
Deconstructing ACT-R
Terrence C. Stewart (terry@ccmlab.ca)

Robert L. West (robert_west@carleton.ca)
Carleton Cognitive Modelling Lab

Institute of Cognitive Science, Carleton University
1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 Canada

Abstract

To broaden the use and understanding of ACT-R within the
cognitive science community, we have attempted to express
the system in terms of a large number of simple, interacting
components. We re-implemented each of these components
from the set of formulas that make up ACT-R theory, but used
an alternate syntax for the expression and simulation of
cognitive models. Care was taken to ensure the new syntax is
as explicit as possible in terms of the claims being made and
the processes occurring within the model. Generally, people
view ACT-R as a production system; however, in
deconstructing it we found that it is significantly more than
this.

Introduction
Cognitive modeling, as a science, involves not only building
and evaluating models, but also effectively communicating
the results and the implications of those results.
Communication becomes increasingly more difficult as the
audience knows less about the particular approach that was
used. It is easier for neural network people to communicate
to other neural network people than it is for them to
communicate to production system people, and it is even
harder to communicate to people who do not use cognitive
modeling at all. In particular, we have found that non-
modelers have a very poor understanding of the concept of
cognitive architectures.

The concept of a cognitive architecture was put forward
by Newell (1990) to deal with the problem that the
behavioral sciences, and psychology in particular, study the
mind by dividing it up into specialized sub-fields, without
attempting to assemble the results into an integrated model
of the mind. Cognitive architectures are meant to be a way
to do this. Anderson (1993) further clarified the concept of
cognitive architectures with his distinction between
frameworks, theories, and models; where frameworks are
general claims about cognition, theories are specific
formulations about how the frameworks operate, and
models are the theories applied to specific tasks and
behaviors. Therefore, cognitive architectures are theories
about how the mind integrates different processes to
produce thoughts and behaviors.

Because cognitive architectures tend to be complex, they
are often expressed as computer programs. Within the
cognitive modeling community this is generally regarded as
a good thing because it means that the theory is precisely
specified, avoiding ambiguity and vague statements.
However, outside the community it is often viewed with
suspicion. Indeed, it is often felt that modelers merely write
computer code that mimics the human data (i.e., that
modeling is merely descriptive). In order for non-modelers

to be convinced that this is not happening, we need clear
descriptions of the architectures and how they are used.

Furthermore, it needs to be clear that while cognitive
architectures provide a language for writing the models, the
architectures also constrain model building so that the
resulting models are products of the theory behind the
architecture. However, it is generally the case that the only
people with enough knowledge to check this are the people
who developed the system in the first place. Also, the initial
implementation of the architecture tends to be tied to the
language and programming style of these researchers.

Python ACT-R
We believe that re-implementing cognitive architectures is
an effective way to demonstrate and clarify exactly what
they do. This effect is in addition to the advantages for
error-finding (as mentioned in Erev & Barron, 2005), and is
related to model aligning (Axtell et al, 1996). To illustrate
this we give an overview of Python ACT-R, which is our re-
implementation of the standard Lisp ACT-R, using the
Python language.

The Python ACT-R project was initially undertaken to
gain a more complete understanding of the ACT-R theory.
Creating such a system also brings to light aspects of ACT-
R which may not have received much attention, and assures
us that there are no hidden aspects influencing results. In
doing this, we made Python ACT-R different from Lisp
ACT-R in three major ways.

First, we attempted to break ACT-R into individual
components, each small enough to be described by a simple
algorithm. These components were implemented separately
and then combined into a full ACT-R system, making each
component distinct and easily accessible. Interestingly, this
means a modeler can assemble different variants of the
ACT-R that they wish to use while building their models.
This is in contrast to the Lisp ACT-R process of turning
features on or off.

The second major difference was that we modified the
syntax for writing ACT-R models. This was originally done
to ease the integration of ACT-R into the Python language.
However, as a byproduct, it also made the distinction
between the core ACT-R theory and the particular syntax
used to write models more clear. The result is a system that
is functionally equivalent to Lisp ACT-R, but does not make
the same implementation and syntax choices.

Our third difference was to be as explicit as possible in
terms of what is happening within the model. In Lisp ACT-
R, there are many side-effects: situations where code in the
model that explicitly does one thing also causes one or more
other actions to be performed that are not explicitly
represented in the model code. This leads to programming
efficiency and makes certain parts of the theory automatic,

but it can also be confusing to less experienced modelers,
especially because these side-effects are subject to change
between versions of ACT-R. Instead, we decided to be
more explicit, and possibly less efficient, by eliminating
side effects and requiring the modeler to specify what
actions are happening at each stage.

Also, we have not re-implemented the complete ACT-R
perceptual-motor system (ACT-R/PM) and we have not
fully re-implemented production compilation, so we will not
be discussing these in detail. Since we have not examined
these aspects, it is possible that they contain some
exceptions to our interpretation of the ACT-R theory, which
is based primarily on the overall computational architecture,
the production system and the declarative memory system.
Also, although our picture of the ACT-R theory is based on
the Lisp code, it is still our interpretation, so we make no
claims that it fits with official ACT-R orthodoxy.

The description is divided into three parts. The first part
describes the system that allows the modules of ACT-R to
communicate, the second part describes the modules, and
the third part describes additional functions that are required
for it all to run.

Communication between Modules
ACT-R is a modular theory of mind. That is, it treats the
mind as being composed of distinct modules that exist for
particular functions. This being the case, the modules need
to communicate to each other using a common mechanism.
We chose to describe this communication system first,
rather than following the approach taken by other papers on
ACT-R, which tend to start with the production system
module, because we believe this aspect of ACT-R is under
appreciated.

Chunks
In ACT-R the various components of the architecture
communicate using a simple symbolic representation
system, called a chunk. Each chunk has a number of slots,
each of which contains a single symbol. These symbols can
represent anything (including other chunks), but do not have
inherent semantic value. As a guideline, it is recommended
that chunks have a small number of slots. Miller's number of
7±2 is recommended as an upper limit (Anderson &
Lebiere, 1998), although this is not enforced.

To do anything with the slots of chunks, there must be a
way to distinguish between them. In Lisp ACT-R this is
done by giving each slot a name. Python ACT-R allows for
this, but the default is for slots to be distinguished by
position instead. For example, the following text shows
how a chunk representing a large, friendly dog might be
represented in Lisp ACT-R and Python ACT-R. Note that
we will use the Python ACT-R syntax throughout this paper.
 Lisp: (chunk isa dog size large manner friendly)
 Python: chunk='dog large friendly'
In Lisp ACT-R, one particular slot is treated differently
from the other slots. The isa slot (the first one in the above
example) is meant to indicate what type of chunk it is.
Chunk matching (as described later) to the isa slot used to
be necessary for Lisp ACT-R to work, but this is no longer

required in ACT-R 6. This change suggests that the special
treatment of the isa slot is no longer a core component of
the ACT-R theory, so we have not included it in Python
ACT-R as a computationally enforced modeling constraint.

Buffers
The other component used for communication between
modules is the buffer system. Buffers are capable of holding
only one chunk at a time. Modules can place a chunk into a
buffer, modify the value of slots of a chunk, or clear the
buffer. They can also retrieve a copy of a chunk in a buffer.
All of these actions are performed instantly. Importantly, the
chunk it contains is a copy of the original chunk, meaning
that changes to the contents of the buffer do not alter
original chunk. Taken together, the buffers create a
representation of what might be called context. That is,
because they hold the most recent output of each module,
they more or less collectively represent the current state of
the whole system. This represents a strong claim of the
ACT-R theory, that the state of the system is represented by
a limited number of chunks in the buffers. Also, the buffers
are considered to be physically separate from other ACT-R
modules (Anderson et al, 2003). This means that the buffers
represent particular areas in the brain.

Chunk Matching
One of the fundamental mechanisms for working with
chunks is to be able to find matches. There are two ways
this is used; first, to examine the current context (as defined
by the contents of the buffers) to determine what action to
take next, and second to search for a particular chunk
among a large collection of chunks (such as might be stored
in declarative memory). The details of such usage are
described later, in the sections about the appropriate
modules. However, the fundamental mechanism is common
across these situations.

In all cases, the matching process involves determining
whether or not a particular chunk matches to a particular
pattern. A pattern is a chunk whose slots contain matching
rules, rather than actual contents. A pattern matches with a
given chunk if each of the slots in the pattern has a rule that
matches with the contents of the corresponding slot in the
chunk.

There are three matching rules1. The first is an exact
match, where the pattern slot indicates the exact content that
must be in the chunk slot. Second is a 'not' match, where
the pattern indicates a value that the slot cannot have. In the
python syntax we use a ! to indicate the 'not' match, so the
pattern 'dog !small friendly' would match with the
chunk 'dog large friendly' but not 'dog small
friendly' or 'dog large vicious'. The third matching
rule matches to the situation of having no chunk at all. This
handles the special case of matching to an empty buffer.

Also important for the matching process is the idea of a
variable. This is an arbitrary label that can take on different
values when it is placed in the slot of a pattern. The first

1There are modules that have other sorts of matches, such as
numerical comparisons. These module-specific additions are not
necessary for implementing the core theory of ACT-R.

time a variable is used within a match, its value is bound to
the value in the corresponding slot. In Python ACT-R, we
use a ? to indicate variables. For example, given the chunk
'dog large friendly' and the pattern 'dog ?size
friendly', the variable ?size would be bound to the value
large. Once a variable is bound, further uses of that
variable within that context must have the same value.
Thus, the pattern 'cat ?size sleepy' would now match to
the chunk 'cat large sleepy' but not 'cat small
sleepy' because the variable ?size has been bound to
large. One can also use an ! to indicate a not-match for
variables (such as 'cat !?size sleepy').

Matching patterns are directed at specific buffers. Every
chunk/pattern pair must match for there to be an overall
match, and the variable binding system works across all
patterns. For example, if the matching pattern was:
 buf1='dog ?size friendly',buf2='cat ?size sleepy'
it would match to either of the following buffer contents:
 buf1='dog large friendly',buf2='cat large sleepy'
 buf2='dog small friendly',buf2='cat small sleepy'
but would not match in this case:
 buf3='dog large friendly',buf2='cat small sleepy'
The variables and matching rules can be combined in any
manner, including having multiple rules for the same slot (in
which case all rules must match; the main use for this would
be multiple 'not' matches, e.g., to match to an animal that is
not a dog and not a cat).

Partial Matching
While the above description handles the majority of the
pattern matching ability in ACT-R, there is one further
optional complication. There is a mechanism called partial
matching that must be considered when implementing the
chunk matching system. With partial matching it is possible
to indicate that certain chunk slots do not have to match
their corresponding slot in the pattern for a match to occur.
This mechanism is only currently used by the ACT-R
declarative memory but it requires such tight integration
with the general chunk matching system that its
functionality is best defined there.

With partial matching, the matching system will not just
indicate whether or not a particular chunk matches the given
pattern, but it will also indicate a numerical matching
penalty. To configure this, each slot gets a value P that
indicates how important it is to match. This is either a
numerical value, or a special value that ensures that partial
matching does not apply to this slot. This P value is set
based on the name of the slot, can be set by the modeler.
The calculation of the matching penalty is then a simple
sum.

Here, k represents each slot of a chunk in turn. M is an
indication as to whether or not the value in the chunk
matches what was expected by the pattern's matching rule.
This value is 0 if it does match, and defaults to 1 if it does
not match. This value can also be set for particular

combinations of values. For example, a modeller might
indicate that a chunk value of 'pink' might only give a 0.5
penalty when the pattern is trying to match on 'red'. The
resulting penalty value can then be made use of by whatever
module is performing a match. In the case of declarative
memory, this value is subtracted from the activation level
(described later) of the chunk.

Modules
Modules in ACT-R represent modules in the brain.
Therefore, like the buffers, there is an expectation that they
correspond to brain areas. ACT-R theory, therefore, divides
the brain in two types of systems: functional systems
(modules) and communication systems (buffers). The small
chunk size recommended for the buffers can be seen as
representing limited channels of communication between
the modules. Modules are implemented such that when
conditions require the use of a module it is activated
instantaneously, in simulated time (obviously this takes
some amount of computational time but it is not added to
the simulated time). Once activated, modules calculate the
total cost in time for the action they are going to do. Once
this amount of time has passed from when they were
activated the action is instantaneously (in simulated time)
carried out. All modules and buffers operate in parallel.

Production System
The ACT-R production system contains a collection of if-
then rules for accomplishing tasks and coordinating
cognition, perception and motor actions. The production
system's job is to determine what production to fire (i.e.
what action to carry out) at any given moment. Firing takes
50 milliseconds of time, and only one production can fire at
a time. If no productions can fire, then the system does
nothing. The productions are initially hand-designed by the
modeler based on their theory as to how a particular task is
performed, but the system can generate new productions
through the production compilation mechanism (discussed
later).

The if part of a production (referred to as the Left-Hand
Side in the ACT-R literature) is a collection of matching
patterns, as described above. Whenever these patterns
match, the production can fire. Productions can be set to
match on all the buffers or only a subset. Overall, this forms
a constraint that any information being used for decision-
making by the production system must be present in one of
the buffers in the system.

In addition to this, the if conditions can also include
matches to the state of a module. To accomplish this, a
module can include a separate buffer that holds information
about its state. The particular slots and contents for this
state buffer are specific to each module, but would include
information such as whether the module is currently
performing an action.

The then part of the rule (the Right-Hand Side) consists of
a series of actions to be taken when the rule fires. The
actions are commands for the other modules or buffers. In
the case of buffers, commands can include setting or
changing the values of chunks within the buffers (or
emptying the buffer). For modules, the commands (referred

∑
k

Pk M k

to as requests) can trigger modules to perform any action
that a module can do. ACT-R theory implies that there are
restrictions as to how many of different sorts of actions may
be performed on the right-hand side (e.g. one cannot make
more than one request to declarative memory at a time).

Any bound variable from the if part can be used in the
then part of the production, but after the production is fired
the bound variable is discarded. This means that the power
of using variables is limited in time and in space (i.e.,
variables created within the productions system module
cannot be used outside of it).

In the implementation of this process, the production
system instantaneously finds all the matching productions.
This may require actual computation time, but it does not
affect the elapsed simulation time (i.e. no other actions are
happening while the search for matching productions
occurs). If a match is found, then the production system
waits for 50 milliseconds. During this 50 milliseconds, the
other modules may perform various actions (such as
retrieving chunks from declarative memory, or moving
attention in the visual system). After this, all the commands
on the then side of the production are executed. This is also
treated as an instantaneous action. However, the requests
generally will not be immediately carried out as each
module calculates the time delay for the actions. Once the
requests are made, the production system searches again for
new productions to fire.

If no productions match, then the production system does
nothing. However, the moment a buffer's content changes
such that a production could fire, the production system
notices this and readies that production to fire 50
milliseconds later. The production system must thus
perform its search for matching patterns any time there is a
change to the buffers and it is not currently waiting to fire a
previously matching production.

As far as we can see, the production system must also
guarantee that the contents of the buffer are still a valid
match after the 50 millisecond delay. That is, even if the
contents of the buffers have changed since the beginning of
the 50 millisecond delay, the changes must not be ones that
affect the matching, otherwise the production could be
inappropriate and could also crash the system. In Lisp ACT-
R it is unclear to us whether the pattern must match at all
times within the 50 millisecond time frame, or just at the
beginning and end. Also, it is unclear if the production
system restarts immediately upon a buffer change, or if it
waits until the 50 milliseconds are over. If this occurs in
Python ACT-R the production selection process is restarted
without firing the previously selected production.

Another issue is that in Lisp ACT-R requests are sent to
modules by placing the requests in a buffer associated with
the module, whereas in Python ACT-R the requests are sent
directly to the module. Using the buffer in Lisp ACT-R
does not impose any time delay, so the only constraint it
imposes is that the request should be a chunk, and thus of
limited size. This constraint is no different for Python ACT-
R, and is not enforced in either of them. There is thus an
asymmetry in the use of buffers; they are needed for storing
data from the modules, as this data needs to persist across

time. However, messages telling the modules to perform
actions do not need to persist, and so do not need a storage
location.

Production Conflict Resolution
The one issue we have not addressed thus far is what to do
when multiple productions match. Since only one can fire
at a time, there needs to be a method for choosing which
one. In ACT-R, this is done by estimating a production's
utility. Whichever matching production has the highest
utility is the one that will fire. The standard approach for
calculating utility is based on the following formula:

The three parameters are: the probability that the production
will lead to a success (P), the value of that outcome (G), and
the amount of time that will occur between performing this
production and achieving that outcome (C). Both P and C
are specific to a given production, and G is an overall
parameter for all productions. ε is an optional random noise
value with adjustable variance, usually set to 0.

It is possible to simply set each of these values manually,
but it is desirable to create models that will learn values for
these parameters on their own. If this mechanism is used,
then it is necessary to indicate successes and failures. In
ACT-R, this is done by marking certain productions as
indicating success, and others as indicating failure. The
system keeps track of the number of times that firing each
production eventually leads to a success (s), and how many
times it leads to a failure (f). It also keeps track of the total
amount of time between a production firing and either a
success or a failure occurring (t). Given this data, P and C
are estimated as follows:

There are also alternate versions of these formulae, which
include the ability to record multiple successes and failures
at once (Gray, Schoelles, and Sims, 2005). Since this is a
developing area of research, Python ACT-R includes these
variations, and makes it easy to create and modify
mechanisms for adjusting the utility of productions.

As a final note, ACT-R also defines a system for the
generation of new productions out of old ones. Here, two
productions are combined into a single production that
performs both actions. Importantly, this is only done in
situations where the two productions would have fired one
after the other. This mechanism is complex enough to take
into account situations where the second production fires as
a result of a declarative memory retrieval (as will be
discussed in the next section), and so is meant to model the
transition from having to explicitly recall what to do next to
simply automatically performing that action. A Python
ACT-R version of this mechanism is still being developed.

Declarative Memory
The declarative memory system in ACT-R is a module for
storing and retrieving chunks. There is no limit on its
capacity, other than its mechanism for making chunks
harder to retrieve the less often they are used.

U i=P i G−C i

P= s
s f C= t

s f

Adding a chunk immediately places it into whatever
internal storage mechanism is being used in the given
implementation. If two identical chunks (i.e. ones with all
slots with identical values) are added, then the system treats
them as the same chunk. This mechanism is called merging
and is used to strengthen the activation of the chunks, as
described later.

In Lisp ACT-R, chunks are normally added at the very
beginning of the model (representing background
knowledge). There are then various rules indicating when
the chunks in various buffers should be automatically added
to declarative memory. As discussed above, in Python ACT-
R the modeler needs to explicitly state when chunks should
be added. That is, in Python ACT-R we rely on the modeler
rather than the software to implement this aspect of ACT-R
theory. This makes it easier to write “illegal” code, but it
also makes it easier to experiment with this part of the
theory.

When requesting a retrieval from memory, a pattern (as
described above) is given to the module. The declarative
memory system will then find the chunk that matches the
pattern and has the highest activation value, and place it into
a particular buffer known as the retrieval buffer. The
amount of simulation time taken is based on the following
formula

Here, F is a parameter called the latency factor, which is set
by the modeler. A is the activation of the chunk. If no
chunks have an activation higher than the threshold (which
is also set by the modeler), then no chunk is placed in the
buffer.2 The amount of time this takes is determined by
substituting the threshold into the above equation instead of
A.

There are a variety of mechanisms in ACT-R for
determining the activation of the chunks. They can be set
manually, but this practice is very rare. Almost always they
have a certain amount of random noise associated with
them. The main method for adjusting the activation is
known as base-level learning. Here, the activation is
adjusted based on the use of the chunk. When a chunk is
used (i.e. whenever an identical chunk is added), this
increases its activation. Conversely, the activation level
gradually decreases when it is not used. Exactly how this
process is best modeled is a subject of much study, resulting
in a number of different approaches:

The first formula is based on extensive experimental results
(summarized in Anderson & Lebiere, 1998). ti represents

2If this occurs, the module is said to be in an error state, which is
one of the slots in its implicit state buffer (along with whether or
not it is busy), as described earlier. This error slot will continue to
be true until the next retrieval request is made.

the times in the past that this chunk has been added
(measured in seconds before now). The parameter d
controls how quickly the activation decays, and is always
set to 0.5 to match known human data. The second formula
is an approximation of the first, where n is the number of
times in the past it has been used, and L is the amount of
time since the chunk was first created. This formula tends
to be used for reasons of computational efficiency, but
recent results (Sims & Gray, 2004) have shown that it gives
significantly different results from the first equation in
certain situations and is therefore problematic.

The third formula is a more recent system created by
Pavlik and Anderson (2005) that allows d to vary based on
the current activation of the chunk. Using a chunk when it
has a high activation leads to faster decay, while using it
when it has low activation gives less decay. Instead of
specifying d, this requires specifying two parameters, c and
a. The resulting behaviour more closely matches spacing
effect phenomena in memory studies (Pavlik & Anderson,
2005). All of these are available in Python ACT-R.

Additional Functionality
There remains one major aspect of ACT-R that has not been
described, and which tends to receive relatively little
attention. This aspect is the overall framework which
allows researchers to define ACT-R models, controls how
the components within those modules interact, and
generates data which can then be compared to data from the
real-life situation being modeled. Taken together, this can
be seen as the operating system that the model is defined
within.

The goal of this sort of background framework is to be as
theory-neutral as possible. The particular decisions made in
implementing it should have no impact on the predictions of
the model. Indeed, if it is discovered that there are aspects
which do affect the model, then we need to identify those
aspects and analyze them to combine them with the
explicitly described theory (for an example of this, see
Axtell et al, 1996).

The first component of the framework is how models are
defined. In Lisp ACT-R, this is done by defining a
specialized language using the Lisp Macro system. In
Python ACT-R, the built-in class definition system is used,
with functions for productions and objects for the various
components. Each allows for the customization of the
model in different ways (Lisp by a large collection of
parameters, and Python by declaring which modules are to
be used). Each of these approaches has advantages and
drawbacks, but they are importantly functionally identical.

The next consideration is the scheduler, which allows for
the simulation of multiple parallel modules. Any parallel
cognitive model (including ACT-R) requires a method for
saying that a particular action will take place at a particular
time in the future, and having that time be tracked internally,
rather than using the actual time.3

3This is generally not a system that exists in most programming
languages, although it can be implemented easily using modern
techniques such as greenlets or continuations.

t=Fe−A

B=ln ∑ t i
−d

B=ln n
1−d

−d ln L

B=ln ∑ t i
−d i , d i=c e−Aa

Two other important components are the logging system
(which identifies what is happening within the model,
allowing for analysis of the temporal order of internal
events) and the mechanism for connecting an ACT-R model
to an environment. These can get technically complicated,
but. as long as they work, they do not have any impact on
experimental results.

Implementation
All of the afore-mentioned ACT-R components have been
implemented in the current version of Python ACT-R
(Stewart & West, 2005) available at <http://ccmlab.ca/actr>.
Also included are basic visual attention and motor modules,
and an SOS-based mechanism (West and Emond, 2002) for
easily creating specialized sensor and motor modules for
custom environments.

As described in (Axtell et al, 1996), computational models
can best be shown to be compatible with each other by
showing that their resulting data is statistically
indistinguishable. To validate Python ACT-R, we are thus
collecting a variety of Lisp ACT-R models, creating
equivalent Python ACT-R models, and comparing their
results. We have started our comparisons with the models in
the official ACT-R tutorials. We have found that Python
ACT-R does not differ from Lisp ACT-R for any of the
models in tutorial units 1, 2, 4, and 5 (unit 3 deals with
details of the vision system, and tests of units 6 and 7 are
underway).

Conclusions
Through this project, we have been forced to re-examine
what ACT-R actually is. Deconstructing and re-
implementing it has highlighted for us the various different
uses of ACT-R. First, ACT-R is a comprehensive theory of
human cognition, including how cognition interacts with
other mental processes and with the environment. From this
perspective, ACT-R specifies what modules exist, how they
work, and how they interact with each other. This includes
very specific claims expressed as mathematical formulas,
such as the PG-C utility learning rule or the declarative
memory base level activation formula. Importantly, this is a
work in progress; as more evidence accumulates, formulas
are modified and modules are added. Thus ACT-R is not a
fixed theory about cognition.

In terms of understanding such an extensive theory, the
modular structure is important as it allows the overall theory
to be broken down and understood by examining the
individual modules. In this sense, each module is itself a
theory about how that aspect of cognition works. In re-
implementing ACT-R we did not copy the Lisp code but
rather inserted the ACT-R formulas into the Python ACT-R
modules. The fact that this worked shows that the ACT-R
modeling system is what the ACT-R theory claims it to be.

Another way to view ACT-R is as a tool for building
computational models of cognitive behavior. That is, the
structure of the code allows for the development of
cognitive architectures based on the principles and
limitations described in the first section on communication.
Modules can be added or deleted, as can the routes of
communication between the modules. This can provide a

valuable test bed for psychological theories, which tend to
be about modules. The ACT-R modular system provides a
structure for embedding these theories within a larger theory
of the mind to (1) see how that integration could work and
(2) be able see the effects of the module in complex tasks
that require the use of other modules. The other modules
could be the ACT-R modules, modified versions of the
ACT-R modules, or completely new modules. For example,
there is no reason why a module could not be implemented
as a neural network or any other learning system.

Acknowledgments
Funding for this project was provided via a grant from the
Natural Sciences and Engineering Research Council of
Canada.

References
Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ:

Erlbaum.
Anderson, J. R., Qin, Y., Sohn, M-H., Stenger, V. A. &

Carter, C. S. (2003). An information-processing model of
the BOLD response in symbol manipulation tasks.
Psychonomic Bulletin & Review. 10, 241-261.

Axtell, R., Axelrod R., J.M. Epstein and M.D. Cohen
(1996), "Aligning Simulation Models: A Case Study and
Results", Computational and Mathematical Organization
Theory 1(2), pp. 123-141.

Erev, I. and Barron, G. (2005). On adaptation, maximization
and the value of a cognitive interpretation of the Law of
Effect. Psychological Review.

Gray, W. D., Schoelles, M. J., & Sims, C. R. (2005).
Adapting to the task environment: Explorations in
expected value. Cognitive Systems Research, 6(1), 27-40.

Newell, A. (1990). Unified Theories of Cognition. Harvard
University Press, Cambridge, Massachusetts.

Pavlik, P. I. & Anderson, J. R. (2005). Practice and
forgetting effects on vocabulary memory: An activation-
based model of the spacing effect. Cognitive Science, 29,
559-586.

Sims, C. R., & Gray, W. D. (2004). Episodic versus
semantic memory: An exploration of models of memory
decay in the serial attention paradigm. In M. C. Lovett, C.
D. Schunn, C. Lebiere & P. Munro (Eds.), 6th
International Conference on Cognitive Modeling–
ICCM2004. Pittsburgh, PA.

Stewart, T.C. & West, R. L. (2005) Python ACT-R: A New
Implementation and a New Syntax. 12th Annual ACT-R
Workshop

West, R. L., & Emond, B. (2002). Can cognitive modeling
improve rapid prototyping. Carleton University
Cognitive Science Technical Report 2002-05.

