Coverage for pygeodesy/hausdorff.py: 96%

232 statements  

« prev     ^ index     » next       coverage.py v7.2.2, created at 2024-05-15 16:36 -0400

1 

2# -*- coding: utf-8 -*- 

3 

4u'''Hausdorff distances. 

5 

6Classes L{Hausdorff}, L{HausdorffDegrees}, L{HausdorffRadians}, 

7L{HausdorffCosineAndoyerLambert}, L{HausdorffCosineForsytheAndoyerLambert}, 

8L{HausdorffCosineLaw}, L{HausdorffDistanceTo}, L{HausdorffEquirectangular}, 

9L{HausdorffEuclidean}, L{HausdorffFlatLocal}, L{HausdorffFlatPolar}, 

10L{HausdorffHaversine}, L{HausdorffHubeny}, L{HausdorffKarney}, 

11L{HausdorffThomas} and L{HausdorffVincentys} to compute U{Hausdorff 

12<https://WikiPedia.org/wiki/Hausdorff_distance>} distances between two 

13sets of C{LatLon}, C{NumPy}, C{tuples} or other types of points. 

14 

15Only L{HausdorffDistanceTo} -iff used with L{ellipsoidalKarney.LatLon} 

16points- and L{HausdorffKarney} requires installation of I{Charles Karney}'s 

17U{geographiclib<https://PyPI.org/project/geographiclib>}. 

18 

19Typical usage is as follows. First, create a C{Hausdorff} calculator 

20from a given set of C{LatLon} points, called the C{model} or C{template} 

21points. 

22 

23C{h = HausdorffXyz(point1s, ...)} 

24 

25Get the C{directed} or C{symmetric} Hausdorff distance to a second set 

26of C{LatLon} points, named the C{target} points, by using 

27 

28C{t6 = h.directed(point2s)} 

29 

30respectively 

31 

32C{t6 = h.symmetric(point2s)}. 

33 

34Or, use function C{hausdorff_} with a proper C{distance} function and 

35optionally a C{point} function passed as keyword arguments as follows 

36 

37C{t6 = hausdorff_(point1s, point2s, ..., distance=..., point=...)}. 

38 

39In all cases, the returned result C{t6} is a L{Hausdorff6Tuple}. 

40 

41For C{(lat, lon, ...)} points in a C{NumPy} array or plain C{tuples}, 

42wrap the points in a L{Numpy2LatLon} respectively L{Tuple2LatLon} 

43instance, more details in the documentation thereof. 

44 

45For other points, create a L{Hausdorff} sub-class with the appropriate 

46C{distance} method overloading L{Hausdorff.distance} and optionally a 

47C{point} method overriding L{Hausdorff.point} as the next example. 

48 

49 >>> from pygeodesy import Hausdorff, hypot_ 

50 >>> 

51 >>> class H3D(Hausdorff): 

52 >>> """Custom Hausdorff example. 

53 >>> """ 

54 >>> def distance(self, p1, p2): 

55 >>> return hypot_(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z) 

56 >>> 

57 >>> h3D = H3D(xyz1, ..., units="...") 

58 >>> d6 = h3D.directed(xyz2) 

59 

60Transcribed from the original SciPy U{Directed Hausdorff Code 

61<https://GitHub.com/scipy/scipy/blob/master/scipy/spatial/_hausdorff.pyx>} 

62version 0.19.0, Copyright (C) Tyler Reddy, Richard Gowers, and Max Linke, 

632016, distributed under the same BSD license as SciPy, including C{early 

64breaking} and C{random sampling} as in U{Abdel Aziz Taha, Allan Hanbury 

65"An Efficient Algorithm for Calculating the Exact Hausdorff Distance" 

66<https://Publik.TUWien.ac.AT/files/PubDat_247739.pdf>}, IEEE Trans. Pattern 

67Analysis Machine Intelligence (PAMI), vol 37, no 11, pp 2153-2163, Nov 2015. 

68''' 

69 

70from pygeodesy.constants import INF, NINF, _0_0 

71from pygeodesy.datums import _ellipsoidal_datum, _WGS84 

72from pygeodesy.errors import PointsError, _xattr, _xcallable, _xkwds, _xkwds_get 

73import pygeodesy.formy as _formy 

74from pygeodesy.interns import NN, _i_, _j_, _units_ 

75# from pygeodesy.iters import points2 # from .points 

76from pygeodesy.lazily import _ALL_LAZY, _FOR_DOCS 

77from pygeodesy.named import _Named, _NamedTuple, _Pass 

78# from pygeodesy.namedTuples import PhiLam2Tuple # from .points 

79from pygeodesy.points import _distanceTo, points2 as _points2, PhiLam2Tuple, radians 

80from pygeodesy.props import Property_RO, property_doc_, property_RO 

81from pygeodesy.units import Float, Number_, _xUnit, _xUnits 

82from pygeodesy.unitsBase import _Str_degrees, _Str_degrees2, _Str_meter, _Str_NN, \ 

83 _Str_radians, _Str_radians2 

84 

85# from math import radians # from .points 

86from random import Random 

87 

88__all__ = _ALL_LAZY.hausdorff 

89__version__ = '24.04.07' 

90 

91 

92class HausdorffError(PointsError): 

93 '''Hausdorff issue. 

94 ''' 

95 pass 

96 

97 

98class Hausdorff(_Named): 

99 '''Hausdorff base class, requires method L{Hausdorff.distance} to 

100 be overloaded. 

101 ''' 

102 _datum = _WGS84 

103 _func = None # formy function 

104 _kwds = {} # func_ options 

105 _model = () 

106 _seed = None 

107 _units = _Str_NN # XXX Str to _Pass and for backward compatibility 

108 

109 def __init__(self, point1s, seed=None, name=NN, units=NN, **kwds): 

110 '''New C{Hausdorff...} calculator. 

111 

112 @arg point1s: Initial set of points, aka the C{model} or 

113 C{template} (C{LatLon}[], C{Numpy2LatLon}[], 

114 C{Tuple2LatLon}[] or C{other}[]). 

115 @kwarg seed: Random sampling seed (C{any}) or C{None}, C{0} 

116 or C{False} for no U{random sampling<https:// 

117 Publik.TUWien.ac.AT/files/PubDat_247739.pdf>}. 

118 @kwarg name: Optional name for this interpolator (C{str}). 

119 @kwarg units: Optional, the distance units (C{Unit} or C{str}). 

120 @kwarg kwds: Optional keyword argument for distance function, 

121 retrievable with property C{kwds}. 

122 

123 @raise HausdorffError: Insufficient number of B{C{point1s}} 

124 or an invalid B{C{point1}}, B{C{seed}} 

125 or B{C{units}}. 

126 ''' 

127 _, self._model = self._points2(point1s) 

128 if seed: 

129 self.seed = seed 

130 if name: 

131 self.name = name 

132 if units: # and not self.units: 

133 self.units = units 

134 if kwds: 

135 self._kwds = kwds 

136 

137 @Property_RO 

138 def adjust(self): 

139 '''Get the adjust setting (C{bool} or C{None} if not applicable). 

140 ''' 

141 return _xkwds_get(self._kwds, adjust=None) 

142 

143 @Property_RO 

144 def datum(self): 

145 '''Get the datum of this calculator (L{Datum} or C{None} if not applicable). 

146 ''' 

147 return self._datum 

148 

149 def _datum_setter(self, datum): 

150 '''(INTERNAL) Set the datum. 

151 ''' 

152 d = datum or _xattr(self._model[0], datum=datum) 

153 if d not in (None, self._datum): # PYCHOK no cover 

154 self._datum = _ellipsoidal_datum(d, name=self.name) 

155 

156 def directed(self, point2s, early=True): 

157 '''Compute only the C{forward Hausdorff} distance. 

158 

159 @arg point2s: Second set of points, aka the C{target} (C{LatLon}[], 

160 C{Numpy2LatLon}[], C{Tuple2LatLon}[] or C{other}[]). 

161 @kwarg early: Enable or disable U{early breaking<https:// 

162 Publik.TUWien.ac.AT/files/PubDat_247739.pdf>} (C{bool}). 

163 

164 @return: A L{Hausdorff6Tuple}C{(hd, i, j, mn, md, units)}. 

165 

166 @raise HausdorffError: Insufficient number of B{C{point2s}} or 

167 an invalid B{C{point2}}. 

168 

169 @note: See B{C{point2s}} note at L{HausdorffDistanceTo}. 

170 ''' 

171 return self._hausdorff_(point2s, False, early, self.distance) 

172 

173 def distance(self, point1, point2): 

174 '''Return the distance between B{C{point1}} and B{C{point2s}}, 

175 subject to the supplied optional keyword arguments, see 

176 property C{kwds}. 

177 ''' 

178 return self._func(point1.lat, point1.lon, 

179 point2.lat, point2.lon, **self._kwds) 

180 

181 def _hausdorff_(self, point2s, both, early, distance): 

182 _, ps2 = self._points2(point2s) 

183 return _hausdorff_(self._model, ps2, both, early, self.seed, 

184 self.units, distance, self.point) 

185 

186 @property_RO 

187 def kwds(self): 

188 '''Get the supplied, optional keyword arguments (C{dict}). 

189 ''' 

190 return self._kwds 

191 

192 def point(self, point): 

193 '''Convert a C{model} or C{target} point for the C{.distance} method. 

194 ''' 

195 return point # pass thru 

196 

197 def _points2(self, points): 

198 '''(INTERNAL) Check a set of points. 

199 ''' 

200 return _points2(points, closed=False, Error=HausdorffError) 

201 

202 @property_doc_(''' the random sampling seed (C{Random}).''') 

203 def seed(self): 

204 '''Get the random sampling seed (C{any} or C{None}). 

205 ''' 

206 return self._seed 

207 

208 @seed.setter # PYCHOK setter! 

209 def seed(self, seed): 

210 '''Set the random sampling seed (C{Random(seed)}) or 

211 C{None}, C{0} or C{False} for no U{random sampling 

212 <https://Publik.TUWien.ac.AT/files/PubDat_247739.pdf>}. 

213 

214 @raise HausdorffError: Invalid B{C{seed}}. 

215 ''' 

216 if seed: 

217 try: 

218 Random(seed) 

219 except (TypeError, ValueError) as x: 

220 raise HausdorffError(seed=seed, cause=x) 

221 self._seed = seed 

222 else: 

223 self._seed = None 

224 

225 def symmetric(self, point2s, early=True): 

226 '''Compute the combined C{forward and reverse Hausdorff} distance. 

227 

228 @arg point2s: Second set of points, aka the C{target} (C{LatLon}[], 

229 C{Numpy2LatLon}[], C{Tuple2LatLon}[] or C{other}[]). 

230 @kwarg early: Enable or disable U{early breaking<https:// 

231 Publik.TUWien.ac.AT/files/PubDat_247739.pdf>} (C{bool}). 

232 

233 @return: A L{Hausdorff6Tuple}C{(hd, i, j, mn, md, units)}. 

234 

235 @raise HausdorffError: Insufficient number of B{C{point2s}} or 

236 an invalid B{C{point2}}. 

237 

238 @note: See B{C{point2s}} note at L{HausdorffDistanceTo}. 

239 ''' 

240 return self._hausdorff_(point2s, True, early, self.distance) 

241 

242 @property_doc_(''' the distance units (C{Unit} or C{str}).''') 

243 def units(self): 

244 '''Get the distance units (C{Unit} or C{str}). 

245 ''' 

246 return self._units 

247 

248 @units.setter # PYCHOK setter! 

249 def units(self, units): 

250 '''Set the distance units (C{Unit} or C{str}). 

251 

252 @raise TypeError: Invalid B{C{units}}. 

253 ''' 

254 self._units = _xUnits(units, Base=Float) 

255 

256 @Property_RO 

257 def wrap(self): 

258 '''Get the wrap setting (C{bool} or C{None} if not applicable). 

259 ''' 

260 return _xkwds_get(self._kwds, adjust=None) 

261 

262 

263class HausdorffDegrees(Hausdorff): 

264 '''L{Hausdorff} base class for distances from C{LatLon} 

265 points in C{degrees}. 

266 ''' 

267 _units = _Str_degrees 

268 

269 if _FOR_DOCS: 

270 __init__ = Hausdorff.__init__ 

271 directed = Hausdorff.directed 

272 symmetric = Hausdorff.symmetric 

273 

274 def distance(self, point1, point2): # PYCHOK no cover 

275 '''I{Must be overloaded}.''' 

276 self._notOverloaded(point1, point2) 

277 

278 

279class HausdorffRadians(Hausdorff): 

280 '''L{Hausdorff} base class for distances from C{LatLon} 

281 points converted from C{degrees} to C{radians}. 

282 ''' 

283 _units = _Str_radians 

284 

285 if _FOR_DOCS: 

286 __init__ = Hausdorff.__init__ 

287 directed = Hausdorff.directed 

288 symmetric = Hausdorff.symmetric 

289 

290 def distance(self, point1, point2): # PYCHOK no cover 

291 '''Return the distance in C{radians} between B{C{point1}} and B{C{point2}}. 

292 I{Must be overloaded}.''' 

293 self._notOverloaded(point1, point2) 

294 

295 def point(self, point): 

296 '''Return B{C{point}} as L{PhiLam2Tuple} to maintain 

297 I{backward compatibility} of L{HausdorffRadians}. 

298 

299 @return: A L{PhiLam2Tuple}C{(phi, lam)}. 

300 ''' 

301 try: 

302 return point.philam 

303 except AttributeError: 

304 return PhiLam2Tuple(radians(point.lat), radians(point.lon)) 

305 

306 

307class _HausdorffMeterRadians(Hausdorff): 

308 '''(INTERNAL) Returning C{meter} or C{radians} depending on 

309 the optional keyword arguments supplied at instantiation 

310 of the C{Hausdorff*} sub-class. 

311 ''' 

312 _units = _Str_meter 

313 _units_ = _Str_radians 

314 

315 def directed(self, point2s, early=True): 

316 '''Overloaded method L{Hausdorff.directed} to determine 

317 the distance function and units from the optional 

318 keyword arguments given at this instantiation, see 

319 property C{kwds}. 

320 

321 @see: L{Hausdorff.directed} for other details. 

322 ''' 

323 return self._hausdorff_(point2s, False, early, _formy._radistance(self)) 

324 

325 def symmetric(self, point2s, early=True): 

326 '''Overloaded method L{Hausdorff.symmetric} to determine 

327 the distance function and units from the optional 

328 keyword arguments given at this instantiation, see 

329 property C{kwds}. 

330 

331 @see: L{Hausdorff.symmetric} for other details. 

332 ''' 

333 return self._hausdorff_(point2s, True, early, _formy._radistance(self)) 

334 

335 def _func_(self, *args, **kwds): # PYCHOK no cover 

336 '''(INTERNAL) I{Must be overloaded}.''' 

337 self._notOverloaded(*args, **kwds) 

338 

339 

340class HausdorffCosineAndoyerLambert(_HausdorffMeterRadians): 

341 '''Compute the C{Hausdorff} distance based on the I{angular} distance 

342 in C{radians} from function L{pygeodesy.cosineAndoyerLambert}. 

343 ''' 

344 def __init__(self, point1s, seed=None, name=NN, **datum_wrap): 

345 '''New L{HausdorffCosineAndoyerLambert} calculator. 

346 

347 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

348 B{C{seed}}, B{C{name}} and other exceptions. 

349 

350 @kwarg datum_wrap: Optional keyword arguments for function 

351 L{pygeodesy.cosineAndoyerLambert}. 

352 ''' 

353 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

354 **datum_wrap) 

355 self._func = _formy.cosineAndoyerLambert 

356 self._func_ = _formy.cosineAndoyerLambert_ 

357 

358 if _FOR_DOCS: 

359 directed = Hausdorff.directed 

360 symmetric = Hausdorff.symmetric 

361 

362 

363class HausdorffCosineForsytheAndoyerLambert(_HausdorffMeterRadians): 

364 '''Compute the C{Hausdorff} distance based on the I{angular} distance 

365 in C{radians} from function L{pygeodesy.cosineForsytheAndoyerLambert}. 

366 ''' 

367 def __init__(self, point1s, seed=None, name=NN, **datum_wrap): 

368 '''New L{HausdorffCosineForsytheAndoyerLambert} calculator. 

369 

370 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

371 B{C{seed}}, B{C{name}} and other exceptions. 

372 

373 @kwarg datum_wrap: Optional keyword arguments for function 

374 L{pygeodesy.cosineAndoyerLambert}. 

375 ''' 

376 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

377 **datum_wrap) 

378 self._func = _formy.cosineForsytheAndoyerLambert 

379 self._func_ = _formy.cosineForsytheAndoyerLambert_ 

380 

381 if _FOR_DOCS: 

382 directed = Hausdorff.directed 

383 symmetric = Hausdorff.symmetric 

384 

385 

386class HausdorffCosineLaw(_HausdorffMeterRadians): 

387 '''Compute the C{Hausdorff} distance based on the I{angular} 

388 distance in C{radians} from function L{pygeodesy.cosineLaw_}. 

389 

390 @note: See note at function L{pygeodesy.vincentys_}. 

391 ''' 

392 def __init__(self, point1s, seed=None, name=NN, **radius_wrap): 

393 '''New L{HausdorffCosineLaw} calculator. 

394 

395 @kwarg radius_wrap: Optional keyword arguments for function 

396 L{pygeodesy.cosineLaw}. 

397 

398 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

399 B{C{seed}}, B{C{name}} and other exceptions. 

400 ''' 

401 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

402 **radius_wrap) 

403 self._func = _formy.cosineLaw 

404 self._func_ = _formy.cosineLaw_ 

405 

406 if _FOR_DOCS: 

407 directed = Hausdorff.directed 

408 symmetric = Hausdorff.symmetric 

409 

410 

411class HausdorffDistanceTo(Hausdorff): 

412 '''Compute the C{Hausdorff} distance based on the distance from the 

413 points' C{LatLon.distanceTo} method, conventionally in C{meter}. 

414 ''' 

415 _units = _Str_meter 

416 

417 def __init__(self, point1s, seed=None, name=NN, **distanceTo_kwds): 

418 '''New L{HausdorffDistanceTo} calculator. 

419 

420 @kwarg distanceTo_kwds: Optional keyword arguments for each 

421 B{C{point1s}}' C{LatLon.distanceTo} 

422 method. 

423 

424 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

425 B{C{seed}}, B{C{name}} and other exceptions. 

426 

427 @note: All C{model}, C{template} and C{target} B{C{points}} 

428 I{must} be instances of the same ellipsoidal or 

429 spherical C{LatLon} class. 

430 ''' 

431 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

432 **distanceTo_kwds) 

433 

434 if _FOR_DOCS: 

435 directed = Hausdorff.directed 

436 symmetric = Hausdorff.symmetric 

437 

438 def distance(self, p1, p2): 

439 '''Return the distance in C{meter}. 

440 ''' 

441 return p1.distanceTo(p2, **self._kwds) 

442 

443 def _points2(self, points): 

444 '''(INTERNAL) Check a set of points. 

445 ''' 

446 np, ps = Hausdorff._points2(self, points) 

447 return np, _distanceTo(HausdorffError, points=ps) 

448 

449 

450class HausdorffEquirectangular(Hausdorff): 

451 '''Compute the C{Hausdorff} distance based on the C{equirectangular} distance 

452 in C{radians squared} like function L{pygeodesy.equirectangular_}. 

453 ''' 

454 _units = _Str_degrees2 

455 

456 def __init__(self, point1s, seed=None, name=NN, **adjust_limit_wrap): 

457 '''New L{HausdorffEquirectangular} calculator. 

458 

459 @kwarg adjust_limit_wrap: Optional keyword arguments for function 

460 L{pygeodesy.equirectangular_} I{with default} 

461 C{B{limit}=0} for I{backward compatibility}. 

462 

463 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

464 B{C{seed}}, B{C{name}} and other exceptions. 

465 ''' 

466 adjust_limit_wrap = _xkwds(adjust_limit_wrap, limit=0) 

467 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

468 **adjust_limit_wrap) 

469 self._func = _formy._equirectangular # helper 

470 

471 if _FOR_DOCS: 

472 directed = Hausdorff.directed 

473 symmetric = Hausdorff.symmetric 

474 

475 

476class HausdorffEuclidean(_HausdorffMeterRadians): 

477 '''Compute the C{Hausdorff} distance based on the C{Euclidean} 

478 distance in C{radians} from function L{pygeodesy.euclidean_}. 

479 ''' 

480 def __init__(self, point1s, seed=None, name=NN, **adjust_wrap): 

481 '''New L{HausdorffEuclidean} calculator. 

482 

483 @kwarg adjust_radius_wrap: Optional keyword arguments for 

484 function L{pygeodesy.euclidean}. 

485 

486 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

487 B{C{seed}}, B{C{name}} and other exceptions. 

488 ''' 

489 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

490 **adjust_wrap) 

491 self._func = _formy.euclidean 

492 self._func_ = _formy.euclidean_ 

493 

494 if _FOR_DOCS: 

495 directed = Hausdorff.directed 

496 symmetric = Hausdorff.symmetric 

497 

498 

499class HausdorffExact(Hausdorff): 

500 '''Compute the C{Hausdorff} distance based on the I{angular} 

501 distance in C{degrees} from method L{GeodesicExact}C{.Inverse}. 

502 ''' 

503 _units = _Str_degrees 

504 

505 def __init__(self, point1s, seed=None, name=NN, datum=None, **wrap): 

506 '''New L{HausdorffKarney} calculator. 

507 

508 @kwarg datum: Datum to override the default C{Datums.WGS84} and 

509 first B{C{point1s}}' datum (L{Datum}, L{Ellipsoid}, 

510 L{Ellipsoid2} or L{a_f2Tuple}). 

511 @kwarg wrap: Optional keyword argument for method C{Inverse1} 

512 of class L{geodesicx.GeodesicExact}. 

513 

514 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

515 B{C{seed}}, B{C{name}} and other exceptions. 

516 

517 @raise TypeError: Invalid B{C{datum}}. 

518 ''' 

519 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

520 **wrap) 

521 self._datum_setter(datum) 

522 self._func = self.datum.ellipsoid.geodesicx.Inverse1 # note -x 

523 

524 if _FOR_DOCS: 

525 directed = Hausdorff.directed 

526 symmetric = Hausdorff.symmetric 

527 

528 

529class HausdorffFlatLocal(_HausdorffMeterRadians): 

530 '''Compute the C{Hausdorff} distance based on the I{angular} distance in 

531 C{radians squared} like function L{pygeodesy.flatLocal_}/L{pygeodesy.hubeny_}. 

532 ''' 

533 _units = _Str_radians2 

534 

535 def __init__(self, point1s, seed=None, name=NN, **datum_scaled_wrap): 

536 '''New L{HausdorffFlatLocal}/L{HausdorffHubeny} calculator. 

537 

538 @kwarg datum_scaled_wrap: Optional keyword arguments for 

539 function L{pygeodesy.flatLocal}. 

540 

541 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

542 B{C{seed}}, B{C{name}} and other exceptions. 

543 

544 @note: The distance C{units} are C{radians squared}, not C{radians}. 

545 ''' 

546 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

547 **datum_scaled_wrap) 

548 self._func = _formy.flatLocal 

549 self._func_ = self.datum.ellipsoid._hubeny_2 

550 

551 if _FOR_DOCS: 

552 directed = Hausdorff.directed 

553 symmetric = Hausdorff.symmetric 

554 

555 

556class HausdorffFlatPolar(_HausdorffMeterRadians): 

557 '''Compute the C{Hausdorff} distance based on the I{angular} 

558 distance in C{radians} from function L{pygeodesy.flatPolar_}. 

559 ''' 

560 _wrap = False 

561 

562 def __init__(self, points, seed=None, name=NN, **radius_wrap): 

563 '''New L{HausdorffFlatPolar} calculator. 

564 

565 @kwarg radius_wrap: Optional keyword arguments for function 

566 L{pygeodesy.flatPolar}. 

567 

568 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

569 B{C{seed}}, B{C{name}} and other exceptions. 

570 ''' 

571 Hausdorff.__init__(self, points, seed=seed, name=name, 

572 **radius_wrap) 

573 self._func = _formy.flatPolar 

574 self._func_ = _formy.flatPolar_ 

575 

576 if _FOR_DOCS: 

577 directed = Hausdorff.directed 

578 symmetric = Hausdorff.symmetric 

579 

580 

581class HausdorffHaversine(_HausdorffMeterRadians): 

582 '''Compute the C{Hausdorff} distance based on the I{angular} 

583 distance in C{radians} from function L{pygeodesy.haversine_}. 

584 

585 @note: See note under L{HausdorffVincentys}. 

586 ''' 

587 _wrap = False 

588 

589 def __init__(self, points, seed=None, name=NN, **radius_wrap): 

590 '''New L{HausdorffHaversine} calculator. 

591 

592 @kwarg radius_wrap: Optional keyword arguments for function 

593 L{pygeodesy.haversine}. 

594 

595 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

596 B{C{seed}}, B{C{name}} and other exceptions. 

597 ''' 

598 Hausdorff.__init__(self, points, seed=seed, name=name, 

599 **radius_wrap) 

600 self._func = _formy.haversine 

601 self._func_ = _formy.haversine_ 

602 

603 if _FOR_DOCS: 

604 directed = Hausdorff.directed 

605 symmetric = Hausdorff.symmetric 

606 

607 

608class HausdorffHubeny(HausdorffFlatLocal): # for Karl Hubeny 

609 if _FOR_DOCS: 

610 __doc__ = HausdorffFlatLocal.__doc__ 

611 __init__ = HausdorffFlatLocal.__init__ 

612 directed = HausdorffFlatLocal.directed 

613 distance = HausdorffFlatLocal.distance 

614 symmetric = HausdorffFlatLocal.symmetric 

615 

616 

617class HausdorffKarney(Hausdorff): 

618 '''Compute the C{Hausdorff} distance based on the I{angular} 

619 distance in C{degrees} from I{Karney}'s U{geographiclib 

620 <https://PyPI.org/project/geographiclib>} U{Geodesic 

621 <https://GeographicLib.SourceForge.io/Python/doc/code.html>} 

622 Inverse method. 

623 ''' 

624 _units = _Str_degrees 

625 

626 def __init__(self, point1s, datum=None, seed=None, name=NN, **wrap): 

627 '''New L{HausdorffKarney} calculator. 

628 

629 @kwarg datum: Datum to override the default C{Datums.WGS84} and 

630 first B{C{knots}}' datum (L{Datum}, L{Ellipsoid}, 

631 L{Ellipsoid2} or L{a_f2Tuple}). 

632 @kwarg wrap: Optional keyword argument for method C{Inverse1} 

633 of class L{geodesicw.Geodesic}. 

634 

635 @raise ImportError: Package U{geographiclib 

636 <https://PyPI.org/project/geographiclib>} missing. 

637 

638 @raise TypeError: Invalid B{C{datum}}. 

639 

640 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

641 B{C{seed}}, B{C{name}} and other exceptions. 

642 ''' 

643 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

644 **wrap) 

645 self._datum_setter(datum) 

646 self._func = self.datum.ellipsoid.geodesic.Inverse1 

647 

648 

649class HausdorffThomas(_HausdorffMeterRadians): 

650 '''Compute the C{Hausdorff} distance based on the I{angular} 

651 distance in C{radians} from function L{pygeodesy.thomas_}. 

652 ''' 

653 def __init__(self, point1s, seed=None, name=NN, **datum_wrap): 

654 '''New L{HausdorffThomas} calculator. 

655 

656 @kwarg datum_wrap: Optional keyword argument for function 

657 L{pygeodesy.thomas}. 

658 

659 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

660 B{C{seed}}, B{C{name}} and other exceptions. 

661 ''' 

662 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

663 **datum_wrap) 

664 self._func = _formy.thomas 

665 self._func_ = _formy.thomas_ 

666 

667 if _FOR_DOCS: 

668 directed = Hausdorff.directed 

669 symmetric = Hausdorff.symmetric 

670 

671 

672class HausdorffVincentys(_HausdorffMeterRadians): 

673 '''Compute the C{Hausdorff} distance based on the I{angular} 

674 distance in C{radians} from function L{pygeodesy.vincentys_}. 

675 

676 @note: See note at function L{pygeodesy.vincentys_}. 

677 ''' 

678 _wrap = False 

679 

680 def __init__(self, point1s, seed=None, name=NN, **radius_wrap): 

681 '''New L{HausdorffVincentys} calculator. 

682 

683 @kwarg radius_wrap: Optional keyword arguments for function 

684 L{pygeodesy.vincentys}. 

685 

686 @see: L{Hausdorff.__init__} for details about B{C{point1s}}, 

687 B{C{seed}}, B{C{name}} and other exceptions. 

688 ''' 

689 Hausdorff.__init__(self, point1s, seed=seed, name=name, 

690 **radius_wrap) 

691 self._func = _formy.vincentys 

692 self._func_ = _formy.vincentys_ 

693 

694 if _FOR_DOCS: 

695 directed = Hausdorff.directed 

696 symmetric = Hausdorff.symmetric 

697 

698 

699def _hausdorff_(ps1, ps2, both, early, seed, units, distance, point): 

700 '''(INTERNAL) Core of function L{hausdorff_} and methods C{directed} 

701 and C{symmetric} of classes C{hausdorff.Hausdorff...}. 

702 ''' 

703 # shuffling the points generally increases the 

704 # chance of an early break in the inner j loop 

705 rr = randomrangenerator(seed) if seed else range 

706 

707 hd = NINF 

708 hi = hj = m = mn = 0 

709 md = _0_0 

710 

711 # forward or forward and backward 

712 for fb in range(2 if both else 1): 

713 n = len(ps2) 

714 for i in rr(len(ps1)): 

715 p1 = point(ps1[i]) 

716 dh, dj = INF, 0 

717 for j in rr(n): 

718 p2 = point(ps2[j]) 

719 d = distance(p1, p2) 

720 if early and d < hd: 

721 break # early 

722 elif d < dh: 

723 dh, dj = d, j 

724 else: # no early break 

725 if hd < dh: 

726 hd = dh 

727 if fb: 

728 hi, hj = dj, i 

729 else: 

730 hi, hj = i, dj 

731 md += dh 

732 mn += 1 

733 m += 1 

734 # swap model and target 

735 ps1, ps2 = ps2, ps1 

736 

737 md = None if mn < m else (md / float(m)) 

738 return Hausdorff6Tuple(hd, hi, hj, m, md, units) 

739 

740 

741def _point(p): 

742 '''Default B{C{point}} callable for function L{hausdorff_}. 

743 

744 @arg p: The original C{model} or C{target} point (C{any}). 

745 

746 @return: The point, suitable for the L{hausdorff_} 

747 B{C{distance}} callable. 

748 ''' 

749 return p 

750 

751 

752def hausdorff_(model, target, both=False, early=True, seed=None, units=NN, 

753 distance=None, point=_point): 

754 '''Compute the C{directed} or C{symmetric} U{Hausdorff 

755 <https://WikiPedia.org/wiki/Hausdorff_distance>} distance between 2 sets of points 

756 with or without U{early breaking<https://Publik.TUWien.ac.AT/files/PubDat_247739.pdf>} 

757 and U{random sampling<https://Publik.TUWien.ac.AT/files/PubDat_247739.pdf>}. 

758 

759 @arg model: First set of points (C{LatLon}[], C{Numpy2LatLon}[], 

760 C{Tuple2LatLon}[] or C{other}[]). 

761 @arg target: Second set of points (C{LatLon}[], C{Numpy2LatLon}[], 

762 C{Tuple2LatLon}[] or C{other}[]). 

763 @kwarg both: Return the C{directed} (forward only) or the C{symmetric} 

764 (combined forward and reverse) C{Hausdorff} distance (C{bool}). 

765 @kwarg early: Enable or disable U{early breaking<https://Publik.TUWien.ac.AT/ 

766 files/PubDat_247739.pdf>} (C{bool}). 

767 @kwarg seed: Random sampling seed (C{any}) or C{None}, C{0} or C{False} for no 

768 U{random sampling<https://Publik.TUWien.ac.AT/files/PubDat_247739.pdf>}. 

769 @kwarg units: Optional, the distance units (C{Unit} or C{str}). 

770 @kwarg distance: Callable returning the distance between a B{C{model}} 

771 and B{C{target}} point (signature C{(point1, point2)}). 

772 @kwarg point: Callable returning the B{C{model}} or B{C{target}} point 

773 suitable for B{C{distance}} (signature C{(point)}). 

774 

775 @return: A L{Hausdorff6Tuple}C{(hd, i, j, mn, md, units)}. 

776 

777 @raise HausdorffError: Insufficient number of B{C{model}} or B{C{target}} points. 

778 

779 @raise TypeError: If B{C{distance}} or B{C{point}} is not callable. 

780 ''' 

781 _xcallable(distance=distance, point=point) 

782 

783 _, ps1 = _points2(model, closed=False, Error=HausdorffError) # PYCHOK non-sequence 

784 _, ps2 = _points2(target, closed=False, Error=HausdorffError) # PYCHOK non-sequence 

785 return _hausdorff_(ps1, ps2, both, early, seed, units, distance, point) 

786 

787 

788class Hausdorff6Tuple(_NamedTuple): 

789 '''6-Tuple C{(hd, i, j, mn, md, units)} with the U{Hausdorff 

790 <https://WikiPedia.org/wiki/Hausdorff_distance>} distance C{hd}, 

791 indices C{i} and C{j}, the total count C{mn}, the C{I{mean} 

792 Hausdorff} distance C{md} and the class or name of both distance 

793 C{units}. 

794 

795 For C{directed Hausdorff} distances, count C{mn} is the number 

796 of model points considered. For C{symmetric Hausdorff} distances 

797 count C{mn} twice that. 

798 

799 Indices C{i} and C{j} are the C{model} respectively C{target} 

800 point with the C{hd} distance. 

801 

802 Mean distance C{md} is C{None} if an C{early break} occurred and 

803 U{early breaking<https://Publik.TUWien.ac.AT/files/PubDat_247739.pdf>} 

804 was enabled by keyword argument C{early=True}. 

805 ''' 

806 _Names_ = ('hd', _i_, _j_, 'mn', 'md', _units_) 

807 _Units_ = (_Pass, Number_, Number_, Number_, _Pass, _Pass) 

808 

809 def toUnits(self, **Error): # PYCHOK expected 

810 '''Overloaded C{_NamedTuple.toUnits} for C{hd} and C{md} units. 

811 ''' 

812 U = _xUnit(self.units, Float) # PYCHOK expected 

813 M = _Pass if self.md is None else U # PYCHOK expected 

814 self._Units_ = (U,) + Hausdorff6Tuple._Units_[1:4] \ 

815 + (M,) + Hausdorff6Tuple._Units_[5:] 

816 return _NamedTuple.toUnits(self, **Error) 

817 

818 

819def randomrangenerator(seed): 

820 '''Return a C{seed}ed random range function generator. 

821 

822 @arg seed: Initial, internal L{Random} state (C{hashable} 

823 or C{None}). 

824 

825 @note: L{Random} with C{B{seed} is None} seeds from the 

826 current time or from a platform-specific randomness 

827 source, if available. 

828 

829 @return: A function to generate random ranges. 

830 

831 @example: 

832 

833 >>> rrange = randomrangenerator('R') 

834 >>> for r in rrange(n): 

835 >>> ... # r is random in 0..n-1 

836 ''' 

837 R = Random(seed) 

838 

839 def _range(n, *stop_step): 

840 '''Like standard L{range}C{start, stop=..., step=...)}, 

841 except the returned values are in random order. 

842 

843 @note: Especially C{range(n)} behaves like standard 

844 L{Random.sample}C{(range(n), n)} but avoids 

845 creating a tuple with the entire C{population} 

846 and a list containing all sample values (for 

847 large C{n}). 

848 ''' 

849 if stop_step: 

850 s = range(n, *stop_step) 

851 

852 elif n > 32: 

853 r = R.randrange # Random._randbelow 

854 s = set() 

855 for _ in range(n - 32): 

856 i = r(n) 

857 while i in s: 

858 i = r(n) 

859 s.add(i) 

860 yield i 

861 s = set(range(n)) - s # [i for i in range(n) if i not in s] 

862 else: 

863 s = range(n) 

864 

865 s = list(s) 

866 R.shuffle(s) 

867 while s: 

868 yield s.pop(0) 

869 

870 return _range 

871 

872# **) MIT License 

873# 

874# Copyright (C) 2016-2024 -- mrJean1 at Gmail -- All Rights Reserved. 

875# 

876# Permission is hereby granted, free of charge, to any person obtaining a 

877# copy of this software and associated documentation files (the "Software"), 

878# to deal in the Software without restriction, including without limitation 

879# the rights to use, copy, modify, merge, publish, distribute, sublicense, 

880# and/or sell copies of the Software, and to permit persons to whom the 

881# Software is furnished to do so, subject to the following conditions: 

882# 

883# The above copyright notice and this permission notice shall be included 

884# in all copies or substantial portions of the Software. 

885# 

886# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 

887# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

888# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 

889# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

890# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

891# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

892# OTHER DEALINGS IN THE SOFTWARE.