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Summary

The optics in the insertion regions around the interaction points of the LHC, and its upgrade project
the High Luminosity LHC, are very sensitive to local magnetic errors due to the extremely high
beta-functions present. Local corrections need to take both beams into account, due to the common
aperture of the magnets in these regions. In collision optics, the non-zero closed orbit around the
interaction point leads to a “feed-down” of high-order errors to lower orders, causing additional
effects detrimental to beam lifetime. An extension to the proven method [1] for correcting these
errors by locally suppressing resonance driving terms has been undertaken, not only taking this
feed-down into account, but also adding the possibility of utilizing it such that the powering of
higher-order correctors will compensate for lower order errors. The existing correction scheme has
also operated on the assumption of symmetric beta-functions of the optics in the two rings. As this
assumption can fail for a multitude of reasons, such as inherently asymmetric optics, an extension
of this correction scheme has been developed removing the need for symmetry by operating on the
two separate optics of the beams at the same time. In contrast to earlier implementations, the
target resonance driving terms to be corrected can also be flexibly changed. The mathematical
background as well as the implementation of this new extension are presented in this note.

Contents
1 Motivation 3

2 Background 4
2.1 Nonlinear Correctors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Resonance Driving Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Correction Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Equation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Dual Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Feed-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Implementation 13
3.1 Beam Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Preparations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Build and Solve Equation System . . . . . . . . . . . . . . . . . . . . 18

3.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1



3.4 To Do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Applications 22

5 Conclusion 22

2



1 Motivation
The sensitivity of accelerator beam optics to magnetic errors depends directly on the β-
function, which is highest in the Insertion Regions (IR) around the Interaction Points (IP)
with the lowest β∗ (the value of the β-function at the location of the IP).

Hence, studies of the possibility of correcting the non-linear magnetic errors in these re-
gions in the Large Hadron Collider (LHC) have already been of significant importance during
its design phase: It was envisaged to make use of the magnetic measurement data of the LHC
magnets [2–4] to simulate the machine in MAD-X [5] and calculate the corrections to be used
in the machine [1, 6, 7]. While these simulation-based corrections produced great results in
the arcs [8] in the IRs discrepancies with corrections from beam-based measurements were
observed [9]. The sources for these discrepancies are still not fully known. Apart from the
successful arc-corrections, simulations have nevertheless been a useful tool for the estimation
of linear and non-linear effects in the IRs [9–12]. Magnetic-measurement based simulations
have since supported the continuing endeavour to optimize the LHC machine performance
with beam-based corrections in the IRs [10,13–17], and continue to be an invaluable tool in
studying future machine layouts, e.g. the installation of stronger magnets in the IR and the
decrease of β∗ in operation in the High Luminosity upgrade of the LHC (HL-LHC) [18, 19],
which is foreseen to result in even tighter constraints on residual errors.

At the same time the crossing-angle scheme of the collision optics creates large orbit
bumps in the IRs, leading to feed-down effects, the influence of which have been observed
and investigated in the LHC. For both, LHC and HL-LHC the need for corrections of this
feed-down has been established [9, 10,14,16,17,20–22].

To estimate the powering of the corrector magnets, a local correction scheme based on
the Resonance Driving Terms (RDTs) in the IRs has been utilized [1]. Up to now, the
implementation of this scheme calculated the correction based on a single input optics, for
either Beam 1 or Beam 2, and made use of symmetries between the beams to optimize
the correction for both beams. Cases will occur in which this symmetry does not hold,
e.g. through the introduction of feed-down, or the use of inherently asymmetric optics. An
example for the latter is the flat optics [23,24], in which β∗ in the two transversal planes no
longer has identical values. These optics allow for a more distributed radiation deposition
in the LHC magnets as well as an increase in luminosity [24]. Their feasibility has been
studied during machine developments in the LHC [25] and preliminary analysis regarding
their influence on corrections and amplitude detuning has been conducted [26]. A new and
flexible version of the correction principle has been implemented [27], taking up to two optics
into account and hence not relying on symmetry assumptions, allowing to target RDTs freely,
as well as including feed-down into the calculations. The implementation allows for the feed-
down from higher orders to the RDT to be corrected, as well as using the feed-down from
higher order corrector magnets to correct for lower order errors. Theoretical background and
the implementation details of this algorithm are presented in this report.
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2 Background

2.1 Nonlinear Correctors

To compensate for errors locally, both sides of the LHC IRs hosting experiments (ATLAS in
IR1, ALICE in IR2, CMS in IR5 and LHCb in IR8) are equipped with linear and non-linear
corrector packages. As shown in the schematics of Figs. 1 and 2, these packages are located
within the common aperture region of the machines, between Q3 and the separation dipoles
D1, and hence contain common magnets for the two beams. Any correction should therefore
take the optics of both beams into account.

In the experimental IRs of the LHC and in HL-LHC IR2 and IR8, nonlinear correctors
for skew and normal sextupoles (a3, b3), skew and normal octupoles (a4, b4) and normal
dodecapoles (b6) are available. In IR1 and IR5 in the HL-LHC on the other hand, the
corrector package will be upgraded to also include skew and normal decapoles (a5, b5) as
well as skew dodecapoles (a6) and offer therefore a wider range of field errors to correct, to
account for the increase in the β-function in this high-performance machine [19,22,28].

Some correctors were defective in LHC Run 2 and Run 3: MCSSX.3L2, MCOX.3L2,
MCOSX.3L2, the skew sextupole, octupole and skew ocupole correctors left of IP2, possi-
bly due to a hit from a pilot beam, as well as MCOSX.3L1, the skew octupole corrector left
of IP1, probably due to powering issues. This is already reflected in the lattice used for
simulations [29].
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Figure 1: Schematic of the right hand side of a LHC IR region and HL-LHC IR2 and
IR8. Q1, Q2a/b and Q3 are the triplet quadrupoles. C0-C3 show the corrector packages
with the field order to be corrected indicated. Blue lines mark common cryostats. D1 is
the separation dipole, diverging Beam 1 and Beam 2 to their respective beamlines. The
non-linear corrector package is included with the orbit correctors in C3.
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Figure 2: Schematic of the right hand side of HL-LHC IR1 and IR5. Q1a/b, Q2a/b and
Q3a/b are the triplet quadrupoles. C0-C2 and CP show the corrector packages with the field
order to be corrected indicated. D1 is the separation dipole, diverging Beam 1 and Beam 2
to their respective beamlines. Blue lines mark common cryostats.
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2.2 Resonance Driving Terms

The transformation of the phase-space coordinates of a particle propagating through an
accelerator from s′ to s can be described by means of maps M(s′, s), each describing the
transformation of the coordinates generated by the elements of the machine between the
locations. These maps are symplectic, i.e. they preserve phase-space volume, and can
be combined, describing the propagation through multiple elements of the accelerator [30].
Using the In a circular accelerator one can construct a one-turn-map M◦, describing the
coordinate transformation of one complete turn. For an ideal accelerator consisting of purely
linear elements, one can use the Courant-Snyder formalism [31] to express the coordinates
of the phase-space as a vector c = (cx,+, cx,−, cy,+, cy,−) of complex coordinates in action Jz
(the invariant of linear motion) and phase ϕz

cz,± = ẑ ± ip̂z =
√

2Jze
∓iϕz , (1)

for z ∈ {x, y}, where ẑ and p̂z are the canonical position and momentum, related to the
cartesian position z and momentum pz via the α- and β-functions at any location s by(

ẑ(s)
p̂z(s)

)
=

(
1/

√
βz(s) 0

αz(s)/
√
βz(s)

√
βz(s)

)(
z(s)
pz(s)

)
. (2)

With Eq. (1) propagation through the accelerator is described by rotations, e.g. to a
longitudinal location s by advancing the phase from s0 to s by

∆ϕz(s0, s) = ϕz(s)− ϕz(s0) =

s∫
s0

1

β(s′)
ds′ (3)

meaning the coordinates at s of a particle can be given as the initial coordinates at s0
propagated to s

cz,±(s) = ẑ(s)± ip̂z(s) =
√

2Jze
∓iϕz(s) =

√
2Jze

∓i(ϕz,0+∆ϕ(s0,s)) = Mz,±(s0, s) · cz,±(s0) , (4)

where ϕz,0 = ϕz(s0) is the initial phase of the particle, Jz = Jz(s) ≡ Jz(s0) its action and
Mz,± are the components of M = (Mx,+,Mx,−,My,+,My,−) propagating c. In this linear
system, the linear one-turn-map of an accelerator of circumference C is then also a rotation
M◦ = R by ∆ϕz(s, s+ C) = 2πQz, where Qz are the tunes of the accelerator:

cz,±(s+ C) = Mz,±,◦ · cz,±(s) = e∓i2πQzcz,±(s) =
√

2Jze
∓i(ϕ(s)+2πQz) (5)

In [32–36] this formalism is extended to derive a transformation, such that the prop-
agation also through a nonlinear circular machine, i.e. a circular accelerator containing
additional nonlinear elements, can be described by an amplitude dependent rotation and is
shortly summarized here.

Using Lie-Algebra notation [30,37] we can define an operator : · : as

: g :=
∑
z=x,y

∂g

∂qz

∂

∂pz
− ∂g

∂pz

∂

∂qz
, (6)
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for a function g(qx, px, qy, py) of canonical coordinates, e.g. positions/momenta (x, px, y, py)
or actions/angles (Jx, ϕx, Jy, ϕy). It is shown that the, now location dependent, nonlinear
one-turn map can be expressed as

M◦(s) = e:h(s):R , (7)

where R is still a rotation containing the linear contributions of the system and h(s) is an
integral of the Hamiltonians Hw of the nonlinear elements w of the accelerator, expressed as
functions of powers of the normalized coordinates cz,±(sw), but these coordinates propagated
(linearly) backward from the origin sw of the nonlinear sources to s. Or, maybe more
intuitively, the particle at s is being propagated linearly through the ring, experiencing the
influence of the nonlinearities at their locations.

If the nonlinearities Hw in the machine are small h(s) can be approximated, truncating
the Baker-Campbell-Hausdorff formula at first order of Hw

h(s) ≈
∮

Ring

Hw(sw, s) dsw =

∑
jklm

∮
Ring

hjklm(sw)e
i[(j−k)∆ϕx(s,sw)+(l−m)∆ϕy(s,sw)]cjx,+(sw)c

k
x,−(sw)c

l
y,+(sw)c

m
y,−(sw) dsw .

(8)

The sum jklm is over all possible values of j, k, l and m and hjklm are parts of the in c ex-
panded Hamiltonians of all sources of multipole order n = j+k+l+m (see [35] Appendix A).
The contribution hjklm from magnetic fields of order n ≥ 2 to the total Hamiltionian of the
system is given e.g. in [35] Eq. (3.11) as

hjklm(s) = −ℜ
[

il+m

j! k! l!m! 2j+k+l+m
βx(s)

j+k
2 βy(s)

l+m
2 (Kn(s) + iJn(s))

]
. (9)

Kn(s) and Jn(s) are the magnetic field strengths of order n at location s of normal and
skew fields respectively. In this note, we use the convention of starting the index n at 1,
representing dipole fields (n = 2 for quadrupole fields, etc.).

It has been neglected up until now that, with nonlinearities present in the machine, the
the phase-space is distorted and Jz is no longer the invariant of motion. Similar to Eq. (1),
a new coordinate vector ζ can be found, depending on new action and angle coordinates Iz
and ψz

ζz,± =
√
2Ize

∓iψz , (10)

called normal form, in which the one-turn map MI can again be split into a nonlinear part
and a the same rotation R as in Eq. (7)

MI = e:hI :R , (11)

now with the Hamiltonian series hI only dependent on Iz, making MI independent of loca-
tion. A variable transformation can be constructed, translating between c and ζ, to make
use of the simplicity of Eq. (11):

M◦(s) = e:F (s): MI e
:−F (s): . (12)
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F (s) is calculated as

F (s) =
∑
jklm

fjklm(s)ζ
j
x,+(s)ζ

k
x,−(s)ζ

l
y,+(s)ζ

m
y,−(s) . (13)

The generating terms fjklm of F are the so called Resonance Driving Terms (RDTs) and it
is shown in [33] (also given in [35] Eq. (3.15)) that their relation to the hjklm(s) in Eq. (8) is

fjklm(s) =
h
∮
jklm(s)

1− ei2π[(j−k)Qx+(l−m)Qy ]
=

∮
Ring hjklm(sw)e

i[(j−k)∆ϕx(s,sw)+(l−m)∆ϕy(s,sw)]dsw

1− ei2π[(j−k)Qx+(l−m)Qy ]
.

(14)
Sometimes the numerator h

∮
jklm(s) of Eq. (14) is already called RDT. In case of the condition

(j − k) ·Qx + (l −m) ·Qy = 2π · p (15)

being fulfilled for p ∈ Z, fjklm diverges, if there are sources present for that order. In this
case the system is in a resonant state, and hence unstable. The behaviour of the instability
as the system approaches the resonance condition therefore depends on the strength of the
multipole sources present in the machine. Resonances labeled (nx, ny) are driven by all hjklm
terms such that nx = j − k and ny = l −m.

For each resonance (nx, ny) there is a spectral component in the turn-by-turn particle
position data, which can be found at −(nx− 1) ·Qx− ny ·Qy (label: (−nx + 1,−ny)) in the
spectrum of the horizontal plane and −nx ·Qx− (ny − 1) ·Qy (label: (−nx,−ny +1)) in the
spectrum of the vertical plane [35]. The amplitude of the spectral lines is proportional to
|fjklm(s)| [35], the terms are therefore easily accessible from measurements [34, 38–41].

As long as there are no sources of order n, |fjklm(s)| are constant along s. At the location
of a multipole source, the value of |fjklm(s)| changes, making them very well suited to build
local observables [39]. The correction algorithm presented here is based on locally minimizing
the RDTs in the IR as shown in the next section.

2.3 Correction Principle

In this section the correction principle as implemented in the flexible correction algorithm
v1.0.0 in [27] is described. The algorithm follows the simplifications of Eqs. (9) and (14) as
outlined in [1]:

• Only the contribution from elements in one IR to the RDTs are minimized. The
integral in Eq. (14) includes therefore only IR elements.

• Constant coefficients of Eq. (14) are ignored, i.e. the numerator and actions as
well as the coefficients depending only on j, k, l,m and any signs, as they are not
needed for minimization, .

• The phase of one side of the IR is approximately constant, as β(s) being very
large in the triplets and therefore the integral Eq. (3) very small.

• The phase-advance between the left and right side of the IP is π.
• The RDT is evaluated locally at the entrance of the IR.

7



With these approximations Eq. (14) becomes a local, effective RDT to minimize within
the IR:

f IR
jklm =

∫
IR

ℜ
[
il+m (Kn(s) + iJn(s))

]
βx(s)

j+k
2 βy(s)

l+m
2 eiπnθ(s−sIP)ds , (16)

with θ(x) being the Heaviside step function and sIP the location of the IP within the IR. The
exponential function should actually contain j−k+ l−m = n−2k−2l, which is even when
n is even and odd when n is odd. As eiπ = −1, only the parity of the exponent is important,
independent of the particular choices for j, k, l,m, and hence n is used for simplicity.

The main concept of the correction is then to find the Kn(s) and Jn(s) of the corrector
magnets, that minimize a set of given f IR

jklm based on given optics.
As there are usually two correctors per multipole field available (one on each side of the

IP), two combinations of l+m and j+k (the exponents of the β function) can be corrected.
As, due to the single-aperture nature of the magnets close to the IP, the correctors are
responsible for the correction of both beams. In Section 2.3.2 it will be explained, how the
β-exponents can be chosen such that the correction is valid for both beams, correcting only
a single RDT per beam, unless the symmetry of the optics can be used to correct two RDTs.

2.3.1 Equation System

In our simulations, the input to the correction algorithm will be the output of TWISS and
ESAVE functions from MAD-X [42]. These are tables in which Kn(s) and Jn(s) are not con-
tinuous functions, but given as already integrated values KnLw, JnLw (Kn−1L, Kn−1SL in the
terminology of MAD-X) for each element w. Values for the longitudinal position sw, βx,w, βx,w
and the transversal orbit xw, yw, which will be important when calculating feed-down (see
below), are also provided.

One way to get an estimate for the integral in Eq. (16), is slicing the lattice in MAD-X,
i.e. approximating the magnets as single kicks surrounded by drift-spaces. Long magnets
should be cut into multiple of these slices to increase accuracy. Corrector magnets on the
other hand, which are in any case short compared to e.g. dipoles, can be represented by a
single slice.

In this thin-lens approximation, Eq. (16) transforms into a sum over all elements (slices)
w in the IR, which needs to be set (using “ !

=” to stress the intention) to zero to suppress the
RDT:

f IR
jklm =

∑
w∈IR

ℜ
[
il+m (KnLw + iJnLw)

]
β

j+k
2

x,w β
l+m
2

y,w (−1)nθ(sw−sIP) !
= 0 . (17)

Splitting the elements into corrector elements C and non-corrector elements IR \ C,
Eq. (17) transforms into:∑

w∈C

ℜ
[
il+m (KnLw + iJnLw)

]
β

j+k
2

x,w β
l+m
2

y,w (−1)nθ(sw−sIP)

= −
∑

w∈IR\C

ℜ
[
il+m (KnLw + iJnLw)

]
β

j+k
2

x,w β
l+m
2

y,w (−1)nθ(sw−sIP) = −Ijklm ,
(18)

where Ijklm a shorthand for the sum over IR\C.
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It is important to note, that each corrector is defined by either KnL or JnL, so that per
order n and orientation (normal, skew) only a limited set of correctors is left. Normally there
are two of these correctors in the LHC/HL-LHC, i.e. one per IP side, and C = {cl, cr}, a
left (cl) and a right (cr) corrector element. With

b
(cl)
jklm = il+m β

j+k
2

x,cl β
l+m
2

y,cl

b
(cr)
jklm = (−1)n il+m β

j+k
2

x,cr β
l+m
2

y,cl ,
(19)

Eq. (18) can be split into a two equation system(
b
(cl)
jklm b

(cr)
jklm

)(KnLcl
KnLcr

)
= −Ijklm if l +m even,(

i b
(cl)
jklm i b

(cr)
jklm

)(JnLcl
JnLcr

)
= −Ijklm if l +m odd,

(20)

each of which can be easily extended to include multiple RDTs, e.g. with j + k + l +m =
j′ + k′ + l′ +m′ = n and l +m ≡ l′ +m′ (mod 2):(

b
(cl)
jklm b

(cr)
jklm

b
(cl)
j′k′l′m′ b

(cr)
j′k′l′m′

)(
KnLcl
KnLcr

)
= −

(
Ijklm
Ij′k′l′m′

)
if l +m (and l′ +m′) even,(

i b
(cl)
jklm i b

(cr)
jklm

i b
(cl)
j′k′l′m′ i b

(cr)
j′k′l′m′

)(
JnLcl
JnLcr

)
= −

(
Ijklm
Ij′k′l′m′

)
if l +m (and l′ +m′) odd.

(21)

These linear equation systems can be solved or optimized for KnLcl,cr or JnLcl,cr by standard
algorithms.

2.3.2 Dual Optics

In the original implementation of the algorithm in [1], the optics of only one beam could be
given and the algorithm was making use of the symmetries of the β-function in the IR

β(B1)
x (s) = β(B2)

y (s)

β(B1)
y (s) = β(B2)

x (s) ,
(22)

which is true for round optics as shown in Fig. 3a, to calculate a correction valid for both
beams. With this symmetry the effective RDT Eq. (16) simply switches the β exponents
between the beams, for which we will use the subscript jklm∗:

f
IR (B1)
jklm∗

Eq. (16)
=

∫
IR

ℜ
[
il+m (Kn(s) + iJn(s))

]
β(B1)
x (s)

l+m
2 β(B1)

y (s)
j+k
2 eiπnθ(s−sIP)ds

Eq. (22)
= f

IR (B2)
jklm .

(23)
As mentioned in the previous section, with the two correctors per field type (order and
orientation), we can perfectly correct two RDTs locally in the IR. When

j + k ≡ l +m (mod 2) , (24)
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Figure 3: HL-LHC β-functions in the IR around IP1.

i.e. both fjklm and flmjk have the same orientation (skew or normal) RDTs, two RDTs per
beam can be corrected, as

∣∣ij+k∣∣ = ∣∣il+m∣∣. Therefore
∣∣f IR
jklm∗

∣∣ = ∣∣f IR
lmjk

∣∣ within the optics of
the same beam and we can choose f IR

j′k′l′m′ = f IR
lmjk(= f IR

jklm∗ or − f IR
jklm∗) in Eq. (21). If, on

the other hand, j+ k and l+m are of different parity, only one RDT f IR
jklm per beam can be

corrected, by targeting f IR
jklm and f IR

j′k′l′m′ = f IR
jklm∗ in the given optics.

Example To correct b4, the two RDTs f4000 and f0040 can targeted, as both are normal
octupole RDTs. j + k and l + m are both even (ij+k = il+m), so correcting either
one in one optics, will correct the respective other, in the other optics, e.g.

f
IR (B1)
4000 = f

IR (B1)
0040∗ = f

IR (B2)
0040 , and

f
IR (B1)
0040 = f

IR (B1)
4000∗ = f

IR (B2)
4000 .

(25)

When correcting normal sextupole errors (b3) on the other hand, we cannot target
f3000 and f0030 as the latter targets a skew sextupole RDT. We can still target one
RDT in each Beam, also by using just one optics

f
IR (B1)
3000 = f

IR (B2)
3000∗ , and

f
IR (B1)
3000∗ = f

IR (B2)
3000 .

(26)

There are optics in which Eq. (22) does not hold true anymore. For example, in contrast
to round optics, in which the β-function at the IP (β∗ = β(sIP)) is equal for both transversal
planes (β∗

x = β∗
y), there exists also the flat optics, for which β∗

x ̸= β∗
y (i.e. the beam shape is

not round at the IP) [23,24]. A realization of flat optics, forseen to be used in the HL-LHC,
is shown in Fig. 3b.

The straightforward way to not to rely on Eq. (22), is to use the optics for both beams
in the correction and construct Eq. (21) from both(

b
(cl,B1)
jklm b

(cr,B1)
jklm

b
(cl,B2)
jklm b

(cr,B2)
jklm

)(
KnLcl
KnLcr

)
= −

(
I
(B1)
jklm

I
(B2)
jklm

)
. (27)
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2.3.3 Feed-Down

The effect of feed-down occurs whenever a particle beam is passing off-center through a
magnet, due to either a transverse misalignment of the magnet or an off-center closed orbit
of the beam itself, and results in the magnets exerting forces on the particles as lower-order
magnets would, in addition to their main component [43].

Mathematically, feed-down can be understood by applying a first-order Taylor expansion
to the Hamiltonian Eq. (8) in the curvilinear (comoving) coordinate system and cartesian
transversal coordinates

h(x, y) = −ℜ

[
∞∑
n=2

(Kn + iJn)
(x+ iy)n

n!

]
(28)

for a beam centroid traversing the magnet at ∆x(s),∆y(s):

h(x+∆x, y +∆y) = −ℜ

[
∞∑
n=2

(Kn + iJn)
((x+∆x) + i(y +∆y))n

n!

]

Taylor
= −ℜ

 ∞∑
n=2

(Kn + iJn)

n∑
q=0

1
q!

n!
(n−q)!(x+ iy)n−q(∆x+ i∆y)q

n!


= −ℜ

[
∞∑
n=2

(Kn + iJn)
n∑
q=0

(x+ iy)n−q(∆x+ i∆y)q

q! (n− q!)

]

sort by (x+iy)n

=
n7→n+q

−ℜ

 ∞∑
n=0

∞∑
q=max(2−n,0)

1

q!n!
(Kn+q + iJn+q)(x+ iy)n(∆x+ i∆y)q


= −ℜ

 ∞∑
n=0

 ∞∑
q=max(2−n,0)

(Kn+q + iJn+q)
(∆x+ i∆y)q

q!

 (x+ iy)n

n!


(29)

For brevity (s) is omitted, but h,Kn, Jn, x, y and ∆x,∆y are all dependent on the longitu-
dinal location. From Eqs. (28) and (29) one can see that magnetic field strengths of order
n ≥ 2 without offset are replaced by a sum depending on the higher order field strengths
scaled by powers of the offset. These higher order fields of n + q therefore “feed down” to
the field strengths of order n, showing the same effects on the beam as these lower orders
would. As seen in Eq. (29), feed-down to field order n ≥ 2 from fields up to n + Q can be
calculated by:

Kn + iJn
w/ feeddown→

Q∑
q=0

(Kn+q + iJn+q)
(∆x+ i∆y)q

q!
. (30)

Fields feed-down can also have an effect on the scalar field (n = 0) and dipole fields (n = 1).
As their structure does not follow the structure in Eq. (8), Eq. (30) is not applicable. In the
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context of RDTs n is always larger than 2 and we can use Eq. (30) in the definition of the
effective RDT Eq. (16)

f IR
jklm =

∫
IR

ℜ

il+m ∞∑
q=0

(Kn+q(s) + iJn+q(s))
(∆x(s) + i∆y(s))q

q!

βx(s)
j+k
2 βy(s)

l+m
2 (−1)nθ(s−sIP)ds ,

(31)
and can therefore easily include it when building the equation systems Eq. (20), Eq. (21) or
Eq. (27).

Not only can feed-down be used to calculate the influence of field errors of orders larger
than n on the RDTs of order n, i.e. by contributing to the integral Ijklm on the right-hand
side of the equation systems, but it can also be used to calculate the strengths of correctors
of orders nCorrector > n to counteract the RDTs at order n via feed-down, by including it on
the left-hand side: The matrix elements of the corrector coefficients in Eq. (19) will then
also contain the feed-down coefficient

zp =
(∆x+ i∆y)p

p!
(32)

with p being the order of feed-down from the corrector to the RDT, i.e.

p = nCorrector − n . (33)

As zp ∈ C, this makes the evaluation of the real part in Eq. (18), needed to split the equation
system into two, separating the correctors (Eq. (20)), less straightforward and more cases
need to be considered. Inserting

ℜ
[
il+m(Kn+pLw + iJn+pLw)

(∆xLw + i∆yLw)
q

q!

]
Eq. (32)
= ℜ

[
il+m(Kn+pLw + iJn+pLw) · zp

]
= ℜ

[
il+m(Kn+pLw + iJn+pLw)(ℜ [zp] + iℑ [zp])

]
= ℜ

[
il+m [(Kn+pLw · ℜ [zp]− Jn+pLw · ℑ [zp]) + i(Kn+pLw · ℑ [zp] + Jn+p · ℜ [zp])]

]
(34)

into Eq. (18) yields the equation system

(
ℜ [zp] · b(cl)jklm ℜ [zp] · b(cr)jklm −ℑ [zp] · b(cl)jklm −ℑ [zp] · b(cr)jklm

)Kn+pLcl

Kn+pLcr

Jn+pLcl

Jn+pLcr

 = −Ijklm for even l +m,

(
iℑ [zp] · b(cl)jklm iℑ [zp] · b(cr)jklm iℜ [zp] · b(cl)jklm iℜ [zp] · b(cr)jklm

)Kn+pLcl

Kn+pLcr

Jn+pLcl

Jn+pLcr

 = −Ijklm for odd l +m .

(35)

In the case of p = 0, Eq. (35) transforms back to Eq. (20), as ℜ [z0] = 1 and ℑ [z0] = 0. For
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simplicity, we can redefine bjklm to include the additional factors directly into the coefficients

bjklm,p =


ℜ [zp] · bjklm if normal corrector and l +m even,
ℑ [zp] · bjklm if normal corrector and l +m odd,

−ℑ [zp] · bjklm if skew corrector and l +m even,
ℜ [zp] · bjklm if skew corrector and l +m odd

(36)

and take zp into account whenever p > 0.
Including feed-down into the equation system also allows therefore to correct multiple

orders of RDTs with the same correctors, as well as correcting RDTs with correctors of
multiple orders. Equation (20) can hence not only be extended “vertically” by correcting for
multiple beam optics (Eq. (27)) and different RDTs (Eq. (21)) at the same time, but also
“horizontally”, by adding more correctors, e.g.

(
b
(cl)
jklm b

(cr)
jklm b

(cl)
jklm,p b

(cr)
jklm,p

b
(cl)
j′k′l′m′ b

(cr)
j′k′l′m′ b

(cl)
j′k′l′m′,p b

(cr)
j′k′l′m′,p

)
KnLcl
KnLcr
Kn+pLcl
Kn+pLcr

 = −
(
Ijklm
Ij′k′l′m′

)
(37)

3 Implementation
This chapter describes the implementation of the correction algorithm as realized in Version
1.0.0 of [27]. Direct links to lines of the code as well as usage of python is avoided, yet the
structure and naming of the sections in this chapter is kept close to the names in the actual
code, which can be found on https://github.com/pylhc/irnl_rdt_correction. The API is
documented in https://pylhc.github.io/irnl_rdt_correction.

Attention While this note follows the convention of n = 1 for dipole fields, in
the code the MAD-X convention of n = 0 for dipole fields is used, as the input will
already be in that format.

Dependencies

The package is mostly self-contained and depends only on:

numpy: provides an easy way to work with numerical data in arrays as well as
additional functionality e.g. for solving linear equation systems [44].

pandas: allows working with data-tables, which are used to structure the data
and allow easy access and identification of the different optics parameters [45].

tfs-pandas: a wrapper for pandas to read tables from and write tables into files
of the Table File System (TFS) format used by MAD-X [42] [46].
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(a) In reference frame of Beam 1 (b) In reference frame of Beam 2

Figure 4: Schematic of two beams traveling in opposite directions through a quadruople.

3.1 Beam Directions

Because of the opposite traveling direction of Beam 2, magnetic fields in the reference frame
of this beam look as if rotated by 180◦ around the y-axis at the center of the magnet,
compared to the reference frame of Beam 1. Hence magnets that are symmetric upon this
rotation will have the same effect on the beams, while magnets that are not symmetric will
look like they have opposite-sign field gradients, e.g. a focusing quadrupole magnet with
strength K2 in Beam 1 is seen as a defocusing magnet with −K2 in Beam 2 (as they are
anti-symmetric upon the 180◦ rotation around the y-axis with respect to their polarity, see
Fig. 4). In general:

(Kn + iJn)
B2 =

{
(−Kn + iJn)

B1 , if n is even
( Kn − iJn)

B1 , if n is odd .
(38)

This becomes important as soon as both beams need to be corrected by the same (i.e. single
aperture) correctors, especially as there are two different definitions for Beam 2 in MAD-X:
One called is “Beam 2”, for which all elements are defined in the reference frame of Beam 1
and the beam direction is handled via a negative beam velocity (BV=-1); the other one
is called “Beam 4” and here the whole lattice is inverted and the beam travels in forward
direction (BV=1), which means the field strengths follow the relation in Eq. (38). Quotes are
kept in the following, to indicate that this is not Beam 2 as in the machine, but “Beam 2” or
“Beam 4”as defined in MAD-X. The lattice for “Beam 1” in MAD-X follows the beam direction
of Beam 1 in the actual machine. One should note, that the beam direction is already taken
into account in the field strength data of TWISS in MAD-X, but not in the errors output of
ESAVE and not in the horizontal orbit, the X and DX data respectively. To assure consistent
behaviour, the optics of “Beam 2” are brought into the reference frame of “Beam 4” upon
loading.

When building an equation system as in Eq. (27), the reference frame needs again to
be taken into account: Equation (27) is only correct, when all values are calculated in the
same reference frame. As they are not, each line in Eq. (27) is correct in its own reference
frame, but the KnL and JnL values are shared between the two frames. To account for
the appropriate signs, the signs of the coefficients are inverted according to Eq. (38) where
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needed for Beam 2:(
b
(cl,B1)
jklm b

(cr,B1)
jklm

±b(cl,B2)
jklm ±b(cr,B2)

jklm

)(
KnLcl
KnLcr

)
= −

(
I
(B1)
jklm

I
(B2)
jklm

)
if n is { odd

even ,(
ib

(cl,B1)
jklm ib

(cr,B1)
jklm

±ib(cl,B2)
jklm ±ib(cr,B2)

jklm

)(
JnLcl
JnLcr

)
= −

(
I
(B1)
jklm

I
(B2)
jklm

)
if n is {even

odd .

(39)

Calculating the corrector strengths in this way also allows for a straightforward assignment
of the values to the MAD-X knobs (variables) setting the corrector strengths, as these are
defined with positive sign in the lattice sequences of “Beam 1” and “Beam 2” and negative
sign in the lattice sequence of “Beam 4”. On the other hand, when updating the optics tables
itself, e.g. to correct feed-down from the correctors, the original signs need to be recovered.

Following the beam direction in the machine and taking care of the different sign conven-
tions as described in this chapter is the currently implemented way beam direction is taken
care of.

Alternative Instead of converting “Beam 2” parameters into “Beam 4” conventions,
another option would be to bring everything into the reference frame of Beam 1 in
the first place, i.e. switching the signs of the “Beam 4” KnL and JnL according
to Eq. (38), in twiss and errors, as well as the same KnL, JnL in the twiss of
“Beam 2”. This would allow some simplifications of the implementation, as any
following switching of signs is already taken care of in MAD-X via the signs of the
corrector knobs. Yet, it has not been examined, whether feed-down is correctly
calculated in this case, as the direction of the beam is then no longer taken into
consideration. If it is shown, that the sign of the feed-down strengths are still correct,
all beam related sign changes in the code, that follow the initial transformation into
Beam 1 reference frame, could be removed. See also Section 3.4.

3.2 Main

The entry-point to run the corrections is the irnl_rdt_correction() function in
irnl_rdt_correction/main.py.

3.2.1 Preparations

Check Opts

First the options given by the user are validated and default values set. These options are:

twiss: the optics of the machine as given by the TWISS command in MAD-X.
Important: All of these elements are used for correction. They are assumed
to follow the LHC naming scheme, so that they can be split into IRs, but
to limit the correction to only calculate the effective RDT over certain IR
elements, these need to be filtered beforehand, e.g. in MAD-X.

errors: errors on the optics of the machine, as given by the ESAVE command in
MAD-X. All elements of errors need to be present in twiss, but elements not
present in errors are assumed to have zero errors.
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beam: the beam the optics come from, definition as in MAD-X: 1, 2 or 4.

output: path to write the results into (as table and as MAD-X commands.)

rdts: a set of RDTs, defined either like fjklm (fjklm∗) as strings of format "fjklm"
("fjklm*") to correct these RDTs (RDTs with switched β, see Eq. (23)) by
the correctors of their order and orientation. Alternatively they can be given
as a dictionary, with the RDTs as keys and a list of corrector fields (e.g. b4)
as strings (e.g. "b4") as values to specify which correctors to use to correct
this RDT Eq. (20). If the order of the corrector is higher than the order of
the RDT, its feed-down is used to correct the RDT. If the order is lower, an
error is raised. If rdts2 is given, these apply only MAD-X to the first optics.
(Default depends on accel)

rdts2: same format as rdts, but the given RDTs are used to correct the second
optics. If only rdts is given, they apply to all optics.

accel: The name of the accelerator to use. "lhc" and "hllhc" are implemented.
This determines the default RDTs to use, as well as the correct names for
the correctors in the lattice. (Default: "lhc")

feeddown: maximum order of the feed-down to include, i.e. Q in Eq. (30).

ips: a list of integers of the IPs to correct. (Default: 1,2,5,8)

solver: solver to use to solve the built linear equation system. Can be one of
"lstsq", "inv" or "linear". (Default "lstsq").

update_optics: if this option is set to True, the correction begins with the
highest order and the newly calculated corrector strengths are inserted into
the optics for the following so that feed-down from these correctors can be
taken into account. Necessary for accurate corrections in case Q ≥ 0 (as set
via feeddown). (Default: True)

ignore_corrector_settings: if this is False, the corrector values of the optics
are used as initial conditions. Otherwise they are ignored. (Default: False)

ignore_missing_columns: if True missing strength columns in any of the input
files are assumed to be zero, instead of raising an error. (Default: False)

iterations: (re-)iterate correction, starting with the previously calculated val-
ues. Needs to be > 0, as the first calculation counts as an iteration. (Default:
1)

The default RDTs for the LHC and HL-LHC are as in the original triplet correction scripts
[47,48]:

Sort RDTs

The input RDTs are then transformed into RDT-objects, which contain information about
their order n = j + k + l +m, their skewness (l +m ≡ 1 mod 2) and wether they should
be calculated with swapped β-exponents (if given by the * in the name). A mapping is
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Table 1: Default RDTs used in the correction script if rdts option is not provided.

accel RDTs description

"lhc" "F0003" "F0003*" correct a3 errors with f0003
"F1002" "F1002*" correct b3 errors with f1002
"F1003" "F3001" correct a4 errors with f1003 and f3001
"F4000" "F0004" correct b4 errors with f4000 and f0004
"F6000" "F0006" correct b6 errors with f6000 and f0006

"hllhc" "F0003" "F0003*" correct a3 errors with f0003
"F1002" "F1002*" correct b3 errors with f1002
"F1003" "F3001" correct a4 errors with f1003 and f3001
"F0004" "F4000" correct b4 errors with f0004 and f4000
"F0005" "F0005*" correct a5 errors with f0005
"F5000" "F5000*" correct b5 errors with f5000
"F5001" "F1005" correct a6 errors with f5001 and f1005
"F6000" "F0006" correct b6 errors with f6000 and f0006

then produced to the desired correctors these RDTs should be corrected with, resulting in a
dictionary of RDT-objects and sequences of strings, defining corrector orientation and order
(e.g. "b4"). The latter are either taken from the user input parameters, or if not given,
determined by the RDT itself. This mapping is then sorted by highest RDT order and
(arbitrarily) skew before normal.

Get Orders

Now, the feed-down orders are checked. It is for example not possible to update the optics
in a useful manner, if two orders of feed-down are required and a normal octupole RDT (b4)
should be corrected by feed-down from a normal dodecapole corrector (b6), while at the same
time a normal decapole RDT (b5) needs to be corrected by a corrector of the same order.
As the b5 RDT is corrected before the b4 RDT, the b6 corrector is still unassigned and its
feed-down cannot be taken into account when calculating the b5 correction. This issue could
be overcome by sorting not by highest RDT order but by highest corrector order per RDT,
which is implemented but has yet to be tested (see Section 3.4).

It is also checked, wether the field order of a given corrector is lower than the order of
its RDT, as in this case the corrector can have no influence on the effective RDT (as they
are RDTs of first order in field strengths). In this case an error is thrown.

Also the needed orders are evaluated, which are the field orders needed in the optics
to calculate all desired effective RDTs with the requested feeddown.

Load Optics

If the twiss and errors are not given as TfsDataFrames already, they are then read in. It
is checked that the number of twiss and errors tables given equals. The contents of the
tables themselves are checked for the presence of elements, e.g. elements in errors need to
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be present in twiss, as their position and β-functions need to be known. Elements not found
in errors, which are present in twiss are added with zero values. It is then also checked
if all needed orders as determined in the previous step are present in the KNL and KNSL
columns of the TfsDataFrames. Depending on the choice of ignore_missing_columns they
are either filled with zeros or the program ends with an error.

At this point, the beam direction is also taken care of, i.e. if twiss and errors of MAD-X’
“Beam 2” are given, the horizontal orbit columns in both (X and DX) will switch sign, as
well as all strengths of magnets, that are not symmetric on beam direction change, or anti
mirror-symmetric as it is called in the code. In this manner, the optics of “Beam 2” are
brought into the reference frame of “Beam 4”. See Section 3.1 for details.

For convenience, the loaded optics are then stored in a sequence of Optics-objects, each
containing single instance of the given beam, twiss and errors.

3.2.2 Build and Solve Equation System

The core of the correction algorithm is the building and solving of the equation system
Eq. (20) and extending it for multiple RDTs (Eq. (21)), beam optics (Eq. (27) and Eq. (39)),
but also possibly solving for multiple correctors at a time when correcting via feed-down
(Eq. (35)).

Get RDT Maps grouped by Correctors

To increase numerical stability and also allow to incorporate feed-down from correctors to
lower order RDTs, not all corrector strengths are calculated at the same time, but many
independent equation systems are build, and solved consecutively.

To achieve this, the RDTs to correct are grouped by common correctors: The correctors
of the first RDT, as given by the built RDT map in Sort RDTs in Section 3.2.1, are
used to find other RDTs sharing these correctors, the correctors of which are then used to
determine which other RDTs need to be corrected together, until all remaining RDTs have
no correctors in common with the selected ones. The grouping is done for all given optics at
the same go, so that also common correctors are found between them.

After solving the equation system for the currently selected RDTs, the process of grouping
RDTs is repeated with the remaining RDTs until none are left. As this algorithm for grouping
is not straightforward, details about the actual implementation are found directly in the
comments of the code.

Get available Correctors

In a loop over the given ips, the so far abstract corrector names, identifying only orientation
and order of the correctors, are now instancialized as Corrector-objects by finding the
appropriate correctors for the current IP in the Optics. The current implementation is very
(HL-)LHC specific, as it uses the naming scheme, depending on the given accel. If correctors
are present in only one of the given Optics, but not in the other, an EnvironmentError is
raised. When only one of the two correctors per side is present, a warning is printed, and if
no matching corrector for this IP is found in the optics, this information is logged and the
corrector not included in the correction of this IP.
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The corrector values are initialized in accordance with ignore_corrector_settings
(they are initialized as zero, or as given in the optics) and saved in case they need to be
restored later (update_optics = False). This is important, as the algorithm actually
calculates the change in corrector strength needed to compensate the RDT, as explained in
the next paragraph.

Build Equation System

The equation system for the current RDTs, correctors and optics including the desired feed-
down (Eqs. (20), (21), (27), (35) and (39)) for the current IP, e.g.

b
(cl,IP1,B1)
jklm b

(cr,IP1,B1)
jklm b

(cl,IP1,B1)
jklm,p b

(cr,IP1,B1)
jklm,p · · ·

b
(cl,IP1,B2)
jklm b

(cr,IP1,B2)
jklm b

(cl,IP1,B2)
jklm,p b

(cr,IP1,B2)
jklm,p · · ·

b
(cl,IP1,B1)
j′k′l′m′ b

(cr,IP1,B1)
j′k′l′m′ b

(cl,IP1,B1)
j′k′l′m′,p b

(cr,IP1,B1)
j′k′l′m′,p · · ·




∆KnLcl
∆KnLcr
∆Kn+pLcl
∆Kn+pLcr

...

 = −


I
(IP1,B1)
jklm

I
(IP1,B2)
jklm

I
(IP1,B1)
j′k′l′m′

...

 , (40)

is now build. In contrast to Eq. (18), the integrals Ijkml on the rhs of Eq. (40) contain also
the corrector settings as currently in the Optics. For this reason, the ∆KnL values are
introduced here, which allow to solve and update this equation system as often as given in
iterations to improve upon in a next step.

Special care is taken to swap the β-exponent in the integral as well as in the coefficients
bjklm, in case fjklm∗ is given. In accordance with the implementation of the LHC and HL-
LHC Sequences in MAD-X, also the sign of bjklm might be inversed for Beam 2 and Beam 4,
depending on the symmetry of the magnet (see Section 3.1).

Solve Equation System and update Values

The built linear equation system is now solved with one of the standard solvers, as given
by via the option solver. "inv" and "linear" refer hereby to inverting the coefficient
matrix on the lhs of Eq. (40) and performing a dot-product with the rhs and to solving it
directly via numpy’s solve method, respectively. These are only implemented for testing and
debugging purposes and should not be used in real applications as they are inefficient and
work only with well-determined matrix equations. The default method "lstsq" makes use
of the numpy method of the same name and performs a linear least-squares optimization and
works on under-, well-, or over-determined equation systems.

As explained above the resulting values are the changes to the current corrector values,
which are now applied and used to update the optics and the integrals on the rhs of Eq. (40)
are recalculated, informing about the change in the effective RDTs and to be used in the
next iteration, if there will be one.

After the iterations for the current IP have been run, the original corrector values
will be restored, if they had been saved (see Get available Correctors) and the
corrections for the next given IP is calculated.
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Output

After all corrector values have been calculated, they are finally written into ASCII-files, if
output is given, and returned in two different formats:

As MAD-X In this format the corrector names are converted into the circuit-knob-names
as used in the lattice description in MAD-X. As these refer to the non-integrated field
strengths, the value is assigned by reference (:=) and divided by the lattice variable
for the length of the corrector type (e.g. l.MCTX). In this format, the correction can
be immediately used in a MAD-X script.

As TfsDataFrame The second output format is a DataFrame, created from IRCorrector-
objects. The attributes are mapped to the columns, while the different correctors are
spread along the index. The DataFrame is written out as a table in TFS format by
tfs-pandas.

3.3 Tests

A variety of tests has been deployed, testing the current status of the current implementation
and trying to make the algorithm resilient against future bugs. The tests are automatically
run via github workflows and need to pass before any pull-request is accepted to the “master”-
branch of the repository.

Most tests cover certain specific ways to run the correction algorithm as a whole, while
also some unit-tests have been implemented, where easily applicable. To be able to validate
the calculated corrections easily a non-physical pseudo-model is created in most tests, with
only a few of elements and arbitrary values for the parameters. For example, a constant
β-function of 1 can be used to simplify the equation systems and make them solvable by
hand. Currently running are tests for the following scenarios:

Standard Corrections Test default correction capabilities.

Basic Test the basic correction functionality and perform some sanity checks.
Operates on a pseudo-model so that the corrector values are easily known.
Sanity Checks:
• all correctors found
• correctors have the correct value (as set by errors or zero)
• all corrector circuits are present in the MAD-X script

LHC Correction Test LHC optics with random errors assigned. Sanity Checks:
• all correctors found
• correctors have a value
• all corrector circuits are present in the MAD-X script

RDT Corrections Test correction settings that are RDT specific.

Different RDTs Test that different RDTs can be corrected and only their correc-
tors are returned. Also checks that the corrector values are varying between
RDTs when they should. Octupole RDTs are used for this example.
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Switched Beta Test using the special RDTs* where the beta-exponents are switched.

Dual Optics Corrections Test the correction when giving more than one beam
optics.

Dual Optics Test that given two different optics an approximate solution will be
found.

Dual Optics RDTs Test calculations given two different optics and different RDTs.

Feed-Down Corrections Test the feed-down calculation and correction.

General Test feed-down functionality from decapoles to octupoles and sextupoles.
Correct via Feed-Down Test correct RDT via feed-down from higher order cor-

rector: Use normal and skew deca- and dodecapole correctors to correct for
octupole errors.

Unit-Tests Test individual functions and classes.

Switch Signs Test the sign-switching function from Beam 2 to Beam 4 (and that
there is no switch given Beam 1 or Beam 4).

IRCorrector Class Test the class representing IR Correctors
• instantiates
• has the right (in-)equalities
• is sortable
• for different accelerators

RDT Class Test the class representing RDTs
• instantiates
• has the right (in-)equalities
• is sortable

3.4 To Do

easy Allow not giving errors (need to be None in the list or all None, so that the list
lengths are still the same and there is a clear correspondence twiss-errors-beams).
They should then be assumed all zero.

easy Allow for more than two optics given (e.g. find corrections for 15cm and 30cm
for both beams).

medium Maybe sort RDTs by highest corrector instead of highest RDT order? This
should allow for correctors that correct via feed-down to be assigned before lower
order RDTs are calculated. It is already in the code, but commented out for now as
might cause other problems. To be thought about and tested. See Get Orders
in Section 3.2.1.

medium Consider switching the signs all into the reference frame of Beam 1. That
means X, DX and anti-mirror-KN(S)L twiss and errors from Beam 4, and the anti-
mirror-KN(S)L twiss from Beam 2. That should in principle allow to ignore all
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other beam-related sign switches. BUT: does this really work with all the feed-down
options implemented (i.e. feed-down to RDT, feed-down from correctors)? It should,
but needs to be checked and tested. See the Alternative in Section 3.1.

medium Take phase advance between the elements and to the correction point at the
entrance of the IR into account. That would mean correct the numerator of the
actual RDT (Eq. (14)) instead of the effective RDT (Eq. (16)).

hard Additionally to taking the phase-advance into account, one might try to optimize
the actual RDTs at the position of the correctors. This might be very problematic,
as we have two correctors (one on each side) per order, so that might become a
non-linear problem (as now there are now two equations, one per corrector, which
are non-linearly dependent.)

4 Applications
The new correction package has already been extensively used for studies of the LHC and
HL-LHC optics. The influence of feed-down has been studied in [49], while the correctability
of asymmetric optics has been investigated in [50]. In another study, the feasibility to correct
systematic normal decapole errors in the separation and recombination dipoles of the HL-
LHC [51, 52] has been tested. The ease of use and availability allows to utilize the new
package with little effort in future studies of non-linear IR corrections.

The algorithm has been received with interest and additional features have been sug-
gested. Among these is the inclusion of the phase-advance between elements, to further
approach (and correct) the exact value of the RDT, instead of the effective RDTs targeted
in the current implementation, which has already been inlcuded into the “To Do” of Sec-
tion 3.4 in this note.

5 Conclusion
An improved algorithm to correct nonlinear errors by locally compensating effective RDTs
in the IRs has been derived and implemented, overcoming the rigidness of previous imple-
mentations and giving the user more control over the correction. Its main features include
the option to target arbitrary RDTs, include more than one beam optics, and either include
feed-down into the RDTs to be corrected, or using the feed-down from the corrector magnets
themselves for compensation.

This note is meant to be a supplement documentation to the code found at [27] changes
in this pdf should be reflected in the repository and vice-versa.
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