem? } 0.343 /A3 => p_oy o rene = 9.633 1010 cm2”




S Systems made of uncorrelated particles lﬁs

Theoretical aspects 1-Definitions 2-Systems made of particles 3-General theorems
1- Scattering by a unique particle A(G) = I Ap(F)e S dr =V, T (q)
VPart
do ~ ig.(1-V)
16 = AEA @) = Ve F(@) F@) =7 [[ Ar@ap@)edadv
Part Vp

F(0)=<Ap>2 F(G) =< Ap >° P(4)

By construction P(0)=1

Form factor P(d 167 g
of the particle (q) <Ap 52 VPart J.7/ Par( )
2- For N uncorrelated particles : addition of the intensities
N @ @ , |\|
v ® .o I (@ =<4p>" F Vou P(A) =< Ap >* BV, P(0)




— Examples of form factor
Theoretical aspects 1-Definitions 2-Systems made of particles 3-General theorem
7- Homogeneous sphere of radius R o) = p(r)

A@)= [ p(P)erdr  A(Q)=Ap4nr’ sin(ar)

Lis

qr
Vpart
_Apdrn sin(gR) — qu cos(gR)
g
A(@)A (q) (sin(qR) —gR cos(qR))2
P(a) = NE 2 P(q)=9
o (AP) (@R)°
2- disorientated cylinder

‘Zy' YR zl2 = 2 2 -

sin“(gH cos(«)) J,"(qRsIn(«))

P(q)=4_([ [qH cos(a)]2 [quin(a)]2

sin(a)da

~ )



S Numerical calculations for any shape I%s

Theoretical aspects 1-Definitions 2-Systems made of particles 3-General theorems

Particles is covered with small volumes v p(F’) dr = 5(F;)pi (ﬂ’)d[‘j

A@=rf@YnEe™ it

being the number of electrons in v at r;
and f(q) the amplitude factor of the elementary volume v

(@) =ER@2, 2n()n(e™

sin(qr, )
<H@)>o=1; P(Q)Zzn(r)n(r) :
=1 i=1l ij
P(q) = 1 zii“(r)”(r)smq(q) P(g)=1 forsmallv
(ZL‘ (s )j Debye Formulae

For an homogeneous particle N(r;) = n(rj)




S Multiplets of spheres l%s

Theoretical aspects 1-Definitions 2-Systems made of particles 3-General theorems
sin(qr; ) 1 & sin(qry)
I, =(vAp)® P(Q)ZZ =
j=1 i=1 ij N ; ;
=(v Ap)2 P (q) being the scattering of one sphere

X 4

LE+05 - 90

Intensity

1.E+03 -

f

1.E+01 ‘
0.001 0.01 0.1 1

q(A™)



C@J Effect of polydispersity l%s
Theoretical aspects 1-Definitions 2-Systems made of particles 3-General theorems
| =(Ap)N [ f(R)V? P(q)dR
10000000 i
100000 + - R=10+/-1nm
- RN (gaussian distribution)
a : \\\
K%
2 1000 |
c i
10 t
: R=
0.1 ‘ : | |
-2.2 -2 -1.8 -1.6 -14 -1.2 -1 -0.8



= Effect of polydispersity-example I%s
Theoretical aspects

1-Definitions 2-Systems made of particles

3-General theorems

H 002478 7S5E-11M50000 <-=>.15rm

Bromostyrene
Sample 1 : D= 103 nm Polydispersity : 4 %
Sample 2 : D=90 nm Polydispersity : 40 %

7 /
<
2
=
(@)
- + Latex monodisperse
+ Latex polydisperse 4//
— P(q) sphéres D=103 +- 4 nm .
— P(q) spheres D=90 +- 40 nm
-2 | |
0.0001 0.001

0.01 0.1
q(A™)



B > aam
N Low q regime : radius of gyration I,Lééﬂb

Theoretical aspects 1-Definitions 2-Systems made of particles 3-General theorems

Absence of interaction 1,(q) =< Ap >* DV,,,P(q)

S 1 r sin(qr)
Aver ver orientation  P(Q) = A1t Y o (NI dr
eraged over orientatio (a) Vo < Ap > !an() ar

(9Rg )° Valid for gR5<1 (Guinier regime)

2
| (q) =<Ap >* DV, {1— (qRBG) +} ~<Ap>* DV, e 3

o The Rg radius
Guinier of gyration of the particle
approximation
1 can be extracted from the decrease
of the intensity at low q

, _EJ- r*y(r)dr
° 2j r’y(r)dr

Slope of R_f

In(l)

7 2 -
_ r<p(r)dr
Rg=62nm R JVf Homogeneous sphere
[, pr)dr
4— Part
qRs<1 ~ 3
RAC | R& ==R?
0.00000E+00 1.00000E-05 2.00000E-05 5

2

q
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Theoretical aspects

1-Definitions

dx
dQ

Vv

VPart

Systems made of correlated particles

2-Systems made of particles

_1. ie—iq’-ﬁ
A=

Im (q) =< Ap >2 (DVPartP(q)Sm (q)

3-Genera | theorems

—=$<A(a)A*(a) >

J p(U)e‘q”dUHZN:eiq'r‘ [ p(@)e"d

Veart 1= Vpart

i=1

N { ] p(U)p(V)e‘q‘”)dUde% i ie“q‘(?“ﬁ’

j=1

Sm(@) =1+~ [ @) - De e
V

Interaction can have very strong effects on scattering diagrams

\7}>

}>
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Theoretical aspects

Examples

1-Definitions 2-Systems made of particles

1.E-05
- ®=1% with salt

b=5% without salt

2 _

LE07 T 6|
| /N

21
)

0.5 1 ..-/

0 1 |
0 0.005 0.01 %@
A-l
1.E-09 —— ""'q:( ) g

0.0001 0.001 0.01
g (A™)

N

I /®

1., () =<Ap >* DV, P(0)S,,(q)

3-General theorems

Aqueous dispersion
of
charged latices

The volume of the particle

cannot be extracted when
interactions are present

There is no Guinier regime
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Theoretical aspects

Concentration effects on the peak position

2-Systems made of particles

1-Definitions

R=5nm, Z=30, K-1=9.6nm

100

10g(Qpear)

=

o

o
.

-1.85

0.1

LA

3-General theorems

S(qg) can be calculated using statistical mechaniscs

S(q)

®=109%

0.001

0.01 0.1

LRO

FCC

Swelling law
for coulombic liquid systerr
equivalent to FCC

(0o)’ = (27)°9J3 @

-2.4

-1.6
log(®)

-1.2
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Theoretical aspects

Scattering by a solvent Ii[;%ﬂ&

1-Definitions 2-Systems made of particles 3-General | theorems

1(q) = Vﬁ (Ap)*VZ, P(q)S(q)

Tot

For solvent molecules, Small angle scattering regime corresponds to gR<<1

P(a)=1

For solvent molecules, small angle scattering regime corresponds to g=0

N
SO = KT 11

Tot

1(q) = (Vl)z (APVou)? KT 1;

Tot

1(q) = (Vﬁ)z b? KT 4,

Tot



@ Integral theorem l%s

Theoretical aspects 1-Definitions 2-Systems made of particles 3-General theorems

=

iq.7

In (@) =@ -<Pp> ¥q) =< n° >}, (Ne  dr

Using the inverse Fourier transform

1 ~\ ~—i0.F = 2 =
| Gy ) In(@e 100 =< >7,(7)
@ (@) For r=0

[ 1m (@)dg = (2m)° <n” >
q

For isotropic system, one gets _
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= Application to two level systems U_%ﬂﬁ

Theoretical aspects 1-Definitions

2-Systems made of particles 3-General theorems

<n2 >=<p2>—<p>2

<n? >=D(1-D)(Ap)?

Ap=pi-p,=contrast | Im(@)dd = (2m) D(1-D)(Ap)°

For isotropic system, one gets

Q= [Im(@)a°dg = 2n°®(L- D)(Ap)°
0

Q is named the invariant
because it does not depend on the structure
but only on the volume fraction and contrast



B > aae
— Measure of the volume of a particle Il\_%ﬂ&

Theoretical aspects 1-Definitions 2-Systems made of particles 3-General theorems
P(0)=1
P2 (0)
|_(0) =(Ap)°DV,,, Valid for d<<1
Ap=p; =P,

Using the invariant  Q = 2r°®(1—®)(Ap)? ~ 2n°D(Ap)°

| (O
One gets Vo, =27° ”‘é )

When the particles are not correlated (0<<1), their volume can be extracted Directly.
This measure does not require the absolute scaling of the intensity
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Application to many level systems U_%ﬂﬁ
Theoretical aspects 1-Definitions 2-Systems made of particles 3-General theorems
2 2 2
<M’ >=<p’>—<p>
OF Pi < p? >=Z:CI).,0.2 <,0>:Z(D.p.
(B | _ i~ _ i~i
! i

More complete
Exercise!

1
<n’ >ZEZZ(DiCDj(pi _pj)z
]

In practice, useless beyond 3-levels systems



3 ST
— Example of use of the invariant-1 I’]\_@wﬂg

Theoretlca/asPeCts 1-Definitions 2-Systems made of particles 3-Genera| theorems

Synthesis of gold nanoparticles by reduction in presence of ligands

“Single-Phase and Gram-Scale Synthesis of Au and Other Noble Metal Nanocrystals”, N. R. Jana, X.
Peng, J. Am. Chem. Soc., 2003, vol 125, p 14280

BH, (C4Hg)4N*

TBAB (Tetrabutylammonium borohydride)
AUCl; dissolved in + dissolved in
Toluene +DDAB Toluene + DDAB
(didodecyldimethyl + Ligands (R-COOH ou R'-NH, )

ammonium bromide)

(CoHyps),NMe, B AUTID)  ———  Au(0Q) NP

m Au3* + n red — m Au® + n ox

M AW — (Au®. nuclei

(Au%)_ +n Au® — (Au0)_,_ Homogeneous precipitation

In a few seconds
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Example of use of the invariant-2 lm
Theoretical aspects

1-Definitions 2-Systems made of particles

3-General theorems

IDO2 - ESRF (Grenoble)

N

Har'fi-s‘rop

Mélangeur

Ligne a retard| Ligne d retard

Dead time: 4-16 ms

<F1 SF2 SF3

moteur

Stopped-flow adapted for non aqueous media

CCD Camera (Frelon)
Rapid Detection

Acquisition time : 20-50 ms
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Theoretical aspects

SAXS: (E =11.5 keV)

Example of use of the invariant-3

1-Definitions 2-Systems made of particles

Growth

0.1

0.01

0.001

0.0001g

Time (seconds)

wave vecior Enm'1}

Weak scattering of the precursors solution

Ligs

3-General theorems

[Au] = 3,5 103 mol/L
[Red] /[Au] = 4
[DDAB]/[Au] = 269
[C,oOO0H ]1/[Au]l =15
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Theoretical aspects

Example of use of the invariant-4 lm

1-Definitions 2-Systems made of particles 3-Genera| theorems

The yield of the reaction can be obtained Q — j I qu dq = 272'2(1) (1— (I)) (Ap)z
80 . . . . . . .

T

AP = 0rs = Prowene =1.2310%cm™> ] T=25°C

% of gold in nanoparticles
n
o

®
@ 3
V,, =10.21cm®/mol
20 | "
! o acid e |
O I . . . ! __amine ® Abecassis et al Nanoletters 2007
0 2 4 6 3 10 12 14 16

Time (8)
= 67% of gold atoms are in the particles at the end (up to 100% at 45°C)

= reaction is faster with the amine ligands



€29 PN, Y .
Babinet theorem U_% S
Theoretical aspects 1-Definitions 2-Systems made of particles 3-General theorems
“white” holes in “black” matrix “black” grains in “white” solvent
Inverting phases ‘ 0
1and 2 ® .,,
A@) = | pe"'dF+ | petidr A@)= [ pe®dr+ [ petidr
DV (1-D)V DV (1-D)V
A@) = | (.- p,)e""dF + p, [ drF A@)= | (o, p)e* dr+p, e dr
DV v DV v
A@) = | ApeTdr + p,5(a) A(@) =— | ApeTdr +p,5(d)
DV DV

N g

Identical scattered intensities
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Theoretical aspects
%
%
L /d
as
O

Scattered intensity : 1(q)

Intensity as a surface integral I}F@ﬂg

1-Definitions 2-Systems made of particles 3-Genera| theorems

AG) =y Ap e dr Volume integral

Green—Ostograski theorem

A(G) = —qul—zje‘q'fq,d§ Surface integral
S

A®G) = % j cos(8)e'" " dS
S

} \/1 (Aqli)2 H ds, COS(HDH dS, cos(8,)e' ™"

e
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Theoretical aspects

Measure of the interface at large q — Porod theorem l%s

1-Definitions 2-Systems made of particles 3-Genera| theorems

When q is large, the contribution comes from (i) the small r ,
or
(ii) ©,=6, with I, # 0

First term (i): when r,, — 0 8,—>0,
_ 1 (Ap)° 2 2 o(m
@)y || ds cos?(6) (27)?5(d,)

Average over the orientation of the object

1(q) =<1(q) >,

2 27 S Total surface of the objects
Leads to 1(Q) —= >(Ap) —— J

4
q° V.  \Volume of the sample

For an abrupt interface : 1 decreases like g*

Is proportional to the specific surface of the sample
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= Oscillations in the Porod regime l%s

Theoretlca/aspeCts 1-Definitions 2-Systems made of particles 3-General theorems

Second term (ii): contribution of N, # 0 with0,=0,

Gives an oscillating term proportional reflecting the symmetry of the sample

1.E+00
1LE-01 —Sphére
-
= —Tétraeédre
e’
[« ——Hexaédre
g LE-02 —Qctaédre
S
S 1LE-03
=]
=
; 1,.E-04
3
&
]
= 1,E05
I,E_OG t 1 A 1 1 1 [ : 1 5
0,005 0,050 0,500

q(A™)



= Porod theorem with multiple interfaces I%s

Theoretlca/ aspeCts 1-Definitions 2-Systems made of particles 3-General theorems

‘ ‘ -Core-shell particles
-Shell alone
i i~ P; — B 0 phere

-Anitropic objets

\Volume V

2
o7 ;O-i,j(pi_pj)

liml = =

With the constraints that interface is abrupt (at 1/q scale)
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= Measure of the interface at large q - example L\_@wﬂ&
Theoretical aspects 1-Definitions 2-Systems made of particles 3-General theorems
1.E-02 ]
8.E-03
6.E-03 Porous silica: smooth interface
< 2
= 60m?/g

4.E-03

2.E-03 -

0.00 0.10 0.20 0.30

Porous silica: rough interface
no Porod limit




S Rough interface or equivalent layer Il[;%ﬂ&

Theoretlca/asPeCts 1-Definitions 2-Systems made of particles 3-General theorems

Jo, :
* 0000000 o, Non equivalent to Prm

Imq4 = S(pl _102)2 +J(103 _p2)2 Imq4 = S(pl _pm)z +S(pm _p2)2
avec  p, =0p;+(1-D)p,
I9° o (ps—p,)° 4 N
S( B )2 :1+§ ( 3_ 2)2 Iq 5 :1+2CD(CD (103 p2)2 _103 102)
PP P S(pi=p») (p=p) PP,
P =P

Case of surface roughness

19* 1. ° Ig*
S(p,—p,)° S S(p—p2)

greater than 1

> =1+20(D-1)

smaller than 1



S Fuzzy interface-Continuous profile I%s

Theoretica/ aspeCts 1-Definitions 2-Systems made of particles 3-General theorems
P
| %)
, 1—cos(qd)

)

S
I :272-\7(2(101_102) d2q6

For qd<<1 the Porod regime is still there

For qd>>1 nomore q-4 dependence



@ Summary of the GT l%s

Theoretlca/aspeCts 1-Definitions 2-Systems made of particles 3-General theorems

o ® 1LE+07 -

9 o

Y ) R, [X 64 \
® .’ 1.E+05 1

°® Ny
2
o S, n
. 1 1R1 1.E+03 - m
1.E+01 -

Intensity

® constant Q Is constant

| 1/4

1.E-01 1 1
‘ R.=4 R 0.001 0.01 0.1 1
2 a(A?)
‘ n,=n,/64
S,cn,R:=S,/4

Intensity is sensitive to :

| =(Ap)°®V,, P(@)  g=0 P=1

- the volume of the particle at g=0
- the surface of the particle at large q
- the concentration through the invariant



Summary I;[;%ﬂb

Definitions Theorems o
Porod limit
.. AN 1 1 2
1(q) = . _ 2n(Ap)© S
N, TAQ e img_,o Im (9) = q4 v
Correlation function Invariant
L 1 N e et o0
VD)= vp(F)e(F+Tdr [1m(@)a°dg = 2n° - D)(Ap)°
0
TF Particles systems
iq.r — 2
1(G) = }\/ y(F)e q dr |,,(q) =<Ap > DV, P(q)S(0q)

_(gRg )i

1, (Q) =< Ap >* PV, 3

Guinier approximation g->0
Babinet



