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ABSTRACT11

Summary. A key step in the transformation of raw sequencing reads into biological insights is the
trimming of adapter sequences and low-quality bases. Read trimming has been shown to increase
the quality and reliability while decreasing the computational requirements of downstream analyses.
Many read trimming software tools are available; however, no tool simultaneously provides the accuracy,
computational efficiency, and feature set required to handle the types and volumes of data generated in
modern sequencing-based experiments. Here we introduce Atropos and show that it trims reads with high
sensitivity and specificity while maintaining leading-edge speed. Compared to other state-of-the-art read
trimming tools, Atropos achieves a four-fold increase in trimming accuracy and a decrease in execution
time of up to 40% (using 16 parallel execution threads). Furthermore, Atropos maintains high accuracy
even when trimming data with elevated rates of sequencing errors. The accuracy, high performance, and
broad feature set offered by Atropos makes it an appropriate choice for the pre-processing of Illumina,
ABI SOLiD, and other current-generation short-read sequencing datasets. Availability. Atropos is open
source and free software written in Python (3.3+) and available at https://github.com/jdidion/
atropos.
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1 INTRODUCTION26

All current-generation sequencing technologies, including Illumina, ABI SOLiD, and Ion Torrent, require27

a library construction step that involves the introduction of short adapter sequences at the ends of the28

template DNA fragments. Depending on the sequencing platform and the fragment size distribution of29

the sequencing library, an often substantial fraction of reads will consist of both template and adapter30

sequences (Figure 1A). Additionally, the error rates of these sequencing technologies vary from ˜0.1% on31

Illumina to 5% or more on long-read sequencing platforms. Error rates tend to be enriched at the ends32

of reads (where adapters are located), thus exacerbating the effects of adapter contamination. Adapter33

contamination and sequencing errors can lead to increased rates of misaligned and unaligned reads, which34

results in errors in downstream analysis including spurious variant calls (Del Fabbro et al., 2013; Sturm35

et al., 2016). Certain sequencing protocols may introduce other artifacts in sequencing reads. For example,36

some methylation sequencing (Methyl-Seq) protocols result in artificially methylated bases at the 3’ ends37

of reads that can lead to inflated estimates of methylation levels (Bock, 2012).38

Read trimming is an important step in the analysis pipeline to mitigate the effects of adapter contami-39

nation, sequencing errors, and other artifacts. The development of tools for read trimming is an active40

area of bioinformatics research, thus there are currently many options. In terms of adapter trimming, these41

tools fall into two general categories: 1) those that rely solely on matching the adapter sequence (adapter-42

match trimming) using semi-global alignment (which is the only option available for single-end reads;43

Figure 1B); and 2) those that leverage the overlap between paired-end reads to identify adapter starting44

positions (insert-match trimming; Figure 1C) (Sturm et al., 2016). Cutadapt (Martin, 2011) is a mature45

and feature-rich example of a tool that provides adapter-match trimming, while SeqPurge (Sturm et al.,46
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Figure 1. Adapter detection and trimming. A) When a fragment (or insert; green) is shorter than the
read length, the read sequence will contain partial to full-length adapter sequences (blue and purple). B,C)
Methods for detecting adapter contamination using semi-global alignment. Adapter-match (B) identifies
the best alignment between each adapter and the end of its corresponding read. Insert-match (C) first
identifies the best alignment between read 1 and the reverse-complement (rc) of read 2; if a valid
alignment is found, then adapters are matched to the remaining overhangs. D) If a match is found, the
overlapping inserts can be used for mutual error correction. The consensus base is the one with the
highest quality, or, if the bases have equal quality, the one from the read with highest mean quality. E) If
insert-match fails (for example, with an adapter dimer) adapter-match is performed. Reads that are too
short after trimming are discarded.

2016) is a recent example of a highly accurate insert-match trimmer designed specifically for paired-end47

data. Additionally, hybrid tools are available that optimize their choice of read trimming method based48

on the type of data. Skewer (Jiang et al., 2014) and AdapterRemoval (Version 2) (Schubert et al., 2016)49

are fast and accurate hybrid trimmers that works with both single-end and paired-end data. However,50
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choosing a read-trimming tool currently requires a trade-off between feature set, efficiency, and accuracy.51

Furthermore, even state-of-the-art tools still have a relatively high rate of over-trimming (removing usable52

template bases from reads) and/or under-trimming (leaving low-quality and adapter-derived bases in the53

read sequence) (Sturm et al., 2016).54

We sought to develop a read trimming tool that would combine the best aspects of currently available55

software to provide high speed and accuracy while also offering a rich feature set. To accomplish this aim,56

we used Cutadapt as a starting point, as it provides the broadest feature set of currently available tools and57

is published under the MIT license, which allows modification and improvement of the code. We focused58

on making three specific improvements to Cutadapt: 1) improve the accuracy of paired-end read trimming59

by implementing an insert-match algorithm; 2) improve the performance by adding multiprocessing60

support (as Cutadapt is currently only able to use a single processor); and 3) add important additional61

features such as automated trimming of Methyl-Seq reads, automated detection of adapter sequences in62

reads where the experimental protocols are not known to the analyst, estimation of sequencing error, and63

generation of quality control (QC) metrics. Because these modifications required substantial changes to64

the Cutadapt code base, and because there are software tools that depend on the current implementation65

of Cutadapt, we chose to “fork” the Cutadapt code base and develop our software, Atropos, as a separate66

tool. Here, we show that we have accomplished our three aims. In addition to extending the already rich67

set of features provided by the original Cutadapt tool, Atropos demonstrates paired-end read trimming68

accuracy that is superior to other state-of-the-art tools, and it is among the fastest read trimming tools69

when a moderate number of parallel execution threads are used (4). Furthermore, Atropos achieves a70

performance increase that is roughly linear with the number of threads used, making it the fastest tool71

when 8 or more threads are available.72

2 MATERIALS AND METHODS73

2.1 Implementation74

Atropos is developed in Python (3.3+) and is available to install from GitHub or via one of several package75

managers (see Data Availability).76

2.1.1 Semi-global Alignment77

Traditionally, the overlap between two sequences is detected by computing an optimal semi-global78

alignment (Gusfield, 1997, Section 11.6.4), which is the same as global alignment except that neither79

initial nor trailing gaps are penalized. This allows the sequences to shift relative to each other. An optimal80

semi-global alignment maximizes the sum of alignment column scores, thus tending to favor longer over81

short overlaps. Since score-based optimization is often not intuitively understood, the adapter alignment82

algorithm uses edit operations instead, which has the advantage that it gives the user the ability to specify83

a “maximum error rate” as an intuitive parameter. For a given alignment between read and adapter, the84

error rate is computed as the number of edits (mismatches, insertions, deletions) divided by the length of85

the matching part of the adapter. Minimizing the edit distance while at the same time not penalizing end86

gaps would lead to optimal but meaningless zero-length overlaps; thus, a hybrid approach is chosen. The87

adapter alignment algorithm computes edit distances for all allowed shifts of the adapter relative to the88

read. Among those having an error rate not higher than the specified threshold, the shift (and therefore89

alignment) with the highest number of matches is chosen.90

We summarize the algorithm here; see (Martin, 2013, Section 2.2) for details. Let a and r be the91

nucleotide sequences of the adapter and sequencing read, respectively, and let m = |a|, n = |r|. Adapter92

alignment computes edit distances D(i, j) between the i-length prefix of a and the j-length prefix of r for93

all i = 0, . . . ,m and j = 0, . . . ,n with the standard dynamic-programming (DP) recurrence94

D(i, j) = min{D(i�1, j�1)+ [ai 6= r j],D(i�1, j),D(i, j�1)} (1)

The base cases are D(i,0) = 0 or D(i,0) = i and D(0, j) = 0 or D(0, j) = j, depending on the adapter95

type, allowing to skip a prefix of a and/or r at no cost. The algorithm additionally keeps track of M(i, j),96

which is the number of matches between the prefixes of a and r, and of the “origin” O(i, j), which is97

the number of skipped characters in r in the optimal alignment (if negative, characters in a are skipped98

instead). All three DP matrices D, M, O are filled in at the same time, after which the cells of the bottom99

row (i = m) are inspected. They represent possible end positions of the adapter sequence within the100
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read. For each position j, the error rate is computed from D(m, j) and O(m, j), and positions with a too101

high error rate are discarded. If positions remain, the one with the highest number of matches M(m, j)102

is returned as the position J of the adapter sequence. Together with the start of the adapter sequence at103

O(m,J), the adapter sequence can then be removed from the read.104

Observing that no backtrace within the DP matrix is required, the actual implementation keeps only105

a single column of the matrices in memory for better cache locality. Significant runtime improvements106

are achieved by employing the optimization described by Ukkonen (Ukkonen, 1985) of stopping the107

computation of a column as soon as the costs are too high and provably cannot decrease for the remainder108

of the column. When the user supplies an anchored adapter and disables insertions and deletions (indels)109

at the same time, the algorithm also switches to a much simpler variant that computes only the Hamming110

distance between the adapter and a prefix or suffix of the read.111

2.1.2 Insert Match Algorithm112

For each read pair, the insert-match algorithm uses the same semi-global alignment algorithm described113

above (with indels disabled) to find all possible alignments between the first read and the reverse114

complement of the second read that satisfy user-specified specificity thresholds (Figure 1C). Specificity115

is determined by the combination of up to three user-configurable thresholds: 1) minimum number of116

overlapping bases, 2) maximum number of mismatch bases, and 3) random mismatch probability (Sturm117

et al., 2016). The probability of a random match at k bases out of the n bases being compared is computed118

using the binomial distribution:119

P =
n

Â
i=k

n!
i!(n� i)!

pi(1� p)n�i (2)

The candidate alignments are tested in order of decreasing length until one is found in which the120

overhanging sequences on either end match the user-specified adapter sequences. Comparison between121

the adapter and overhang sequences is done using a constrained adapter-match approach. Briefly, starting122

at the end of the insert overlap, a pairwise comparison is made between the adapter and the read at each123

possible offset. The offset that best satisfies the user-configurable specificity thresholds (the same three124

described above) is taken to be the location of the adapter sequence, and all bases from that position to the125

3’ end of the read are removed. If an adapter is only found in one of the two reads, then the same offset is126

used to trim both reads, under the assumption that the location of the adapter sequence must be symmetric127

across the read pair.128

Optionally, the overlapping inserts can be used for mutual error correction (Figure 1D). Where the129

aligned inserts have mismatches, the base with the highest quality score is chosen as the consensus. When130

the bases have equal quality, there is an option to leave the bases unchanged, convert them both to N, or131

to choose the base from the read with the highest mean quality as the consensus. There are additional132

options to 1) completely overwrite one read in the pair if its quality is very poor, and/or 2) merge the133

overlapping read pair into a single read, which avoids double-counting overlapping read pairs in read134

depth-based analyses.135

If no insert match is found, or if an adapter is not found in an overhang, then an unconstrained136

adapter-match approach is attempted separately in each read (Figure 1E).137

2.1.3 Parallel processing138

The performance improvements in Atropos relative to Cutadapt and other read trimming tools are based in139

two observations: 1) each read (or read pair) is trimmed separately, and thus trimming can be parallelized140

across multiple processor cores, and 2) a significant fraction of the execution time is spent decompressing141

input files and re-compressing results. Compression of sequencing data is increasingly becoming necessary142

due to the large volumes of data generated in sequencing experiments.143

To address the first bottleneck, we implemented a parallel processing pipeline based on the Python144

multiprocessing module. Briefly, a single thread is dedicated to a “reader” process that loads reads (or145

read pairs) from input file(s), with support for a variety of data formats and automatic decompression of146

compressed data. Reads are loaded in batches, and each batch is added to an in-memory queue. A user-147

specified number of “worker” threads (which is constrained by the number of processing cores available148

on the user’s system) extract batches from the queue and perform trimming and filtering operations149

on the reads in the same manner as Cutadapt. Atropos addresses the second bottleneck by offering a150
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choice of three modes for writing the results to disk. The first two modes involve adding the results151

to a second in-memory queue, from which a dedicated “writer” process extracts batches and performs152

the serialized write operation. These two modes differ in how the trimmed reads are compressed – in153

worker-compression mode, each worker is responsible for compressing the results using the Python gzip154

module prior to placing the results on the queue, whereas in writer-compression mode, the writer process155

performs compression using the much faster system-level gzip program. The choice between these two156

modes is selected automatically based on the number of worker threads used, with worker-compression157

mode becoming faster than writer-compression mode when at least 8 threads are available. The third158

output mode, called “parallel writing,” does not use a dedicated writer process (and thus an additional159

worker process can be used in its place). Instead, each worker process writes its results to a separate file.160

This can dramatically reduce the execution time of the program (˜50% reduction in our experiments; see161

Results) and is generally compatible with downstream analysis since many mapping and assembly tools162

accept multiple input files (and for those that don’t, gzipped files can be safely concatenated without163

needing to be decompressed and recompressed). An additional speed-up is gained by recognizing that the164

reader process often finishes loading data well before the worker processes finish processing it; thus, an165

additional worker thread is started as soon as the reader process completes.166

2.1.4 Adapter detection167

Often, details of sequencing library construction are not fully communicated from the individual or facility168

that generated the library to the individual(s) performing data analysis. For example, the majority of169

datasets in the NCBI Sequence Read Archive (SRA) lack adapter sequence annotations. Manual determi-170

nation of sequencing adapters and other potential library contaminants can be a tedious and error-prone171

task. Thus, we implemented in Atropos a command that automatically identifies adapters/contaminants172

from a sample of read sequences. First, a profile is built of k-mers (where k is a fixed number of consecu-173

tive nucleotides, defaulting to k = 12) within N read sequences (where N defaults to 10,000). When at174

least 8 consecutive A bases are detected, those bases along with all subsequent bases (in the 3’ direction)175

are first trimmed, as that pattern is a strong indicator that the sequencer scanned past the end of the176

template (i.e. the length of the fragment + adapter is less than the read length; Figure 1E). Additionally,177

low-complexity reads are excluded, where complexity X(S) is defined as follows. Let C(i,S) be the178

number of elements of a nucleotide sequence S = s1, ...,sn, that are nucleotide i 2 A,C,G,T .179

X(S) =�Â C(i,S) · log(C(i,S))
log(2)

(3)

Sequences with X(S)< 1.0 are defined as low-complexity. All remaining k-mers are counted, and180

each k-mer is linked to all of the sequences from which it originated. This process continues iteratively for181

increasing values of k, with only those read sequences linked to high-abundance k-mers in the previous182

iteration being used to build the k-mer profile in the next iteration. k-mer K is considered high-abundance183

when:184

|K|> N · (l � k+1) ·O
4k (4)

where l is the read length and O = 100 by default. Finally, high-abundance k-mers of all lengths are185

merged to eliminate shorter sequences that are fully contained in longer sequences.186

Atropos reports to the user an ordered list of up to 20 of the most likely contaminants. Because187

adapter sequences have been designed not to match any known sequence in nature, a sequence (or pair of188

sequences) that occurs at high frequency and matches a known adapter sequence is likely to be the true189

sequence(s) used as adapters in the dataset. Thus, our algorithm optionally matches the high-abundance190

k-mers to a list of known adapters/contaminants. We provide a list of commonly used adapter sequences,191

or the user can choose to supply their own. When a contaminant list is not provided, or when the adapter192

does not match a known sequence, we advise the user to take caution when using the results of this193

detection process, as a highly abundant sequence might simply be derived from a frequently repeated194

element in the genome.195
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2.1.5 Error Rate Estimation196

Quality and adapter trimming is sensitive to the choice of several parameters. For example, relative to197

datasets with typical rates of sequencing error, datasets with higher error-rates require higher thresholds198

for mismatches and/or random-match probability during insert- and adapter-matching to perform with the199

same level of sensitivity. Thus, we implemented in Atropos a command that provides an estimate of the200

error rate in each input file. The error command gives the choice between two algorithms: 1) averaging all201

base qualities across a sample of reads, which is fast but likely overestimates the true rate of sequencing202

error (Dohm et al., 2008; DePristo et al., 2011); and 2) the shadow regression method proposed by Wang203

et al. (Wang et al., 2012), which more accurately estimates error rates at the cost of reduced speed and204

greater memory usage.205

2.1.6 Quality Control Metrics206

Examination of QC metrics is another important aspect of sequence analysis pipeline. For example,207

the widely used FastQC (Andrews, 2010) tool generates statistics such as per-sequence and per-base208

quality scores and GC content, sequence length distribution, sequence duplication levels, and frequency209

of potential contaminants. QC is commonly performed both before and after read trimming to identify210

any systematic data quality issues, to observe the improvements in data quality due to trimming, and to211

ensure that trimming does not introduce any unintended side-effects. Since both read trimming and QC212

involve iterating over all reads in the dataset, we reasoned that implementing both operations in the same213

tool would reduce the overall processing time, and also eliminate the need to install two separate tools.214

Thus, we implemented an option in Atropos to collect QC metrics before and/or after trimming.215

Additionally, we implemented an Atropos module for MultiQC (Ewels et al., 2016), a program that216

generates nicely formatted reports from metrics output by a variety of bioinformatics tools for one to many217

samples. Given summary files generated by Atropos (one per sample, in JSON format), the MultiQC218

module will generate interactive versions of the same static plots offered by FastQC, as well as a summary219

table of the most important metrics.220

2.1.7 Shared Cutadapt and Atropos Improvements221

In addition to improvements in the semi-global alignment algorithm above, Atropos also benefits from the222

following improvements that were made to Cutadapt subsequent to the publication of Martin et al. (2011),223

but prior to the Atropos fork, and are therefore features in both programs.224

• Adapters can now be anchored, which limits the read positions at which they will be matched. An225

anchored 5’ adapter thus matches only if it is a prefix of the read, and a 3’ adapter only if it is a226

suffix of the read. This is useful, for example, when one or both sequencing adapters are known to227

be ligated directly to a PCR primer.228

• Linked adapters combine a 5’ with a 3’ adapter. Trimming multiple adapters from each read was229

also supported previously, but linked adapters make it possible to require that one of them is a 5’230

adapter and one a 3’ one.231

• IUPAC ambiguity codes are fully supported. Thus, adapter sequences containing characters such232

as N (matching any nucleotide), H (A, C, or T), Y (C or T) work as expected. They are useful233

when adapters contain barcodes or random nucleotides. The nucleotides and ambiguity codes are234

internally represented as patterns of four bits, in which each set bit corresponds to an allowed235

nucleotide. Comparisons are thus simple “binary and” operations, resulting in no runtime overhead.236

• Paired-end data can be trimmed with sequences specified for the forward and reverse reads237

independently. Read pairs are guaranteed to remain in sync. Even interleaved data (paired-end238

reads in a single file) is accepted.239

• Quality trimming can now work in a NextSeq-specific mode in which spurious runs of high-quality240

G nucleotides at the 3’ end of a read are correctly trimmed. NextSeq instruments use “dark” or241

“black” cycles for G nucleotides, making them unable to distinguish between regular G and reaching242

the end of the fragment.243

• Other additions include support for trimming a fixed number of bases from a read, support for files244

compressed using the bzip2 and lzma algorithms, and improved filtering options.245
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2.2 Benchmarks246

2.2.1 Simulated Data247

Data Set Error Rate* Read Length Total Read Pairs Reads w/ Adapters** Adapter Bases**

Simulated 1 0.20% 125 781,923 325,982 12,447,262
Simulated 2 0.60% 125 780,899 325,105 12,416,861
Simulated 3 1.20% 125 782,237 325,860 12,464,235
GM12878 WGBS 2.79% 125 1,000,000 57,130 3,082,003
K562 mRNA-seq 4.31% 75 6,100,265 14,384 749,451

Table 1. Description of data sets. For the real data sets, * actual error rates are unknown – we estimate
error rates from base qualities over a sample of 10,000 read pairs; and ** total adapter content is
unknown – we provide the number of reads containing exact matches for the first 35 adapter bases, and
the number of adapter bases present.

We evaluated both the speed and the accuracy of Atropos relative to other state-of-the-art read248

trimming tools using both simulated and real-world data (Table 1). As trimming of single-end reads249

is unchanged from the original Cutadapt method and is also decreasing in relevance as most current250

experiments use paired-end data, we focused our benchmarking on trimming of paired-end reads. Sturm251

et al. demonstrate that Skewer (Jiang et al., 2014) and SeqPurge (Sturm et al., 2016) stand out as having252

superior performance in paired-end read trimming, and Schubert et al. also demonstrate exceptional253

performance of AdapterRemoval (Schubert et al., 2016); thus, we chose to benchmark Atropos against254

these tools. We also compared the new insert-match algorithm against the adapter-match algorithm that is255

used by Cutadapt, and which can be enabled in Atropos using the ’–aligner’ command line option.256

To simulate paired-end read data, we use the ART simulator (Huang et al., 2012) that was modified257

by Jiang et al. to add adapter sequences to the ends of simulated fragments. ART simulates reads based258

on empirically derived quality profiles specific to each sequencing platform. A quality profile consists259

of distributions of quality scores for each nucleotide at each read position, expressed as read counts260

aggregated from multiple sequencing experiments, where quality scores are in Phred scale (�10log10(e),261

where e is the probability that the base call is erroneous). We developed an R script to artificially inflate262

the error rates in an ART profile to a user-defined level. For each row in the profile with quality score bins263

e1..en and corresponding read counts r1..rn, the overall error rate can be computed as:264

E =
Ân

i=1 eiri

Ân
i=1 ri

(5)

We use the R function optim with the variable metric (“BFGS”) algorithm to optimize a function265

that adds an equal number of counts C to each Phred-score bin in the distribution and then compares the266

overall error rate to the user-desired error rate E 0:267

f (C,E 0) =
Ân

i=1 ei(ri +C)

Ân
i=1(ri +C)

�E 0 (6)

We simulated ˜800k 125 bp paired-end reads using the Illumina 2500 profile at error rates that were268

low/typical (˜0.2%, the unmodified profile), intermediate (˜0.6%), and high (˜1.2%). We evaluated the269

accuracy of the tools on the simulated data by comparing each trimmed read pair to the known template270

sequence. We counted the frequency of following outcomes: the fragment does not contain adapters but is271

trimmed anyway (“wrongly trimmed”), or the fragment does contain adapters but either too few bases or272

too many bases were removed (“under-trimmed” or “over-trimmed”). We also counted the total number273

of under- and over-trimmed bases.274

2.2.2 Real Data275

We also benchmarked the tools on two real-world datasets. First, we sampled ˜1M read pairs from a276

whole-genome bisulfite sequencing (WGBS) library generated from the GM12878 cell line. Second, we277

used 6.1M paired-end mRNA-seq reads generated from the K562 cell line. Both of these datasets were278
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generated by the ENCODE project (ENCODE Project Consortium, 2012). Since the genomic origins of279

the templates are not known a priori, we instead compared the read trimming tools based on improvement280

in the results of mapping the trimmed versus untrimmed reads. We used STAR (Dobin et al., 2013) to281

map the mRNA-seq reads to GRCh38, and we used bwa-meth (Pedersen et al., 2014) to map the WGBS282

reads to the bisulfite-converted GRCh38. We also compared the results of only adapter trimming to the283

results of adapter trimming plus additional quality trimming using a minimum quality threshold of 20284

(Phred-scale).285

One characteristic of the mRNA-Seq dataset is that average read 2 quality is substantially lower than286

read 1 (estimation by the ’atropos error’ subcommand: 6.7% vs 2.0%). In practice, when encountering287

a read pair in which one end is of much lower quality than the other, the Skewer algorithm essentially288

overwrites the former with the later, leading to more precise alignment. Atropos provides a specific option289

for this case (’-w’), which we make use of in our benchmark in order to fairly compare Atropos with290

Skewer. However, this gives these tools a perhaps unfair advantage over AdapterRemoval and SeqPurge291

which do not have such an option.292

2.2.3 Computing Environments293

Although sequence analysis is sometimes performed using a desktop computer, analysis of the volumes of294

data currently being generated increasingly requires the use of high-performance computing facilities295

(“clusters”). The hardware architecture of a cluster is often different from that of a desktop computer. Most296

importantly, storage in a cluster is typically centralized and accessed by the compute nodes via high-speed297

networking. Such an architecture inevitably adds latency to file reading and writing operations (“I/O”).298

Cluster nodes also typically have more processing cores and memory available than desktop computers.299

This means that the performance of software with intensive I/O usage (such as read trimming) is likely to300

be quite different on a desktop versus a cluster. To examine the impact of these architectural differences,301

we ran the benchmarks for simulated data on both a desktop computer (a Mac Pro) having a 3.7 GHz302

quad-core Intel Xeon E5 processor and 32 GB RAM, and on a cluster node having 64 2.4 GHz Intel303

Xeon E5 cores and 256 GB memory, and with all data being read from and written to network-accessible304

storage over a 1 Gbit ethernet connection.305

2.2.4 Reproducibility and Reusability306

With increasing importance being placed on both the reproducibility of results in scientific publications307

and the reusability of software and pipelines, we endeavored to provide a benchmark workflow that can308

be easily executed and extended by anyone with access to modern computing resources.309

First, we “containerized” all of the software tools used in this paper – including trimming tools,310

read mapping tools, and supplementary tools used to evaluate results and generate tables and figures311

(Supplementary Table 1). We also created minimal containers for all of the data used in this paper –312

including benchmark datasets, reference genomes, annotation databases, and indexes used by the mapping313

tools. Specifically, we created Docker (Boettiger, 2015) image specifications (“Dockerfiles”), generated314

the images, and uploaded them to a public repository on the Docker Hub (see Data Availability).315

Second, we implemented our benchmark workflow using the Nextflow (Di Tommaso et al., 2017)316

framework. Importantly, Nextflow enables workflows to be run either locally or in most cluster environ-317

ments, and supports running containerized software via either a Docker or Singularity (Kurtzer, 2016)318

client (depending on the operating system).319

Instructions for running our workflow, along with all of the source scripts, are available in our GitHub320

repository (see Data Availability).321

3 RESULTS322

3.1 Simulated Data323

3.1.1 Performance324

On a desktop computer with 4 processing cores, we found that AdapterRemoval had the fastest overall325

execution time, followed closely by SeqPurge, Atropos (in parallel write mode), and Skewer (Figure 2A326

and Supplementary Table 2).327

As expected, execution times on a cluster node using 4 threads were approximately 20% greater than328

those observed on a desktop computer (Figure 2B and Supplementary Table 3). We expect that much of329

this disparity is due to the increased latency involved in network-based I/O on the cluster, although some330
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Figure 2. Trimming execution time for simulated data. Execution time on simulated datasets for
programs running on A) a desktop computer with 4 parallel processes (threads), and B) a cluster node
with 4, 8, and 16 threads. Each program was executed multiple times, and Atropos was run with
combinations of alignment algorithm (insert-match or adapter-match) and output mode
(worker-compression, writer-compression or parallel-write). The mean execution times for each program
are shown with 95% confidence intervals.

may also be explained by CPU differences (3.7 GHz Intel on the desktop versus 2.4 GHz on the cluster331

node).332

Reads Bases

Program Wrongly
Trimmed

Over-
trimmed Under-trimmed Total

Error
Over-

trimmed
Under-
trimmed

Total
Error

Error rate 0.2%
AdapterRemoval 664 (0.09%) 29 (0.00%) 65 (0.01%) 0.10% 6,043 2,511 0.005%
Atropos (adapter) 51 (0.01%) 1 (0.00%) 28,991 (3.77%) 3.78% 490 102,133 0.057%
Atropos (insert) 60 (0.01%) 24 (0.00%) 31 (0.00%) 0.01% 186 94 0.000%
SeqPurge 94 (0.01%) 24 (0.00%) 31 (0.00%) 0.02% 1,574 94 0.001%
Skewer 18 (0.00%) 13 (0.00%) 146 (0.02%) 0.02% 39 8,309 0.005%

Error rate 0.6%
AdapterRemoval 666 (0.09%) 19 (0.00%) 69 (0.01%) 0.10% 5,547 2,032 0.004%
Atropos (adapter) 72 (0.01%) 6 (0.00%) 28,843 (3.76%) 3.77% 733 101,839 0.057%
Atropos (insert) 52 (0.01%) 15 (0.00%) 42 (0.01%) 0.01% 151 146 0.000%
SeqPurge 78 (0.01%) 16 (0.00%) 41 (0.01%) 0.02% 822 145 0.001%
Skewer 8 (0.00%) 8 (0.00%) 180 (0.02%) 0.03% 16 11,732 0.007%

Error rate 1.2%
AdapterRemoval 680 (0.09%) 16 (0.00%) 65 (0.01%) 0.10% 5,795 2,667 0.005%
Atropos (adapter) 76 (0.01%) 5 (0.00%) 30,152 (3.92%) 3.94% 721 117,027 0.065%
Atropos (insert) 49 (0.01%) 13 (0.00%) 35 (0.00%) 0.01% 111 85 0.000%
SeqPurge 71 (0.01%) 13 (0.00%) 35 (0.00%) 0.02% 1,524 85 0.001%
Skewer 11 (0.00%) 8 (0.00%) 182 (0.02%) 0.03% 19 14,261 0.008%

Table 2. Trimming accuracy on simulated data with three different base-call error rates. Wrongly
trimmed: reads that do not contain adapters but were trimmed anyway; Over-trimmed: reads that contain
adapters but from which too many bases were removed; Under-trimmed: reads that contain adapters but
from which too few bases were removed. Both read-level and base-level error rates are shown. Fractions
of total reads/bases are in parentheses. The best tool(s) in each category is highlighted.
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When increasing the number of parallel execution threads from 4 to 8 and 16, Atropos achieves333

a roughly linear decrease in execution time. Interestingly, the execution times of AdapterRemoval,334

SeqPurge, and Skewer do not substantially decrease when increasing the number of the threads from 8 to335

16. With 8 and 16 threads, Atropos using the adapter-match algorithm in parallel-write mode is the fastest336

of the tools, and with 16 threads Atropos using the insert-match algorithm in parallel-write mode is also337

faster than the other three tools (Supplementary Table 3).338

Atropos uses substantially more memory than the other tools (Supplementary Figure 1 and Supple-339

mentary Table 4). We expect this is partially due to overhead of automatic memory management in Python340

compared to C++ (in which AdapterRemoval, SeqPurge, Skewer are implemented), but in larger part341

results from Atropos’ use of in-memory queues to communicate between parallel processes. For all four342

programs, memory usage increases slightly with increasing number of threads. We note that Atropos343

provides parameters to limit memory usage (although typically at the expense of reduced speed).344

For most datasets and thread counts, Atropos and Skewer typically achieve the highest mean CPU345

utilization, indicating that they are less I/O-bound than AdapterRemoval or SeqPurge (Supplementary346

Figure 2).347

3.1.2 Accuracy348

We found that the four trimming algorithms had different biases toward under- and over-trimming349

(Table 2). Across the three sequencing error rates, Skewer had the lowest frequency of wrongly trimming350

reads while AdapterRemoval had the highest. The Atropos adapter-match algorithm exhibited almost no351

over-trimming of reads, but also had a very high frequency of under-trimming. The Atropos insert-match352

algorithm and SeqPurge had similarly low frequencies of under-trimming reads. Overall, the Atropos353

insert-match algorithm demonstrated the lowest error rates at the read level (0.01%).354

In terms of numbers of over- and under-trimmed bases, the Atropos insert-match algorithm and355

SeqPurge clearly had the best performance (Table 2) at all sequencing error rates. The two algorithms356

had similarly low numbers of under-trimmed bases, but the Atropos insert-match algorithm had a lower357

number of over-trimmed bases, giving it the lowest overall error rate (0.0002%). On the other hand,358

Skewer and the Atropos adapter-match algorithm left substantial numbers of under-trimmed bases while359

AdapterRemoval was again biased towards over-trimming.360

Additionally, we found that all tools discarded very similar numbers of reads (˜1.8%) that were below361

the minimum length threshold of 25 bp after trimming. These were reads with short insert sizes, which362

have a high rate of spurious mapping, and thus it is common practice to discard them.363

3.2 Real Data364

We first tested Atropos’ adapter detection module on the real datasets. Using the first 10,000 reads in each365

pair of FASTQ files, Atropos correctly detected the exact sequences of the adapters used in constructing366

each library. For 3 of the 4 adapters, the sequences were found in a list of known contaminants (WGBS367

read 1: “TruSeq Adapter, Index 7”; WGBS read 2 and mRNA-seq read 2: “TruSeq Universal Adapter”);368

the mRNA-seq read 1 adapter appears to have a custom-designed sequence.369

3.2.1 Performance370

We performed adapter trimming on the real datasets in the same cluster environment. Again, we found that371

AdapterRemoval had the fastest execution time (Figure 3 and Supplementary Tables 5-6). When trimming372

the WGBS data with 16 threads, Atropos (using the insert-match algorithm in parallel-write mode) was373

nearly as fast as AdapterRemoval (Figure 3A and Supplementary Tables 5), while on the mRNA-Seq374

data Skewer, SeqPurge, and Atropos were all 30-50% slower than AdapterRemoval (Figure 3B and375

Supplementary Tables 6).376

We also performed read mapping on the cluster with 16 cores. Mapping times were very similar for377

all algorithms on both the WGBS and mRNA-Seq datasets, and were much faster than for the untrimmed378

reads (Supplementary Figure 3).379

3.2.2 Effectiveness380

We assessed read trimming effectiveness in practical terms. For the WGBS data, we computed the number381

of trimmed reads mapped at a given quality (MAPQ) cutoff, relative to the number of untrimmed reads382

mapped at that cutoff. We found that trimming by Atropos resulted in the greatest increase in number of383

mapped reads at all quality cutoffs (Figure 4A). Trimming with SeqPurge, Skewer, and AdapterRemoval384
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Figure 3. Trimming execution time for real data. Execution time on real datasets for programs
running on a cluster node with 4, 8, and 16 threads. Each program was executed multiple times, and
Atropos was run with the insert-match algorithm and parallel-write output mode. The mean execution
times for each program are shown with 95% confidence intervals.

A) B)

Figure 4. Atropos trimming best improves mapping of real WGBS sequencing reads. Reads were
adapter-trimmed with all four programs A) without additional quality trimming (Q=0) and B) with quality
trimming at a threshold of Q=20. We mapped both untrimmed and trimmed reads to the genome. For
each MAPQ cutoff M 2 {0,5, ..,60} on the x-axis, the number of trimmed reads with MAPQ >= M less
the number of untrimmed reads with MAPQ >= M is shown on the y-axis for each program.

resulted in similar, but smaller, gains in mapping quality. At the highest MAPQ thresholds (45, 50, 55),385

Atropos substantially outperforms the other three tools.386

We also found that additional quality trimming in addition to adapter trimming has a substantial387

negative effect on read mapping, at least for bisulfite reads mapped using bwa-meth (Figure 4B). Quality388

trimming by Skewer had the least negative effect on mapping quality of the four programs, and quality389

trimming by AdapterRemoval had the greatest negative effect on mapping quality.390

For the mRNA-seq data, we additionally compared each alignment to GENCODE (v26) gene annota-391

tions (Harrow et al., 2012) to determine the number of reads mapped to expressed regions of the genome.392

We found that trimming with Atropos resulted a greater number of mapped reads aligned to expressed393

regions compared to the other tools at all MAPQ thresholds (Figure 5).394

4 CONCLUSIONS395

Our results demonstrate that adapter trimming tools are approaching optimal accuracy, at least for the396

(currently) most common type of data – paired-end short reads with 3’ adapters. On synthetic data with397
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Figure 5. Atropos trimming results in the greatest increase in mRNA-seq reads mapped to
GENCODE regions. Reads were adapter-trimmed with all four programs without additional quality
trimming. We mapped both untrimmed and trimmed reads to the genome using STAR. When parameter
outSAMmultNmax = 2, STAR produces only four MAPQ values: 255=unique alignment, 3=two
alignments with similar but unequal score; 1=two alignments with equal score; and 0=unmapped. For
each MAPQ cutoff M 2 {0,1,3,255} on the x-axis, the number of trimmed reads that align to
GENCODE regions with MAPQ >= M less the number of untrimmed reads with MAPQ >= M is
shown on the y-axis for each program.

varying error rates, Atropos (using our new insert-match algorithm) and SeqPurge both demonstrated398

overall error rates of 0.01% at the read level, and Atropos has the lowest base-level error rate of 0.0002%.399

On real WGBS and mRNA-seq data, we found that adapter trimming with Atropos resulted in the400

greatest increase in read mapping quality. We also found that stringent quality trimming has a negative401

effect on WGBS read mapping quality, at least when using bwa-meth as the alignment tool. For reads402

trimmed with a quality threshold of 20, all mapping statistics were worse than those for untrimmed reads.403

In terms of performance, AdapterRemoval and SeqPurge had the best performance of the four tools404

tested when only 4 threads were available, while Atropos had superior performance on the simulated405

datasets and competitive performance on the real datasets when there were at least 8 threads available. Of406

the three write modes, Atropos performed best in parallel-write mode. However, parallel-write mode has407

the trade-off of producing a larger number of data files, which may make analyses of large projects more408

complicated to manage. Atropos’ memory requirements were the highest among the four programs (3-4409

GB versus 0.5-1.5 Gb), but well within the capabilities of most modern computer systems.410

In summary, our results show that Atropos offers the best combination of accuracy and performance411

of the tools that we evaluated. Furthermore, Atropos has the richest feature set of the four tools, including412

Methyl-Seq-specific trimming options, automated adapter detection, estimation of sequencing error,413

computation of quality-control metrics before and after trimming, and support for data generated by many414

sequencing methods (ABI SOLiD, Illumina NextSeq, mate-pair libraries, and single-end sequencing).415

Although we have not optimized Atropos for long-read data (e.g. PacBio and Nanopore), it should work416

on those datasets given appropriate parameter settings, and we plan to soon provide explicit long-read417

support.418
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5 DATA AVAILABILITY419

• The Atropos source code, including detailed instructions and all scripts needed to execute the420

analyses in this paper, are available at https://github.com/jdidion/atropos. The421

portions of Atropos developed by JPD are a work of the US government, and thus all copyright is422

waived under a CC0 1.0 Universal Public Domain Dedication (https://creativecommons.423

org/publicdomain/zero/1.0/).424

• Atropos can be installed using Python 3.3+ and any one of the following methods:425

– From source, using instructions at the aforementioned GitHub repository website.426

– From the Python Package Index (pypi), using the pip tool: ’pip install atropos’.427

– From the Conda package manager: ’conda install atropos’.428

– From a Docker container, using a Docker or Singularity client: e.g. ’docker run jdid-429

ion/atropos’.430

• The K562 mRNA-seq data (accession SRR521458) is available from the NCBI Sequence Read431

Archive: https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR521458.432

• The GM12878 WGBS data (accession ENCLB794YYH) is available from the ENCODE project433

website: https://www.encodeproject.org/experiments/ENCSR890UQO/.434

• We used human reference genomes GRCh37 and GRCh38, downloaded from http://hgdownload.435

cse.ucsc.edu/downloads.html#human.436

• We used GENCODE v26 annotations, downloaded from ftp://ftp.sanger.ac.uk/pub/437

gencode/Gencode_human/release_26.438

• All datasets, including the simulated DNA-Seq reads, have been packaged into Docker containers,439

and are available in the Docker Hub (https://hub.docker.com/r/jdidion/). Container definitions are440

available in the aforementioned GitHub repository.441
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