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Abstract

To broaden the use and understanding of ACT-R within the 
cognitive science community, we have attempted to express 
the system in terms of a large number of simple, interacting 
components.  We re-implemented each of these components 
from the set of formulas that make up ACT-R theory, but used 
an  alternate  syntax  for  the  expression  and  simulation  of 
cognitive models.  Care was taken to ensure the new syntax is 
as explicit as possible in terms of the claims being made and 
the processes occurring within the model. Generally, people 
view  ACT-R  as  a  production  system;  however,  in 
deconstructing it we found that it is significantly more than 
this.

Introduction
Cognitive modeling, as a science, involves not only building 
and evaluating models, but also effectively communicating 
the  results  and  the  implications  of  those  results. 
Communication becomes increasingly more difficult as the 
audience knows less about the particular approach that was 
used. It is easier for neural network people to communicate 
to  other  neural  network  people  than  it  is  for  them  to 
communicate to  production system people,  and it  is  even 
harder to communicate to people who do not use cognitive 
modeling  at  all.  In  particular,  we  have  found  that  non-
modelers have a very poor understanding of the concept of 
cognitive architectures. 

The concept of a cognitive architecture was put forward 
by  Newell  (1990)  to  deal  with  the  problem  that  the 
behavioral sciences, and psychology in particular, study the 
mind by dividing it up into specialized sub-fields, without 
attempting to assemble the results into an integrated model 
of the mind. Cognitive architectures are meant to be a way 
to do this.  Anderson (1993) further clarified the concept of 
cognitive  architectures  with  his  distinction  between 
frameworks,  theories,  and  models;  where  frameworks  are 
general  claims  about  cognition,  theories  are  specific 
formulations  about  how  the  frameworks  operate,  and 
models  are  the  theories  applied  to  specific  tasks  and 
behaviors.  Therefore,  cognitive  architectures  are  theories 
about  how  the  mind  integrates  different  processes  to 
produce thoughts and behaviors. 

Because cognitive architectures tend to be complex, they 
are  often  expressed  as  computer  programs.  Within  the 
cognitive modeling community this is generally regarded as 
a good thing because it means that the theory is precisely 
specified,  avoiding  ambiguity  and  vague  statements. 
However,  outside  the  community  it  is  often  viewed with 
suspicion. Indeed, it is often felt that modelers merely write 
computer  code  that  mimics  the  human  data  (i.e.,  that 
modeling is merely descriptive).  In order for non-modelers 

to be convinced that this is not happening, we need clear 
descriptions of the architectures and how they are used.

Furthermore,  it  needs  to  be  clear  that  while  cognitive 
architectures provide a language for writing the models, the 
architectures  also  constrain  model  building  so  that  the 
resulting  models  are  products  of  the  theory  behind  the 
architecture. However, it is generally the case that the only 
people with enough knowledge to check this are the people 
who developed the system in the first place.  Also, the initial 
implementation of  the architecture tends to be tied to the 
language and programming style of these researchers.

Python ACT-R
We believe that re-implementing cognitive architectures is 
an effective way to  demonstrate  and clarify  exactly  what 
they  do.  This  effect  is  in  addition  to  the  advantages  for 
error-finding (as mentioned in Erev & Barron, 2005), and is 
related to model aligning (Axtell et al, 1996).   To illustrate 
this we give an overview of Python ACT-R, which is our re-
implementation  of  the  standard  Lisp  ACT-R,  using  the 
Python language. 

The  Python  ACT-R  project  was  initially  undertaken  to 
gain a more complete understanding of the ACT-R theory. 
Creating such a system also brings to light aspects of ACT-
R which may not have received much attention, and assures 
us that there are no hidden aspects influencing results.  In 
doing  this,  we  made  Python  ACT-R  different  from Lisp 
ACT-R in three major ways. 

First,  we  attempted  to  break  ACT-R  into  individual 
components, each small enough to be described by a simple 
algorithm.  These components were implemented separately 
and then combined into a full ACT-R system, making each 
component distinct and easily accessible.  Interestingly, this 
means  a  modeler  can  assemble  different  variants  of  the 
ACT-R that they wish to use while building their models. 
This  is  in  contrast  to the Lisp ACT-R process of  turning 
features on or off. 

The  second major  difference  was  that  we modified  the 
syntax for writing ACT-R models.  This was originally done 
to ease the integration of ACT-R into the Python language. 
However,  as  a  byproduct,  it  also  made  the  distinction 
between the core ACT-R theory and the particular syntax 
used to write models more clear. The result is a system that 
is functionally equivalent to Lisp ACT-R, but does not make 
the same implementation and syntax choices.

Our third difference was to be as explicit as possible in 
terms of what is happening within the model.  In Lisp ACT-
R, there are many side-effects: situations where code in the 
model that explicitly does one thing also causes one or more 
other  actions  to  be  performed  that  are  not  explicitly 
represented in the model code. This leads to programming 
efficiency and makes certain parts of the theory automatic, 



but it can also be confusing to less experienced modelers, 
especially because these side-effects are subject to change 
between  versions  of  ACT-R.   Instead,  we  decided  to  be 
more  explicit,  and  possibly  less  efficient,  by  eliminating 
side  effects  and  requiring  the  modeler  to  specify  what 
actions are happening at each stage.  

Also, we have not re-implemented the complete ACT-R 
perceptual-motor  system  (ACT-R/PM)  and  we  have  not 
fully re-implemented production compilation, so we will not 
be discussing these in detail. Since we have not examined 
these  aspects,  it  is  possible  that  they  contain  some 
exceptions to our interpretation of the ACT-R theory, which 
is based primarily on the overall computational architecture, 
the production system and the declarative memory system. 
Also, although our picture of the ACT-R theory is based on 
the Lisp code, it is still our interpretation, so we make no 
claims that it fits with official ACT-R orthodoxy. 

The description is divided into three parts. The first part 
describes the system that allows the modules of ACT-R to 
communicate,  the second part  describes the modules,  and 
the third part describes additional functions that are required 
for it all to run.

Communication between Modules
ACT-R is a modular theory of mind. That is, it treats the 
mind as being composed of distinct modules that exist for 
particular functions. This being the case, the modules need 
to communicate to each other using a common mechanism. 
We  chose  to  describe  this  communication  system  first, 
rather than following the approach taken by other papers on 
ACT-R,  which  tend  to  start  with  the  production  system 
module, because we believe this aspect of ACT-R is under 
appreciated.

Chunks
In  ACT-R  the  various  components  of  the  architecture 
communicate  using  a  simple  symbolic  representation 
system, called a chunk.  Each chunk has a number of slots, 
each of which contains a single symbol.  These symbols can 
represent anything (including other chunks), but do not have 
inherent semantic value.  As a guideline, it is recommended 
that chunks have a small number of slots. Miller's number of 
7±2  is  recommended  as  an  upper  limit  (Anderson  & 
Lebiere, 1998), although this is not enforced.

To do anything with the slots of chunks, there must be a 
way to distinguish between them.  In Lisp ACT-R this is 
done by giving each slot a name.  Python ACT-R allows for 
this,  but  the  default  is  for  slots  to  be  distinguished  by 
position  instead.   For  example,  the  following  text  shows 
how a chunk representing a large,  friendly dog might  be 
represented in Lisp ACT-R and Python ACT-R. Note that 
we will use the Python ACT-R syntax throughout this paper.
 Lisp:  (chunk isa dog size large manner friendly)
 Python: chunk='dog large friendly'
In  Lisp  ACT-R,  one  particular  slot  is  treated  differently 
from the other slots.  The isa slot (the first one in the above 
example)  is  meant  to  indicate  what  type of  chunk  it  is. 
Chunk matching (as described later) to the isa slot used to 
be necessary for Lisp ACT-R to work, but this is no longer 

required in ACT-R 6. This change suggests that the special 
treatment of the  isa slot is no longer a core component of 
the ACT-R theory,  so we have not  included it  in Python 
ACT-R as a computationally enforced modeling constraint.

Buffers
The  other  component  used  for  communication  between 
modules is the buffer system. Buffers are capable of holding 
only one chunk at a time. Modules can place a chunk into a 
buffer, modify the value of slots of a chunk, or clear the 
buffer. They can also retrieve a copy of a chunk in a buffer. 
All of these actions are performed instantly. Importantly, the 
chunk it contains is a  copy of the original chunk, meaning 
that  changes  to  the  contents  of  the  buffer  do  not  alter 
original  chunk.  Taken  together,  the  buffers  create  a 
representation  of  what  might  be  called  context.  That  is, 
because they hold the most recent output of each module, 
they more or less collectively represent the current state of 
the  whole  system.  This  represents  a  strong  claim  of  the 
ACT-R theory, that the state of the system is represented by 
a limited number of chunks in the buffers. Also, the buffers 
are considered to be physically separate from other ACT-R 
modules (Anderson et al, 2003).  This means that the buffers 
represent particular areas in the brain. 

Chunk Matching
One  of  the  fundamental  mechanisms  for  working  with 
chunks is to be able to find  matches.  There are two ways 
this is used; first, to examine the current context (as defined 
by the contents of the buffers) to determine what action to 
take  next,  and  second  to  search  for  a  particular  chunk 
among a large collection of chunks (such as might be stored 
in  declarative  memory).   The  details  of  such  usage  are 
described  later,  in  the  sections  about  the  appropriate 
modules.  However, the fundamental mechanism is common 
across these situations.

In all  cases,  the  matching process  involves  determining 
whether or not  a particular chunk matches to a particular 
pattern. A pattern is a chunk whose slots contain matching 
rules, rather than actual contents.  A pattern matches with a 
given chunk if each of the slots in the pattern has a rule that 
matches with the contents of the corresponding slot in the 
chunk.

There  are  three  matching  rules1.   The  first  is  an  exact 
match, where the pattern slot indicates the exact content that 
must be in the chunk slot.  Second is a 'not' match, where 
the pattern indicates a value that the slot cannot have.  In the 
python syntax we use a ! to indicate the 'not' match, so the 
pattern  'dog  !small  friendly' would  match  with  the 
chunk  'dog  large  friendly' but  not  'dog  small 
friendly' or  'dog large vicious'.  The third matching 
rule matches to the situation of having no chunk at all.  This 
handles the special case of matching to an empty buffer.  

Also important for the matching process is the idea of a 
variable.  This is an arbitrary label that can take on different 
values when it is placed in the slot of a pattern.  The first 

1There  are  modules  that  have  other  sorts  of  matches,  such  as 
numerical comparisons.  These module-specific additions are not 
necessary for implementing the core theory of ACT-R.



time a variable is used within a match, its value is bound to 
the value in the corresponding slot. In Python ACT-R, we 
use a ? to indicate variables.  For example, given the chunk 
'dog  large  friendly' and  the  pattern  'dog  ?size 
friendly', the variable ?size would be bound to the value 
large.   Once  a  variable  is  bound,  further  uses  of  that 
variable  within  that  context  must  have  the  same  value. 
Thus, the pattern 'cat ?size sleepy' would now match to 
the  chunk  'cat  large  sleepy' but  not  'cat  small 
sleepy' because  the  variable  ?size has  been  bound  to 
large.  One can also use an  ! to indicate a not-match for 
variables (such as 'cat !?size sleepy').

Matching patterns are directed at specific buffers. Every 
chunk/pattern  pair  must  match  for  there  to  be  an  overall 
match,  and  the  variable  binding  system works  across  all 
patterns. For example, if the matching pattern was: 
 buf1='dog ?size friendly',buf2='cat ?size sleepy'
it would match to either of the following buffer contents:
 buf1='dog large friendly',buf2='cat large sleepy'
 buf2='dog small friendly',buf2='cat small sleepy'
but would not match in this case:
 buf3='dog large friendly',buf2='cat small sleepy'
The variables and matching rules can be combined in any 
manner, including having multiple rules for the same slot (in 
which case all rules must match; the main use for this would 
be multiple 'not' matches, e.g., to match to an animal that is 
not a dog and not a cat). 

Partial Matching
While  the  above  description  handles  the  majority  of  the 
pattern  matching  ability  in  ACT-R,  there  is  one  further 
optional complication.  There is a mechanism called partial  
matching that must be considered when implementing the 
chunk matching system.  With partial matching it is possible 
to  indicate  that  certain  chunk slots do not  have to  match 
their corresponding slot in the pattern for a match to occur. 
This  mechanism  is  only  currently  used  by  the  ACT-R 
declarative  memory  but  it  requires  such  tight  integration 
with  the  general  chunk  matching  system  that  its 
functionality is best defined there.

With partial matching, the matching system will not just 
indicate whether or not a particular chunk matches the given 
pattern,  but  it  will  also  indicate  a  numerical  matching 
penalty.   To configure this,  each slot  gets  a  value  P that 
indicates  how important  it  is  to  match.   This  is  either  a 
numerical value, or a special value that ensures that partial 
matching does not apply to this slot.  This  P value is set 
based on the name of the slot, can be set by the modeler. 
The  calculation  of  the matching  penalty  is  then  a  simple 
sum.

Here, k represents each slot of a chunk in turn.  M is an 
indication  as  to  whether  or  not  the  value  in  the  chunk 
matches what was expected by the pattern's matching rule. 
This value is 0 if it does match, and defaults to 1 if it does 
not  match.   This  value  can  also  be  set  for  particular 

combinations  of  values.  For  example,  a  modeller  might 
indicate that a chunk value of 'pink' might only give a 0.5 
penalty when the pattern is trying to match on 'red'.  The 
resulting penalty value can then be made use of by whatever 
module is performing a match.  In the case of declarative 
memory, this value is subtracted from the activation level 
(described later) of the chunk.

Modules
Modules  in  ACT-R  represent  modules  in  the  brain. 
Therefore, like the buffers, there is an expectation that they 
correspond to brain areas. ACT-R theory, therefore, divides 
the  brain  in  two  types  of  systems:  functional  systems 
(modules) and communication systems (buffers). The small 
chunk  size  recommended  for  the  buffers  can  be  seen  as 
representing  limited  channels  of  communication  between 
the  modules.  Modules  are  implemented  such  that  when 
conditions  require  the  use  of  a  module  it  is  activated 
instantaneously,  in  simulated  time  (obviously  this  takes 
some amount of computational time but it is not added to 
the simulated time). Once activated, modules calculate the 
total cost in time for the action they are going to do. Once 
this  amount  of  time  has  passed  from  when  they  were 
activated the action is  instantaneously (in simulated time) 
carried out. All modules and buffers operate in parallel.

Production System
The ACT-R production system contains a collection of  if-
then rules  for  accomplishing  tasks  and  coordinating 
cognition,  perception and  motor  actions.   The  production 
system's  job  is  to  determine  what  production  to  fire (i.e. 
what action to carry out) at any given moment.  Firing takes 
50 milliseconds of time, and only one production can fire at 
a  time.   If  no productions  can fire,  then the system does 
nothing.  The productions are initially hand-designed by the 
modeler based on their theory as to how a particular task is 
performed,  but  the  system can  generate  new productions 
through the production compilation mechanism (discussed 
later).

The  if part of a production (referred to as the Left-Hand 
Side in the ACT-R literature)  is  a  collection of matching 
patterns,  as  described  above.  Whenever  these  patterns 
match, the production can fire.  Productions can be set  to 
match on all the buffers or only a subset. Overall, this forms 
a constraint  that any information being used for decision-
making by the production system must be present in one of 
the buffers in the system. 

In  addition  to  this,  the  if conditions  can  also  include 
matches  to  the  state  of  a  module.  To  accomplish  this,  a 
module can include a separate buffer that holds information 
about its  state.   The particular  slots  and contents for this 
state buffer are specific to each module, but would include 
information  such  as  whether  the  module  is  currently 
performing an action.

The then part of the rule (the Right-Hand Side) consists of 
a  series  of  actions  to  be  taken when the  rule  fires.   The 
actions are commands for the other modules or buffers. In 
the  case  of  buffers,  commands  can  include  setting  or 
changing  the  values  of  chunks  within  the  buffers  (or 
emptying the buffer).  For modules, the commands (referred 
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to as  requests) can trigger modules to perform any action 
that a module can do.  ACT-R theory implies that there are 
restrictions as to how many of different sorts of actions may 
be performed on the right-hand side (e.g. one cannot make 
more than one request to declarative memory at a time).   

Any bound variable from the  if part can be used in the 
then part of the production, but after the production is fired 
the bound variable is discarded. This means that the power 
of  using  variables  is  limited  in  time  and  in  space  (i.e., 
variables  created  within  the  productions  system  module 
cannot be used outside of it). 

In  the  implementation  of  this  process,  the  production 
system  instantaneously finds all the matching productions. 
This may require actual computation time, but it does not 
affect the elapsed simulation time (i.e. no other actions are 
happening  while  the  search  for  matching  productions 
occurs).  If  a match is  found, then the production system 
waits for 50 milliseconds. During this 50 milliseconds, the 
other  modules  may  perform  various  actions  (such  as 
retrieving  chunks  from  declarative  memory,  or  moving 
attention in the visual system).  After this, all the commands 
on the then side of the production are executed.  This is also 
treated  as  an  instantaneous action.  However,  the  requests 
generally  will  not  be  immediately  carried  out  as  each 
module calculates the time delay for the actions. Once the 
requests are made, the production system searches again for 
new productions to fire.

If no productions match, then the production system does 
nothing.  However, the moment a buffer's content  changes 
such  that  a  production  could  fire,  the  production  system 
notices  this  and  readies  that  production  to  fire  50 
milliseconds  later.   The  production  system  must  thus 
perform its search for matching patterns any time there is a 
change to the buffers and it is not currently waiting to fire a 
previously matching production. 

As  far  as  we  can  see,  the  production  system  must  also 
guarantee that  the contents  of  the buffer  are still  a  valid  
match after the 50 millisecond delay.  That is, even if the 
contents of the buffers have changed since the beginning of 
the 50 millisecond delay, the changes must not be ones that 
affect  the  matching,  otherwise  the  production  could  be 
inappropriate and could also crash the system. In Lisp ACT-
R it is unclear to us whether the pattern must match at all  
times within the 50 millisecond time frame, or just at the 
beginning  and  end.   Also,  it  is  unclear  if  the  production 
system restarts  immediately upon a buffer change, or if  it 
waits until the 50 milliseconds are over.  If this occurs in 
Python ACT-R the production selection process is restarted 
without firing the previously selected production.

Another issue is that in Lisp ACT-R requests are sent to 
modules by placing the requests in a buffer associated with 
the module, whereas in Python ACT-R the requests are sent 
directly to the module.   Using the buffer  in Lisp ACT-R 
does not impose any time delay, so the only constraint it 
imposes is that the request should be a chunk, and thus of 
limited size. This constraint is no different for Python ACT-
R, and is not enforced in either of them. There is thus an 
asymmetry in the use of buffers; they are needed for storing 
data from the modules, as this data needs to persist across 

time.  However, messages telling the modules to perform 
actions do not need to persist, and so do not need a storage 
location.

Production Conflict Resolution
The one issue we have not addressed thus far is what to do 
when multiple productions match.  Since only one can fire 
at a time, there needs to be a method for choosing which 
one.  In ACT-R, this is done by estimating a production's 
utility.   Whichever  matching  production  has  the  highest 
utility is the one that will fire. The standard approach for 
calculating utility is based on the following formula:

The three parameters are: the probability that the production 
will lead to a success (P), the value of that outcome (G), and 
the amount of time that will occur between performing this 
production and achieving that outcome (C).  Both P and C 
are  specific  to  a  given  production,  and  G is  an  overall 
parameter for all productions.  ε is an optional random noise 
value with adjustable variance, usually set to 0.

It is possible to simply set each of these values manually, 
but it is desirable to create models that will learn values for 
these parameters on their own.  If this mechanism is used, 
then it  is necessary to indicate  successes and  failures.   In 
ACT-R,  this  is  done  by  marking  certain  productions  as 
indicating  success,  and  others  as  indicating  failure.   The 
system keeps track of the number of times that firing each 
production eventually leads to a success (s), and how many 
times it leads to a failure (f).  It also keeps track of the total 
amount  of  time between a  production firing  and  either  a 
success or a failure occurring (t).  Given this data, P and C 
are estimated as follows:

  

There are also alternate versions of these formulae, which 
include the ability to record multiple successes and failures 
at once (Gray, Schoelles, and Sims, 2005).  Since this is a 
developing area of research, Python ACT-R includes these 
variations,  and  makes  it  easy  to  create  and  modify 
mechanisms for adjusting the utility of productions.

As  a  final  note,  ACT-R  also  defines  a  system for  the 
generation of new productions out of old ones.  Here, two 
productions  are  combined  into  a  single  production  that 
performs  both  actions.   Importantly,  this  is  only  done  in 
situations where the two productions would have fired one  
after the other.  This mechanism is complex enough to take 
into account situations where the second production fires as 
a  result  of  a  declarative  memory  retrieval  (as  will  be 
discussed in the next section), and so is meant to model the 
transition from having to explicitly recall what to do next to 
simply  automatically  performing  that  action.   A  Python 
ACT-R version of this mechanism is still being developed. 

Declarative Memory
The declarative memory system in ACT-R is a module for 
storing  and  retrieving  chunks.   There  is  no  limit  on  its 
capacity,  other  than  its  mechanism  for  making  chunks 
harder to retrieve the less often they are used.
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Adding  a  chunk  immediately  places  it  into  whatever 
internal  storage  mechanism  is  being  used  in  the  given 
implementation.  If two identical chunks (i.e. ones with all 
slots with identical values) are added, then the system treats 
them as the same chunk.  This mechanism is called merging 
and is used to strengthen the activation of the chunks, as 
described later.

In Lisp ACT-R, chunks are normally added at the very 
beginning  of  the  model  (representing  background 
knowledge).  There are then various rules indicating when 
the chunks in various buffers should be automatically added 
to declarative memory. As discussed above, in Python ACT-
R the modeler needs to explicitly state when chunks should 
be added. That is, in Python ACT-R we rely on the modeler 
rather than the software to implement this aspect of ACT-R 
theory. This makes it  easier to write “illegal” code, but it 
also  makes  it  easier  to  experiment  with  this  part  of  the 
theory.

When requesting a retrieval from memory, a pattern (as 
described above) is given to the module.  The declarative 
memory system will then find the chunk that matches the 
pattern and has the highest activation value, and place it into 
a  particular  buffer  known  as  the  retrieval buffer.   The 
amount of simulation time taken is based on the following 
formula

Here, F is a parameter called the latency factor, which is set 
by the modeler.   A is the  activation of the chunk.  If  no 
chunks have an activation higher than the threshold (which 
is also set by the modeler), then no chunk is placed in the 
buffer.2  The amount of  time this takes is  determined by 
substituting the threshold into the above equation instead of 
A.

There  are  a  variety  of  mechanisms  in  ACT-R  for 
determining the activation of the chunks.  They can be set 
manually, but this practice is very rare.  Almost always they 
have  a  certain  amount  of  random  noise  associated  with 
them.  The  main  method  for  adjusting  the  activation  is 
known  as  base-level  learning.   Here,  the  activation  is 
adjusted based on the use of the chunk.  When a chunk is 
used  (i.e.  whenever  an  identical  chunk  is  added),  this 
increases  its  activation.  Conversely,  the  activation  level 
gradually decreases when it is not used.  Exactly how this 
process is best modeled is a subject of much study, resulting 
in a number of different approaches:

 

The first formula is based on extensive experimental results 
(summarized in Anderson & Lebiere, 1998).  ti represents 

2If this occurs, the module is said to be in an error state, which is 
one of the slots in its implicit state buffer (along with whether or 
not it is busy), as described earlier.  This error slot will continue to 
be true until the next retrieval request is made.

the  times  in  the  past  that  this  chunk  has  been  added 
(measured  in  seconds  before  now).   The  parameter  d 
controls how quickly the activation decays, and is always 
set to 0.5 to match known human data.  The second formula 
is an approximation of the first, where  n is the number of 
times in the past it has been used, and  L is the amount of 
time since the chunk was first created.  This formula tends 
to  be  used  for  reasons  of  computational  efficiency,  but 
recent results (Sims & Gray, 2004) have shown that it gives 
significantly  different  results  from  the  first  equation  in 
certain situations and is therefore problematic.  

The  third  formula  is  a  more  recent  system  created  by 
Pavlik and Anderson (2005) that allows d to vary based on 
the current activation of the chunk.  Using a chunk when it 
has a high activation leads to faster decay, while using it 
when it  has  low activation  gives  less  decay.   Instead  of 
specifying d, this requires specifying two parameters, c and 
a.   The resulting behaviour more closely matches spacing 
effect phenomena in memory studies (Pavlik & Anderson, 
2005). All of these are available in Python ACT-R.

Additional Functionality
There remains one major aspect of ACT-R that has not been 
described,  and  which  tends  to  receive  relatively  little 
attention.   This  aspect  is  the  overall  framework  which 
allows researchers to define ACT-R models, controls how 
the  components  within  those  modules  interact,  and 
generates data which can then be compared to data from the 
real-life situation being modeled.  Taken together, this can 
be seen as the  operating system that the model is defined 
within.

The goal of this sort of background framework is to be as 
theory-neutral as possible.  The particular decisions made in 
implementing it should have no impact on the predictions of 
the model.  Indeed, if it is discovered that there are aspects 
which do affect the model, then we need to identify those 
aspects  and  analyze  them  to  combine  them  with  the 
explicitly  described  theory  (for  an  example  of  this,  see 
Axtell et al, 1996).

The first component of the framework is how models are 
defined.   In  Lisp  ACT-R,  this  is  done  by  defining  a 
specialized  language  using  the  Lisp  Macro  system.   In 
Python ACT-R, the built-in class definition system is used, 
with functions for productions and objects for the various 
components.   Each  allows  for  the  customization  of  the 
model  in  different  ways  (Lisp  by  a  large  collection  of 
parameters, and Python by declaring which modules are to 
be  used).   Each  of  these  approaches  has  advantages  and 
drawbacks, but they are importantly functionally identical.

The next consideration is the scheduler, which allows for 
the  simulation  of  multiple  parallel  modules.  Any parallel 
cognitive model (including ACT-R) requires a method for 
saying that a particular action will take place at a particular 
time in the future, and having that time be tracked internally, 
rather than using the actual time.3  

3This is generally not a system that exists in most programming 
languages,  although it  can be implemented easily  using modern 
techniques such as greenlets or continuations.
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Two other important components are the logging system 
(which  identifies  what  is  happening  within  the  model, 
allowing  for  analysis  of  the  temporal  order  of  internal 
events) and the mechanism for connecting an ACT-R model 
to an environment.  These can get technically complicated, 
but. as long as they work, they do not have any impact on 
experimental results. 

Implementation
All of the afore-mentioned ACT-R components have been 
implemented  in  the  current  version  of  Python  ACT-R 
(Stewart & West, 2005) available at <http://ccmlab.ca/actr>. 
Also included are basic visual attention and motor modules, 
and an SOS-based mechanism (West and Emond, 2002) for 
easily  creating  specialized  sensor  and  motor  modules  for 
custom environments.

As described in (Axtell et al, 1996), computational models 
can  best  be  shown  to  be  compatible  with  each  other  by 
showing  that  their  resulting  data  is  statistically 
indistinguishable.  To validate Python ACT-R, we are thus 
collecting  a  variety  of  Lisp  ACT-R  models,  creating 
equivalent  Python  ACT-R  models,  and  comparing  their 
results. We have started our comparisons with the models in 
the official ACT-R tutorials.  We have found that Python 
ACT-R does not  differ  from Lisp ACT-R for  any of  the 
models  in  tutorial  units  1,  2,  4,  and 5 (unit  3  deals  with 
details of the vision system, and tests of units 6 and 7 are 
underway).

Conclusions
Through this  project,  we have been forced to  re-examine 
what  ACT-R  actually  is.   Deconstructing  and  re-
implementing it has highlighted for us the various different 
uses of ACT-R. First, ACT-R is a comprehensive theory of 
human  cognition,  including  how  cognition  interacts  with 
other mental processes and with the environment. From this 
perspective, ACT-R specifies what modules exist, how they 
work, and how they interact with each other. This includes 
very  specific  claims  expressed  as  mathematical  formulas, 
such  as  the  PG-C utility  learning  rule  or  the  declarative 
memory base level activation formula.  Importantly, this is a 
work in progress; as more evidence accumulates, formulas 
are modified and modules are added. Thus ACT-R is not a 
fixed theory about cognition. 

In terms of understanding such an extensive theory,  the 
modular structure is important as it allows the overall theory 
to  be  broken  down  and  understood  by  examining  the 
individual  modules.  In this  sense,  each module is  itself  a 
theory  about  how  that  aspect  of  cognition  works.  In  re-
implementing ACT-R we did not  copy the Lisp code but 
rather inserted the ACT-R formulas into the Python ACT-R 
modules. The fact that this worked shows that the ACT-R 
modeling system is what the ACT-R theory claims it to be.

Another  way  to  view ACT-R  is  as  a  tool  for  building 
computational  models  of  cognitive  behavior.  That  is,  the 
structure  of  the  code  allows  for  the  development  of 
cognitive  architectures  based  on  the  principles  and 
limitations described in the first section on communication. 
Modules  can  be  added  or  deleted,  as  can  the  routes  of 
communication  between the  modules.  This  can  provide  a 

valuable test bed for psychological theories, which tend to 
be about modules. The ACT-R modular system provides a 
structure for embedding these theories within a larger theory 
of the mind to (1) see how that integration could work and 
(2) be able see the effects of the module in complex tasks 
that  require the use of other  modules.  The other  modules 
could  be  the  ACT-R  modules,  modified  versions  of  the 
ACT-R modules, or completely new modules. For example, 
there is no reason why a module could not be implemented 
as a neural network or any other learning system.
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