Coverage for pygeodesy/ellipsoids.py: 96%

756 statements  

« prev     ^ index     » next       coverage.py v7.2.2, created at 2024-05-15 16:36 -0400

1 

2# -*- coding: utf-8 -*- 

3 

4u'''Ellipsoidal and spherical earth models. 

5 

6Classes L{a_f2Tuple}, L{Ellipsoid} and L{Ellipsoid2}, an L{Ellipsoids} registry and 

72 dozen functions to convert I{equatorial} radius, I{polar} radius, I{eccentricities}, 

8I{flattenings} and I{inverse flattening}. 

9 

10See module L{datums} for L{Datum} and L{Transform} information and other details. 

11 

12Following is the list of predefined L{Ellipsoid}s, all instantiated lazily. 

13 

14@var Ellipsoids.Airy1830: Ellipsoid(name='Airy1830', a=6377563.396, b=6356256.90923729, f_=299.3249646, f=0.00334085, f2=0.00335205, n=0.00167322, e=0.08167337, e2=0.00667054, e21=0.99332946, e22=0.00671533, e32=0.00334643, A=6366914.60892522, L=10001126.0807165, R1=6370461.23374576, R2=6370459.65470808, R3=6370453.30994572, Rbiaxial=6366919.065224, Rtriaxial=6372243.45317691) 

15@var Ellipsoids.AiryModified: Ellipsoid(name='AiryModified', a=6377340.189, b=6356034.44793853, f_=299.3249646, f=0.00334085, f2=0.00335205, n=0.00167322, e=0.08167337, e2=0.00667054, e21=0.99332946, e22=0.00671533, e32=0.00334643, A=6366691.77461988, L=10000776.05340819, R1=6370238.27531284, R2=6370236.69633043, R3=6370230.35179013, Rbiaxial=6366696.2307627, Rtriaxial=6372020.43236847) 

16@var Ellipsoids.ATS1977: Ellipsoid(name='ATS1977', a=6378135, b=6356750.30492159, f_=298.257, f=0.00335281, f2=0.00336409, n=0.00167922, e=0.08181922, e2=0.00669438, e21=0.99330562, e22=0.0067395, e32=0.00335843, A=6367447.14116695, L=10001962.58040571, R1=6371006.7683072, R2=6371005.17780873, R3=6370998.78689182, Rbiaxial=6367451.62986519, Rtriaxial=6372795.55363648) 

17@var Ellipsoids.Australia1966: Ellipsoid(name='Australia1966', a=6378160, b=6356774.71919531, f_=298.25, f=0.00335289, f2=0.00336417, n=0.00167926, e=0.08182018, e2=0.00669454, e21=0.99330546, e22=0.00673966, e32=0.00335851, A=6367471.84853228, L=10002001.39064442, R1=6371031.5730651, R2=6371029.9824858, R3=6371023.59124344, Rbiaxial=6367476.337459, Rtriaxial=6372820.40754721) 

18@var Ellipsoids.Bessel1841: Ellipsoid(name='Bessel1841', a=6377397.155, b=6356078.962818, f_=299.1528128, f=0.00334277, f2=0.00335398, n=0.00167418, e=0.08169683, e2=0.00667437, e21=0.99332563, e22=0.00671922, e32=0.00334836, A=6366742.52023395, L=10000855.76443237, R1=6370291.09093933, R2=6370289.51012659, R3=6370283.15821523, Rbiaxial=6366746.98155108, Rtriaxial=6372074.29334012) 

19@var Ellipsoids.BesselModified: Ellipsoid(name='BesselModified', a=6377492.018, b=6356173.5087127, f_=299.1528128, f=0.00334277, f2=0.00335398, n=0.00167418, e=0.08169683, e2=0.00667437, e21=0.99332563, e22=0.00671922, e32=0.00334836, A=6366837.22474766, L=10001004.52593463, R1=6370385.84823756, R2=6370384.26740131, R3=6370377.91539546, Rbiaxial=6366841.68613115, Rtriaxial=6372169.07716325) 

20@var Ellipsoids.CGCS2000: Ellipsoid(name='CGCS2000', a=6378137, b=6356752.31414036, f_=298.2572221, f=0.00335281, f2=0.00336409, n=0.00167922, e=0.08181919, e2=0.00669438, e21=0.99330562, e22=0.0067395, e32=0.00335843, A=6367449.14577105, L=10001965.72923046, R1=6371008.77138012, R2=6371007.18088352, R3=6371000.78997414, Rbiaxial=6367453.63446401, Rtriaxial=6372797.55593326) 

21@var Ellipsoids.Clarke1866: Ellipsoid(name='Clarke1866', a=6378206.4, b=6356583.8, f_=294.97869821, f=0.00339008, f2=0.00340161, n=0.00169792, e=0.08227185, e2=0.00676866, e21=0.99323134, e22=0.00681478, e32=0.00339582, A=6367399.68916978, L=10001888.04298286, R1=6370998.86666667, R2=6370997.240633, R3=6370990.70659881, Rbiaxial=6367404.2783313, Rtriaxial=6372807.62791066) 

22@var Ellipsoids.Clarke1880: Ellipsoid(name='Clarke1880', a=6378249.145, b=6356514.86954978, f_=293.465, f=0.00340756, f2=0.00341921, n=0.00170669, e=0.0824834, e2=0.00680351, e21=0.99319649, e22=0.00685012, e32=0.00341337, A=6367386.64398051, L=10001867.55164747, R1=6371004.38651659, R2=6371002.74366963, R3=6370996.1419165, Rbiaxial=6367391.2806777, Rtriaxial=6372822.52526083) 

23@var Ellipsoids.Clarke1880IGN: Ellipsoid(name='Clarke1880IGN', a=6378249.2, b=6356515, f_=293.46602129, f=0.00340755, f2=0.0034192, n=0.00170668, e=0.08248326, e2=0.00680349, e21=0.99319651, e22=0.00685009, e32=0.00341336, A=6367386.73667336, L=10001867.69724907, R1=6371004.46666667, R2=6371002.82383112, R3=6370996.22212395, Rbiaxial=6367391.37333829, Rtriaxial=6372822.59907505) 

24@var Ellipsoids.Clarke1880Mod: Ellipsoid(name='Clarke1880Mod', a=6378249.145, b=6356514.96639549, f_=293.46630766, f=0.00340755, f2=0.0034192, n=0.00170668, e=0.08248322, e2=0.00680348, e21=0.99319652, e22=0.00685009, e32=0.00341335, A=6367386.69236201, L=10001867.62764496, R1=6371004.4187985, R2=6371002.77596616, R3=6370996.17427195, Rbiaxial=6367391.32901784, Rtriaxial=6372822.5494103) 

25@var Ellipsoids.CPM1799: Ellipsoid(name='CPM1799', a=6375738.7, b=6356671.92557493, f_=334.39, f=0.00299052, f2=0.00299949, n=0.0014975, e=0.07727934, e2=0.0059721, e21=0.9940279, e22=0.00600798, e32=0.00299499, A=6366208.88184784, L=10000017.52721564, R1=6369383.10852498, R2=6369381.8434158, R3=6369376.76247022, Rbiaxial=6366212.45090321, Rtriaxial=6370977.3559758) 

26@var Ellipsoids.Delambre1810: Ellipsoid(name='Delambre1810', a=6376428, b=6355957.92616372, f_=311.5, f=0.00321027, f2=0.00322061, n=0.00160772, e=0.08006397, e2=0.00641024, e21=0.99358976, e22=0.0064516, e32=0.00321543, A=6366197.07684334, L=9999998.98395793, R1=6369604.64205457, R2=6369603.18419749, R3=6369597.32739068, Rbiaxial=6366201.19059818, Rtriaxial=6371316.64722284) 

27@var Ellipsoids.Engelis1985: Ellipsoid(name='Engelis1985', a=6378136.05, b=6356751.32272154, f_=298.2566, f=0.00335282, f2=0.0033641, n=0.00167922, e=0.08181928, e2=0.00669439, e21=0.99330561, e22=0.00673951, e32=0.00335844, A=6367448.17507971, L=10001964.20447208, R1=6371007.80757385, R2=6371006.21707085, R3=6370999.82613573, Rbiaxial=6367452.66379074, Rtriaxial=6372796.59560563) 

28@var Ellipsoids.Everest1969: Ellipsoid(name='Everest1969', a=6377295.664, b=6356094.667915, f_=300.8017, f=0.00332445, f2=0.00333554, n=0.00166499, e=0.08147298, e2=0.00663785, e21=0.99336215, e22=0.0066822, e32=0.00332998, A=6366699.57839501, L=10000788.3115495, R1=6370228.665305, R2=6370227.10178537, R3=6370220.81951618, Rbiaxial=6366703.99082487, Rtriaxial=6372002.02812501) 

29@var Ellipsoids.Everest1975: Ellipsoid(name='Everest1975', a=6377299.151, b=6356098.14512013, f_=300.8017255, f=0.00332445, f2=0.00333554, n=0.00166499, e=0.08147298, e2=0.00663785, e21=0.99336215, e22=0.0066822, e32=0.00332997, A=6366703.06049924, L=10000793.78122603, R1=6370232.14904004, R2=6370230.58551983, R3=6370224.30324826, Rbiaxial=6366707.47293076, Rtriaxial=6372005.51267879) 

30@var Ellipsoids.Fisher1968: Ellipsoid(name='Fisher1968', a=6378150, b=6356768.33724438, f_=298.3, f=0.00335233, f2=0.00336361, n=0.00167898, e=0.08181333, e2=0.00669342, e21=0.99330658, e22=0.00673853, e32=0.00335795, A=6367463.65604381, L=10001988.52191361, R1=6371022.77908146, R2=6371021.18903735, R3=6371014.79995035, Rbiaxial=6367468.14345752, Rtriaxial=6372811.30979281) 

31@var Ellipsoids.GEM10C: Ellipsoid(name='GEM10C', a=6378137, b=6356752.31424783, f_=298.2572236, f=0.00335281, f2=0.00336409, n=0.00167922, e=0.08181919, e2=0.00669438, e21=0.99330562, e22=0.0067395, e32=0.00335843, A=6367449.14582474, L=10001965.7293148, R1=6371008.77141594, R2=6371007.18091936, R3=6371000.79001005, Rbiaxial=6367453.63451765, Rtriaxial=6372797.55596006) 

32@var Ellipsoids.GPES: Ellipsoid(name='GPES', a=6378135, b=6378135, f_=0, f=0, f2=0, n=0, e=0, e2=0, e21=1, e22=0, e32=0, A=6378135, L=10018751.02980197, R1=6378135, R2=6378135, R3=6378135, Rbiaxial=6378135, Rtriaxial=6378135) 

33@var Ellipsoids.GRS67: Ellipsoid(name='GRS67', a=6378160, b=6356774.51609071, f_=298.24716743, f=0.00335292, f2=0.0033642, n=0.00167928, e=0.08182057, e2=0.00669461, e21=0.99330539, e22=0.00673973, e32=0.00335854, A=6367471.74706533, L=10002001.2312605, R1=6371031.50536357, R2=6371029.91475409, R3=6371023.52339015, Rbiaxial=6367476.23607738, Rtriaxial=6372820.3568989) 

34@var Ellipsoids.GRS80: Ellipsoid(name='GRS80', a=6378137, b=6356752.31414035, f_=298.2572221, f=0.00335281, f2=0.00336409, n=0.00167922, e=0.08181919, e2=0.00669438, e21=0.99330562, e22=0.0067395, e32=0.00335843, A=6367449.14577104, L=10001965.72923046, R1=6371008.77138012, R2=6371007.18088351, R3=6371000.78997414, Rbiaxial=6367453.634464, Rtriaxial=6372797.55593326) 

35@var Ellipsoids.Helmert1906: Ellipsoid(name='Helmert1906', a=6378200, b=6356818.16962789, f_=298.3, f=0.00335233, f2=0.00336361, n=0.00167898, e=0.08181333, e2=0.00669342, e21=0.99330658, e22=0.00673853, e32=0.00335795, A=6367513.57227074, L=10002066.93013953, R1=6371072.7232093, R2=6371071.13315272, R3=6371064.74401563, Rbiaxial=6367518.05971963, Rtriaxial=6372861.26794141) 

36@var Ellipsoids.IAU76: Ellipsoid(name='IAU76', a=6378140, b=6356755.28815753, f_=298.257, f=0.00335281, f2=0.00336409, n=0.00167922, e=0.08181922, e2=0.00669438, e21=0.99330562, e22=0.0067395, e32=0.00335843, A=6367452.13278844, L=10001970.4212264, R1=6371011.76271918, R2=6371010.17221946, R3=6371003.78129754, Rbiaxial=6367456.6214902, Rtriaxial=6372800.54945074) 

37@var Ellipsoids.IERS1989: Ellipsoid(name='IERS1989', a=6378136, b=6356751.30156878, f_=298.257, f=0.00335281, f2=0.00336409, n=0.00167922, e=0.08181922, e2=0.00669438, e21=0.99330562, e22=0.0067395, e32=0.00335843, A=6367448.13949125, L=10001964.14856985, R1=6371007.76718959, R2=6371006.17669088, R3=6370999.78577297, Rbiaxial=6367452.62819019, Rtriaxial=6372796.55279934) 

38@var Ellipsoids.IERS1992TOPEX: Ellipsoid(name='IERS1992TOPEX', a=6378136.3, b=6356751.61659215, f_=298.25722356, f=0.00335281, f2=0.00336409, n=0.00167922, e=0.08181919, e2=0.00669438, e21=0.99330562, e22=0.0067395, e32=0.00335843, A=6367448.44699641, L=10001964.63159783, R1=6371008.07219738, R2=6371006.48170097, R3=6371000.09079236, Rbiaxial=6367452.93568883, Rtriaxial=6372796.85654541) 

39@var Ellipsoids.IERS2003: Ellipsoid(name='IERS2003', a=6378136.6, b=6356751.85797165, f_=298.25642, f=0.00335282, f2=0.0033641, n=0.00167922, e=0.0818193, e2=0.0066944, e21=0.9933056, e22=0.00673951, e32=0.00335844, A=6367448.71771058, L=10001965.05683465, R1=6371008.35265722, R2=6371006.76215217, R3=6371000.37120877, Rbiaxial=6367453.20642742, Rtriaxial=6372797.14192686) 

40@var Ellipsoids.Intl1924: Ellipsoid(name='Intl1924', a=6378388, b=6356911.94612795, f_=297, f=0.003367, f2=0.00337838, n=0.00168634, e=0.08199189, e2=0.00672267, e21=0.99327733, e22=0.00676817, e32=0.00337267, A=6367654.50005758, L=10002288.29898944, R1=6371229.31537598, R2=6371227.71133444, R3=6371221.26587487, Rbiaxial=6367659.02704315, Rtriaxial=6373025.77129687) 

41@var Ellipsoids.Intl1967: Ellipsoid(name='Intl1967', a=6378157.5, b=6356772.2, f_=298.24961539, f=0.0033529, f2=0.00336418, n=0.00167926, e=0.08182023, e2=0.00669455, e21=0.99330545, e22=0.00673967, e32=0.00335852, A=6367469.33894446, L=10001997.44859308, R1=6371029.06666667, R2=6371027.47608389, R3=6371021.08482752, Rbiaxial=6367473.827881, Rtriaxial=6372817.9027631) 

42@var Ellipsoids.Krassovski1940: Ellipsoid(name='Krassovski1940', a=6378245, b=6356863.01877305, f_=298.3, f=0.00335233, f2=0.00336361, n=0.00167898, e=0.08181333, e2=0.00669342, e21=0.99330658, e22=0.00673853, e32=0.00335795, A=6367558.49687498, L=10002137.49754285, R1=6371117.67292435, R2=6371116.08285656, R3=6371109.69367439, Rbiaxial=6367562.98435553, Rtriaxial=6372906.23027515) 

43@var Ellipsoids.Krassowsky1940: Ellipsoid(name='Krassowsky1940', a=6378245, b=6356863.01877305, f_=298.3, f=0.00335233, f2=0.00336361, n=0.00167898, e=0.08181333, e2=0.00669342, e21=0.99330658, e22=0.00673853, e32=0.00335795, A=6367558.49687498, L=10002137.49754285, R1=6371117.67292435, R2=6371116.08285656, R3=6371109.69367439, Rbiaxial=6367562.98435553, Rtriaxial=6372906.23027515) 

44@var Ellipsoids.Maupertuis1738: Ellipsoid(name='Maupertuis1738', a=6397300, b=6363806.28272251, f_=191, f=0.0052356, f2=0.00526316, n=0.00262467, e=0.10219488, e2=0.01044379, e21=0.98955621, e22=0.01055402, e32=0.00524931, A=6380564.13011837, L=10022566.69846922, R1=6386135.42757417, R2=6386131.54144847, R3=6386115.8862823, Rbiaxial=6380575.11882818, Rtriaxial=6388943.03218495) 

45@var Ellipsoids.Mercury1960: Ellipsoid(name='Mercury1960', a=6378166, b=6356784.28360711, f_=298.3, f=0.00335233, f2=0.00336361, n=0.00167898, e=0.08181333, e2=0.00669342, e21=0.99330658, e22=0.00673853, e32=0.00335795, A=6367479.62923643, L=10002013.61254591, R1=6371038.76120237, R2=6371037.17115427, R3=6371030.78205124, Rbiaxial=6367484.1166614, Rtriaxial=6372827.29640037) 

46@var Ellipsoids.Mercury1968Mod: Ellipsoid(name='Mercury1968Mod', a=6378150, b=6356768.33724438, f_=298.3, f=0.00335233, f2=0.00336361, n=0.00167898, e=0.08181333, e2=0.00669342, e21=0.99330658, e22=0.00673853, e32=0.00335795, A=6367463.65604381, L=10001988.52191361, R1=6371022.77908146, R2=6371021.18903735, R3=6371014.79995035, Rbiaxial=6367468.14345752, Rtriaxial=6372811.30979281) 

47@var Ellipsoids.NWL1965: Ellipsoid(name='NWL1965', a=6378145, b=6356759.76948868, f_=298.25, f=0.00335289, f2=0.00336417, n=0.00167926, e=0.08182018, e2=0.00669454, e21=0.99330546, e22=0.00673966, e32=0.00335851, A=6367456.87366841, L=10001977.86818326, R1=6371016.58982956, R2=6371014.999254, R3=6371008.60802667, Rbiaxial=6367461.36258457, Rtriaxial=6372805.42010473) 

48@var Ellipsoids.OSU86F: Ellipsoid(name='OSU86F', a=6378136.2, b=6356751.51693008, f_=298.2572236, f=0.00335281, f2=0.00336409, n=0.00167922, e=0.08181919, e2=0.00669438, e21=0.99330562, e22=0.0067395, e32=0.00335843, A=6367448.3471653, L=10001964.47478349, R1=6371007.97231003, R2=6371006.38181364, R3=6370999.99090513, Rbiaxial=6367452.83585765, Rtriaxial=6372796.75662978) 

49@var Ellipsoids.OSU91A: Ellipsoid(name='OSU91A', a=6378136.3, b=6356751.6165948, f_=298.2572236, f=0.00335281, f2=0.00336409, n=0.00167922, e=0.08181919, e2=0.00669438, e21=0.99330562, e22=0.0067395, e32=0.00335843, A=6367448.44699773, L=10001964.63159991, R1=6371008.07219827, R2=6371006.48170186, R3=6371000.09079324, Rbiaxial=6367452.93569015, Rtriaxial=6372796.85654607) 

50@var Ellipsoids.Plessis1817: Ellipsoid(name='Plessis1817', a=6376523, b=6355862.93325557, f_=308.64, f=0.00324002, f2=0.00325055, n=0.00162264, e=0.08043347, e2=0.00646954, e21=0.99353046, e22=0.00651167, e32=0.00324527, A=6366197.15710739, L=9999999.11003639, R1=6369636.31108519, R2=6369634.82608583, R3=6369628.85999668, Rbiaxial=6366201.34758009, Rtriaxial=6371364.26393357) 

51@var Ellipsoids.PZ90: Ellipsoid(name='PZ90', a=6378136, b=6356751.36174571, f_=298.2578393, f=0.0033528, f2=0.00336408, n=0.00167922, e=0.08181911, e2=0.00669437, e21=0.99330563, e22=0.00673948, e32=0.00335842, A=6367448.16955443, L=10001964.19579298, R1=6371007.78724857, R2=6371006.1967588, R3=6370999.80587691, Rbiaxial=6367452.65822809, Rtriaxial=6372796.56780569) 

52@var Ellipsoids.SGS85: Ellipsoid(name='SGS85', a=6378136, b=6356751.30156878, f_=298.257, f=0.00335281, f2=0.00336409, n=0.00167922, e=0.08181922, e2=0.00669438, e21=0.99330562, e22=0.0067395, e32=0.00335843, A=6367448.13949125, L=10001964.14856985, R1=6371007.76718959, R2=6371006.17669087, R3=6370999.78577297, Rbiaxial=6367452.62819019, Rtriaxial=6372796.55279934) 

53@var Ellipsoids.SoAmerican1969: Ellipsoid(name='SoAmerican1969', a=6378160, b=6356774.71919531, f_=298.25, f=0.00335289, f2=0.00336417, n=0.00167926, e=0.08182018, e2=0.00669454, e21=0.99330546, e22=0.00673966, e32=0.00335851, A=6367471.84853228, L=10002001.39064442, R1=6371031.5730651, R2=6371029.98248581, R3=6371023.59124344, Rbiaxial=6367476.337459, Rtriaxial=6372820.40754721) 

54@var Ellipsoids.Sphere: Ellipsoid(name='Sphere', a=6371008.771415, b=6371008.771415, f_=0, f=0, f2=0, n=0, e=0, e2=0, e21=1, e22=0, e32=0, A=6371008.771415, L=10007557.17611675, R1=6371008.771415, R2=6371008.771415, R3=6371008.771415, Rbiaxial=6371008.771415, Rtriaxial=6371008.771415) 

55@var Ellipsoids.SphereAuthalic: Ellipsoid(name='SphereAuthalic', a=6371000, b=6371000, f_=0, f=0, f2=0, n=0, e=0, e2=0, e21=1, e22=0, e32=0, A=6371000, L=10007543.39801029, R1=6371000, R2=6371000, R3=6371000, Rbiaxial=6371000, Rtriaxial=6371000) 

56@var Ellipsoids.SpherePopular: Ellipsoid(name='SpherePopular', a=6378137, b=6378137, f_=0, f=0, f2=0, n=0, e=0, e2=0, e21=1, e22=0, e32=0, A=6378137, L=10018754.17139462, R1=6378137, R2=6378137, R3=6378137, Rbiaxial=6378137, Rtriaxial=6378137) 

57@var Ellipsoids.Struve1860: Ellipsoid(name='Struve1860', a=6378298.3, b=6356657.14266956, f_=294.73, f=0.00339294, f2=0.00340449, n=0.00169935, e=0.0823065, e2=0.00677436, e21=0.99322564, e22=0.00682056, e32=0.00339869, A=6367482.31832549, L=10002017.83655714, R1=6371084.58088985, R2=6371082.95208988, R3=6371076.40691418, Rbiaxial=6367486.91530791, Rtriaxial=6372894.90029454) 

58@var Ellipsoids.WGS60: Ellipsoid(name='WGS60', a=6378165, b=6356783.28695944, f_=298.3, f=0.00335233, f2=0.00336361, n=0.00167898, e=0.08181333, e2=0.00669342, e21=0.99330658, e22=0.00673853, e32=0.00335795, A=6367478.63091189, L=10002012.04438139, R1=6371037.76231981, R2=6371036.17227197, R3=6371029.78316994, Rbiaxial=6367483.11833616, Rtriaxial=6372826.29723739) 

59@var Ellipsoids.WGS66: Ellipsoid(name='WGS66', a=6378145, b=6356759.76948868, f_=298.25, f=0.00335289, f2=0.00336417, n=0.00167926, e=0.08182018, e2=0.00669454, e21=0.99330546, e22=0.00673966, e32=0.00335851, A=6367456.87366841, L=10001977.86818326, R1=6371016.58982956, R2=6371014.999254, R3=6371008.60802667, Rbiaxial=6367461.36258457, Rtriaxial=6372805.42010473) 

60@var Ellipsoids.WGS72: Ellipsoid(name='WGS72', a=6378135, b=6356750.52001609, f_=298.26, f=0.00335278, f2=0.00336406, n=0.0016792, e=0.08181881, e2=0.00669432, e21=0.99330568, e22=0.00673943, e32=0.0033584, A=6367447.24862383, L=10001962.74919858, R1=6371006.84000536, R2=6371005.24953886, R3=6370998.8587507, Rbiaxial=6367451.7372317, Rtriaxial=6372795.60727472) 

61@var Ellipsoids.WGS84: Ellipsoid(name='WGS84', a=6378137, b=6356752.31424518, f_=298.25722356, f=0.00335281, f2=0.00336409, n=0.00167922, e=0.08181919, e2=0.00669438, e21=0.99330562, e22=0.0067395, e32=0.00335843, A=6367449.14582341, L=10001965.72931272, R1=6371008.77141506, R2=6371007.18091847, R3=6371000.79000916, Rbiaxial=6367453.63451633, Rtriaxial=6372797.5559594) 

62@var Ellipsoids.WGS84_NGS: Ellipsoid(name='WGS84_NGS', a=6378137, b=6356752.31414035, f_=298.2572221, f=0.00335281, f2=0.00336409, n=0.00167922, e=0.08181919, e2=0.00669438, e21=0.99330562, e22=0.0067395, e32=0.00335843, A=6367449.14577104, L=10001965.72923046, R1=6371008.77138012, R2=6371007.18088351, R3=6371000.78997414, Rbiaxial=6367453.634464, Rtriaxial=6372797.55593326) 

63''' 

64# make sure int/int division yields float quotient, see .basics 

65from __future__ import division as _; del _ # PYCHOK semicolon 

66 

67from pygeodesy.basics import copysign0, isbool, isint 

68from pygeodesy.constants import EPS, EPS0, EPS02, EPS1, INF, NINF, PI4, PI_2, PI_3, R_M, R_MA, R_FM, \ 

69 _EPSqrt, _EPStol as _TOL, _floatuple as _T, _isfinite, _SQRT2_2, \ 

70 _0_0s, _0_0, _0_5, _1_0, _1_EPS, _2_0, _4_0, _90_0, \ 

71 _0_25, _3_0 # PYCHOK used! 

72from pygeodesy.errors import _AssertionError, IntersectionError, _ValueError, _xattr, _xkwds_not 

73from pygeodesy.fmath import cbrt, cbrt2, fdot, Fhorner, fpowers, hypot, hypot_, \ 

74 hypot1, hypot2, sqrt3, Fsum 

75# from pygeodesy.fsums import Fsum # from .fmath 

76from pygeodesy.interns import NN, _a_, _Airy1830_, _AiryModified_, _b_, _Bessel1841_, _beta_, \ 

77 _Clarke1866_, _Clarke1880IGN_, _DOT_, _f_, _GRS80_, _height_, \ 

78 _Intl1924_, _incompatible_, _invalid_, _Krassovski1940_, \ 

79 _Krassowsky1940_, _meridional_, _lat_, _negative_, _not_, \ 

80 _not_finite_, _prime_vertical_, _radius_, _Sphere_, _SPACE_, \ 

81 _vs_, _WGS72_, _WGS84_ 

82# from pygeodesy.lazily import _ALL_LAZY, _ALL_MODS as _MODS # from .named 

83from pygeodesy.named import _lazyNamedEnumItem as _lazy, _NamedEnum, _NamedEnumItem, \ 

84 _NamedTuple, _Pass, _ALL_LAZY, _MODS 

85from pygeodesy.namedTuples import Distance2Tuple, Vector3Tuple, Vector4Tuple 

86from pygeodesy.props import deprecated_Property_RO, Property_RO, property_doc_, \ 

87 deprecated_property_RO, property_RO 

88from pygeodesy.streprs import Fmt, fstr, instr, strs, unstr 

89from pygeodesy.units import Bearing_, Distance, Float, Float_, Height, Lam_, Lat, Meter, \ 

90 Meter2, Meter3, Phi, Phi_, Radius, Radius_, Scalar 

91from pygeodesy.utily import atan1, atan1d, atan2b, degrees90, m2radians, radians2m, sincos2d 

92 

93from math import asinh, atan, atanh, cos, degrees, exp, fabs, radians, sin, sinh, sqrt, tan 

94 

95__all__ = _ALL_LAZY.ellipsoids 

96__version__ = '24.04.14' 

97 

98_f_0_0 = Float(f =_0_0) # zero flattening 

99_f__0_0 = Float(f_=_0_0) # zero inverse flattening 

100# see U{WGS84_f<https://GeographicLib.SourceForge.io/C++/doc/classGeographicLib_1_1Constants.html>} 

101_f__WGS84 = Float(f_=_1_0 / (1000000000 / 298257223563)) # 298.25722356299997 vs 298.257223563 

102 

103 

104def _aux(lat, inverse, auxLat, clip=90): 

105 '''Return a named auxiliary latitude in C{degrees}. 

106 ''' 

107 return Lat(lat, clip=clip, name=_lat_ if inverse else auxLat.__name__) 

108 

109 

110def _s2_c2(phi): 

111 '''(INTERNAL) Return 2-tuple C{(sin(B{phi})**2, cos(B{phi})**2)}. 

112 ''' 

113 if phi: 

114 s2 = sin(phi)**2 

115 if s2 > EPS: 

116 c2 = _1_0 - s2 

117 if c2 > EPS: 

118 if c2 < EPS1: 

119 return s2, c2 

120 else: 

121 return _1_0, _0_0 # phi == PI_2 

122 return _0_0, _1_0 # phi == 0 

123 

124 

125class a_f2Tuple(_NamedTuple): 

126 '''2-Tuple C{(a, f)} specifying an ellipsoid by I{equatorial} 

127 radius C{a} in C{meter} and scalar I{flattening} C{f}. 

128 

129 @see: Class L{Ellipsoid2}. 

130 ''' 

131 _Names_ = (_a_, _f_) # name 'f' not 'f_' 

132 _Units_ = (_Pass, _Pass) 

133 

134 def __new__(cls, a, f, **name): 

135 '''New L{a_f2Tuple} ellipsoid specification. 

136 

137 @arg a: Equatorial radius (C{scalar} > 0). 

138 @arg f: Flattening (C{scalar} < 1, negative for I{prolate}). 

139 @kwarg name: Optional name (C{str}). 

140 

141 @return: An L{a_f2Tuple}C{(a, f)} instance. 

142 

143 @raise UnitError: Invalid B{C{a}} or B{C{f}}. 

144 

145 @note: C{abs(B{f}) < EPS} is forced to C{B{f}=0}, I{spherical}. 

146 Negative C{B{f}} produces a I{prolate} ellipsoid. 

147 ''' 

148 a = Radius_(a=a) # low=EPS, high=None 

149 f = Float_( f=f, low=None, high=EPS1) 

150 if fabs(f) < EPS: # force spherical 

151 f = _f_0_0 

152 return _NamedTuple.__new__(cls, a, f, **name) 

153 

154 @Property_RO 

155 def b(self): 

156 '''Get the I{polar} radius (C{meter}), M{a * (1 - f)}. 

157 ''' 

158 return a_f2b(self.a, self.f) # PYCHOK .a and .f 

159 

160 def ellipsoid(self, name=NN): 

161 '''Return an L{Ellipsoid} for this 2-tuple C{(a, f)}. 

162 

163 @raise NameError: A registered C{ellipsoid} with the 

164 same B{C{name}} already exists. 

165 ''' 

166 return Ellipsoid(self.a, f=self.f, name=name or self.name) # PYCHOK .a and .f 

167 

168 @Property_RO 

169 def f_(self): 

170 '''Get the I{inverse} flattening (C{scalar}), M{1 / f} == M{a / (a - b)}. 

171 ''' 

172 return f2f_(self.f) # PYCHOK .f 

173 

174 

175class Circle4Tuple(_NamedTuple): 

176 '''4-Tuple C{(radius, height, lat, beta)} of the C{radius} and C{height}, 

177 both conventionally in C{meter} of a parallel I{circle of latitude} at 

178 (geodetic) latitude C{lat} and the I{parametric (or reduced) auxiliary 

179 latitude} C{beta}, both in C{degrees90}. 

180 

181 The C{height} is the (signed) distance along the z-axis between the 

182 parallel and the equator. At near-polar C{lat}s, the C{radius} is C{0}, 

183 the C{height} is the ellipsoid's (signed) polar radius and C{beta} 

184 equals C{lat}. 

185 ''' 

186 _Names_ = (_radius_, _height_, _lat_, _beta_) 

187 _Units_ = ( Radius, Height, Lat, Lat) 

188 

189 

190class Curvature2Tuple(_NamedTuple): 

191 '''2-Tuple C{(meridional, prime_vertical)} of radii of curvature, both in 

192 C{meter}, conventionally. 

193 ''' 

194 _Names_ = (_meridional_, _prime_vertical_) 

195 _Units_ = ( Meter, Meter) 

196 

197 @property_RO 

198 def transverse(self): 

199 '''Get this I{prime_vertical}, aka I{transverse} radius of curvature. 

200 ''' 

201 return self.prime_vertical 

202 

203 

204class Ellipsoid(_NamedEnumItem): 

205 '''Ellipsoid with I{equatorial} and I{polar} radii, I{flattening}, I{inverse 

206 flattening} and other, often used, I{cached} attributes, supporting 

207 I{oblate} and I{prolate} ellipsoidal and I{spherical} earth models. 

208 ''' 

209 _a = 0 # equatorial radius, semi-axis (C{meter}) 

210 _b = 0 # polar radius, semi-axis (C{meter}): a * (f - 1) / f 

211 _f = 0 # (1st) flattening: (a - b) / a 

212 _f_ = 0 # inverse flattening: 1 / f = a / (a - b) 

213 

214 _geodsolve = NN # means, use PYGEODESY_GEODSOLVE 

215 _KsOrder = 8 # Krüger series order (4, 6 or 8) 

216 _rhumbsolve = NN # means, use PYGEODESY_RHUMBSOLVE 

217 

218 def __init__(self, a, b=None, f_=None, f=None, name=NN): 

219 '''New L{Ellipsoid} from the I{equatorial} radius I{and} either 

220 the I{polar} radius or I{inverse flattening} or I{flattening}. 

221 

222 @arg a: Equatorial radius, semi-axis (C{meter}). 

223 @arg b: Optional polar radius, semi-axis (C{meter}). 

224 @arg f_: Inverse flattening: M{a / (a - b)} (C{float} >>> 1.0). 

225 @arg f: Flattening: M{(a - b) / a} (C{scalar}, near zero for 

226 spherical). 

227 @kwarg name: Optional, unique name (C{str}). 

228 

229 @raise NameError: Ellipsoid with the same B{C{name}} already exists. 

230 

231 @raise ValueError: Invalid B{C{a}}, B{C{b}}, B{C{f_}} or B{C{f}} or 

232 B{C{f_}} and B{C{f}} are incompatible. 

233 

234 @note: M{abs(f_) > 1 / EPS} or M{abs(1 / f_) < EPS} is forced 

235 to M{1 / f_ = 0}, spherical. 

236 ''' 

237 ff_ = f, f_ # assertion below 

238 try: 

239 a = Radius_(a=a) # low=EPS 

240 if not _isfinite(a): 

241 raise ValueError(_SPACE_(_a_, _not_finite_)) 

242 

243 if b: # not in (_0_0, None) 

244 b = Radius_(b=b) # low=EPS 

245 f = a_b2f(a, b) if f is None else Float(f=f) 

246 f_ = f2f_(f) if f_ is None else Float(f_=f_) 

247 elif f is not None: 

248 f = Float(f=f) 

249 b = a_f2b(a, f) 

250 f_ = f2f_(f) if f_ is None else Float(f_=f_) 

251 elif f_: 

252 f_ = Float(f_=f_) 

253 b = a_f_2b(a, f_) # a * (f_ - 1) / f_ 

254 f = f_2f(f_) 

255 else: # only a, spherical 

256 f_ = f = 0 

257 b = a # superfluous 

258 

259 if not f < _1_0: # sanity check, see .ecef.Ecef.__init__ 

260 raise ValueError(_SPACE_(_f_, _invalid_)) 

261 if not _isfinite(b): 

262 raise ValueError(_SPACE_(_b_, _not_finite_)) 

263 

264 if fabs(f) < EPS or a == b or not f_: # spherical 

265 b = a 

266 f = _f_0_0 

267 f_ = _f__0_0 

268 

269 except (TypeError, ValueError) as x: 

270 d = _xkwds_not(None, b=b, f_=f_, f=f) 

271 t = instr(self, a=a, name=name, **d) 

272 raise _ValueError(t, cause=x) 

273 

274 self._a = a 

275 self._b = b 

276 self._f = f 

277 self._f_ = f_ 

278 

279 self._register(Ellipsoids, name) 

280 

281 if f and f_: # see .test/testEllipsoidal.py 

282 d = dict(eps=_TOL) 

283 if None in ff_: # both f_ and f given 

284 d.update(Error=_ValueError, txt=_incompatible_) 

285 self._assert(_1_0 / f, f_=f_, **d) 

286 self._assert(_1_0 / f_, f =f, **d) 

287 self._assert(self.b2_a2, e21=self.e21, eps=EPS) 

288 

289 def __eq__(self, other): 

290 '''Compare this and an other ellipsoid. 

291 

292 @arg other: The other ellipsoid (L{Ellipsoid} or L{Ellipsoid2}). 

293 

294 @return: C{True} if equal, C{False} otherwise. 

295 ''' 

296 return self is other or (isinstance(other, Ellipsoid) and 

297 self.a == other.a and 

298 (self.f == other.f or self.b == other.b)) 

299 

300 def __hash__(self): 

301 return self._hash # memoized 

302 

303 @Property_RO 

304 def a(self): 

305 '''Get the I{equatorial} radius, semi-axis (C{meter}). 

306 ''' 

307 return self._a 

308 

309 equatoradius = a # = Requatorial 

310 

311 @Property_RO 

312 def a2(self): 

313 '''Get the I{equatorial} radius I{squared} (C{meter} I{squared}), M{a**2}. 

314 ''' 

315 return Meter2(a2=self.a**2) 

316 

317 @Property_RO 

318 def a2_(self): 

319 '''Get the inverse of the I{equatorial} radius I{squared} (C{meter} I{squared}), M{1 / a**2}. 

320 ''' 

321 return Float(a2_=_1_0 / self.a2) 

322 

323 @Property_RO 

324 def a_b(self): 

325 '''Get the ratio I{equatorial} over I{polar} radius (C{float}), M{a / b} == M{1 / (1 - f)}. 

326 ''' 

327 return Float(a_b=self.a / self.b if self.f else _1_0) 

328 

329 @Property_RO 

330 def a2_b(self): 

331 '''Get the I{polar} meridional (or polar) radius of curvature (C{meter}), M{a**2 / b}. 

332 

333 @see: U{Radii of Curvature 

334 <https://WikiPedia.org/wiki/Earth_radius#Radii_of_curvature>} 

335 and U{Moritz, H. (1980), Geodetic Reference System 1980 

336 <https://WikiPedia.org/wiki/Earth_radius#cite_note-Moritz-2>}. 

337 

338 @note: Symbol C{c} is used by IUGG and IERS for the U{polar radius of curvature 

339 <https://WikiPedia.org/wiki/Earth_radius#Radii_of_curvature>}, see L{c2} 

340 and L{R2} or L{Rauthalic}. 

341 ''' 

342 return Radius(a2_b=self.a2 / self.b if self.f else self.a) # = rocPolar 

343 

344 @Property_RO 

345 def a2_b2(self): 

346 '''Get the ratio I{equatorial} over I{polar} radius I{squared} (C{float}), 

347 M{(a / b)**2} == M{1 / (1 - e**2)} == M{1 / (1 - e2)} == M{1 / e21}. 

348 ''' 

349 return Float(a2_b2=self.a_b**2 if self.f else _1_0) 

350 

351 @Property_RO 

352 def a_f(self): 

353 '''Get the I{equatorial} radius and I{flattening} (L{a_f2Tuple}), see method C{toEllipsoid2}. 

354 ''' 

355 return a_f2Tuple(self.a, self.f, name=self.name) 

356 

357 @Property_RO 

358 def A(self): 

359 '''Get the UTM I{meridional (or rectifying)} radius (C{meter}). 

360 

361 @see: I{Meridian arc unit} U{Q<https://StudyLib.net/doc/7443565/>}. 

362 ''' 

363 A, n = self.a, self.n 

364 if n: 

365 d = (n + _1_0) * 1048576 / A 

366 if d: # use 6 n**2 terms, half-way between the _KsOrder's 4, 6, 8 

367 # <https://GeographicLib.SourceForge.io/C++/doc/tmseries30.html> 

368 # <https://GeographicLib.SourceForge.io/C++/doc/transversemercator.html> and 

369 # <https://www.MyGeodesy.id.AU/documents/Karney-Krueger%20equations.pdf> (3) 

370 # A *= fhorner(n**2, 1048576, 262144, 16384, 4096, 1600, 784, 441) / 1048576) / (1 + n) 

371 A = Radius(A=Fhorner(n**2, 1048576, 262144, 16384, 4096, 1600, 784, 441).fover(d)) 

372 return A 

373 

374 @Property_RO 

375 def _albersCyl(self): 

376 '''(INTERNAL) Helper for C{auxAuthalic}. 

377 ''' 

378 return _MODS.albers.AlbersEqualAreaCylindrical(datum=self, name=self.name) 

379 

380 @Property_RO 

381 def AlphaKs(self): 

382 '''Get the I{Krüger} U{Alpha series coefficients<https://GeographicLib.SourceForge.io/C++/doc/tmseries30.html>} (C{KsOrder}C{-tuple}). 

383 ''' 

384 return self._Kseries( # XXX int/int quotients may require from __future__ import division as _; del _ # PYCHOK semicolon 

385 # n n**2 n**3 n**4 n**5 n**6 n**7 n**8 

386 _T(1/2, -2/3, 5/16, 41/180, -127/288, 7891/37800, 72161/387072, -18975107/50803200), 

387 _T(13/48, -3/5, 557/1440, 281/630, -1983433/1935360, 13769/28800, 148003883/174182400), # PYCHOK unaligned 

388 _T(61/240, -103/140, 15061/26880, 167603/181440, -67102379/29030400, 79682431/79833600), # PYCHOK unaligned 

389 _T(49561/161280, -179/168, 6601661/7257600, 97445/49896, -40176129013/7664025600), # PYCHOK unaligned 

390 _T(34729/80640, -3418889/1995840, 14644087/9123840, 2605413599/622702080), # PYCHOK unaligned 

391 _T(212378941/319334400, -30705481/10378368, 175214326799/58118860800), # PYCHOK unaligned 

392 _T(1522256789/1383782400, -16759934899/3113510400), # PYCHOK unaligned 

393 _T(1424729850961/743921418240)) # PYCHOK unaligned 

394 

395 @Property_RO 

396 def area(self): 

397 '''Get the ellipsoid's surface area (C{meter} I{squared}), M{4 * PI * c2}. 

398 

399 @see: Properties L{areax}, L{c2} and L{R2} and functions 

400 L{ellipsoidalExact.areaOf} and L{ellipsoidalKarney.areaOf}. 

401 ''' 

402 return Meter2(area=self.c2 * PI4) 

403 

404 @Property_RO 

405 def areax(self): 

406 '''Get the ellipsoid's surface area (C{meter} I{squared}), M{4 * PI * c2x}, more 

407 accurate for very I{oblate} ellipsoids. 

408 

409 @see: Properties L{area}, L{c2x} and L{R2x}, class L{GeodesicExact} and 

410 functions L{ellipsoidalExact.areaOf} and L{ellipsoidalKarney.areaOf}. 

411 ''' 

412 return Meter2(areax=self.c2x * PI4) 

413 

414 def _assert(self, val, eps=_TOL, f0=_0_0, Error=_AssertionError, txt=NN, **name_value): 

415 '''(INTERNAL) Assert a C{name=value} vs C{val}. 

416 ''' 

417 for n, v in name_value.items(): 

418 if fabs(v - val) > eps: # PYCHOK no cover 

419 t = (v, _vs_, val) 

420 t = _SPACE_.join(strs(t, prec=12, fmt=Fmt.g)) 

421 t = Fmt.EQUAL(self._DOT_(n), t) 

422 raise Error(t, txt=txt or Fmt.exceeds_eps(eps)) 

423 return Float(v if self.f else f0, name=n) 

424 raise Error(unstr(self._DOT_(self._assert.__name__), val, 

425 eps=eps, f0=f0, **name_value)) 

426 

427 def auxAuthalic(self, lat, inverse=False): 

428 '''Compute the I{authalic} auxiliary latitude or the I{inverse} thereof. 

429 

430 @arg lat: The geodetic (or I{authalic}) latitude (C{degrees90}). 

431 @kwarg inverse: If C{True}, B{C{lat}} is the I{authalic} and 

432 return the geodetic latitude (C{bool}). 

433 

434 @return: The I{authalic} (or geodetic) latitude in C{degrees90}. 

435 

436 @see: U{Inverse-/AuthalicLatitude<https://GeographicLib.SourceForge.io/ 

437 C++/doc/classGeographicLib_1_1Ellipsoid.html>}, U{Authalic latitude 

438 <https://WikiPedia.org/wiki/Latitude#Authalic_latitude>}, and 

439 U{Snyder<https://Pubs.USGS.gov/pp/1395/report.pdf>}, p 16. 

440 ''' 

441 if self.f: 

442 f = self._albersCyl._tanf if inverse else self._albersCyl._txif # PYCHOK attr 

443 lat = atan1d(f(tan(Phi_(lat)))) # PYCHOK attr 

444 return _aux(lat, inverse, Ellipsoid.auxAuthalic) 

445 

446 def auxConformal(self, lat, inverse=False): 

447 '''Compute the I{conformal} auxiliary latitude or the I{inverse} thereof. 

448 

449 @arg lat: The geodetic (or I{conformal}) latitude (C{degrees90}). 

450 @kwarg inverse: If C{True}, B{C{lat}} is the I{conformal} and 

451 return the geodetic latitude (C{bool}). 

452 

453 @return: The I{conformal} (or geodetic) latitude in C{degrees90}. 

454 

455 @see: U{Inverse-/ConformalLatitude<https://GeographicLib.SourceForge.io/ 

456 C++/doc/classGeographicLib_1_1Ellipsoid.html>}, U{Conformal latitude 

457 <https://WikiPedia.org/wiki/Latitude#Conformal_latitude>}, and 

458 U{Snyder<https://Pubs.USGS.gov/pp/1395/report.pdf>}, pp 15-16. 

459 ''' 

460 if self.f: 

461 f = self.es_tauf if inverse else self.es_taupf # PYCHOK attr 

462 lat = atan1d(f(tan(Phi_(lat)))) # PYCHOK attr 

463 return _aux(lat, inverse, Ellipsoid.auxConformal) 

464 

465 def auxGeocentric(self, lat, inverse=False): 

466 '''Compute the I{geocentric} auxiliary latitude or the I{inverse} thereof. 

467 

468 @arg lat: The geodetic (or I{geocentric}) latitude (C{degrees90}). 

469 @kwarg inverse: If C{True}, B{C{lat}} is the geocentric and 

470 return the I{geocentric} latitude (C{bool}). 

471 

472 @return: The I{geocentric} (or geodetic) latitude in C{degrees90}. 

473 

474 @see: U{Inverse-/GeocentricLatitude<https://GeographicLib.SourceForge.io/ 

475 C++/doc/classGeographicLib_1_1Ellipsoid.html>}, U{Geocentric latitude 

476 <https://WikiPedia.org/wiki/Latitude#Geocentric_latitude>}, and 

477 U{Snyder<https://Pubs.USGS.gov/pp/1395/report.pdf>}, pp 17-18. 

478 ''' 

479 if self.f: 

480 f = self.a2_b2 if inverse else self.b2_a2 

481 lat = atan1d(f * tan(Phi_(lat))) 

482 return _aux(lat, inverse, Ellipsoid.auxGeocentric) 

483 

484 def auxIsometric(self, lat, inverse=False): 

485 '''Compute the I{isometric} auxiliary latitude or the I{inverse} thereof. 

486 

487 @arg lat: The geodetic (or I{isometric}) latitude (C{degrees}). 

488 @kwarg inverse: If C{True}, B{C{lat}} is the I{isometric} and 

489 return the geodetic latitude (C{bool}). 

490 

491 @return: The I{isometric} (or geodetic) latitude in C{degrees}. 

492 

493 @note: The I{isometric} latitude for geodetic C{+/-90} is far 

494 outside the C{[-90..+90]} range but the inverse 

495 thereof is the original geodetic latitude. 

496 

497 @see: U{Inverse-/IsometricLatitude<https://GeographicLib.SourceForge.io/ 

498 C++/doc/classGeographicLib_1_1Ellipsoid.html>}, U{Isometric latitude 

499 <https://WikiPedia.org/wiki/Latitude#Isometric_latitude>}, and 

500 U{Snyder<https://Pubs.USGS.gov/pp/1395/report.pdf>}, pp 15-16. 

501 ''' 

502 if self.f: 

503 r = Phi_(lat, clip=0) 

504 lat = degrees(atan1(self.es_tauf(sinh(r))) if inverse else 

505 asinh(self.es_taupf(tan(r)))) 

506 # clip=0, since auxIsometric(+/-90) is far outside [-90..+90] 

507 return _aux(lat, inverse, Ellipsoid.auxIsometric, clip=0) 

508 

509 def auxParametric(self, lat, inverse=False): 

510 '''Compute the I{parametric} auxiliary latitude or the I{inverse} thereof. 

511 

512 @arg lat: The geodetic (or I{parametric}) latitude (C{degrees90}). 

513 @kwarg inverse: If C{True}, B{C{lat}} is the I{parametric} and 

514 return the geodetic latitude (C{bool}). 

515 

516 @return: The I{parametric} (or geodetic) latitude in C{degrees90}. 

517 

518 @see: U{Inverse-/ParametricLatitude<https://GeographicLib.SourceForge.io/ 

519 C++/doc/classGeographicLib_1_1Ellipsoid.html>}, U{Parametric latitude 

520 <https://WikiPedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude>}, 

521 and U{Snyder<https://Pubs.USGS.gov/pp/1395/report.pdf>}, p 18. 

522 ''' 

523 if self.f: 

524 lat = self._beta(Lat(lat), inverse=inverse) 

525 return _aux(lat, inverse, Ellipsoid.auxParametric) 

526 

527 auxReduced = auxParametric # synonymous 

528 

529 def auxRectifying(self, lat, inverse=False): 

530 '''Compute the I{rectifying} auxiliary latitude or the I{inverse} thereof. 

531 

532 @arg lat: The geodetic (or I{rectifying}) latitude (C{degrees90}). 

533 @kwarg inverse: If C{True}, B{C{lat}} is the I{rectifying} and 

534 return the geodetic latitude (C{bool}). 

535 

536 @return: The I{rectifying} (or geodetic) latitude in C{degrees90}. 

537 

538 @see: U{Inverse-/RectifyingLatitude<https://GeographicLib.SourceForge.io/ 

539 C++/doc/classGeographicLib_1_1Ellipsoid.html>}, U{Rectifying latitude 

540 <https://WikiPedia.org/wiki/Latitude#Rectifying_latitude>}, and 

541 U{Snyder<https://Pubs.USGS.gov/pp/1395/report.pdf>}, pp 16-17. 

542 ''' 

543 if self.f: 

544 lat = Lat(lat) 

545 if 0 < fabs(lat) < _90_0: 

546 if inverse: 

547 e = self._elliptic_e22 

548 d = degrees90(e.fEinv(e.cE * lat / _90_0)) 

549 lat = self.auxParametric(d, inverse=True) 

550 else: 

551 lat = _90_0 * self.Llat(lat) / self.L 

552 return _aux(lat, inverse, Ellipsoid.auxRectifying) 

553 

554 @Property_RO 

555 def b(self): 

556 '''Get the I{polar} radius, semi-axis (C{meter}). 

557 ''' 

558 return self._b 

559 

560 polaradius = b # = Rpolar 

561 

562 @Property_RO 

563 def b_a(self): 

564 '''Get the ratio I{polar} over I{equatorial} radius (C{float}), M{b / a == f1 == 1 - f}. 

565 

566 @see: Property L{f1}. 

567 ''' 

568 return self._assert(self.b / self.a, b_a=self.f1, f0=_1_0) 

569 

570 @Property_RO 

571 def b2(self): 

572 '''Get the I{polar} radius I{squared} (C{float}), M{b**2}. 

573 ''' 

574 return Meter2(b2=self.b**2) 

575 

576 @Property_RO 

577 def b2_a(self): 

578 '''Get the I{equatorial} meridional radius of curvature (C{meter}), M{b**2 / a}, see C{rocMeridional}C{(0)}. 

579 

580 @see: U{Radii of Curvature<https://WikiPedia.org/wiki/Earth_radius#Radii_of_curvature>}. 

581 ''' 

582 return Radius(b2_a=self.b2 / self.a if self.f else self.b) 

583 

584 @Property_RO 

585 def b2_a2(self): 

586 '''Get the ratio I{polar} over I{equatorial} radius I{squared} (C{float}), M{(b / a)**2} 

587 == M{(1 - f)**2} == M{1 - e**2} == C{e21}. 

588 ''' 

589 return Float(b2_a2=self.b_a**2 if self.f else _1_0) 

590 

591 def _beta(self, lat, inverse=False): 

592 '''(INTERNAL) Get the I{parametric (or reduced) auxiliary latitude} or inverse thereof. 

593 ''' 

594 s, c = sincos2d(lat) # like Karney's tand(lat) 

595 s *= self.a_b if inverse else self.b_a 

596 return atan1d(s, c) 

597 

598 @Property_RO 

599 def BetaKs(self): 

600 '''Get the I{Krüger} U{Beta series coefficients<https://GeographicLib.SourceForge.io/C++/doc/tmseries30.html>} (C{KsOrder}C{-tuple}). 

601 ''' 

602 return self._Kseries( # XXX int/int quotients may require from __future__ import division as _; del _ # PYCHOK semicolon 

603 # n n**2 n**3 n**4 n**5 n**6 n**7 n**8 

604 _T(1/2, -2/3, 37/96, -1/360, -81/512, 96199/604800, -5406467/38707200, 7944359/67737600), 

605 _T(1/48, 1/15, -437/1440, 46/105, -1118711/3870720, 51841/1209600, 24749483/348364800), # PYCHOK unaligned 

606 _T(17/480, -37/840, -209/4480, 5569/90720, 9261899/58060800, -6457463/17740800), # PYCHOK unaligned 

607 _T(4397/161280, -11/504, -830251/7257600, 466511/2494800, 324154477/7664025600), # PYCHOK unaligned 

608 _T(4583/161280, -108847/3991680, -8005831/63866880, 22894433/124540416), # PYCHOK unaligned 

609 _T(20648693/638668800, -16363163/518918400, -2204645983/12915302400), # PYCHOK unaligne 

610 _T(219941297/5535129600, -497323811/12454041600), # PYCHOK unaligned 

611 _T(191773887257/3719607091200)) # PYCHOK unaligned 

612 

613 @deprecated_Property_RO 

614 def c(self): # PYCHOK no cover 

615 '''DEPRECATED, use property C{R2} or C{Rauthalic}.''' 

616 return self.R2 

617 

618 @Property_RO 

619 def c2(self): 

620 '''Get the I{authalic} earth radius I{squared} (C{meter} I{squared}). 

621 

622 @see: Properties L{c2x}, L{area}, L{R2}, L{Rauthalic}, I{Karney's} U{equation (60) 

623 <https://Link.Springer.com/article/10.1007%2Fs00190-012-0578-z>} and C++ U{Ellipsoid.Area 

624 <https://GeographicLib.SourceForge.io/C++/doc/classGeographicLib_1_1Ellipsoid.html>}, 

625 U{Authalic radius<https://WikiPedia.org/wiki/Earth_radius#Authalic_radius>}, U{Surface area 

626 <https://WikiPedia.org/wiki/Ellipsoid>} and U{surface area 

627 <https://www.Numericana.com/answer/geometry.htm#oblate>}. 

628 ''' 

629 return self._c2f(False) 

630 

631 @Property_RO 

632 def c2x(self): 

633 '''Get the I{authalic} earth radius I{squared} (C{meter} I{squared}), more accurate for very I{oblate} 

634 ellipsoids. 

635 

636 @see: Properties L{c2}, L{areax}, L{R2x}, L{Rauthalicx}, class L{GeodesicExact} and I{Karney}'s comments at C++ 

637 attribute U{GeodesicExact._c2<https://GeographicLib.SourceForge.io/C++/doc/GeodesicExact_8cpp_source.html>}. 

638 ''' 

639 return self._c2f(True) 

640 

641 def _c2f(self, c2x): 

642 '''(INTERNAL) Helper for C{.c2} and C{.c2x}. 

643 ''' 

644 f, c2 = self.f, self.b2 

645 if f: 

646 e = self.e 

647 if e > EPS0: 

648 if f > 0: # .isOblate 

649 c2 *= (asinh(sqrt(self.e22abs)) if c2x else atanh(e)) / e 

650 elif f < 0: # .isProlate 

651 c2 *= atan1(e) / e # XXX asin? 

652 c2 = Meter2(c2=(self.a2 + c2) * _0_5) 

653 return c2 

654 

655 def circle4(self, lat): 

656 '''Get the equatorial or a parallel I{circle of latitude}. 

657 

658 @arg lat: Geodetic latitude (C{degrees90}, C{str}). 

659 

660 @return: A L{Circle4Tuple}C{(radius, height, lat, beta)} 

661 instance. 

662 

663 @raise RangeError: Latitude B{C{lat}} outside valid range and 

664 L{pygeodesy.rangerrors} set to C{True}. 

665 

666 @raise TypeError: Invalid B{C{lat}}. 

667 

668 @raise ValueError: Invalid B{C{lat}}. 

669 

670 @see: Definition of U{I{p} and I{z} under B{Parametric (or reduced) latitude} 

671 <https://WikiPedia.org/wiki/Latitude>}, I{Karney's} C++ U{CircleRadius and CircleHeight 

672 <https://GeographicLib.SourceForge.io/C++/doc/classGeographicLib_1_1Ellipsoid.html>} 

673 and method C{Rlat}. 

674 ''' 

675 lat = Lat(lat) 

676 if lat: 

677 b = lat 

678 if fabs(lat) < _90_0: 

679 if self.f: 

680 b = self._beta(lat) 

681 z, r = sincos2d(b) 

682 r *= self.a 

683 z *= self.b 

684 else: # near-polar 

685 r, z = _0_0, copysign0(self.b, lat) 

686 else: # equator 

687 r = self.a 

688 z = lat = b = _0_0 

689 return Circle4Tuple(r, z, lat, b) 

690 

691 def degrees2m(self, deg, lat=0): 

692 '''Convert an angle to the distance along the equator or 

693 along a parallel of (geodetic) latitude. 

694 

695 @arg deg: The angle (C{degrees}). 

696 @kwarg lat: Parallel latitude (C{degrees90}, C{str}). 

697 

698 @return: Distance (C{meter}, same units as the equatorial 

699 and polar radii) or C{0} for near-polar B{C{lat}}. 

700 

701 @raise RangeError: Latitude B{C{lat}} outside valid range and 

702 L{pygeodesy.rangerrors} set to C{True}. 

703 

704 @raise ValueError: Invalid B{C{deg}} or B{C{lat}}. 

705 ''' 

706 return self.radians2m(radians(deg), lat=lat) 

707 

708 def distance2(self, lat0, lon0, lat1, lon1): 

709 '''I{Approximate} the distance and (initial) bearing between 

710 two points based on the U{local, flat earth approximation 

711 <https://www.EdWilliams.org/avform.htm#flat>} aka U{Hubeny 

712 <https://www.OVG.AT/de/vgi/files/pdf/3781/>} formula. 

713 

714 I{Suitable only for distances of several hundred Km or Miles 

715 and only between points not near-polar}. 

716 

717 @arg lat0: From latitude (C{degrees}). 

718 @arg lon0: From longitude (C{degrees}). 

719 @arg lat1: To latitude (C{degrees}). 

720 @arg lon1: To longitude (C{degrees}). 

721 

722 @return: A L{Distance2Tuple}C{(distance, initial)} with C{distance} 

723 in same units as this ellipsoid's axes. 

724 

725 @note: The meridional and prime_vertical radii of curvature are 

726 taken and scaled I{at the initial latitude}, see C{roc2}. 

727 

728 @see: Function L{pygeodesy.flatLocal}/L{pygeodesy.hubeny}. 

729 ''' 

730 phi0 = Phi_(lat0=lat0) 

731 m, n = self.roc2_(phi0, scaled=True) 

732 m *= Phi_(lat1=lat1) - phi0 

733 n *= Lam_(lon1=lon1) - Lam_(lon0=lon0) 

734 return Distance2Tuple(hypot(m, n), atan2b(n, m)) 

735 

736 @Property_RO 

737 def e(self): 

738 '''Get the I{unsigned, (1st) eccentricity} (C{float}), M{sqrt(1 - (b / a)**2))}, see C{a_b2e}. 

739 

740 @see: Property L{es}. 

741 ''' 

742 return Float(e=sqrt(self.e2abs) if self.e2 else _0_0) 

743 

744 @deprecated_Property_RO 

745 def e12(self): # see property ._e12 

746 '''DEPRECATED, use property C{e21}.''' 

747 return self.e21 

748 

749# @Property_RO 

750# def _e12(self): # see property ._elliptic_e12 

751# # (INTERNAL) until e12 above can be replaced with e21. 

752# return self.e2 / (_1_0 - self.e2) # see I{Karney}'s Ellipsoid._e12 = e2 / (1 - e2) 

753 

754 @Property_RO 

755 def e2(self): 

756 '''Get the I{signed, (1st) eccentricity squared} (C{float}), M{f * (2 - f) 

757 == 1 - (b / a)**2}, see C{a_b2e2}. 

758 ''' 

759 return self._assert(a_b2e2(self.a, self.b), e2=f2e2(self.f)) 

760 

761 @Property_RO 

762 def e2abs(self): 

763 '''Get the I{unsigned, (1st) eccentricity squared} (C{float}). 

764 ''' 

765 return fabs(self.e2) 

766 

767 @Property_RO 

768 def e21(self): 

769 '''Get 1 less I{1st eccentricity squared} (C{float}), M{1 - e**2} 

770 == M{1 - e2} == M{(1 - f)**2} == M{b**2 / a**2}, see C{b2_a2}. 

771 ''' 

772 return self._assert((_1_0 - self.f)**2, e21=_1_0 - self.e2, f0=_1_0) 

773 

774# _e2m = e21 # see I{Karney}'s Ellipsoid._e2m = 1 - _e2 

775 _1_e21 = a2_b2 # == M{1 / e21} == M{1 / (1 - e**2)} 

776 

777 @Property_RO 

778 def e22(self): 

779 '''Get the I{signed, 2nd eccentricity squared} (C{float}), M{e2 / (1 - e2) 

780 == e2 / (1 - f)**2 == (a / b)**2 - 1}, see C{a_b2e22}. 

781 ''' 

782 return self._assert(a_b2e22(self.a, self.b), e22=f2e22(self.f)) 

783 

784 @Property_RO 

785 def e22abs(self): 

786 '''Get the I{unsigned, 2nd eccentricity squared} (C{float}). 

787 ''' 

788 return fabs(self.e22) 

789 

790 @Property_RO 

791 def e32(self): 

792 '''Get the I{signed, 3rd eccentricity squared} (C{float}), M{e2 / (2 - e2) 

793 == (a**2 - b**2) / (a**2 + b**2)}, see C{a_b2e32}. 

794 ''' 

795 return self._assert(a_b2e32(self.a, self.b), e32=f2e32(self.f)) 

796 

797 @Property_RO 

798 def e32abs(self): 

799 '''Get the I{unsigned, 3rd eccentricity squared} (C{float}). 

800 ''' 

801 return fabs(self.e32) 

802 

803 @Property_RO 

804 def e4(self): 

805 '''Get the I{unsignd, (1st) eccentricity} to 4th power (C{float}), M{e**4 == e2**2}. 

806 ''' 

807 return Float(e4=self.e2**2 if self.e2 else _0_0) 

808 

809 eccentricity = e # eccentricity 

810# eccentricity2 = e2 # eccentricity squared 

811 eccentricity1st2 = e2 # first eccentricity squared 

812 eccentricity2nd2 = e22 # second eccentricity squared 

813 eccentricity3rd2 = e32 # third eccentricity squared 

814 

815 def ecef(self, Ecef=None): 

816 '''Return U{ECEF<https://WikiPedia.org/wiki/ECEF>} converter. 

817 

818 @kwarg Ecef: ECEF class to use, default L{EcefKarney}. 

819 

820 @return: An ECEF converter for this C{ellipsoid}. 

821 

822 @raise TypeError: Invalid B{C{Ecef}}. 

823 

824 @see: Module L{pygeodesy.ecef}. 

825 ''' 

826 return _MODS.ecef._4Ecef(self, Ecef) 

827 

828 @Property_RO 

829 def _elliptic_e12(self): # see I{Karney}'s Ellipsoid._e12 

830 '''(INTERNAL) Elliptic helper for C{Rhumb}. 

831 ''' 

832 e12 = self.e2 / (self.e2 - _1_0) # NOT DEPRECATED .e12! 

833 return _MODS.elliptic.Elliptic(e12) 

834 

835 @Property_RO 

836 def _elliptic_e22(self): # aka ._elliptic_ep2 

837 '''(INTERNAL) Elliptic helper for C{auxRectifying}, C{L}, C{Llat}. 

838 ''' 

839 return _MODS.elliptic.Elliptic(-self.e22abs) # complex 

840 

841 equatoradius = a # Requatorial 

842 

843 def e2s(self, s): 

844 '''Compute norm M{sqrt(1 - e2 * s**2)}. 

845 

846 @arg s: Sine value (C{scalar}). 

847 

848 @return: Norm (C{float}). 

849 

850 @raise ValueError: Invalid B{C{s}}. 

851 ''' 

852 return sqrt(self.e2s2(s)) if self.e2 else _1_0 

853 

854 def e2s2(self, s): 

855 '''Compute M{1 - e2 * s**2}. 

856 

857 @arg s: Sine value (C{scalar}). 

858 

859 @return: Result (C{float}). 

860 

861 @raise ValueError: Invalid B{C{s}}. 

862 ''' 

863 r = _1_0 

864 if self.e2: 

865 try: 

866 r -= self.e2 * Scalar(s=s)**2 

867 if r < 0: 

868 raise ValueError(_negative_) 

869 except (TypeError, ValueError) as x: 

870 t = self._DOT_(Ellipsoid.e2s2.__name__) 

871 raise _ValueError(t, s, cause=x) 

872 return r 

873 

874 @Property_RO 

875 def es(self): 

876 '''Get the I{signed (1st) eccentricity} (C{float}). 

877 

878 @see: Property L{e}. 

879 ''' 

880 # note, self.e is always non-negative 

881 return Float(es=copysign0(self.e, self.f)) # see .ups 

882 

883 def es_atanh(self, x): 

884 '''Compute M{es * atanh(es * x)} or M{-es * atan(es * x)} 

885 for I{oblate} respectively I{prolate} ellipsoids where 

886 I{es} is the I{signed} (1st) eccentricity. 

887 

888 @raise ValueError: Invalid B{C{x}}. 

889 

890 @see: Function U{Math::eatanhe<https://GeographicLib.SourceForge.io/ 

891 C++/doc/classGeographicLib_1_1Math.html>}. 

892 ''' 

893 return self._es_atanh(Scalar(x=x)) if self.f else _0_0 

894 

895 def _es_atanh(self, x): # see .albers._atanhee, .AuxLat._atanhee 

896 '''(INTERNAL) Helper for .es_atanh, ._es_taupf2 and ._exp_es_atanh. 

897 ''' 

898 es = self.es # signOf(es) == signOf(f) 

899 return es * (atanh(es * x) if es > 0 else # .isOblate 

900 (-atan(es * x) if es < 0 else # .isProlate 

901 _0_0)) # .isSpherical 

902 

903 @Property_RO 

904 def es_c(self): 

905 '''Get M{(1 - f) * exp(es_atanh(1))} (C{float}), M{b_a * exp(es_atanh(1))}. 

906 ''' 

907 return Float(es_c=(self._exp_es_atanh_1 * self.b_a) if self.f else _1_0) 

908 

909 def es_tauf(self, taup): 

910 '''Compute I{Karney}'s U{equations (19), (20) and (21) 

911 <https://ArXiv.org/abs/1002.1417>}. 

912 

913 @see: I{Karney}'s C++ method U{Math::tauf<https://GeographicLib. 

914 SourceForge.io/C++/doc/classGeographicLib_1_1Math.html>} and 

915 and I{Veness}' JavaScript method U{toLatLon<https://www. 

916 Movable-Type.co.UK/scripts/latlong-utm-mgrs.html>}. 

917 ''' 

918 t = Scalar(taup=taup) 

919 if self.f: # .isEllipsoidal 

920 a = fabs(t) 

921 T = t * (self._exp_es_atanh_1 if a > 70 else self._1_e21) 

922 if fabs(T * _EPSqrt) < _2_0: # handles +/- INF and NAN 

923 s = (a * _TOL) if a > _1_0 else _TOL 

924 for T, _, d in self._es_tauf3(t, T): # max 2 

925 if fabs(d) < s: 

926 break 

927 t = Scalar(tauf=T) 

928 return t 

929 

930 def _es_tauf3(self, taup, T, N=9): # in .utm.Utm._toLLEB 

931 '''(INTERNAL) Yield a 3-tuple C{(τi, iteration, delta)} for at most 

932 B{C{N}} Newton iterations, converging rapidly except when C{delta} 

933 toggles on +/-1.12e-16 or +/-4.47e-16, see C{.utm.Utm._toLLEB}. 

934 ''' 

935 e = self._1_e21 

936 _F2_ = Fsum(T).fsum2f_ # τ0 

937 _tf2 = self._es_taupf2 

938 for i in range(1, N + 1): 

939 a, h = _tf2(T) 

940 d = (taup - a) * (e + T**2) / (hypot1(a) * h) 

941 # = (taup - a) / hypot1(a) / ((e + T**2) / h) 

942 T, d = _F2_(d) # τi, (τi - τi-1) 

943 yield T, i, d 

944 

945 def es_taupf(self, tau): 

946 '''Compute I{Karney}'s U{equations (7), (8) and (9) 

947 <https://ArXiv.org/abs/1002.1417>}. 

948 

949 @see: I{Karney}'s C++ method U{Math::taupf<https://GeographicLib. 

950 SourceForge.io/C++/doc/classGeographicLib_1_1Math.html>}. 

951 ''' 

952 t = Scalar(tau=tau) 

953 if self.f: # .isEllipsoidal 

954 t, _ = self._es_taupf2(t) 

955 t = Scalar(taupf=t) 

956 return t 

957 

958 def _es_taupf2(self, tau): 

959 '''(INTERNAL) Return 2-tuple C{(es_taupf(tau), hypot1(tau))}. 

960 ''' 

961 if _isfinite(tau): 

962 h = hypot1(tau) 

963 s = sinh(self._es_atanh(tau / h)) 

964 a = hypot1(s) * tau - h * s 

965 else: 

966 a, h = tau, INF 

967 return a, h 

968 

969 @Property_RO 

970 def _exp_es_atanh_1(self): 

971 '''(INTERNAL) Helper for .es_c and .es_tauf. 

972 ''' 

973 return exp(self._es_atanh(_1_0)) if self.es else _1_0 

974 

975 @Property_RO 

976 def f(self): 

977 '''Get the I{flattening} (C{scalar}), M{(a - b) / a}, C{0} for spherical, negative for prolate. 

978 ''' 

979 return self._f 

980 

981 @Property_RO 

982 def f_(self): 

983 '''Get the I{inverse flattening} (C{scalar}), M{1 / f} == M{a / (a - b)}, C{0} for spherical, see C{a_b2f_}. 

984 ''' 

985 return self._f_ 

986 

987 @Property_RO 

988 def f1(self): 

989 '''Get the I{1 - flattening} (C{float}), M{f1 == 1 - f == b / a}. 

990 

991 @see: Property L{b_a}. 

992 ''' 

993 return Float(f1=_1_0 - self.f) 

994 

995 @Property_RO 

996 def f2(self): 

997 '''Get the I{2nd flattening} (C{float}), M{(a - b) / b == f / (1 - f)}, C{0} for spherical, see C{a_b2f2}. 

998 ''' 

999 return self._assert(self.a_b - _1_0, f2=f2f2(self.f)) 

1000 

1001 @deprecated_Property_RO 

1002 def geodesic(self): 

1003 '''DEPRECATED, use property C{geodesicw}.''' 

1004 return self.geodesicw 

1005 

1006 def geodesic_(self, exact=True): 

1007 '''Get the an I{exact} C{Geodesic...} instance for this ellipsoid. 

1008 

1009 @kwarg exact: If C{bool} return L{GeodesicExact}C{(exact=B{exact}, ...)}, 

1010 otherwise a L{Geodesic}, L{GeodesicExact} or L{GeodesicSolve} 

1011 instance for I{this} ellipsoid. 

1012 

1013 @return: The C{exact} geodesic (C{Geodesic...}). 

1014 

1015 @raise TypeError: Invalid B{C{exact}}. 

1016 

1017 @raise ValueError: Incompatible B{C{exact}} ellipsoid. 

1018 ''' 

1019 if isbool(exact): # for consistenccy with C{.rhumb_} 

1020 g = _MODS.geodesicx.GeodesicExact(self, C4order=30 if exact else 24, 

1021 name=self.name) 

1022 else: 

1023 g = exact 

1024 E = _xattr(g, ellipsoid=None) 

1025 if not (E is self and isinstance(g, self._Geodesics)): 

1026 raise _ValueError(exact=g, ellipsoid=E, txt=_not_(self.name)) 

1027 return g 

1028 

1029 @property_RO 

1030 def _Geodesics(self): 

1031 '''(INTERNAL) Get all C{Geodesic...} classes, I{once}. 

1032 ''' 

1033 Ellipsoid._Geodesics = t = (_MODS.geodesicw._wrapped.Geodesic, # overwrite property_RO 

1034 _MODS.geodesicx.GeodesicExact, 

1035 _MODS.geodsolve.GeodesicSolve) 

1036 return t 

1037 

1038 @property_RO 

1039 def geodesicw(self): 

1040 '''Get this ellipsoid's I{wrapped} U{geodesicw.Geodesic 

1041 <https://GeographicLib.SourceForge.io/Python/doc/code.html>}, provided 

1042 I{Karney}'s U{geographiclib<https://PyPI.org/project/geographiclib>} 

1043 package is installed. 

1044 ''' 

1045 # if not self.isEllipsoidal: 

1046 # raise _IsnotError(_ellipsoidal_, ellipsoid=self) 

1047 return _MODS.geodesicw.Geodesic(self) 

1048 

1049 @property_RO 

1050 def geodesicx(self): 

1051 '''Get this ellipsoid's I{exact} L{GeodesicExact}. 

1052 ''' 

1053 # if not self.isEllipsoidal: 

1054 # raise _IsnotError(_ellipsoidal_, ellipsoid=self) 

1055 return _MODS.geodesicx.GeodesicExact(self, name=self.name) 

1056 

1057 @property 

1058 def geodsolve(self): 

1059 '''Get this ellipsoid's L{GeodesicSolve}, the I{wrapper} around utility 

1060 U{GeodSolve<https://GeographicLib.SourceForge.io/C++/doc/GeodSolve.1.html>}, 

1061 provided the path to the C{GeodSolve} executable is specified with env 

1062 variable C{PYGEODESY_GEODSOLVE} or re-/set with this property.. 

1063 ''' 

1064 # if not self.isEllipsoidal: 

1065 # raise _IsnotError(_ellipsoidal_, ellipsoid=self) 

1066 return _MODS.geodsolve.GeodesicSolve(self, path=self._geodsolve, name=self.name) 

1067 

1068 @geodsolve.setter # PYCHOK setter! 

1069 def geodsolve(self, path): 

1070 '''Re-/set the (fully qualified) path to the U{GeodSolve 

1071 <https://GeographicLib.SourceForge.io/C++/doc/GeodSolve.1.html>} executable, 

1072 overriding env variable C{PYGEODESY_GEODSOLVE} (C{str}). 

1073 ''' 

1074 self._geodsolve = path 

1075 

1076 def hartzell4(self, pov, los=None): 

1077 '''Compute the intersection of this ellipsoid's surface and a Line-Of-Sight 

1078 from a Point-Of-View in space. 

1079 

1080 @arg pov: Point-Of-View outside this ellipsoid (C{Cartesian}, L{Ecef9Tuple} 

1081 or L{Vector3d}). 

1082 @kwarg los: Line-Of-Sight, I{direction} to this ellipsoid (L{Vector3d}) or 

1083 C{None} to point to this ellipsoid's center. 

1084 

1085 @return: L{Vector4Tuple}C{(x, y, z, h)} with the cartesian coordinates C{x}, 

1086 C{y} and C{z} of the projection on or the intersection with this 

1087 ellipsoid and the I{distance} C{h} from B{C{pov}} to C{(x, y, z)} 

1088 along B{C{los}}, all in C{meter}, conventionally. 

1089 

1090 @raise IntersectionError: Null B{C{pov}} or B{C{los}} vector, or B{C{pov}} 

1091 is inside this ellipsoid or B{C{los}} points 

1092 outside this ellipsoid or points in an opposite 

1093 direction. 

1094 

1095 @raise TypeError: Invalid B{C{pov}} or B{C{los}}. 

1096 

1097 @see: U{I{Satellite Line-of-Sight Intersection with Earth}<https://StephenHartzell. 

1098 Medium.com/satellite-line-of-sight-intersection-with-earth-d786b4a6a9b6>} and 

1099 methods L{Ellipsoid.height4} and L{Triaxial.hartzell4}. 

1100 ''' 

1101 try: 

1102 v, d = _MODS.triaxials._hartzell2(pov, los, self._triaxial) 

1103 except Exception as x: 

1104 raise IntersectionError(pov=pov, los=los, cause=x) 

1105 return Vector4Tuple(v.x, v.y, v.z, d, name=self.hartzell4.__name__) 

1106 

1107 @Property_RO 

1108 def _hash(self): 

1109 return hash((self.a, self.f)) 

1110 

1111 def height4(self, xyz, normal=True): 

1112 '''Compute the projection on and the height of a cartesian above or below 

1113 this ellipsoid's surface. 

1114 

1115 @arg xyz: The cartesian (C{Cartesian}, L{Ecef9Tuple}, L{Vector3d}, 

1116 L{Vector3Tuple} or L{Vector4Tuple}). 

1117 @kwarg normal: If C{True}, the projection is perpendicular to (the nearest 

1118 point on) this ellipsoid's surface, otherwise the C{radial} 

1119 line to this ellipsoid's center (C{bool}). 

1120 

1121 @return: L{Vector4Tuple}C{(x, y, z, h)} with the cartesian coordinates C{x}, 

1122 C{y} and C{z} of the projection on and the height C{h} above or 

1123 below this ellipsoid's surface, all in C{meter}, conventionally. 

1124 

1125 @raise ValueError: Null B{C{xyz}}. 

1126 

1127 @raise TypeError: Non-cartesian B{C{xyz}}. 

1128 

1129 @see: U{Distance to<https://StackOverflow.com/questions/22959698/distance-from-given-point-to-given-ellipse>} 

1130 and U{intersection with<https://MathWorld.wolfram.com/Ellipse-LineIntersection.html>} an ellipse and 

1131 methods L{Ellipsoid.hartzell4} and L{Triaxial.height4}. 

1132 ''' 

1133 v = _MODS.vector3d._otherV3d(xyz=xyz) 

1134 r = v.length 

1135 

1136 a, b, i = self.a, self.b, None 

1137 if r < EPS0: # EPS 

1138 v = v.times(_0_0) 

1139 h = -a 

1140 

1141 elif self.isSpherical: 

1142 v = v.times(a / r) 

1143 h = r - a 

1144 

1145 elif normal: # perpendicular to ellipsoid 

1146 x, y = hypot(v.x, v.y), fabs(v.z) 

1147 if x < EPS0: # PYCHOK no cover 

1148 z = copysign0(b, v.z) 

1149 v = Vector3Tuple(v.x, v.y, z) 

1150 h = y - b # polar 

1151 elif y < EPS0: # PYCHOK no cover 

1152 t = a / r 

1153 v = v.times_(t, t, 0) # force z=0.0 

1154 h = x - a # equatorial 

1155 else: # normal in 1st quadrant 

1156 x, y, i = _normalTo3(x, y, self) 

1157 t, v = v, v.times_(x, x, y) 

1158 h = t.minus(v).length 

1159 

1160 else: # radial to ellipsoid's center 

1161 h = hypot_(a * v.z, b * v.x, b * v.y) 

1162 t = (a * b / h) if h > EPS0 else _0_0 # EPS 

1163 v = v.times(t) 

1164 h = r * (_1_0 - t) 

1165 

1166 return Vector4Tuple(v.x, v.y, v.z, h, iteration=i, 

1167 name=self.height4.__name__) 

1168 

1169 def _hubeny_2(self, phi2, phi1, lam21, scaled=True, squared=True): 

1170 '''(INTERNAL) like function C{pygeodesy.flatLocal_}/C{pygeodesy.hubeny_}, 

1171 returning the I{angular} distance in C{radians squared} or C{radians} 

1172 ''' 

1173 m, n = self.roc2_((phi2 + phi1) * _0_5, scaled=scaled) 

1174 h, r = (hypot2, self.a2_) if squared else (hypot, _1_0 / self.a) 

1175 return h(m * (phi2 - phi1), n * lam21) * r 

1176 

1177 @Property_RO 

1178 def isEllipsoidal(self): 

1179 '''Is this model I{ellipsoidal} (C{bool})? 

1180 ''' 

1181 return self.f != 0 

1182 

1183 @Property_RO 

1184 def isOblate(self): 

1185 '''Is this ellipsoid I{oblate} (C{bool})? I{Prolate} or 

1186 spherical otherwise. 

1187 ''' 

1188 return self.f > 0 

1189 

1190 @Property_RO 

1191 def isProlate(self): 

1192 '''Is this ellipsoid I{prolate} (C{bool})? I{Oblate} or 

1193 spherical otherwise. 

1194 ''' 

1195 return self.f < 0 

1196 

1197 @Property_RO 

1198 def isSpherical(self): 

1199 '''Is this ellipsoid I{spherical} (C{bool})? 

1200 ''' 

1201 return self.f == 0 

1202 

1203 def _Kseries(self, *AB8Ks): 

1204 '''(INTERNAL) Compute the 4-, 6- or 8-th order I{Krüger} Alpha 

1205 or Beta series coefficients per I{Karney}'s U{equations (35) 

1206 and (36)<https://ArXiv.org/pdf/1002.1417v3.pdf>}. 

1207 

1208 @arg AB8Ks: 8-Tuple of 8-th order I{Krüger} Alpha or Beta series 

1209 coefficient tuples. 

1210 

1211 @return: I{Krüger} series coefficients (L{KsOrder}C{-tuple}). 

1212 

1213 @see: I{Karney}'s 30-th order U{TMseries30 

1214 <https://GeographicLib.SourceForge.io/C++/doc/tmseries30.html>}. 

1215 ''' 

1216 k = self.KsOrder 

1217 if self.n: 

1218 ns = fpowers(self.n, k) 

1219 ks = tuple(fdot(AB8Ks[i][:k-i], *ns[i:]) for i in range(k)) 

1220 else: 

1221 ks = _0_0s(k) 

1222 return ks 

1223 

1224 @property_doc_(''' the I{Krüger} series' order (C{int}), see properties C{AlphaKs}, C{BetaKs}.''') 

1225 def KsOrder(self): 

1226 '''Get the I{Krüger} series' order (C{int} 4, 6 or 8). 

1227 ''' 

1228 return self._KsOrder 

1229 

1230 @KsOrder.setter # PYCHOK setter! 

1231 def KsOrder(self, order): 

1232 '''Set the I{Krüger} series' order (C{int} 4, 6 or 8). 

1233 

1234 @raise ValueError: Invalid B{C{order}}. 

1235 ''' 

1236 if not (isint(order) and order in (4, 6, 8)): 

1237 raise _ValueError(order=order) 

1238 if self._KsOrder != order: 

1239 Ellipsoid.AlphaKs._update(self) 

1240 Ellipsoid.BetaKs._update(self) 

1241 self._KsOrder = order 

1242 

1243 @Property_RO 

1244 def L(self): 

1245 '''Get the I{quarter meridian} C{L}, aka the C{polar distance} 

1246 along a meridian between the equator and a pole (C{meter}), 

1247 M{b * Elliptic(-e2 / (1 - e2)).cE} or M{b * PI / 2}. 

1248 ''' 

1249 r = self._elliptic_e22.cE if self.f else PI_2 

1250 return Distance(L=self.b * r) 

1251 

1252 def Llat(self, lat): 

1253 '''Return the I{meridional length}, the distance along a meridian 

1254 between the equator and a (geodetic) latitude, see C{L}. 

1255 

1256 @arg lat: Geodetic latitude (C{degrees90}). 

1257 

1258 @return: The meridional length at B{C{lat}}, negative on southern 

1259 hemisphere (C{meter}). 

1260 ''' 

1261 r = self._elliptic_e22.fEd(self.auxParametric(lat)) if self.f else Phi_(lat) 

1262 return Distance(Llat=self.b * r) 

1263 

1264 Lmeridian = Llat # meridional distance 

1265 

1266 @property_RO 

1267 def _Lpd(self): 

1268 '''Get the I{quarter meridian} per degree (C{meter}), M{self.L / 90}. 

1269 ''' 

1270 return Meter(_Lpd=self.L / _90_0) 

1271 

1272 @property_RO 

1273 def _Lpr(self): 

1274 '''Get the I{quarter meridian} per radian (C{meter}), M{self.L / PI_2}. 

1275 ''' 

1276 return Meter(_Lpr=self.L / PI_2) 

1277 

1278 @deprecated_Property_RO 

1279 def majoradius(self): # PYCHOK no cover 

1280 '''DEPRECATED, use property C{a} or C{Requatorial}.''' 

1281 return self.a 

1282 

1283 def m2degrees(self, distance, lat=0): 

1284 '''Convert a distance to an angle along the equator or 

1285 along a parallel of (geodetic) latitude. 

1286 

1287 @arg distance: Distance (C{meter}). 

1288 @kwarg lat: Parallel latitude (C{degrees90}, C{str}). 

1289 

1290 @return: Angle (C{degrees}) or C{INF} for near-polar B{C{lat}}. 

1291 

1292 @raise RangeError: Latitude B{C{lat}} outside valid range and 

1293 L{pygeodesy.rangerrors} set to C{True}. 

1294 

1295 @raise ValueError: Invalid B{C{distance}} or B{C{lat}}. 

1296 ''' 

1297 return degrees(self.m2radians(distance, lat=lat)) 

1298 

1299 def m2radians(self, distance, lat=0): 

1300 '''Convert a distance to an angle along the equator or 

1301 along a parallel of (geodetic) latitude. 

1302 

1303 @arg distance: Distance (C{meter}). 

1304 @kwarg lat: Parallel latitude (C{degrees90}, C{str}). 

1305 

1306 @return: Angle (C{radians}) or C{INF} for near-polar B{C{lat}}. 

1307 

1308 @raise RangeError: Latitude B{C{lat}} outside valid range and 

1309 L{pygeodesy.rangerrors} set to C{True}. 

1310 

1311 @raise ValueError: Invalid B{C{distance}} or B{C{lat}}. 

1312 ''' 

1313 r = self.circle4(lat).radius if lat else self.a 

1314 return m2radians(distance, radius=r, lat=0) 

1315 

1316 @deprecated_Property_RO 

1317 def minoradius(self): # PYCHOK no cover 

1318 '''DEPRECATED, use property C{b}, C{polaradius} or C{Rpolar}.''' 

1319 return self.b 

1320 

1321 @Property_RO 

1322 def n(self): 

1323 '''Get the I{3rd flattening} (C{float}), M{f / (2 - f) == (a - b) / (a + b)}, see C{a_b2n}. 

1324 ''' 

1325 return self._assert(a_b2n(self.a, self.b), n=f2n(self.f)) 

1326 

1327 flattening = f 

1328 flattening1st = f 

1329 flattening2nd = f2 

1330 flattening3rd = n 

1331 

1332 polaradius = b # Rpolar 

1333 

1334# @Property_RO 

1335# def Q(self): 

1336# '''Get the I{meridian arc unit} C{Q}, the mean, meridional length I{per radian} C({float}). 

1337# 

1338# @note: C{Q * PI / 2} ≈ C{L}, the I{quarter meridian}. 

1339# 

1340# @see: Property C{A} and U{Engsager, K., Poder, K.<https://StudyLib.net/doc/7443565/ 

1341# a-highly-accurate-world-wide-algorithm-for-the-transverse...>}. 

1342# ''' 

1343# n = self.n 

1344# d = (n + _1_0) / self.a 

1345# return Float(Q=Fhorner(n**2, _1_0, _0_25, _1_16th, _0_25).fover(d) if d else self.b) 

1346 

1347# # Moritz, H. <https://Geodesy.Geology.Ohio-State.EDU/course/refpapers/00740128.pdf> 

1348# # Q = (1 - 3/4 * e'2 + 45/64 * e'4 - 175/256 * e'6 + 11025/16384 * e'8) * rocPolar 

1349# # = (4 + e'2 * (-3 + e'2 * (45/16 + e'2 * (-175/64 + e'2 * 11025/4096)))) * rocPolar / 4 

1350# return Fhorner(self.e22, 4, -3, 45 / 16, -175 / 64, 11025 / 4096).fover(4 / self.rocPolar) 

1351 

1352 @deprecated_Property_RO 

1353 def quarteradius(self): # PYCHOK no cover 

1354 '''DEPRECATED, use property C{L} or method C{Llat}.''' 

1355 return self.L 

1356 

1357 @Property_RO 

1358 def R1(self): 

1359 '''Get the I{mean} earth radius per I{IUGG} (C{meter}), M{(2 * a + b) / 3 == a * (1 - f / 3)}. 

1360 

1361 @see: U{Earth radius<https://WikiPedia.org/wiki/Earth_radius>} 

1362 and method C{Rgeometric}. 

1363 ''' 

1364 r = Fsum(self.a, self.a, self.b).fover(_3_0) if self.f else self.a 

1365 return Radius(R1=r) 

1366 

1367 Rmean = R1 

1368 

1369 @Property_RO 

1370 def R2(self): 

1371 '''Get the I{authalic} earth radius (C{meter}), M{sqrt(c2)}. 

1372 

1373 @see: C{R2x}, C{c2}, C{area} and U{Earth radius 

1374 <https://WikiPedia.org/wiki/Earth_radius>}. 

1375 ''' 

1376 return Radius(R2=sqrt(self.c2) if self.f else self.a) 

1377 

1378 Rauthalic = R2 

1379 

1380# @Property_RO 

1381# def R2(self): 

1382# # Moritz, H. <https://Geodesy.Geology.Ohio-State.EDU/course/refpapers/00740128.pdf> 

1383# # R2 = (1 - 2/3 * e'2 + 26/45 * e'4 - 100/189 * e'6 + 7034/14175 * e'8) * rocPolar 

1384# # = (3 + e'2 * (-2 + e'2 * (26/15 + e'2 * (-100/63 + e'2 * 7034/4725)))) * rocPolar / 3 

1385# return Fhorner(self.e22, 3, -2, 26 / 15, -100 / 63, 7034 / 4725).fover(3 / self.rocPolar) 

1386 

1387 @Property_RO 

1388 def R2x(self): 

1389 '''Get the I{authalic} earth radius (C{meter}), M{sqrt(c2x)}. 

1390 

1391 @see: C{R2}, C{c2x} and C{areax}. 

1392 ''' 

1393 return Radius(R2x=sqrt(self.c2x) if self.f else self.a) 

1394 

1395 Rauthalicx = R2x 

1396 

1397 @Property_RO 

1398 def R3(self): 

1399 '''Get the I{volumetric} earth radius (C{meter}), M{(a * a * b)**(1/3)}. 

1400 

1401 @see: U{Earth radius<https://WikiPedia.org/wiki/Earth_radius>} and C{volume}. 

1402 ''' 

1403 r = (cbrt(self.b_a) * self.a) if self.f else self.a 

1404 return Radius(R3=r) 

1405 

1406 Rvolumetric = R3 

1407 

1408 def radians2m(self, rad, lat=0): 

1409 '''Convert an angle to the distance along the equator or 

1410 along a parallel of (geodetic) latitude. 

1411 

1412 @arg rad: The angle (C{radians}). 

1413 @kwarg lat: Parallel latitude (C{degrees90}, C{str}). 

1414 

1415 @return: Distance (C{meter}, same units as the equatorial 

1416 and polar radii) or C{0} for near-polar B{C{lat}}. 

1417 

1418 @raise RangeError: Latitude B{C{lat}} outside valid range and 

1419 L{pygeodesy.rangerrors} set to C{True}. 

1420 

1421 @raise ValueError: Invalid B{C{rad}} or B{C{lat}}. 

1422 ''' 

1423 r = self.circle4(lat).radius if lat else self.a 

1424 return radians2m(rad, radius=r, lat=0) 

1425 

1426 @Property_RO 

1427 def Rbiaxial(self): 

1428 '''Get the I{biaxial, quadratic} mean earth radius (C{meter}), M{sqrt((a**2 + b**2) / 2)}. 

1429 

1430 @see: C{Rtriaxial} 

1431 ''' 

1432 a, b = self.a, self.b 

1433 if b < a: 

1434 b = sqrt(_0_5 + self.b2_a2 * _0_5) * a 

1435 elif b > a: 

1436 b *= sqrt(_0_5 + self.a2_b2 * _0_5) 

1437 return Radius(Rbiaxial=b) 

1438 

1439 Requatorial = a # for consistent naming 

1440 

1441 def Rgeocentric(self, lat): 

1442 '''Compute the I{geocentric} earth radius of (geodetic) latitude. 

1443 

1444 @arg lat: Latitude (C{degrees90}). 

1445 

1446 @return: Geocentric earth radius (C{meter}). 

1447 

1448 @raise ValueError: Invalid B{C{lat}}. 

1449 

1450 @see: U{Geocentric Radius 

1451 <https://WikiPedia.org/wiki/Earth_radius#Geocentric_radius>} 

1452 ''' 

1453 r, a = self.a, Phi_(lat) 

1454 if a and self.f: 

1455 if fabs(a) < PI_2: 

1456 s2, c2 = _s2_c2(a) 

1457 b2_a2_s2 = self.b2_a2 * s2 

1458 # R == sqrt((a2**2 * c2 + b2**2 * s2) / (a2 * c2 + b2 * s2)) 

1459 # == sqrt(a2**2 * (c2 + (b2 / a2)**2 * s2) / (a2 * (c2 + b2 / a2 * s2))) 

1460 # == sqrt(a2 * (c2 + (b2 / a2)**2 * s2) / (c2 + (b2 / a2) * s2)) 

1461 # == a * sqrt((c2 + b2_a2 * b2_a2 * s2) / (c2 + b2_a2 * s2)) 

1462 # == a * sqrt((c2 + b2_a2 * b2_a2_s2) / (c2 + b2_a2_s2)) 

1463 r *= sqrt((c2 + b2_a2_s2 * self.b2_a2) / (c2 + b2_a2_s2)) 

1464 else: 

1465 r = self.b 

1466 return Radius(Rgeocentric=r) 

1467 

1468 @Property_RO 

1469 def Rgeometric(self): 

1470 '''Get the I{geometric} mean earth radius (C{meter}), M{sqrt(a * b)}. 

1471 

1472 @see: C{R1}. 

1473 ''' 

1474 g = sqrt(self.a * self.b) if self.f else self.a 

1475 return Radius(Rgeometric=g) 

1476 

1477 def rhumb_(self, exact=True): 

1478 '''Get the an I{exact} C{Rhumb...} instance for this ellipsoid. 

1479 

1480 @kwarg exact: If C{bool} or C{None} return L{Rhumb}C{(exact=B{exact}, ...)}, 

1481 otherwise a L{Rhumb}, L{RhumbAux} or L{RhumbSolve} instance 

1482 for I{this} ellipsoid. 

1483 

1484 @return: The C{exact} rhumb (C{Rhumb...}). 

1485 

1486 @raise TypeError: Invalid B{C{exact}}. 

1487 

1488 @raise ValueError: Incompatible B{C{exact}} ellipsoid. 

1489 ''' 

1490 if isbool(exact): # use Rhumb for backward compatibility 

1491 r = _MODS.rhumb.ekx.Rhumb(self, exact=exact, name=self.name) 

1492 else: 

1493 r = exact 

1494 E = _xattr(r, ellipsoid=None) 

1495 if not (E is self and isinstance(r, self._Rhumbs)): 

1496 raise _ValueError(exact=r, ellipsosid=E, txt=_not_(self.name)) 

1497 return r 

1498 

1499 @property_RO 

1500 def rhumbaux(self): 

1501 '''Get this ellipsoid's I{Auxiliary} C{rhumb.RhumbAux}. 

1502 ''' 

1503 # if not self.isEllipsoidal: 

1504 # raise _IsnotError(_ellipsoidal_, ellipsoid=self) 

1505 return _MODS.rhumb.aux_.RhumbAux(self, name=self.name) 

1506 

1507 @property_RO 

1508 def rhumbekx(self): 

1509 '''Get this ellipsoid's I{Elliptic, Krüger} C{rhumb.Rhumb}. 

1510 ''' 

1511 # if not self.isEllipsoidal: 

1512 # raise _IsnotError(_ellipsoidal_, ellipsoid=self) 

1513 return _MODS.rhumb.ekx.Rhumb(self, name=self.name) 

1514 

1515 @property_RO 

1516 def _Rhumbs(self): 

1517 '''(INTERNAL) Get all C{Rhumb...} classes, I{once}. 

1518 ''' 

1519 p = _MODS.rhumb 

1520 Ellipsoid._Rhumbs = t = (p.aux_.RhumbAux, # overwrite property_RO 

1521 p.ekx.Rhumb, p.solve.RhumbSolve) 

1522 return t 

1523 

1524 @property 

1525 def rhumbsolve(self): 

1526 '''Get this ellipsoid's L{RhumbSolve}, the I{wrapper} around utility 

1527 U{RhumbSolve<https://GeographicLib.SourceForge.io/C++/doc/GeodSolve.1.html>}, 

1528 provided the path to the C{RhumbSolve} executable is specified with env 

1529 variable C{PYGEODESY_RHUMBSOLVE} or re-/set with this property. 

1530 ''' 

1531 # if not self.isEllipsoidal: 

1532 # raise _IsnotError(_ellipsoidal_, ellipsoid=self) 

1533 return _MODS.rhumb.solve.RhumbSolve(self, path=self._rhumbsolve, name=self.name) 

1534 

1535 @rhumbsolve.setter # PYCHOK setter! 

1536 def rhumbsolve(self, path): 

1537 '''Re-/set the (fully qualified) path to the U{RhumbSolve 

1538 <https://GeographicLib.SourceForge.io/C++/doc/GeodSolve.1.html>} executable, 

1539 overriding env variable C{PYGEODESY_RHUMBSOLVE} (C{str}). 

1540 ''' 

1541 self._rhumbsolve = path 

1542 

1543 @deprecated_property_RO 

1544 def rhumbx(self): 

1545 '''DEPRECATED on 2023.11.28, use property C{rhumbekx}. ''' 

1546 return self.rhumbekx 

1547 

1548 def Rlat(self, lat): 

1549 '''I{Approximate} the earth radius of (geodetic) latitude. 

1550 

1551 @arg lat: Latitude (C{degrees90}). 

1552 

1553 @return: Approximate earth radius (C{meter}). 

1554 

1555 @raise RangeError: Latitude B{C{lat}} outside valid range and 

1556 L{pygeodesy.rangerrors} set to C{True}. 

1557 

1558 @raise TypeError: Invalid B{C{lat}}. 

1559 

1560 @raise ValueError: Invalid B{C{lat}}. 

1561 

1562 @note: C{Rlat(B{90})} equals C{Rpolar}. 

1563 

1564 @see: Method C{circle4}. 

1565 ''' 

1566 # r = a - (a - b) * |lat| / 90 

1567 r = self.a 

1568 if self.f and lat: # .isEllipsoidal 

1569 r -= (r - self.b) * fabs(Lat(lat)) / _90_0 

1570 r = Radius(Rlat=r) 

1571 return r 

1572 

1573 Rpolar = b # for consistent naming 

1574 

1575 def roc1_(self, sa, ca=None): 

1576 '''Compute the I{prime-vertical}, I{normal} radius of curvature 

1577 of (geodetic) latitude, I{unscaled}. 

1578 

1579 @arg sa: Sine of the latitude (C{float}, [-1.0..+1.0]). 

1580 @kwarg ca: Optional cosine of the latitude (C{float}, [-1.0..+1.0]) 

1581 to use an alternate formula. 

1582 

1583 @return: The prime-vertical radius of curvature (C{float}). 

1584 

1585 @note: The delta between both formulae with C{Ellipsoids.WGS84} 

1586 is less than 2 nanometer over the entire latitude range. 

1587 

1588 @see: Method L{roc2_} and class L{EcefYou}. 

1589 ''' 

1590 if not self.f: # .isSpherical 

1591 n = self.a 

1592 elif ca is None: 

1593 r = self.e2s2(sa) # see .roc2_ and _EcefBase._forward 

1594 n = sqrt(self.a2 / r) if r > EPS02 else _0_0 

1595 elif ca: # derived from EcefYou.forward 

1596 h = hypot(ca, self.b_a * sa) if sa else fabs(ca) 

1597 n = self.a / h 

1598 elif sa: 

1599 n = self.a2_b / fabs(sa) 

1600 else: 

1601 n = self.a 

1602 return n 

1603 

1604 def roc2(self, lat, scaled=False): 

1605 '''Compute the I{meridional} and I{prime-vertical}, I{normal} 

1606 radii of curvature of (geodetic) latitude. 

1607 

1608 @arg lat: Latitude (C{degrees90}). 

1609 @kwarg scaled: Scale prime_vertical by C{cos(radians(B{lat}))} (C{bool}). 

1610 

1611 @return: An L{Curvature2Tuple}C{(meridional, prime_vertical)} with 

1612 the radii of curvature. 

1613 

1614 @raise ValueError: Invalid B{C{lat}}. 

1615 

1616 @see: Methods L{roc2_} and L{roc1_}, U{Local, flat earth approximation 

1617 <https://www.EdWilliams.org/avform.htm#flat>} and meridional and 

1618 prime vertical U{Radii of Curvature<https://WikiPedia.org/wiki/ 

1619 Earth_radius#Radii_of_curvature>}. 

1620 ''' 

1621 return self.roc2_(Phi_(lat), scaled=scaled) 

1622 

1623 def roc2_(self, phi, scaled=False): 

1624 '''Compute the I{meridional} and I{prime-vertical}, I{normal} radii of 

1625 curvature of (geodetic) latitude. 

1626 

1627 @arg phi: Latitude (C{radians}). 

1628 @kwarg scaled: Scale prime_vertical by C{cos(B{phi})} (C{bool}). 

1629 

1630 @return: An L{Curvature2Tuple}C{(meridional, prime_vertical)} with the 

1631 radii of curvature. 

1632 

1633 @raise ValueError: Invalid B{C{phi}}. 

1634 

1635 @see: Methods L{roc2} and L{roc1_}, property L{rocEquatorial2}, U{Local, 

1636 flat earth approximation<https://www.EdWilliams.org/avform.htm#flat>} 

1637 and the meridional and prime vertical U{Radii of Curvature 

1638 <https://WikiPedia.org/wiki/Earth_radius#Radii_of_curvature>}. 

1639 ''' 

1640 a = fabs(Phi(phi)) 

1641 if self.f: 

1642 r = self.e2s2(sin(a)) 

1643 if r > EPS02: 

1644 n = self.a / sqrt(r) 

1645 m = n * self.e21 / r # PYCHOK attr 

1646 else: 

1647 m = n = _0_0 # PYCHOK attr 

1648 else: 

1649 m = n = self.a 

1650 if scaled and a: 

1651 n *= cos(a) if a < PI_2 else _0_0 

1652 return Curvature2Tuple(Radius(rocMeridional=m), 

1653 Radius(rocPrimeVertical=n)) 

1654 

1655 def rocBearing(self, lat, bearing): 

1656 '''Compute the I{directional} radius of curvature of (geodetic) 

1657 latitude and compass direction. 

1658 

1659 @arg lat: Latitude (C{degrees90}). 

1660 @arg bearing: Direction (compass C{degrees360}). 

1661 

1662 @return: Directional radius of curvature (C{meter}). 

1663 

1664 @raise RangeError: Latitude B{C{lat}} outside valid range and 

1665 L{pygeodesy.rangerrors} set to C{True}. 

1666 

1667 @raise ValueError: Invalid B{C{lat}} or B{C{bearing}}. 

1668 

1669 @see: U{Radii of Curvature<https://WikiPedia.org/wiki/Earth_radius#Radii_of_curvature>} 

1670 ''' 

1671 if self.f: 

1672 s2, c2 = _s2_c2(Bearing_(bearing)) 

1673 m, n = self.roc2_(Phi_(lat)) 

1674 if n < m: # == n / (c2 * n / m + s2) 

1675 c2 *= n / m 

1676 elif m < n: # == m / (c2 + s2 * m / n) 

1677 s2 *= m / n 

1678 n = m 

1679 b = n / (c2 + s2) # == 1 / (c2 / m + s2 / n) 

1680 else: 

1681 b = self.b # == self.a 

1682 return Radius(rocBearing=b) 

1683 

1684 @Property_RO 

1685 def rocEquatorial2(self): 

1686 '''Get the I{meridional} and I{prime-vertical}, I{normal} radii of curvature 

1687 at the equator as L{Curvature2Tuple}C{(meridional, prime_vertical)}. 

1688 

1689 @see: Methods L{rocMeridional} and L{rocPrimeVertical}, properties L{b2_a}, 

1690 L{a2_b}, C{rocPolar} and polar and equatorial U{Radii of Curvature 

1691 <https://WikiPedia.org/wiki/Earth_radius#Radii_of_curvature>}. 

1692 ''' 

1693 return Curvature2Tuple(Radius(rocMeridional0=self.b2_a if self.f else self.a), 

1694 Radius(rocPrimeVertical0=self.a)) 

1695 

1696 def rocGauss(self, lat): 

1697 '''Compute the I{Gaussian} radius of curvature of (geodetic) latitude. 

1698 

1699 @arg lat: Latitude (C{degrees90}). 

1700 

1701 @return: Gaussian radius of curvature (C{meter}). 

1702 

1703 @raise ValueError: Invalid B{C{lat}}. 

1704 

1705 @see: Non-directional U{Radii of Curvature<https://WikiPedia.org/wiki/ 

1706 Earth_radius#Radii_of_curvature>} 

1707 ''' 

1708 # using ... 

1709 # m, n = self.roc2_(Phi_(lat)) 

1710 # return sqrt(m * n) 

1711 # ... requires 1 or 2 sqrt 

1712 g = self.b 

1713 if self.f: 

1714 s2, c2 = _s2_c2(Phi_(lat)) 

1715 g = g / (c2 + self.b2_a2 * s2) 

1716 return Radius(rocGauss=g) 

1717 

1718 def rocMean(self, lat): 

1719 '''Compute the I{mean} radius of curvature of (geodetic) latitude. 

1720 

1721 @arg lat: Latitude (C{degrees90}). 

1722 

1723 @return: Mean radius of curvature (C{meter}). 

1724 

1725 @raise ValueError: Invalid B{C{lat}}. 

1726 

1727 @see: Non-directional U{Radii of Curvature<https://WikiPedia.org/wiki/ 

1728 Earth_radius#Radii_of_curvature>} 

1729 ''' 

1730 if self.f: 

1731 m, n = self.roc2_(Phi_(lat)) 

1732 m *= n * _2_0 / (m + n) # == 2 / (1 / m + 1 / n) 

1733 else: 

1734 m = self.a 

1735 return Radius(rocMean=m) 

1736 

1737 def rocMeridional(self, lat): 

1738 '''Compute the I{meridional} radius of curvature of (geodetic) latitude. 

1739 

1740 @arg lat: Latitude (C{degrees90}). 

1741 

1742 @return: Meridional radius of curvature (C{meter}). 

1743 

1744 @raise ValueError: Invalid B{C{lat}}. 

1745 

1746 @see: Methods L{roc2} and L{roc2_}, U{Local, flat earth approximation 

1747 <https://www.EdWilliams.org/avform.htm#flat>} and U{Radii of 

1748 Curvature<https://WikiPedia.org/wiki/Earth_radius#Radii_of_curvature>}. 

1749 ''' 

1750 return self.roc2_(Phi_(lat)).meridional if lat else \ 

1751 self.rocEquatorial2.meridional 

1752 

1753 rocPolar = a2_b # synonymous 

1754 

1755 def rocPrimeVertical(self, lat): 

1756 '''Compute the I{prime-vertical}, I{normal} radius of curvature of 

1757 (geodetic) latitude, aka the I{transverse} radius of curvature. 

1758 

1759 @arg lat: Latitude (C{degrees90}). 

1760 

1761 @return: Prime-vertical radius of curvature (C{meter}). 

1762 

1763 @raise ValueError: Invalid B{C{lat}}. 

1764 

1765 @see: Methods L{roc2}, L{roc2_} and L{roc1_}, U{Local, flat earth 

1766 approximation<https://www.EdWilliams.org/avform.htm#flat>} and 

1767 U{Radii of Curvature<https://WikiPedia.org/wiki/ 

1768 Earth_radius#Radii_of_curvature>}. 

1769 ''' 

1770 return self.roc2_(Phi_(lat)).prime_vertical if lat else \ 

1771 self.rocEquatorial2.prime_vertical 

1772 

1773 rocTransverse = rocPrimeVertical # synonymous 

1774 

1775 @deprecated_Property_RO 

1776 def Rquadratic(self): # PYCHOK no cover 

1777 '''DEPRECATED, use property C{Rbiaxial} or C{Rtriaxial}.''' 

1778 return self.Rbiaxial 

1779 

1780 @deprecated_Property_RO 

1781 def Rr(self): # PYCHOK no cover 

1782 '''DEPRECATED, use property C{Rrectifying}.''' 

1783 return self.Rrectifying 

1784 

1785 @Property_RO 

1786 def Rrectifying(self): 

1787 '''Get the I{rectifying} earth radius (C{meter}), M{((a**(3/2) + b**(3/2)) / 2)**(2/3)}. 

1788 

1789 @see: U{Earth radius<https://WikiPedia.org/wiki/Earth_radius>}. 

1790 ''' 

1791 r = (cbrt2((_1_0 + sqrt3(self.b_a)) * _0_5) * self.a) if self.f else self.a 

1792 return Radius(Rrectifying=r) 

1793 

1794 @deprecated_Property_RO 

1795 def Rs(self): # PYCHOK no cover 

1796 '''DEPRECATED, use property C{Rgeometric}.''' 

1797 return self.Rgeometric 

1798 

1799 @Property_RO 

1800 def Rtriaxial(self): 

1801 '''Get the I{triaxial, quadratic} mean earth radius (C{meter}), M{sqrt((3 * a**2 + b**2) / 4)}. 

1802 

1803 @see: C{Rbiaxial} 

1804 ''' 

1805 a, b = self.a, self.b 

1806 q = (sqrt((_3_0 + self.b2_a2) * _0_25) * a) if a > b else ( 

1807 (sqrt((_3_0 * self.a2_b2 + _1_0) * _0_25) * b) if a < b else a) 

1808 return Radius(Rtriaxial=q) 

1809 

1810 def toEllipsoid2(self, name=NN): 

1811 '''Get a copy of this ellipsoid as an L{Ellipsoid2}. 

1812 

1813 @kwarg name: Optional, unique name (C{str}). 

1814 

1815 @see: Property C{a_f}. 

1816 ''' 

1817 return Ellipsoid2(self, None, name=name) 

1818 

1819 def toStr(self, prec=8, terse=0, name=NN, **unused): # PYCHOK expected 

1820 '''Return this ellipsoid as a text string. 

1821 

1822 @kwarg prec: Number of decimal digits, unstripped (C{int}). 

1823 @kwarg terse: Limit the number of items (C{int}, 0...18). 

1824 @kwarg name: Override name (C{str}) or C{None} to exclude 

1825 this ellipsoid's name. 

1826 

1827 @return: This C{Ellipsoid}'s attributes (C{str}). 

1828 ''' 

1829 E = Ellipsoid 

1830 t = E.a, E.b, E.f_, E.f, E.f2, E.n, E.e, E.e2, E.e21, E.e22, E.e32, \ 

1831 E.A, E.L, E.R1, E.R2, E.R3, E.Rbiaxial, E.Rtriaxial 

1832 if terse: 

1833 t = t[:terse] 

1834 return self._instr(name, prec, props=t) 

1835 

1836 def toTriaxial(self, name=NN): 

1837 '''Convert this ellipsoid to a L{Triaxial_}. 

1838 

1839 @return: A L{Triaxial_} or L{Triaxial} with the C{X} axis 

1840 pointing east and C{Z} pointing north. 

1841 

1842 @see: Method L{Triaxial_.toEllipsoid}. 

1843 ''' 

1844 T = self._triaxial 

1845 return T.copy(name=name) if name else T 

1846 

1847 @property_RO 

1848 def _triaxial(self): 

1849 '''(INTERNAL) Get this ellipsoid's un-/ordered C{Triaxial/_}. 

1850 ''' 

1851 a, b, m = self.a, self.b, _MODS.triaxials 

1852 T = m.Triaxial if a > b else m.Triaxial_ 

1853 return T(a, a, b, name=self.name) 

1854 

1855 @Property_RO 

1856 def volume(self): 

1857 '''Get the ellipsoid's I{volume} (C{meter**3}), M{4 / 3 * PI * R3**3}. 

1858 

1859 @see: C{R3}. 

1860 ''' 

1861 return Meter3(volume=self.a2 * self.b * PI_3 * _4_0) 

1862 

1863 

1864class Ellipsoid2(Ellipsoid): 

1865 '''An L{Ellipsoid} specified by I{equatorial} radius and I{flattening}. 

1866 ''' 

1867 def __init__(self, a, f, name=NN): 

1868 '''New L{Ellipsoid2}. 

1869 

1870 @arg a: Equatorial radius, semi-axis (C{meter}). 

1871 @arg f: Flattening: (C{float} < 1.0, negative for I{prolate}). 

1872 @kwarg name: Optional, unique name (C{str}). 

1873 

1874 @raise NameError: Ellipsoid with that B{C{name}} already exists. 

1875 

1876 @raise ValueError: Invalid B{C{a}} or B{C{f}}. 

1877 

1878 @note: C{abs(B{f}) < EPS} is forced to C{B{f}=0}, I{spherical}. 

1879 Negative C{B{f}} produces a I{prolate} ellipsoid. 

1880 ''' 

1881 if f is None and isinstance(a, Ellipsoid): 

1882 Ellipsoid.__init__(self, a.a, f =a.f, 

1883 b=a.b, f_=a.f_, name=name) 

1884 else: 

1885 Ellipsoid.__init__(self, a, f=f, name=name) 

1886 

1887 

1888def _spherical_a_b(a, b): 

1889 '''(INTERNAL) C{True} for spherical or invalid C{a} or C{b}. 

1890 ''' 

1891 return a < EPS0 or b < EPS0 or fabs(a - b) < EPS0 

1892 

1893 

1894def _spherical_f(f): 

1895 '''(INTERNAL) C{True} for spherical or invalid C{f}. 

1896 ''' 

1897 return fabs(f) < EPS or f > EPS1 

1898 

1899 

1900def _spherical_f_(f_): 

1901 '''(INTERNAL) C{True} for spherical or invalid C{f_}. 

1902 ''' 

1903 return fabs(f_) < EPS or fabs(f_) > _1_EPS 

1904 

1905 

1906def a_b2e(a, b): 

1907 '''Return C{e}, the I{1st eccentricity} for a given I{equatorial} and I{polar} radius. 

1908 

1909 @arg a: Equatorial radius (C{scalar} > 0). 

1910 @arg b: Polar radius (C{scalar} > 0). 

1911 

1912 @return: The I{unsigned}, (1st) eccentricity (C{float} or C{0}), 

1913 M{sqrt(1 - (b / a)**2)}. 

1914 

1915 @note: The result is always I{non-negative} and C{0} for I{near-spherical} ellipsoids. 

1916 ''' 

1917 return Float(e=sqrt(fabs(a_b2e2(a, b)))) # == sqrt(fabs(a - b) * (a + b)) / a) 

1918 

1919 

1920def a_b2e2(a, b): 

1921 '''Return C{e2}, the I{1st eccentricity squared} for a given I{equatorial} and I{polar} radius. 

1922 

1923 @arg a: Equatorial radius (C{scalar} > 0). 

1924 @arg b: Polar radius (C{scalar} > 0). 

1925 

1926 @return: The I{signed}, (1st) eccentricity I{squared} (C{float} or C{0}), 

1927 M{1 - (b / a)**2}. 

1928 

1929 @note: The result is positive for I{oblate}, negative for I{prolate} 

1930 or C{0} for I{near-spherical} ellipsoids. 

1931 ''' 

1932 return Float(e2=_0_0 if _spherical_a_b(a, b) else ((a - b) * (a + b) / a**2)) 

1933 

1934 

1935def a_b2e22(a, b): 

1936 '''Return C{e22}, the I{2nd eccentricity squared} for a given I{equatorial} and I{polar} radius. 

1937 

1938 @arg a: Equatorial radius (C{scalar} > 0). 

1939 @arg b: Polar radius (C{scalar} > 0). 

1940 

1941 @return: The I{signed}, 2nd eccentricity I{squared} (C{float} or C{0}), 

1942 M{(a / b)**2 - 1}. 

1943 

1944 @note: The result is positive for I{oblate}, negative for I{prolate} 

1945 or C{0} for I{near-spherical} ellipsoids. 

1946 ''' 

1947 return Float(e22=_0_0 if _spherical_a_b(a, b) else ((a - b) * (a + b) / b**2)) 

1948 

1949 

1950def a_b2e32(a, b): 

1951 '''Return C{e32}, the I{3rd eccentricity squared} for a given I{equatorial} and I{polar} radius. 

1952 

1953 @arg a: Equatorial radius (C{scalar} > 0). 

1954 @arg b: Polar radius (C{scalar} > 0). 

1955 

1956 @return: The I{signed}, 3rd eccentricity I{squared} (C{float} or C{0}), 

1957 M{(a**2 - b**2) / (a**2 + b**2)}. 

1958 

1959 @note: The result is positive for I{oblate}, negative for I{prolate} 

1960 or C{0} for I{near-spherical} ellipsoids. 

1961 ''' 

1962 a2, b2 = a**2, b**2 

1963 return Float(e32=_0_0 if _spherical_a_b(a2, b2) else ((a2 - b2) / (a2 + b2))) 

1964 

1965 

1966def a_b2f(a, b): 

1967 '''Return C{f}, the I{flattening} for a given I{equatorial} and I{polar} radius. 

1968 

1969 @arg a: Equatorial radius (C{scalar} > 0). 

1970 @arg b: Polar radius (C{scalar} > 0). 

1971 

1972 @return: The flattening (C{scalar} or C{0}), M{(a - b) / a}. 

1973 

1974 @note: The result is positive for I{oblate}, negative for I{prolate} or C{0} 

1975 for I{near-spherical} ellipsoids. 

1976 ''' 

1977 f = 0 if _spherical_a_b(a, b) else ((a - b) / a) 

1978 return _f_0_0 if _spherical_f(f) else Float(f=f) 

1979 

1980 

1981def a_b2f_(a, b): 

1982 '''Return C{f_}, the I{inverse flattening} for a given I{equatorial} and I{polar} radius. 

1983 

1984 @arg a: Equatorial radius (C{scalar} > 0). 

1985 @arg b: Polar radius (C{scalar} > 0). 

1986 

1987 @return: The inverse flattening (C{scalar} or C{0}), M{a / (a - b)}. 

1988 

1989 @note: The result is positive for I{oblate}, negative for I{prolate} or C{0} 

1990 for I{near-spherical} ellipsoids. 

1991 ''' 

1992 f_ = 0 if _spherical_a_b(a, b) else (a / float(a - b)) 

1993 return _f__0_0 if _spherical_f_(f_) else Float(f_=f_) 

1994 

1995 

1996def a_b2f2(a, b): 

1997 '''Return C{f2}, the I{2nd flattening} for a given I{equatorial} and I{polar} radius. 

1998 

1999 @arg a: Equatorial radius (C{scalar} > 0). 

2000 @arg b: Polar radius (C{scalar} > 0). 

2001 

2002 @return: The I{signed}, 2nd flattening (C{scalar} or C{0}), M{(a - b) / b}. 

2003 

2004 @note: The result is positive for I{oblate}, negative for I{prolate} or C{0} 

2005 for I{near-spherical} ellipsoids. 

2006 ''' 

2007 t = 0 if _spherical_a_b(a, b) else float(a - b) 

2008 return Float(f2=_0_0 if fabs(t) < EPS0 else (t / b)) 

2009 

2010 

2011def a_b2n(a, b): 

2012 '''Return C{n}, the I{3rd flattening} for a given I{equatorial} and I{polar} radius. 

2013 

2014 @arg a: Equatorial radius (C{scalar} > 0). 

2015 @arg b: Polar radius (C{scalar} > 0). 

2016 

2017 @return: The I{signed}, 3rd flattening (C{scalar} or C{0}), M{(a - b) / (a + b)}. 

2018 

2019 @note: The result is positive for I{oblate}, negative for I{prolate} 

2020 or C{0} for I{near-spherical} ellipsoids. 

2021 ''' 

2022 t = 0 if _spherical_a_b(a, b) else float(a - b) 

2023 return Float(n=_0_0 if fabs(t) < EPS0 else (t / (a + b))) 

2024 

2025 

2026def a_f2b(a, f): 

2027 '''Return C{b}, the I{polar} radius for a given I{equatorial} radius and I{flattening}. 

2028 

2029 @arg a: Equatorial radius (C{scalar} > 0). 

2030 @arg f: Flattening (C{scalar} < 1, negative for I{prolate}). 

2031 

2032 @return: The polar radius (C{float}), M{a * (1 - f)}. 

2033 ''' 

2034 b = a if _spherical_f(f) else (a * (_1_0 - f)) 

2035 return Radius_(b=a if _spherical_a_b(a, b) else b) 

2036 

2037 

2038def a_f_2b(a, f_): 

2039 '''Return C{b}, the I{polar} radius for a given I{equatorial} radius and I{inverse flattening}. 

2040 

2041 @arg a: Equatorial radius (C{scalar} > 0). 

2042 @arg f_: Inverse flattening (C{scalar} >>> 1). 

2043 

2044 @return: The polar radius (C{float}), M{a * (f_ - 1) / f_}. 

2045 ''' 

2046 b = a if _spherical_f_(f_) else (a * (f_ - _1_0) / f_) 

2047 return Radius_(b=a if _spherical_a_b(a, b) else b) 

2048 

2049 

2050def b_f2a(b, f): 

2051 '''Return C{a}, the I{equatorial} radius for a given I{polar} radius and I{flattening}. 

2052 

2053 @arg b: Polar radius (C{scalar} > 0). 

2054 @arg f: Flattening (C{scalar} < 1, negative for I{prolate}). 

2055 

2056 @return: The equatorial radius (C{float}), M{b / (1 - f)}. 

2057 ''' 

2058 t = _1_0 - f 

2059 a = b if fabs(t) < EPS0 else (b / t) 

2060 return Radius_(a=b if _spherical_a_b(a, b) else a) 

2061 

2062 

2063def b_f_2a(b, f_): 

2064 '''Return C{a}, the I{equatorial} radius for a given I{polar} radius and I{inverse flattening}. 

2065 

2066 @arg b: Polar radius (C{scalar} > 0). 

2067 @arg f_: Inverse flattening (C{scalar} >>> 1). 

2068 

2069 @return: The equatorial radius (C{float}), M{b * f_ / (f_ - 1)}. 

2070 ''' 

2071 t = f_ - _1_0 

2072 a = b if _spherical_f_(f_) or fabs(t - f_) < EPS0 \ 

2073 or fabs(t) < EPS0 else (b * f_ / t) 

2074 return Radius_(a=b if _spherical_a_b(a, b) else a) 

2075 

2076 

2077def e2f(e): 

2078 '''Return C{f}, the I{flattening} for a given I{1st eccentricity}. 

2079 

2080 @arg e: The (1st) eccentricity (0 <= C{float} < 1) 

2081 

2082 @return: The flattening (C{scalar} or C{0}). 

2083 

2084 @see: Function L{e22f}. 

2085 ''' 

2086 return e22f(e**2) 

2087 

2088 

2089def e22f(e2): 

2090 '''Return C{f}, the I{flattening} for a given I{1st eccentricity squared}. 

2091 

2092 @arg e2: The (1st) eccentricity I{squared}, I{signed} (L{NINF} < C{float} < 1) 

2093 

2094 @return: The flattening (C{float} or C{0}), M{e2 / (sqrt(e2 - 1) + 1)}. 

2095 ''' 

2096 return Float(f=e2 / (sqrt(_1_0 - e2) + _1_0)) if e2 else _f_0_0 

2097 

2098 

2099def f2e2(f): 

2100 '''Return C{e2}, the I{1st eccentricity squared} for a given I{flattening}. 

2101 

2102 @arg f: Flattening (C{scalar} < 1, negative for I{prolate}). 

2103 

2104 @return: The I{signed}, (1st) eccentricity I{squared} (C{float} < 1), 

2105 M{f * (2 - f)}. 

2106 

2107 @note: The result is positive for I{oblate}, negative for I{prolate} 

2108 or C{0} for I{near-spherical} ellipsoids. 

2109 

2110 @see: U{Eccentricity conversions<https://GeographicLib.SourceForge.io/ 

2111 C++/doc/classGeographicLib_1_1Ellipsoid.html>} and U{Flattening 

2112 <https://WikiPedia.org/wiki/Flattening>}. 

2113 ''' 

2114 return Float(e2=_0_0 if _spherical_f(f) else (f * (_2_0 - f))) 

2115 

2116 

2117def f2e22(f): 

2118 '''Return C{e22}, the I{2nd eccentricity squared} for a given I{flattening}. 

2119 

2120 @arg f: Flattening (C{scalar} < 1, negative for I{prolate}). 

2121 

2122 @return: The I{signed}, 2nd eccentricity I{squared} (C{float} > -1 or 

2123 C{INF}), M{f * (2 - f) / (1 - f)**2}. 

2124 

2125 @note: The result is positive for I{oblate}, negative for I{prolate} 

2126 or C{0} for near-spherical ellipsoids. 

2127 

2128 @see: U{Eccentricity conversions<https://GeographicLib.SourceForge.io/ 

2129 C++/doc/classGeographicLib_1_1Ellipsoid.html>}. 

2130 ''' 

2131 # e2 / (1 - e2) == f * (2 - f) / (1 - f)**2 

2132 t = (_1_0 - f)**2 

2133 return Float(e22=INF if t < EPS0 else (f2e2(f) / t)) # PYCHOK type 

2134 

2135 

2136def f2e32(f): 

2137 '''Return C{e32}, the I{3rd eccentricity squared} for a given I{flattening}. 

2138 

2139 @arg f: Flattening (C{scalar} < 1, negative for I{prolate}). 

2140 

2141 @return: The I{signed}, 3rd eccentricity I{squared} (C{float}), 

2142 M{f * (2 - f) / (1 + (1 - f)**2)}. 

2143 

2144 @note: The result is positive for I{oblate}, negative for I{prolate} 

2145 or C{0} for I{near-spherical} ellipsoids. 

2146 

2147 @see: U{Eccentricity conversions<https://GeographicLib.SourceForge.io/ 

2148 C++/doc/classGeographicLib_1_1Ellipsoid.html>}. 

2149 ''' 

2150 # e2 / (2 - e2) == f * (2 - f) / (1 + (1 - f)**2) 

2151 e2 = f2e2(f) 

2152 return Float(e32=e2 / (_2_0 - e2)) 

2153 

2154 

2155def f_2f(f_): 

2156 '''Return C{f}, the I{flattening} for a given I{inverse flattening}. 

2157 

2158 @arg f_: Inverse flattening (C{scalar} >>> 1). 

2159 

2160 @return: The flattening (C{scalar} or C{0}), M{1 / f_}. 

2161 

2162 @note: The result is positive for I{oblate}, negative for I{prolate} 

2163 or C{0} for I{near-spherical} ellipsoids. 

2164 ''' 

2165 f = 0 if _spherical_f_(f_) else _1_0 / f_ 

2166 return _f_0_0 if _spherical_f(f) else Float(f=f) # PYCHOK type 

2167 

2168 

2169def f2f_(f): 

2170 '''Return C{f_}, the I{inverse flattening} for a given I{flattening}. 

2171 

2172 @arg f: Flattening (C{scalar} < 1, negative for I{prolate}). 

2173 

2174 @return: The inverse flattening (C{scalar} or C{0}), M{1 / f}. 

2175 

2176 @note: The result is positive for I{oblate}, negative for I{prolate} 

2177 or C{0} for I{near-spherical} ellipsoids. 

2178 ''' 

2179 f_ = 0 if _spherical_f(f) else _1_0 / f 

2180 return _f__0_0 if _spherical_f_(f_) else Float(f_=f_) # PYCHOK type 

2181 

2182 

2183def f2f2(f): 

2184 '''Return C{f2}, the I{2nd flattening} for a given I{flattening}. 

2185 

2186 @arg f: Flattening (C{scalar} < 1, negative for I{prolate}). 

2187 

2188 @return: The I{signed}, 2nd flattening (C{scalar} or C{INF}), M{f / (1 - f)}. 

2189 

2190 @note: The result is positive for I{oblate}, negative for I{prolate} 

2191 or C{0} for I{near-spherical} ellipsoids. 

2192 

2193 @see: U{Eccentricity conversions<https://GeographicLib.SourceForge.io/ 

2194 C++/doc/classGeographicLib_1_1Ellipsoid.html>} and U{Flattening 

2195 <https://WikiPedia.org/wiki/Flattening>}. 

2196 ''' 

2197 t = _1_0 - f 

2198 return Float(f2=_0_0 if _spherical_f(f) else (INF if fabs(t) < EPS 

2199 else (f / t))) # PYCHOK type 

2200 

2201 

2202def f2n(f): 

2203 '''Return C{n}, the I{3rd flattening} for a given I{flattening}. 

2204 

2205 @arg f: Flattening (C{scalar} < 1, negative for I{prolate}). 

2206 

2207 @return: The I{signed}, 3rd flattening (-1 <= C{float} < 1), 

2208 M{f / (2 - f)}. 

2209 

2210 @note: The result is positive for I{oblate}, negative for I{prolate} 

2211 or C{0} for I{near-spherical} ellipsoids. 

2212 

2213 @see: U{Eccentricity conversions<https://GeographicLib.SourceForge.io/ 

2214 C++/doc/classGeographicLib_1_1Ellipsoid.html>} and U{Flattening 

2215 <https://WikiPedia.org/wiki/Flattening>}. 

2216 ''' 

2217 return Float(n=_0_0 if _spherical_f(f) else (f / float(_2_0 - f))) 

2218 

2219 

2220def n2e2(n): 

2221 '''Return C{e2}, the I{1st eccentricity squared} for a given I{3rd flattening}. 

2222 

2223 @arg n: The 3rd flattening (-1 <= C{scalar} < 1). 

2224 

2225 @return: The I{signed}, (1st) eccentricity I{squared} (C{float} or NINF), 

2226 M{4 * n / (1 + n)**2}. 

2227 

2228 @note: The result is positive for I{oblate}, negative for I{prolate} 

2229 or C{0} for I{near-spherical} ellipsoids. 

2230 

2231 @see: U{Flattening<https://WikiPedia.org/wiki/Flattening>}. 

2232 ''' 

2233 t = (n + _1_0)**2 

2234 return Float(e2=_0_0 if fabs(n) < EPS0 else 

2235 (NINF if t < EPS0 else (_4_0 * n / t))) 

2236 

2237 

2238def n2f(n): 

2239 '''Return C{f}, the I{flattening} for a given I{3rd flattening}. 

2240 

2241 @arg n: The 3rd flattening (-1 <= C{scalar} < 1). 

2242 

2243 @return: The flattening (C{scalar} or NINF), M{2 * n / (1 + n)}. 

2244 

2245 @see: U{Eccentricity conversions<https://GeographicLib.SourceForge.io/ 

2246 C++/doc/classGeographicLib_1_1Ellipsoid.html>} and U{Flattening 

2247 <https://WikiPedia.org/wiki/Flattening>}. 

2248 ''' 

2249 t = n + _1_0 

2250 f = 0 if fabs(n) < EPS0 else (NINF if t < EPS0 else (_2_0 * n / t)) 

2251 return _f_0_0 if _spherical_f(f) else Float(f=f) 

2252 

2253 

2254def n2f_(n): 

2255 '''Return C{f_}, the I{inverse flattening} for a given I{3rd flattening}. 

2256 

2257 @arg n: The 3rd flattening (-1 <= C{scalar} < 1). 

2258 

2259 @return: The inverse flattening (C{scalar} or C{0}), M{1 / f}. 

2260 

2261 @see: L{n2f} and L{f2f_}. 

2262 ''' 

2263 return f2f_(n2f(n)) 

2264 

2265 

2266def _normalTo3(px, py, E, eps=EPS): # in .height4 above 

2267 '''(INTERNAL) Nearest point on a 2-D ellipse in 1st quadrant. 

2268 

2269 @see: Functions C{pygeodesy.triaxial._normalTo4} and C{-To5}. 

2270 ''' 

2271 a, b, e0 = E.a, E.b, EPS0 

2272 if min(px, py, a, b) < e0: 

2273 raise _AssertionError(px=px, py=py, a=a, b=b, E=E) 

2274 

2275 a2 = a - b * E.b_a 

2276 b2 = b - a * E.a_b 

2277 tx = ty = _SQRT2_2 

2278 _a, _h = fabs, hypot 

2279 for i in range(16): # max 5 

2280 ex = a2 * tx**3 

2281 ey = b2 * ty**3 

2282 

2283 qx = px - ex 

2284 qy = py - ey 

2285 q = _h(qx, qy) 

2286 if q < e0: # PYCHOK no cover 

2287 break 

2288 r = _h(ex - tx * a, 

2289 ey - ty * b) / q 

2290 

2291 sx, tx = tx, min(_1_0, max(0, (ex + qx * r) / a)) 

2292 sy, ty = ty, min(_1_0, max(0, (ey + qy * r) / b)) 

2293 t = _h(ty, tx) 

2294 if t < e0: # PYCHOK no cover 

2295 break 

2296 tx = tx / t # /= chokes PyChecker 

2297 ty = ty / t 

2298 if _a(sx - tx) < eps and \ 

2299 _a(sy - ty) < eps: 

2300 break 

2301 

2302 tx *= a / px 

2303 ty *= b / py 

2304 return tx, ty, i # x and y as fractions 

2305 

2306 

2307class Ellipsoids(_NamedEnum): 

2308 '''(INTERNAL) L{Ellipsoid} registry, I{must} be a sub-class 

2309 to accommodate the L{_LazyNamedEnumItem} properties. 

2310 ''' 

2311 def _Lazy(self, a, b, f_, **kwds): 

2312 '''(INTERNAL) Instantiate the L{Ellipsoid}. 

2313 ''' 

2314 return Ellipsoid(a, b=b, f_=f_, **kwds) 

2315 

2316Ellipsoids = Ellipsoids(Ellipsoid) # PYCHOK singleton 

2317'''Some pre-defined L{Ellipsoid}s, all I{lazily} instantiated.''' 

2318# <https://www.GNU.org/software/gama/manual/html_node/Supported-ellipsoids.html> 

2319# <https://GSSC.ESA.int/navipedia/index.php/Reference_Frames_in_GNSS> 

2320# <https://kb.OSU.edu/dspace/handle/1811/77986> 

2321# <https://www.IBM.com/docs/en/db2/11.5?topic=systems-supported-spheroids> 

2322# <https://w3.Energistics.org/archive/Epicentre/Epicentre_v3.0/DataModel/LogicalDictionary/StandardValues/ellipsoid.html> 

2323# <https://GitHub.com/locationtech/proj4j/blob/master/src/main/java/org/locationtech/proj4j/datum/Ellipsoid.java> 

2324Ellipsoids._assert( # <https://WikiPedia.org/wiki/Earth_ellipsoid> 

2325 Airy1830 = _lazy(_Airy1830_, *_T(6377563.396, _0_0, 299.3249646)), # b=6356256.909 

2326 AiryModified = _lazy(_AiryModified_, *_T(6377340.189, _0_0, 299.3249646)), # b=6356034.448 

2327# APL4_9 = _lazy('APL4_9', *_T(6378137.0, _0_0, 298.24985392)), # Appl. Phys. Lab. 1965 

2328# ANS = _lazy('ANS', *_T(6378160.0, _0_0, 298.25)), # Australian Nat. Spheroid 

2329# AN_SA96 = _lazy('AN_SA96', *_T(6378160.0, _0_0, 298.24985392)), # Australian Nat. South America 

2330 Australia1966 = _lazy('Australia1966', *_T(6378160.0, _0_0, 298.25)), # b=6356774.7192 

2331 ATS1977 = _lazy('ATS1977', *_T(6378135.0, _0_0, 298.257)), # "Average Terrestrial System" 

2332 Bessel1841 = _lazy(_Bessel1841_, *_T(6377397.155, 6356078.962818, 299.152812797)), 

2333 BesselModified = _lazy('BesselModified', *_T(6377492.018, _0_0, 299.1528128)), 

2334# BesselNamibia = _lazy('BesselNamibia', *_T(6377483.865, _0_0, 299.1528128)), 

2335 CGCS2000 = _lazy('CGCS2000', *_T(R_MA, _0_0, 298.257222101)), # BeiDou Coord System (BDC) 

2336# Clarke1858 = _lazy('Clarke1858', *_T(6378293.639, _0_0, 294.260676369)), 

2337 Clarke1866 = _lazy(_Clarke1866_, *_T(6378206.4, 6356583.8, 294.978698214)), 

2338 Clarke1880 = _lazy('Clarke1880', *_T(6378249.145, 6356514.86954978, 293.465)), 

2339 Clarke1880IGN = _lazy(_Clarke1880IGN_, *_T(6378249.2, 6356515.0, 293.466021294)), 

2340 Clarke1880Mod = _lazy('Clarke1880Mod', *_T(6378249.145, 6356514.96639549, 293.466307656)), # aka Clarke1880Arc 

2341 CPM1799 = _lazy('CPM1799', *_T(6375738.7, 6356671.92557493, 334.39)), # Comm. des Poids et Mesures 

2342 Delambre1810 = _lazy('Delambre1810', *_T(6376428.0, 6355957.92616372, 311.5)), # Belgium 

2343 Engelis1985 = _lazy('Engelis1985', *_T(6378136.05, 6356751.32272154, 298.2566)), 

2344# Everest1830 = _lazy('Everest1830', *_T(6377276.345, _0_0, 300.801699997)), 

2345# Everest1948 = _lazy('Everest1948', *_T(6377304.063, _0_0, 300.801699997)), 

2346# Everest1956 = _lazy('Everest1956', *_T(6377301.243, _0_0, 300.801699997)), 

2347 Everest1969 = _lazy('Everest1969', *_T(6377295.664, 6356094.667915, 300.801699997)), 

2348 Everest1975 = _lazy('Everest1975', *_T(6377299.151, 6356098.14512013, 300.8017255)), 

2349 Fisher1968 = _lazy('Fisher1968', *_T(6378150.0, 6356768.33724438, 298.3)), 

2350# Fisher1968Mod = _lazy('Fisher1968Mod', *_T(6378155.0, _0_0, 298.3)), 

2351 GEM10C = _lazy('GEM10C', *_T(R_MA, 6356752.31424783, 298.2572236)), 

2352 GPES = _lazy('GPES', *_T(6378135.0, 6356750.0, _0_0)), # "Gen. Purpose Earth Spheroid" 

2353 GRS67 = _lazy('GRS67', *_T(6378160.0, _0_0, 298.247167427)), # Lucerne b=6356774.516 

2354# GRS67Truncated = _lazy('GRS67Truncated', *_T(6378160.0, _0_0, 298.25)), 

2355 GRS80 = _lazy(_GRS80_, *_T(R_MA, 6356752.314140347, 298.25722210088)), # IUGG, ITRS, ETRS89 

2356# Hayford1924 = _lazy('Hayford1924', *_T(6378388.0, 6356911.94612795, None)), # aka Intl1924 f_=297 

2357 Helmert1906 = _lazy('Helmert1906', *_T(6378200.0, 6356818.16962789, 298.3)), 

2358# Hough1960 = _lazy('Hough1960', *_T(6378270.0, _0_0, 297.0)), 

2359 IAU76 = _lazy('IAU76', *_T(6378140.0, _0_0, 298.257)), # Int'l Astronomical Union 

2360 IERS1989 = _lazy('IERS1989', *_T(6378136.0, _0_0, 298.257)), # b=6356751.302 

2361 IERS1992TOPEX = _lazy('IERS1992TOPEX', *_T(6378136.3, 6356751.61659215, 298.257223563)), # IERS/TOPEX/Poseidon/McCarthy 

2362 IERS2003 = _lazy('IERS2003', *_T(6378136.6, 6356751.85797165, 298.25642)), 

2363 Intl1924 = _lazy(_Intl1924_, *_T(6378388.0, _0_0, 297.0)), # aka Hayford b=6356911.9462795 

2364 Intl1967 = _lazy('Intl1967', *_T(6378157.5, 6356772.2, 298.24961539)), # New Int'l 

2365 Krassovski1940 = _lazy(_Krassovski1940_, *_T(6378245.0, 6356863.01877305, 298.3)), # spelling 

2366 Krassowsky1940 = _lazy(_Krassowsky1940_, *_T(6378245.0, 6356863.01877305, 298.3)), # spelling 

2367# Kaula = _lazy('Kaula', *_T(6378163.0, _0_0, 298.24)), # Kaula 1961 

2368# Lerch = _lazy('Lerch', *_T(6378139.0, _0_0, 298.257)), # Lerch 1979 

2369 Maupertuis1738 = _lazy('Maupertuis1738', *_T(6397300.0, 6363806.28272251, 191.0)), # France 

2370 Mercury1960 = _lazy('Mercury1960', *_T(6378166.0, 6356784.28360711, 298.3)), 

2371 Mercury1968Mod = _lazy('Mercury1968Mod', *_T(6378150.0, 6356768.33724438, 298.3)), 

2372# MERIT = _lazy('MERIT', *_T(6378137.0, _0_0, 298.257)), # MERIT 1983 

2373# NWL10D = _lazy('NWL10D', *_T(6378135.0, _0_0, 298.26)), # Naval Weapons Lab. 

2374 NWL1965 = _lazy('NWL1965', *_T(6378145.0, 6356759.76948868, 298.25)), # Naval Weapons Lab. 

2375# NWL9D = _lazy('NWL9D', *_T(6378145.0, 6356759.76948868, 298.25)), # NWL1965 

2376 OSU86F = _lazy('OSU86F', *_T(6378136.2, 6356751.51693008, 298.2572236)), 

2377 OSU91A = _lazy('OSU91A', *_T(6378136.3, 6356751.6165948, 298.2572236)), 

2378# Plessis1817 = _lazy('Plessis1817', *_T(6397523.0, 6355863.0, 153.56512242)), # XXX incorrect? 

2379 Plessis1817 = _lazy('Plessis1817', *_T(6376523.0, 6355862.93325557, 308.64)), # XXX IGN France 1972 

2380# Prolate = _lazy('Prolate', *_T(6356752.3, R_MA, _0_0)), 

2381 PZ90 = _lazy('PZ90', *_T(6378136.0, _0_0, 298.257839303)), # GLOSNASS PZ-90 and PZ-90.11 

2382# SEAsia = _lazy('SEAsia', *_T(6378155.0, _0_0, 298.3)), # SouthEast Asia 

2383 SGS85 = _lazy('SGS85', *_T(6378136.0, 6356751.30156878, 298.257)), # Soviet Geodetic System 

2384 SoAmerican1969 = _lazy('SoAmerican1969', *_T(6378160.0, 6356774.71919531, 298.25)), # South American 

2385 Sphere = _lazy(_Sphere_, *_T(R_M, R_M, _0_0)), # pseudo 

2386 SphereAuthalic = _lazy('SphereAuthalic', *_T(R_FM, R_FM, _0_0)), # pseudo 

2387 SpherePopular = _lazy('SpherePopular', *_T(R_MA, R_MA, _0_0)), # EPSG:3857 Spheroid 

2388 Struve1860 = _lazy('Struve1860', *_T(6378298.3, 6356657.14266956, 294.73)), 

2389# Walbeck = _lazy('Walbeck', *_T(6376896.0, _0_0, 302.78)), 

2390# WarOffice = _lazy('WarOffice', *_T(6378300.0, _0_0, 296.0)), 

2391 WGS60 = _lazy('WGS60', *_T(6378165.0, 6356783.28695944, 298.3)), 

2392 WGS66 = _lazy('WGS66', *_T(6378145.0, 6356759.76948868, 298.25)), 

2393 WGS72 = _lazy(_WGS72_, *_T(6378135.0, _0_0, 298.26)), # b=6356750.52 

2394 WGS84 = _lazy(_WGS84_, *_T(R_MA, _0_0, _f__WGS84)), # GPS b=6356752.3142451793 

2395# U{NOAA/NOS/NGS/inverse<https://GitHub.com/noaa-ngs/inverse/blob/main/invers3d.f>} 

2396 WGS84_NGS = _lazy('WGS84_NGS', *_T(R_MA, _0_0, 298.257222100882711243162836600094)) 

2397) 

2398 

2399_EWGS84 = Ellipsoids.WGS84 # (INTERNAL) shared 

2400 

2401if __name__ == '__main__': 

2402 

2403 from pygeodesy.interns import _COMMA_, _NL_, _NLATvar_ 

2404 from pygeodesy import nameof, printf 

2405 

2406 for E in (_EWGS84, Ellipsoids.GRS80, # NAD83, 

2407 Ellipsoids.Sphere, Ellipsoids.SpherePopular, 

2408 Ellipsoid(_EWGS84.b, _EWGS84.a, name='_Prolate')): 

2409 e = f2n(E.f) - E.n 

2410 printf('# %s: %s', _DOT_('Ellipsoids', E.name), E.toStr(prec=10), nl=1) 

2411 printf('# e=%s, f_=%s, f=%s, n=%s (%s)', fstr(E.e, prec=13, fmt=Fmt.e), 

2412 fstr(E.f_, prec=13, fmt=Fmt.e), 

2413 fstr(E.f, prec=13, fmt=Fmt.e), 

2414 fstr(E.n, prec=13, fmt=Fmt.e), 

2415 fstr(e, prec=9, fmt=Fmt.e)) 

2416 printf('# %s %s', Ellipsoid.AlphaKs.name, fstr(E.AlphaKs, prec=20)) 

2417 printf('# %s %s', Ellipsoid.BetaKs.name, fstr(E.BetaKs, prec=20)) 

2418 printf('# %s %s', nameof(Ellipsoid.KsOrder), E.KsOrder) # property 

2419 

2420 # __doc__ of this file, force all into registry 

2421 t = [NN] + Ellipsoids.toRepr(all=True, asorted=True).split(_NL_) 

2422 printf(_NLATvar_.join(i.strip(_COMMA_) for i in t)) 

2423 

2424# % python3 -m pygeodesy.ellipsoids 

2425 

2426# Ellipsoids.WGS84: name='WGS84', a=6378137, b=6356752.3142451793, f_=298.257223563, f=0.0033528107, f2=0.0033640898, n=0.0016792204, e=0.0818191908, e2=0.00669438, e21=0.99330562, e22=0.0067394967, e32=0.0033584313, A=6367449.1458234144, L=10001965.7293127235, R1=6371008.7714150595, R2=6371007.1809184738, R3=6371000.7900091587, Rbiaxial=6367453.6345163295, Rtriaxial=6372797.5559594007 

2427# e=8.1819190842622e-02, f_=2.98257223563e+02, f=3.3528106647475e-03, n=1.6792203863837e-03 (0.0e+00) 

2428# AlphaKs 0.00083773182062446994, 0.00000076085277735725, 0.00000000119764550324, 0.00000000000242917068, 0.00000000000000571182, 0.0000000000000000148, 0.00000000000000000004, 0.0 

2429# BetaKs 0.00083773216405794875, 0.0000000590587015222, 0.00000000016734826653, 0.00000000000021647981, 0.00000000000000037879, 0.00000000000000000072, 0.0, 0.0 

2430# KsOrder 8 

2431 

2432# Ellipsoids.GRS80: name='GRS80', a=6378137, b=6356752.3141403468, f_=298.2572221009, f=0.0033528107, f2=0.0033640898, n=0.0016792204, e=0.081819191, e2=0.00669438, e21=0.99330562, e22=0.0067394968, e32=0.0033584313, A=6367449.1457710434, L=10001965.7292304561, R1=6371008.7713801153, R2=6371007.1808835147, R3=6371000.7899741363, Rbiaxial=6367453.6344640013, Rtriaxial=6372797.5559332585 

2433# e=8.1819191042833e-02, f_=2.9825722210088e+02, f=3.3528106811837e-03, n=1.6792203946295e-03 (0.0e+00) 

2434# AlphaKs 0.00083773182472890429, 0.00000076085278481561, 0.00000000119764552086, 0.00000000000242917073, 0.00000000000000571182, 0.0000000000000000148, 0.00000000000000000004, 0.0 

2435# BetaKs 0.0008377321681623882, 0.00000005905870210374, 0.000000000167348269, 0.00000000000021647982, 0.00000000000000037879, 0.00000000000000000072, 0.0, 0.0 

2436# KsOrder 8 

2437 

2438# Ellipsoids.Sphere: name='Sphere', a=6371008.7714149999, b=6371008.7714149999, f_=0, f=0, f2=0, n=0, e=0, e2=0, e21=1, e22=0, e32=0, A=6371008.7714149999, L=10007557.1761167478, R1=6371008.7714149999, R2=6371008.7714149999, R3=6371008.7714149999, Rbiaxial=6371008.7714149999, Rtriaxial=6371008.7714149999 

2439# e=0.0e+00, f_=0.0e+00, f=0.0e+00, n=0.0e+00 (0.0e+00) 

2440# AlphaKs 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 

2441# BetaKs 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 

2442# KsOrder 8 

2443 

2444# Ellipsoids.SpherePopular: name='SpherePopular', a=6378137, b=6378137, f_=0, f=0, f2=0, n=0, e=0, e2=0, e21=1, e22=0, e32=0, A=6378137, L=10018754.171394622, R1=6378137, R2=6378137, R3=6378137, Rbiaxial=6378137, Rtriaxial=6378137 

2445# e=0.0e+00, f_=0.0e+00, f=0.0e+00, n=0.0e+00 (0.0e+00) 

2446# AlphaKs 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 

2447# BetaKs 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 

2448# KsOrder 8 

2449 

2450# Ellipsoids._Prolate: name='_Prolate', a=6356752.3142451793, b=6378137, f_=-297.257223563, f=-0.0033640898, f2=-0.0033528107, n=-0.0016792204, e=0.0820944379, e2=-0.0067394967, e21=1.0067394967, e22=-0.00669438, e32=-0.0033584313, A=6367449.1458234144, L=10035500.5204500314, R1=6363880.5428301189, R2=6363878.9413582645, R3=6363872.5644020075, Rbiaxial=6367453.6345163295, Rtriaxial=6362105.2243882557 

2451# e=8.2094437949696e-02, f_=-2.97257223563e+02, f=-3.3640898209765e-03, n=-1.6792203863837e-03 (0.0e+00) 

2452# AlphaKs -0.00084149152514366627, 0.00000076653480614871, -0.00000000120934503389, 0.0000000000024576225, -0.00000000000000578863, 0.00000000000000001502, -0.00000000000000000004, 0.0 

2453# BetaKs -0.00084149187224351817, 0.00000005842735196773, -0.0000000001680487236, 0.00000000000021706261, -0.00000000000000038002, 0.00000000000000000073, -0.0, 0.0 

2454# KsOrder 8 

2455 

2456# **) MIT License 

2457# 

2458# Copyright (C) 2016-2024 -- mrJean1 at Gmail -- All Rights Reserved. 

2459# 

2460# Permission is hereby granted, free of charge, to any person obtaining a 

2461# copy of this software and associated documentation files (the "Software"), 

2462# to deal in the Software without restriction, including without limitation 

2463# the rights to use, copy, modify, merge, publish, distribute, sublicense, 

2464# and/or sell copies of the Software, and to permit persons to whom the 

2465# Software is furnished to do so, subject to the following conditions: 

2466# 

2467# The above copyright notice and this permission notice shall be included 

2468# in all copies or substantial portions of the Software. 

2469# 

2470# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 

2471# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

2472# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 

2473# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

2474# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

2475# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

2476# OTHER DEALINGS IN THE SOFTWARE.