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1 Getting started

RBFOpt is an open-source library for black-box optimization. It is available on GitHub at:

https://github.com/coin-or/rbfopt

The code is mainly developed for Python 3, but it also runs on Python 2.7. We recommend using Python
3 if possible. The recommended way to install the package is via the Python module manager pip. The
code is on PyPI, therefore it can be installed using:

pip install rbfopt

The user can install from source, downloading an archive or cloning from GitHub (for example to use
a development version that is not released on PyPI yet), running the following command from the directory
containing setup.py:

pip install -e .

The -e switch is typically necessary if the user is employing a virtual environment to ensure the scripts
use the correct Python interpreter; the library should be installed correctly even without -e. To build the
documentation, the user also needs numpydoc:

pip install numpydoc

On Windows systems, we recommend WinPython http://winpython.sourceforge.net/, which
comes with NumPy, SciPy and pip already installed. After installing WinPython, it is typically necessary to
update the PATH environment variable. The above command using pip to install missing libraries has been
successfully tested on a fresh WinPython installation.

RBFOpt requires the solution of convex and nonconvex nonlinear programs (NLPs), as well as noncon-
vex mixed-integer nonlinear programs (MINLPs) if some of the decision variables (design parameters) are
constrained to be integer. Solution of these subproblems is performed through Pyomo, which in principle
supports any solver with an AMPL interface (.nl file format). The code is setup to employ Bonmin and
Ipopt, that are open-source, with a permissive license, and available through the COIN-OR repository. The
end-users are responsible for checking that they have the right to use these solvers. To use different solvers,
a few lines of the source code have to be modified: ask for help on GitHub.

To obtain pre-compiled binaries for Bonmin and Ipopt for several platforms, we suggest having a look
at the AMPL opensource solvers at http://ampl.com/products/solvers/open-source/ or
http://ampl.com/dl/open/, for static binaries. Note that these binaries might be outdated: better
performance can sometimes be obtained compiling Bonmin from scratch (Bonmin contains Ipopt as well),
especially if compiling with a different solver for linear systems rather than the default Mumps, e.g., ma27.
Bonmin and Ipopt must be compiled with ASL support.

In case any of the packages indicated above is missing, some features may be disabled, not function
properly, or the software may not run at all.

1.1 Verifying the installation

Install the package with pip as indicated above. This will install the two executable Python scripts called
rbfopt cl interface.py and rbfopt test interface.py in the user’s bin/ directory (what-
ever is used by pip for this purpose), as well as the module files in the user’s site-packages directory.

The user must make sure Bonmin and Ipopt are in their path; otherwise, the options minlp solver path
and nlp solver path in RbfoptSettings have to be set to indicate the full path to the solvers. If the user
employs RBFOpt as a library and creates their own RbfoptSettings object, these options can be given as:
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import rbfopt
settings = rbfopt.RbfoptSettings(minlp_solver_path=’full/path/to/bonmin’,

nlp_solver_path=’full/path/to/ipopt’)

If the user employs the command-line tools, these options can be simply provided preceded by double
hyphen, as in:

rbfopt_test_interface.py --minlp_solver_path=’full/path/to/bonmin’ branin

The user can test the installation by running:

rbfopt_test_interface.py branin

See:

rbfopt_test_interface.py --help

for more details on command-line options for the testing tool. Many more test functions, with different
characteristics, are implemented in the file rbfopt test functions.py. They can all be used for
testing.

1.2 Performing unit tests

Unit tests for the library can be executed by running:

python setup.py test

or:

python setup.py nosetests

or:

nosetests

from the main directory, i.e., the one containing setup.py. If some of the tests fail, the library may or
may not work correctly. Some of the test failures are relatively harmless. Users are advised to contact the
mailing list (see Section 1.10) if they are unsure about some test failure.

Additional slow tests, that check if various parametrizations of the optimization algorithm can solve
some global optimization problems, are found in the file test rbfopt algorithm slow.py, which
is ignored by nosetests by default. These additional tests can be executed by running:

python -m nose tests/test_rbfopt_algorithm_slow.py

1.3 Minimal working example

After installation, the easiest way to optimize a function is to use the RbfoptUserBlackBox class to
define a black box, and execute RbfoptAlgorithm on it. This is a minimal example to optimize the
3-dimensional function defined below:

import rbfopt
import numpy as np
def obj_funct(x):

return x[0]*x[1] - x[2]

bb = rbfopt.RbfoptUserBlackBox(3, np.array([0] * 3), np.array([10] * 3),
np.array([’R’, ’I’, ’R’]), obj_funct)

settings = rbfopt.RbfoptSettings(max_evaluations=50)
alg = rbfopt.RbfoptAlgorithm(settings, bb)
objval, x, itercount, evalcount, fast_evalcount = alg.optimize()
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As can be seen from this example, there are only four necessary steps:

• Instantiate an object of a class derived from RbfoptBlackBox, such as RbfoptUserBlackBox
(see next subsection for details).

• Instantiate an object of class RbfoptSettings, containing all settings for the optimization algo-
rithm.

• Instantiate an object of class RbfoptAlgorithm, which must be given the black box and the set-
tings object.

• Run the optimization with the optimize() function of the object of class RbfoptAlgorithm.

Another possibility is to define a class derived from RbfoptBlackBox in a separate file, and execute the
command-line interface instructing it to read the black box from such file. An example is provided under
src/rbfopt/examples, in the file rbfopt black box example.py. This can be executed with:

rbfopt_cl_interface.py --max_evaluations 50 src/rbfopt/examples/
rbfopt_black_box_example.py

1.4 Structure of a user-defined black box

The class RbfoptAlgorithm requires an object derived from the abstract class RbfoptBlackBox,
which describes the black box problem to be optimized. An RbfoptBlackBox must implement the
following methods:

• get dimension(self): returns the dimension of the problem (i.e., number of decision variables),
as an integer.

• get var lower(self): returns the array of lower bounds on the decision variables, as a 1-
dimensional NumPy array of floats with length equal to the dimension of the problem.

• get var upper(self): returns the array of upper bounds on the decision variables, as a 1-
dimensional NumPy array of floats with length equal to the dimension of the problem.

• get var type(self): returns the type of each decision variable, as a 1-dimensional NumPy array
of char with length equal to the dimension of the problem. Possible types are ’R’ for real (continuous)
variables, and ’I’ for integer (discrete) variables.

• evaluate(self, x): evaluates the black-box function at the point x, and returns its value as a
float. The point x is a 1-dimensional NumPy array of floats, with length equal to the dimension of the
problem.

• evaluate noisy(self, x): evaluates a fast approximation of the black-box function at the
point x, and returns an approximation of the value of evaluate(), hopefully much more quickly,
as well as error bounds on the evaluation. If has evaluate noisy() returns False, this function
will never be queried and therefore it does not have to return any value. The point x is a 1-dimensional
NumPy array of floats, with length equal to the dimension of the problem. The return value of this
function must be a NumPy array with three floats (value, lower, upper) containing the approximate
value of the function at x, the lower error bound, and the upper error bound, such that the true function
value is contained between value + lower and value + upper. Hence, lower should be ≤ 0 while upper
should be ≥ 0.
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• has evaluate noisy(self): indicate whether evaluate noisy is available. If True, such
function will be used to try to accelerate convergence of the optimization algorithm. If False, the
function evaluate noisy will never be queried.

Rather than defining a new class derived from RbfoptBlackBox, the user can also instantiate an object
of class RbfoptUserBlackBox and pass as arguments the required information. This will return an
appropriate black box. All the details are provided in the documentation of the API, within the classes
RbfoptBlackBox and RbfoptUserBlackBox.

1.5 Checkpointing the optimization process

RBFOpt provides a checkpointing mechanism to save all intermediate results of the optimization. Using a
checkpoint, the optimization process can be resumed at a subsequent time and no information is lost, for
example in case of crashes during the evaluation of the objective function. The checkpointing mechanism
saves the state of the optimization in a file, that can be loaded to recreate exactly the same state and continue
the optimization. Automatic checkpointing can be performed uusing the options save state interval
and save state file: after every save state interval iterations, the state will be written to
save state file. By default, save state interval is equal to a large number (10000) so that
checkpointing does not happen; see also Section 3.6.

In the API, checkpointing can be achieved using the functions save to file(filename) and
load from file(filename) of the class RbfoptAlgorithm. The following code snippet performs
50 iterations of the optimization, saves the state, then loads the state and resumes.

settings = rbfopt.RbfoptSettings(max_evaluations=500)
# Assume bb is the RbfoptBlackBox, as in the previous example
alg = rbfopt.RbfoptAlgorithm(settings, bb)
# Perform only 50 iterations
alg.optimize(pause_after_iters=50)
alg.save_to_file(’state.dat’)
# Now load the state back: this creates a new RbfoptAlgorithm object
alg_loaded = rbfopt.RbfoptAlgorithm.load_from_file(’state.dat’)
# We can continue to optimize
alg_loaded.optimize()

When using the command-line interface, the relevant options are:

• --pause num iterations: pause the optimization after the given number of iterations.

• --save filename: save the state in a file with the given name, at the end of the optimization.

• --load filename: load the state from the file with the given name, before resuming the opti-
mization.

1.6 Interpreting and manipulating the output

The output printed on screen during the optimization, when using the command-line interface, looks like
this:

RbfoptSettings:
algorithm: MSRSM, do_infstep: False, domain_scaling: auto, dynamism_clipping:

auto, dynamism_threshold: 1000.0, eps_impr: 0.0001, eps_linear_dependence:
1e-06, eps_opt: 0.01, eps_zero: 1e-15, function_scaling: auto,

ga_base_population_size: 400, ga_num_generations: 20, global_search_method
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: genetic, init_strategy: lhd_maximin, local_search_box_scaling: 0.5,
local_search_threshold: 0.25, log_scaling_threshold: 1000000.0,
max_clock_time: 1e+30, max_consecutive_discarded: 10,
max_consecutive_refinement: 5, max_consecutive_restoration: 15,
max_cross_validations: 50, max_evaluations: 300, max_iterations: 1000,
max_noisy_evaluations: 200, max_noisy_iterations: 200, max_noisy_restarts:
2, max_random_init: 50, max_stalled_iterations: 100, min_dist: 1e-05,

minlp_solver_path: bonmin, modified_msrsm_score: True, nlp_solver_path:
ipopt, num_cpus: 1, num_global_searches: 5, num_samples_aux_problems:
1000, parallel_wakeup_time: 0.1, print_solver_output: False, rand_seed:
8912313, rbf: auto, rbf_shape_parameter: 0.1, refinement_frequency: 3,
save_state_file: rbfopt_algorithm_state.dat, save_state_interval: 100000,
target_objval: 0.397887357729739, targetval_clipping: True,
thresh_unlimited_refinement: 0.9, tr_acceptable_decrease_enlarge: 0.6,
tr_acceptable_decrease_move: 0.1, tr_acceptable_decrease_shrink: 0.2,
tr_init_radius_multiplier: 2.0, tr_min_grad_norm: 0.01, tr_min_radius:
0.001, tr_num_integer_candidates: 10

Iter 0 Initialization : obj 35.237601 time 0.00 gap 241.31
Iter 0 Initialization : obj 46.853324 time 0.00 gap 241.31
Iter 0 Initialization : obj 1.358041 time 0.00 gap 241.31 *
Iter 0 GlobalStep : obj 187.337050 time 0.02 gap 241.31
Iter 1 GlobalStep : obj 10.653849 time 0.05 gap 241.31
Iter 2 GlobalStep : obj 148.443306 time 0.07 gap 241.31
Iter 3 GlobalStep : obj 19.169483 time 0.10 gap 241.31
Iter 4 GlobalStep : obj 1.058242 time 0.13 gap 165.97 *
Iter 5 LocalStep : obj 0.649103 time 0.18 gap 63.14 *
Iter 6 GlobalStep : obj 24.977164 time 0.22 gap 63.14
Iter 7 GlobalStep : obj 14.207831 time 0.25 gap 63.14
Iter 8 GlobalStep : obj 17.619688 time 0.28 gap 63.14
Iter 9 GlobalStep : obj 12.778690 time 0.31 gap 63.14
Iter 10 GlobalStep : obj 0.482860 time 0.33 gap 21.36 *
Iter 11 LocalStep : obj 3.101359 time 0.40 gap 21.36
Iter 12 GlobalStep : obj 29.304237 time 0.45 gap 21.36
Iter 13 GlobalStep : obj 13.348499 time 0.48 gap 21.36
Iter 14 GlobalStep : obj 2.539477 time 0.50 gap 21.36
Iter 15 GlobalStep : obj 0.531229 time 0.53 gap 21.36
Iter 16 GlobalStep : obj 0.438819 time 0.56 gap 10.29 *
Iter 17 LocalStep : obj 0.417889 time 0.64 gap 5.03 *
Iter 18 RefinementStep : obj 0.434666 time 0.64 gap 5.03
Iter 19 RefinementStep : obj 0.430174 time 0.65 gap 5.03
Iter 20 RefinementStep : obj 0.418010 time 0.65 gap 5.03
Iter 21 RefinementStep : obj 0.419450 time 0.65 gap 5.03
Iter 22 RefinementStep : obj 0.417385 time 0.65 gap 4.90 *
Iter 23 GlobalStep : obj 5.738513 time 0.71 gap 4.90
Iter 24 GlobalStep : obj 5.897249 time 0.74 gap 4.90
Iter 25 GlobalStep : obj 31.331937 time 0.77 gap 4.90
Iter 26 GlobalStep : obj 0.473088 time 0.79 gap 4.90
Iter 27 GlobalStep : obj 1.024412 time 0.83 gap 4.90
Iter 28 LocalStep : obj 11.639333 time 1.73 gap 4.90
Iter 29 GlobalStep : obj 19.588201 time 1.80 gap 4.90
Iter 30 GlobalStep : obj 6.570604 time 1.83 gap 4.90
Iter 31 GlobalStep : obj 1.217971 time 1.86 gap 4.90
Iter 32 GlobalStep : obj 0.656118 time 1.89 gap 4.90
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Iter 33 GlobalStep : obj 0.400612 time 1.92 gap 0.68 *
Summary: iters 34 evals 37 noisy_evals 0 opt_time 1.92 tot_time 1.92

obj 0.400612 gap 0.68
RbfoptAlgorithm.optimize() returned function value 0.400612379267258
x0 : -3.148926
x1 : 12.342298

The command-line interface starts by printing out the full settings for the algorithm. The remaining part is
printed by the optimize() function of RbfoptAlgorithm. This function prints one line per iteration,
starting with the keyword Iter, reporting:

• Iteration number.

• The type of iteration, which is one of the following: Initialization, GlobalStep, LocalStep, AdjLocal-
Step, RefinementStep, Restart, Restoration. These steps are explained in Section 2 during the detailed
description of the algorithm; the “AdjLocalStep” is an adjusted local step performed when the initial
attempt at a LocalStep fails.

• Objective function value of the function evaluation performed at the current iteration (multiple evalu-
ations per iteration can only happen during Initialization).

• Wall-clock CPU time since the beginning of the optimization.

• Gap with respect to the given target objective function value (if any).

• A ∗ if an improved solution is found at the current iteration.

At the end of the optimization process, the summary line, starting with the keyword Summary, prints:

• iters: Total number of iterations.

• evals: Total number of function evaluations, i.e., evaluations of the black box function evaluate()
(excluding noisy evaluations).

• noisy evals: Total number of noisy function evaluations, i.e., evaluations of the black box func-
tion evaluate noisy().

• opt time: Time spent in the optimization algorithms (this excludes the time to evaluate the objective
function).

• tot time: Total elapsed time.

• obj: Best objective function value.

• gap: Final gap with respect to the given target objective function value.

To redirect the output to file one can use the --log option of the command-line scripts, for example:

rbfopt_cl_interface.py --max_evaluations 50 --log log_file_name.txt src/
rbfopt/examples/rbfopt_black_box_example.py

Alternatively, through the API, the function set output stream(file) of RbfoptAlgorithm ac-
cepts any file for output redirection. The function must be called before optimize() to have any effect.
Notice that output can be suppressed by passing an appropriate null file, such as os.devnull.
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1.7 Parallel optimization

RBFOpt supports asynchronous parallel optimization using Python’s multiprocessing library. This mode is
enabled whenever the parameter num cpus is set to a value greater than 1. Black-box function evaluations
as well as some of the heaviest computatations carried out by the algorithm will then be executed in parallel.
Since the parallel computations are asynchronous, determinism cannot be guaranteed: in other words, if the
parallel optimizer is executed twice in a row, it may (and often will) yield different results, even if the same
random seed was provided. This is because the order in which the computations will be completed may
change, and this may impact the course of the algorithm.

The default parameters of the algorithm are optimized for the serial optimization mode. For recommen-
dations on what parameters to use with the parallel optimizer, it may be a good idea to ask for suggestions
on the mailing list or GitHub, see Section 1.10.

Note that the parallel optimizer is oblivious of the system-wide settings for executing linear algebra
routines (BLAS) in parallel. We recommend setting the number of threads for BLAS to 1 when using the
parallel optimizer, see the next section.

1.8 Known issues with OpenBLAS

We are aware of an issue when launching multiple distinct processes that use RBFOpt and the NumPy
implementation is configured to use OpenBLAS in parallel: in this case, on rare occasions we have observed
that some processes may get stuck forever when computing matrix-vector multiplications. The problem can
be fixed by setting the number of threads for OpenBLAS to 1. We do not know if the same issue occurs with
other parallel implementations of BLAS.

For this reason, and because parallel BLAS uses resources suboptimally when used in conjunction with
the parallel optimizer of RBFOpt (if BLAS runs in parallel, each thread of the parallel optimizer would
spawn multiple threads to run BLAS, therefore disregarding the option num cpus), RBFOpt attempts to
set the number of BLAS threads to 1 at run time.

All scripts (rbfopt cl interface.py and rbfopt test interface.py) set the environment
variables OMP NUM THREADS to 1. Furthermore, the rbfopt module does the same when imported for the
first time.

Note that these settings are only effective if the environment variable is set before NumPy is im-
ported; otherwise, they are ignored. Users facing the same issue should try to set the environment variable
OMP NUM THREADS to 1 before NumPy is imported. In Python, this can be done with:

import os
os.environ[’OMP_NUM_THREADS’] = ’1’

1.9 Documentation of the API

The documentation for the code can be built using Sphinx with the numpydoc extension. numpydoc can
be installed with pip:

pip install numpydoc

After that, the directory src/rbfopt/doc/ contains a Makefile (on Windows, the file make.bat should
be used instead) and the Sphinx configuration file conf.py.

The user can build the HTML documentation (recommended) with:

make html

The output will be located in build/html/ and the index can be found in build/html/index.html.
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A PDF version of the documentation (much less readable than the HTML version) can be built using the
command:

make latexpdf

An online version of the documentation for the latest master branch of the code, and for the latest stable
release, are available on ReadTheDocs for the latest branch http://rbfopt.readthedocs.org/
en/latest/, and stable branch http://rbfopt.readthedocs.org/en/stable/.

1.10 Support

The best place to ask question is the mailing list: rbfopt@list.coin-or.org. The subscription page
is at http://list.coin-or.org/mailman/listinfo/rbfopt. Additionally, issues opened on
GitHub are regularly checked.

2 The optimization algorithm

In this section we provide a detailed description of the algorithms implemented in RBFOpt. Further details
can be found in three papers: [2] describes the mathematical foundations for RBFOpt v1.0, many of which
are relevant for the current version; [3] describes the parallel version of RBFOpt; and [1] gives a brief
overview of the variation of MSRSM implemented in RBFOpt, see Section 2.2.2.

RBFOpt addresses a problem cast in the following form:

min f(x)
x ∈ [xL, xU ]
x ∈ Zq × Rn−q,

 (1)

where f : Zq × Rn−q → R, xL, xU ∈ Rn are vectors of (finite) lower and upper bounds on the decision
variables, and q ≤ n. We assume that the analytical expression for f is unknown and function values are
only available through an oracle that is expensive to evaluate, e.g., a time-consuming computer simulation.
In the literature, this is typically called a black-box optimization problem with costly evaluation.

Let Ω := [xL, xU ] ⊂ Rn, ΩI := Ω∩ (Zq ×Rn−q), and we assume that the box constraints on the first q
variables have integer endpoints. Given k distinct points x1, . . . , xk ∈ Ω, a radial basis function interpolant
sk is defined as:

sk(x) :=
k∑
i=1

λiφ(‖x− xi‖) + p(x), (2)

where φ : R+ → R, λ1, . . . , λk ∈ R and p is a polynomial of degree d. The degree d is chosen according to
Table 1, depending on the type of radial basis functions φ(r). The type of RBF is chosen with the parameter
rbf and the value of γ > 0 can be changed with the parameter rbf shape parameter, set to 0.1 by
default.

If φ(r) is cubic or thin plate spline, we obtain an interpolant of the form:

sk(x) :=
k∑
i=1

λiφ(‖x− xi‖) + hT
(
x
1

)
, (3)

where h ∈ Rn+1. The values of λi, h can be determined by solving the following linear system:(
Φ P
P T 0(n+1)×(n+1)

)(
λ
h

)
=

(
F

0n+1

)
, (4)
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φ(r) d value param. rbf
r (linear) 0 linear
r3 (cubic) 1 cubic√
r2 + γ2 (multiquadric) 0 multiquadric

r2 log r (thin plate spline) 1 thin plate spline

e−γr
2

(Gaussian) -1 gaussian

Table 1: RBF functions available in RBFOpt, and corresponding value of the parameter rbf to select a type
of RBF function.

with:

Φ =
(
φ(‖xi − xj‖)

)
i,j=1,...,k

, P =

(x1)T 1
...

...
(xk)T 1

 , λ =

λ1
...
λk

 , F =

f(x1)
...

f(xk)

 .

The algorithm presented later in this section ensures that the points x1, . . . , xk are pairwise distinct and
rank(P ) = n + 1, guaranteeing that the system (4) is nonsingular. We denote by Ak the matrix of (4) with
points x1, . . . , xk.

If φ(r) is linear or multiquadric, d = 0 and P is the all-one column vector of dimension k. In the
Gaussian case, d = −1 and P is removed from system (4). The dimensions of the zero matrix and vector in
(4) are adjusted accordingly.

The general algorithmic scheme employed by the algorithm is the following:

• Initial step: Choose affinely independent points x1, . . . , xn+1 ∈ ΩI using an initialization strategy.
Set k ← n+ 1.

• Iteration step: Repeat the following steps until k exceeds the prescribed number of function evalua-
tions.

(i) Compute the RBF interpolant sk to the points x1, . . . , xk, solving (4).

(ii) Choose a trade-off between exploration and exploitation.

(iii) Determine the next point xk+1 based on the choice at step (ii).

(iv) Evaluate f at xk+1.

(v) Set k ← k + 1. If the last Refinement step was performed sufficiently many iterations ago, go
to the Refinement step. Otherwise, repeat the Iteration step.

• Refinement step:

(i) Select n+ 1 points out of x1, . . . , xk to initialize a local model.

(ii) Apply a trust region method for a specified number k′ of iterations, obtaining points xk+1, . . . , xk+k′ .

(iii) Set k ← k + k′ and go back to the Iteration step.

At Iteration step (ii), exploration implies trying to improve the surrogate model in unknown parts of the
domain, whereas exploitation implies trying to find the best objective function value based on the current
surrogate model.

Whenever numerical errors in the computation of the surrogate model are detected, the algorithm will
switch to a Restoration step that tries to improve the set of interpolation points. The Restoration step is
described in [2].
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2.1 Choice of the initial sample points

The choice of the initial points is determined by the parameter init strategy. The possible values are:

• all corners: select all 2n corners of the box [xL, xU ].

• lower corners: select xL and the n vectors xL + (xU − xL)ei, i = 1, . . . , n.

• rand corners: select n+ 1 corners of the box [xL, xU ] uniformly at random.

• lhd maximin: select a Latin Hypercube Design with n + 1 points. We first generate 50 LHDs at
random, and then choose the one that attains the maximum minimum distance between the points.
This is the default strategy.

• lhd corr: select a Latin Hypercube Design with n+1 points. We first generate 50 LHDs at random,
and then choose the one that attains the minimum maximum correlation between the points.

2.2 Determining the next point: Iteration step

RBFOpt implements a variation of two algorithms for global optimization using RBFs: Gutmann’s RBF
algorithm [4] and the Metric Stochastic Response Surface Method (MSRSM) [5]. The two algorithms can
be chosen using the algorithm option, using the values Gutmann or MSRSM (default). Both algorithms
use a parameter κ that is set by the option num global searches.

2.2.1 Gutmann’s RBF algorithm

A detailed description is given in [2]. Here we report the main steps only. Let `k be the RBF interpolant to
the points (xi, 0), ∀i ∈ {1, . . . , k} and (y, 1). Let µk(y) be the coefficient of `k corresponding to the RBF
centered at y. Define

gk(y) = (−1)d+1µk(y)[sk(y)− f∗k ]2, y ∈ Ω \ {x1, . . . , xk},

where f∗k is a given value. Furthermore, define:

hk(x) =

{
1

gk(x) if x 6∈ {x1, . . . , xk}
0 otherwise.

(5)

Gutmann’s RBF method then implements the following Iteration step:

• Iteration step (for Gutmann’s RBF algorithm):

(ii) Choose a target value f∗k ∈ R ∪ {−∞} : f∗k ≤ minx∈ΩI
sk(x).

(iii) Compute
xk+1 = arg max

x∈ΩI

hk(x), (6)

where h(x) is defined as in (5).

Let y∗ := arg minx∈ΩI
sk(x), fmin := mini=1,...,k f(xi), and fmax := maxi=1,...,k f(xi). We employ a

cyclic strategy that picks target values f∗k ∈ R∪{−∞} according to the following sequence of length κ+2:
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• Step −1 (InfStep): Choose f∗k ← −∞. In this case the problem of finding xk+1 can be rewritten as:

xk+1 = arg max
x∈ΩI

1

(−1)d+1µk(x)
.

This is a pure exploration phase, yielding a point far from x1, . . . , xk. This step is only performed if
do infstep is equal to True (default False).

• Step h ∈ {0, . . . , κ− 1} (Global search): Choose

f∗k ← sk(y
∗)− (1− h/κ)2(fmax − sk(y∗)). (7)

In this case, we try to strike a balance between improving model quality and finding the minimum.

• Step κ (Local search): Choose f∗k ← sk(y
∗). Notice that in this case (5) is maximized at y∗. Hence,

if sk(y∗) < fmin − 10−10|fmin| we accept y∗ as the new sample point xk+1 without solving (6).
Otherwise we choose f∗k ← fmin − 10−2|fmin| (this is reported as AdjLocalStep in the optimization
log, see Section 1.6). This is an exploitation phase, trying to find the best objective function value
based on current information.

2.2.2 MSRSM algorithm

Define dist(x) := mini=1,...,k ‖x− xi‖. The MSRSM algorithm implements the following Iteration step:

• Iteration step (for the MSRSM algorithm):

(ii) Choose a target value α ∈ [0, 1] ∪ {∞}.
(iii) Choose a finite set of reference points P ⊂ ΩI \ {x1, . . . , xk}, and compute

xk+1 = arg min
x∈ΩI

α
maxy∈P dist(y)− dist(x)

maxy∈P dist(y)−miny∈P dist(y)
+

sk(x)−miny∈P sk(y)

maxy∈P sk(y)−miny∈P sk(y)
. (8)

Essentially, (8) tries to solve a bi-objective optimization problem in which the two objective functions are
the (negative of the) maximin distance from the points x1, . . . , xk, and the value of the surrogate model. The
paper [5] uses a variation of (8), in which the second fraction in the expression has weight (1 − α) rather
than 1. RBFOpt supports this variation: in order to use the 1− α weight, rather than the recommended 1, it
suffices to set the option modified msrsm score to False (the default is True). The default version of
formula (8) was introduced in [1].

The value of α is chosen according to a cyclic strategy of length κ + 2 in which each step has similar
goals to the corresponding step discussed in Gutmann’s RBF method. The cyclic strategy is as follows:

• Step −1 (InfStep): Choose α←∞. In this case the problem of finding xk+1 can be rewritten as:

xk+1 = arg max
x∈ΩI

min
i=1,...,k

‖x− xi‖.

This is a pure exploration phase. This step is only performed if do infstep is equal to True (default
False).

• Step h ∈ {0, . . . , κ − 1} (Global search): Choose α ← max{1 − (h + 1)/κ, 0.05}. This aims for
balance between exploration and exploitation.

• Step κ (Local search): Choose α ← 0. In this case, the solution to (8) is the point that minimizes
the surrogate model, i.e., y∗ = arg miny∈ΩI

sky. If y∗ is such that sk(y∗) < fmin − 10−10|fmin|, we
accept y∗ as the new point xk+1. Otherwise, choose α ← 0.05 (this is reported as AdjLocalStep in
the optimization log, see Section 1.6). This is an exploitation phase, trying to find the best objective
function value based on current information.
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2.2.3 Solution of the search problems

RBFOpt implements three different approaches for the solution of the optimization problems (6) and (8).
The choice is determined by the option global search method, which can take the following values:

• genetic: problems (6) and (8) are solved with a simple and fast genetic algorithm. The base
population size is determined by the parameter ga base population size and the number of
generations is determined by ga num generations.

• sampling: rather than solving (6) and (8) directly, we sample a large number of points in ΩI and
choose the best point in the sample. The number of sample points is equal to: n× num samples -
aux problems.

• solver: problems (6) and (8) are solved by means of the mathematical programming solvers Ipopt
and Bonmin.

The default setting is genetic. Note that the MSRSM scoring function requires a set of reference points
P , see (8): the set of reference points is taken to be the current population for genetic, the whole sample
for sampling, and x1, . . . , xk for solver. For MSRSM, we recommend genetic or sampling
(solver has poor performance with MSRSM). For Gutmann’s RBF method we recommend solver,
unless iteration speed is a concern – in which case genetic and sampling are to be preferred.

2.3 Determining the next point: Refinement step

RBFOpt executes a Refinement step periodically during the search. The purpose of the Refinement step is to
improve the best solution available by performing a local search around it, using a variation of a trust region
method. The Refinement step is triggered after refinement frequency full cycles of the global search
strategy in the Iteration step (i.e., the strategy to select f∗k in Gutmann’s RBF method, or α in MSRSM),
but only if one of the following two conditions apply: (i) a new incumbent was discovered since the last
execution of the Refinement step, or (ii) the last Refinement step was stopped because of its iteration limit,
rather than for lack of improvement.

The Refinement step works as follows:

• Model initialization: Let j ← arg mini=1,...,k f(xi). Sort the points x1, . . . , xk by increasing dis-
tance from xj , and select the first n+ 1 (this includes xj itself). Let S be these points. Set x̄← xj .

• Let x̂ be the point in S with the
⌈
n+1

4

⌉
smallest distance to x̄. Compute the initial radius of the trust

region ρ as:
ρ = max{‖x̄− x̂‖, tr init radius× 2tr init radius multiplier}.

• Refinement: repeat max consecutive refinement times, or until a stopping criterion is met.

(i) Let M be the matrix obtained using the points xi ∈ S as columns.

(ii) If M is rank-deficient, use a QR factorization of M to replace one point in S with a new point
(taken from the columns of Q after rescaling) that increases the rank of M , and go back to (i).

(iii) Otherwise, build a linear model c>x+ b of the objective function using points (xi, f(xi)), xi ∈
S.

(iv) Move from the current iterate x̄ in the direction of improvement −c with step length:

t = max
0≤t≤ρ

{t : x̄− tc ∈ [xL, xU ]}.

Let x̄′ = x̄− tc be the new candidate point.
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(v) Evaluate f(x̄′). Update the trust region radius based on the expected decrease c>(x̄ − x̄′) and
the actual decrease f(x̄)− f(x̄′): if f(x̄)−f(x̄′)

c>(x̄−x̄′) ≤ tr acceptable decrease shrink, set

ρ← ρ/2, if f(x̄)−f(x̄′)
c>(x̄−x̄′) ≥ tr acceptable decrease enlarge set ρ← 2ρ .

(vi) If f(x̄)−f(x̄′)
c>(x̄−x̄′) ≥ tr acceptable decrease move, set x̄← x̄′. Otherwise, reject x̄′.

(vii) Replace the point in S with largest objective function value with the new point x̄′, and go back
to (i).

When the Refinement step ends, all points evaluated with f are added to x1, . . . , xk, and we go back to
the Iteration step (with Gutmann’s RBF method or MSRSM). There are several stopping criteria for the
Refinement step:

• max consecutive refinement: the Refinement step stops after this many consecutive iter-
ations, unless the total number of evaluations of the objective f exceeds max evaluations ×
thresh unlimited refinement points, or the wall clock time since the beginning of the search
exceeds max clock time × thresh unlimited refinement.

• tr min radius: if the trust region radius ρ drops below this value, the Refinement step stops.

• tr min grad norm: if the norm of the gradient of the linear model used in the trust region drops
below this value, the Refinement step stops.

The scheme described above is based on trust region methods, which implies that it is devised for contin-
uous variables. RBFOpt applies the Refinement step even in the presence of discrete variables, with no
guarantee of convergence. When the problem has discrete variables the Refinement step proceeds as de-
scribed above, but every candidate point is rounded to an integer point before being evaluated with f . In
particular, every integer variable that takes on a fractional value in the candidate point, say x̄j is rounded
down with probability 1 − bx̄jc, and rounded up with probability bx̄jc. The rounding process is repeated
tr num integer candidates times, and the point with the best linear model score is chosen as the
next candidate. Furthermore, in step (ii) the column of Q that is about to replace one column in M is also
rounded to the closest integer in its fractional component.

2.4 Automatic model selection

RBFOpt assesses model quality using a cross validation scheme, in order to dynamically choose the surro-
gate model that appears to be the most accurate for the problem at hand. Given a data set, cross validation
consists in using part of the data set to fit a model, and testing its quality on the remaining part of the data
set. The process is then iterated, rotating the parts of the data set used for model fitting and for testing.

Let sk be the surrogate model for f based on k evaluation points x1, . . . , xk. We assume that the points
are sorted by increasing function value: f(x1) ≤ f(x2) ≤ · · · ≤ f(xk); this is without loss of generality
as we can always rearrange the points. We perform cross validation as follows. For j ∈ {1, . . . , k}, we can
fit a surrogate model s̃k,j to the points (xi, f(xi)) for i = 1, . . . , k, i 6= j and evaluate the performance of
s̃k,j at (xj , f(xj)). We use an order-based measure to evaluate performance of the surrogate model. For
a given scalar y, let orderk,j(y) be the position at which y should be inserted in the ordered list f(x1) ≤
· · · ≤ f(xj−1) ≤ f(xj+1) ≤ · · · ≤ f(xk) to keep it sorted. Since orderk,j(f(xj)) = j, we use the value
qk,j = |orderk,j(s̃k,j(xj)) − j| to assess the predictive power of the model. We then average qk,j with j
ranging over some subset of {1, . . . , k} to compute a model quality score. This approach is a variation
of leave-one-out cross validation in which we look at how the surrogate model ranks the left-out point
compared to the other points, rather than evaluate the accuracy of the prediction in absolute terms. This is
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motivated by the observation that for the purpose of optimization, a surrogate model that ranks all points
correctly is arguably more useful than a surrogate model that attains small absolute errors, but is not able to
predict how points compare to each other.

We perform model selection at the beginning of every cycle of the search strategy to select f∗k or α
(depending on the choice of algorithm: Gutmann’s RBF or MSRSM). Our aim is to select the RBF model
with the best predictive power. We choose two different models: one for local search, one for global search,
corresponding to different Iteration steps of the algorithm. We do this by computing the average value q̄10%

of qk,j for j = 1, . . . , b0.1kc, and the average value q̄70% of qk,j for j = 1, . . . , b0.7kc.
The RBF model with the lowest value of q̄10% is employed in the subsequent optimization cycle for

the Local search step and the Global search step with h = κ − 1, while the RBF model with lowest value
of q̄70% is employed for all the remaining steps. RBFOpt considers the following RBF models: linear,
cubic, Gaussian, multiquadric or thin plate spline basis functions. This implies that the type of RBF can
dynamically change during the course of the optimization.

In [2], we show that the values q̄10%, q̄70% can be computed in time O(m3), where m is the number of
rows of (4) (i.e., m = k+n+ 1 for cubic and thin plate spline RBF, m = k+ 1 for linear and multiquadric,
m = k for Gaussian). This is achieved by reusing the same LU factorization of the system (4) for each
iteration of the cross validation routine. Details of this approach are given in [2].

Automatic model selection is enabled by setting rbf to the value auto, which is the default choice.
When rbf = auto, RBFOpt will build the surrogate model using thin plate splines until there are enough
points to start the automatic model selection procedure. Furthermore, after max cross validations
executions of the automatic model selection procedure, RBFOpt will trust the results obtained up to that
point and use the type of RBFs that gave the smallest error the largest number of times. Results for the local
search model and global search model are kept separate. In other words, the quantities q̄10% and q̄70% are
computed at most max cross validations times; after that, RBFOpt always uses for local search the
RBF type that gave the smallest value of q̄10% the largest number of times out of max cross validations,
and similarly with q̄70% for global search.

2.5 Parallel optimizer

RBFOpt supports asynchronous parallel evaluation of the objective function f , which is generally the most
time-consuming part of the optimization process. To use the parallel optimizer, the parameter num cpus
must be set to a number greater than its default value 1. The parallel optimizer is nondeterministic due to
its asynchronous nature, hence different results should be expected in different executions, even under the
same starting conditions.

The parallel optimizer works by creating a set of worker threads, coordinated by a master. The worker
threads perform tasks of two types: Type 1 is the evaluation of the objective function at a given point (which
may take a very long time), Type 2 is the computation of a point at which the objective function should
be evaluated (which usually takes only a fraction of a second, but may take a few seconds in rare cases,
especially with Gutmann’s RBF algorithm). RBFOpt always dedicates one worker to perform tasks of Type
1 or of Type 2 related to the Refinement step (but there is a limit to the fraction of Refinement steps that
can be performed in total, see the parameter refinement frequency in Section 3.5); the remaining
workers are utilized for the Iteration step (with Gutmann’s RBF method or MSRSM). As long as there are
available processors, a task is removed from the queue of active tasks, and assigned to the worker. Tasks of
Type 1 have priority over Type 2, due to their longer execution times. Within tasks of the same type, a first
come, first served policy is used.

We remark that the parallel optimizer may not be as effective as the serial optimizer in terms of perform-
ing as few function evaluations as possible, however it may yield large savings in CPU time if the black-box
function calls can be run in parallel. A computational evaluation of the parallel optimizer is given in [3]. A
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brief summary of the results reported in [3] is that when each function evaluation takes between 5 and 10
seconds, the speedup of the parallel optimizer compared to the serial one is roughly the square root of the
number of CPUs used.

3 Parameters of RBFOpt

We provide here a list of all the options that can be set in the class RbfoptSettings. These options can
be provided as arguments to the constructor of the class, for example:

settings = RbfoptSettings(max_clock_time=3600, max_evaluations=50)

or passed to the command-line interface with the syntax --option name=value, for example:

rbfopt_cl_interface.py --max_clock_time 3600 --max_evaluations 50 src/
examples/rbfopt_black_box_example.py

Default values can be checked in the constructor of the class RbfoptSettings or by running:

rbfopt_cl_interface.py --help

3.1 Limits and tolerances

• max iterations : (int) Maximum number of iterations.

• max evaluations : (int) Maximum number of function evaluations in accurate mode, i.e., calls of
the black-box function evaluate().

• max noisy evaluations : (int) Maximum number of function evaluations in noisy mode, i.e.,
calls of the black-box function evaluate noisy().

• max clock time : (float) Maximum wall clock time in seconds.

• target objval : (float) The objective function value we want to reach, i.e. the value of the
unknown optimum. It can be set to any acceptable value, if the optimum is unknown.

• eps opt : (float) Optimality threshold. Any solution within this relative distance from the target objval
is considered optimal.

• eps zero : (float) Tolerance for zeroing out small coefficients in the calculations. Any value smaller
than this will be considered zero.

• eps impr : (float) Tolerance for improvement of the objective function. Any improvement in the
objective function by less than this amount in absolute and relative terms will be not be considered as
finding an improved solution.

• eps linear dependence : (float) Tolerance to determine if a set of columns/rows is linearly
dependent.

• min dist : (float) Minimum Euclidean distance between interpolation points. A new point will be
discarded if it is closer than this value from existing nodes. This prevents the RBF matrix, which is
based on pairwise distances, from becoming singular.
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3.2 Parallel optimization

• num cpus : (int) Number of CPUs used. Any value greater than 1 uses the parallel optimization
engine, rather than the default serial engine.

• parallel wakeup time : (float) Time (in seconds) after which the main optimization engine
checks the arrival of results from workers busy with function evaluations or other computations. This
parameter is only used by the parallel optimizer.

3.3 Surrogate model and scaling

• rbf : (string) Radial basis function used by the method. Choice of ’cubic’, ’thin plate spline’, ’lin-
ear’, ’multiquadric’, ’gaussian’, ’auto’. In case of ’auto’, the type of rbf and the shape parameter will
be dynamically selected by the algorithm.

• rbf shape parameter : (float) Shape parameter for the radial basis function. Used only by the
gaussian and multiquadric RBF, this is also known as the γ parameter. If the rbf is ’auto’, this will be
automatically selected from a finite set.

• function scaling : (string) Rescaling method for the function values. Choice of ’off’, ’affine’,
’log’, ’auto’.

• log scaling threshold : (float) Minimum value for the difference between median and mini-
mum function value before a log scaling of the function values is applied in the ’auto’ setting.

• domain scaling : (string) Rescaling method for the domain. Choice of ’off’, ’affine’, ’auto’.

• dynamism clipping : (string) Dynamism clipping strategy. Choice of ’off’, ’median’, ’clip at dyn’,
’auto’.

• dynamism threshold : (float) Minimum value of the ratio between the largest and the smallest
absolute function values before the dynamism clipping strategy is applied.

• max cross validations : (int) Maximum number of cross validations before we trust our pre-
vious results and stop performing cross- validation.

• targetval clipping : (bool) Clip target value selection based on periodically eliminating some
of the largest function values. Used by Gutmann RBF method only.

3.4 Search strategy

• algorithm : (string) Optimization algorithm used. Choice of ’Gutmann’ and ’MSRSM’.

• do infstep : (bool) If True, perform a pure global search in every cycle of the Iteration step.

• num global searches : (int) Number of steps in the global search phase.

• init strategy : (string) Strategy to select initial points. Choice of ’all corners’, ’lower corners’,
’rand corners’, ’lhd maximin’, ’lhd corr’.

• max random init : (int) Maximum number of trials for the random initialization strategies, in
case they generate a linearly dependent set of samples. After this number of trials, the initialization
algorithm will bail out.
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• local search threshold : (float) Threshold used to determines what is a local search. If the
scaling factor used in the computation of f∗k is less than this value (this applies to both Gutmann and
MSRSM), it is assumed that the search is a local search.

• local search box scaling : (float) Rescaling factor for the hyperbox used for local search.
If an Iteration step is determined to be a local search, then the search for the next point will be
constrained to be within a hyperbox centered on the incumbent, where the size of the hyperbox is
determined by the initial hyperbox and this scaling parameters.

• max stalled iterations : (int) Maximum number of iterations without improvement before
we perform a full restart.

• max consecutive discarded : (int) Maximum number of discarded points before a restart
is triggered. This number is multiplied by the number of CPUs to determine the actual maximum
number of consecutive discarded points.

• max consecutive restoration : (int) Maximum number of consecutive nonsingularity restora-
tion phases before the algorithm fails.

• max noisy restarts : (int) Maximum number of restarts in noisy mode before we switch to
accurate mode.

• max noisy iterations : (int) Maximum number of iterations in noisy mode before switching
to accurate mode.

• global search method : (string) The methodology to be used in the solution of global search
problems, i.e. the infstep and the global step. The options are ’genetic’, ’sampling’ and ’solver’. If
’genetic’, a heuristic based on a genetic algorithm is used. If ’sampling’, random sampling is used. If
’solver’, the available solvers are used to try to solve mathematical programming models.

• ga base population size : (int) Minimum population size for the genetic algorithm used to
optimize the global search step or infstep, when the genetic global search method is chosen. The
final population is computed as the minimum population +n/5, where n is the number of decision
variables.

• ga num generations : (int) Number of generations for the genetic algorithm used to optimize
the global search step or infstep, when the genetic global search method is chosen.

• num samples aux problems : (int) Multiplier for the dimension of the problem to determine the
number of samples used by the MSRSM algorithm at every iteration.

• modified msrsm score : (bool) Use the modified MSRSM score function in which the objective
function value contribution always has a weight of 1, instead of 1− α.

3.5 Refinement step

• max consecutive refinement : (int) Maximum number of consecutive refinement steps.

• thresh unlimited refinement : (float) Lower threshold for the amounf of search budget
depleted, after which the maximum limit on consecutive refinement is ignored. The search budget
here is in terms of number of iterations, number of evaluations, wall clock time.
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• refinement frequency : (int) In serial search mode, this indicates the number of full global
search cycles after which the refinement step can be performed (in case a better solution has been
found in the meantime). In parallel mode, this determines the maximum acceptable ratio between
other search steps and refinement steps.

• tr num integer candidates : (int) Number of integer candidates per dimension of the problem
that are considered when rounding the (fractional) point computed during the refinement step.

• tr acceptable decrease shrink : (float) Maximum ratio between real decrease and trust
region model decrease for which the radius of the trust region gets shrunk.

• tr acceptable decrease enlarge : (float) Minimum ratio between real decrease and trust
region model decrease for which the radius of the trust region gets enlarged.

• tr acceptable decrease move : (float) Minimum ratio between real decrease and trust region
model decrease for which the new candidate point is accepted as the new iterate.

• tr min radius : (float) Minimum radius of the trust region for the refinement step.

• tr init radius multiplier : (float) Exponent (with base 2) of the multiplier used to deter-
mine the minimum initial radius of the trust region for the refinement step.

• tr min grad norm : (float) Minimum norm of the gradient for the trust region method in the
refinement step, before we assume that we converged to a stationary point.

3.6 Checkpointing

• save state interval : (int) Number of iterations after which the state of the algorithm should
be dumped to file. The algorithm can be resumed from a saved state.

• save state file : (string) Name of the file in which the state of the algorithm will be saved at
regular intervals, see the option above. Default ’rbfopt algorithm state.dat’.

3.7 System-related options

• print solver output : (bool) If True, print the output of the solvers to screen. Note that this
cannot be redirected to file (it is controlled by Pyomo, not by RBFOpt) so it will go to stdout.

• minlp solver path : (string) Full path to the MINLP solver executable, i.e., bonmin. If only the
name solver is specified, it is assumed that the solver is part of your system path and can be called
from anywhere.

• nlp solver path : (string) Full path to the NLP solver executable, i.e., ipopt. If only the name
solver is specified, it is assumed that the solver is part of your system path and can be called from
anywhere.

• rand seed : (int) Seed for the random number generator. The maximum random seed supported by
NumPy on all platforms is 232.
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