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Abstract

Dual Student is a neural network learning algorithm that has recently been a break-
through for semi-supervised image classification. Two networks are trained on both
labeled and unlabeled data, and along with the training, the networks share only
reliable knowledge to improve each other. This paper employs the experimental
method to investigate the effectiveness of Dual Student training for sequential
data, such as speech, adapting it for automatic speech recognition. Extensive
experiments conducted on the TIMIT dataset show the benefits of this approach
to leverage amounts of unlabeled data for frame-based phone classification. Dual
Student significantly boosts the performance for training a network using only a
small set of labeled utterances. Finally, an improvement is proposed by alternating
learning from labeled data and knowledge exchange. The results show that the
novel scheduled learning compared to the standard Dual Student allows achieving
better accuracy.

1 Introduction

In recent years, several improvements have been made in Automatic Speech Recognition (ASR). The
introduction of deep learning techniques has given a new light to the field, enhancing supervised tasks
and revealing the power of semi-supervised models. In the context of phoneme-based classification,
both supervised and Semi-Supervised Learning (SSL) can be used. According to nowadays demand
and real-world scenarios, data is most commonly unlabeled, and only in rare cases a supervised
approach can be beneficial. Hence, to exploit data in the best possible way, SSL models are required.

In the context of frame-based phone classification, a SSL solution comes with the work of Salvi
et al. [1]], which proposed a model based on sparse autoencoders with feed-forward networks and
mini-batch stochastic gradient descent, leveraging both labeled and unlabeled data. Other research in
the field was conducted with graph-based approaches [2[], achieving, to the best of our knowledge, the
current state-of-the-art frame-based phone recognition accuracy with the Prior-Regularised Measure
Propagation (pMP) algorithm. However, the limitation of this method is its high computational cost.

Another interesting SSL approach employed for image classification is from Ke et al. [3]], which
aimed to improve consistency-based methods, such as VAT [4], 1I [5]] models, and Mean Teacher
[6]. Consistency-based methods have achieved state-of-the-art results in SSL. According to the
smoothness assumption, these methods involve two roles, a teacher and a student, and penalize
different predictions under small perturbations. However, since the teacher is an exponential moving
average (EMA) of the student, the two models are tightly correlated, resulting in a performance
bottleneck over long training. Dual Student (DS) overcomes this problem by decoupling the two
roles, replacing the teacher with another student.

DS’s main idea is to share knowledge between two neural networks during the training. Sharing
knowledge is not a novel concept, and previous work has already been done in this area, mainly
for knowledge distillation. Caruana et al. [[/] have shown a way to efficiently compress knowledge
from a larger model to a smaller one, faster for inference. Hinton et al. [8|] further developed this



approach using a different compression technique. The effectiveness of knowledge distillation using
teacher-student training for building accurate and compact neural networks was also investigated by
Fukuda et al. [9]. Nowadays, the teacher-student paradigm has become even more popular for ASR
[1OL[{11} 12} [13]]. Sparta et al. [14] applied it using vast amounts of unlabeled data (1 Million hours
of speech) and distributed training, reaching impressive results. They trained a very large and slow
teacher, unusable in real-life applications due to its size, which was then used to generate labels for
the student, a smaller and more efficient model. Lin et al. [|15]] further improved this approach by
training the student with probabilistic labels created by the teacher. Unlike these methods, DS has
two networks with the same size, the same capability, and both sharing knowledge.

2 Methods

2.1 Dual Student training

During DS training, two networks improve each other by sharing only reliable knowledge, thanks to
the stable sample concept, a sample that should satisfy two conditions. First, a small perturbation
should not affect the prediction of the sample. Second, the prediction of the sample has to be far from
the decision boundary, meaning that the sample has a high probability for the predicted label; hence
the model is sure about its prediction. It is noteworthy to specify that the notion of stable sample
applies to the models and not to DS itself. Therefore, a sample can be stable for one student but may
not be for the other. In this regard, the first student shares its knowledge about its stable samples to
improve the other student. The two aforementioned conditions are encoded in Eq. [I} Given a sample
x, a noisy augmentation z, and # the weights of student 7, then the sample z is stable for student i
according to:

Ry = {Pi =P & (Mg > hll{M; > ) (D

where P! and PL are the predicted labels of x and Z, respectively, by student i. M% = || f(6%,7)|
is the probability of the predicted label, {condition}; is a boolean function which returns 1 when
the condition is true and O otherwise. The hyper-parameter £ is a confidence threshold in the range
[0, 1) which defines the minimum probability of the predicted label for the sample to be considered
stable. A lower threshold £ implies a softer condition for a stable sample.

Whenever a sample is stable for both students, then the Euclidean distance is used to measure the
prediction consistency. The stability of sample x for student ¢ is defined by:

The smaller £¢ is, the more stable sample x is for student i. If £ < £J, then student i will share its
knowledge about sample x; otherwise, student ¢ learns from student j about sample x. The distance
between the predictions of the two students can be measured using the mean squared error (MSE) as:

Emse(z) = ||f(6747x) - f(gj,.I)H2 (3)

The stabilization loss for student ¢ on sample x is then given by:
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Therefore, if x is not stable for student ¢, then = contributes to the stabilization loss for student ¢ only
if z is stable for student j. On the other hand, if z is stable for student ¢, then sample x contributes to
the stabilization loss for student ¢ only if x is even more stable for student j. The stabilization loss
definition ensures that only reliable knowledge is shared between the students and the amount of
shared knowledge is controlled by the threshold &.

Besides the stabilization loss, another important role is played by the consistency loss, commonly
used in consistency-based methods and defined by:

£ion(x) = R(f(HTa x)v f(977j>) &)

where R(-,-) is a distance measure that can be either MSE or KL divergence. The stabilization
constraint drives the students to generalize better given small perturbations on sample x.



Finally, the overall training loss for student ¢ can be summarized as follows:
L= L+ ML, + ALy, (6)

con

where L¢, is the standard classification loss while A\, and A\, are hyper-parameters to balance the

weight of each term. The blueprint of DS training is listed in Algorithm 1]

Algorithm 1: Training of Dual Student for Semi-Supervised Learning [J3]

Require : Batch B containing labeled and unlabeled samples
Require : Two independent models f(0%) and f(67)
for each batch B do
get B1,B85 from B by data augmentation;
for model in { f(6%), f(67) } do
Calculate L5 on labeled samples;
Calculate L., by Eq. between B4 and By;
end
or each unlabeled sample x do
for model in { f(6%), f(¢7) } do
| Determine whether z is stable by Eq.
end
if both f(0°) and f(07) are stable for x then
| Calculate the stability of x by Eq.
end
Calculate L, for f(6°) and f(67) by Eq. [4}

Yty

end
Update f(6") and f(67) by the loss in Eq. [f]

end

2.2 Data augmentation

One of DS’s key features is to augment each batch B during the training to get 31 and Bs. The students,
then, aim to predict the same label y on both the augmented data. Usually, data augmentation for
ASR is directly applied to the waveform [16}17]. Recently, Park et al. [[18]] proposed SpecAugment, a
data augmentation method instead applied to the filter bank coefficients. We decided to simply apply
Gaussian noise over the 39 features, with zero-mean and standard deviation o, appropriately tuned
in the experiments. We are aware that this augmentation method may slightly break the temporal
relation encoded in delta and delta-delta. However, data augmentation was out of this project’s scope,
and other augmentation methods can be explored as future work.

2.3 Scheduled learning

We improved DS training by introducing a novel idea: scheduled learning. Namely, learning mostly
from the classification of labeled samples is interleaved with learning from knowledge exchange
exploiting unlabeled samples. The reason that drives this variation is that once a student has learned
from the other student, it may be better to exploit this newly acquired knowledge focusing more on
the labeled samples. Lately, the model can exchange further (and better) knowledge with the other
student, and so on. The modification was implemented by updating the values of A; and A, at each
epoch according to a cyclical schedule with period 1., while in [3] they follow a ramp-up only in
the first 5 epochs and then they remain constant.

We proposed two new schedules: triangular cycling and sinusoidal cycling, both shown in Figure T]
and compared to the original ramp-up. The values on the y axis, in the range [0, 1], must be multiplied
by two scale factors, A\T*** and A5**“, to get the correct A\; and Ay respectively along with the training.
When \; and \; reach their minimum values, the students are optimized by minimizing mainly the
classification loss. On the other hand, when A; and A5 reach their peak, knowledge exchange comes
into play. In the first period, every schedule starts from 0, since it is useless to share knowledge at
the very beginning when both students still have not learned anything. Contrarily, for the remaining
periods, the cyclical schedules have their minimum value set to 0.5 instead of 0 to avoid focusing
exclusively on the labeled data, which would lead to overfitting, decreasing the overall performance.
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Figure 1: Learning schedules to control the values of A\; and A,. Triangular and sinusoidal cycling
are the novel learning schedules proposed by us.

3 Experiments

3.1 Data

We performed our experiments on the TIMIT dataset [19]], which contains utterances from native
English speakers along with phonetic transcriptions. Following standard recipes [20, 21]] and previous
work [1], we excluded glottal stop segments and SA sentences (read by all the 630 speakers), and we
used the core test set, consisting of 192 sentences. We drew out from the training set 184 sentences
as the validation set for tuning hyper-parameters and monitoring the training. To achieve a less biased
generalization assessment in the validation phase, the split was done guaranteeing that no speaker
appears in both sets. The networks’ inputs are 39-dimensional feature vectors, each containing 13
MEFCCs, delta, and delta-delta features. The feature extraction was performed with a Hamming
window of length 30 ms and a shift of 10 ms, resulting in 1049763 training frames, 54912 validation
frames, and 56623 test frames. We used the standard set of 48 phones for training, while in the
evaluation phase, we mapped them to 39 phones, as done in [1} |20} |15]. To experiment with the
benefits of unlabeled data, we removed the targets to a percentage of frames. We varied the percentage
of labeled samples to 1%, 3%, 5%, 10%, 20%, and 30%. Importantly, each utterance can only be
either fully labeled or fully unlabeled. The whole procedure and the resulting numbers are in line
with previous work [|1,|15]], and so a fair comparison can be made.

The features were then normalized. Three different normalization types were considered: over the
whole training set, over each speaker separately, and each utterance individually. Some preliminary
experiments on a 3-layer mono-directional Long Short Term Memory (LSTM) showed that speaker-
dependent normalization significantly achieves better results; hence, we adopted this normalization
for the rest of the experiments.

3.2 Architectures

We considered two architectures in the experiments, consisting of 3 LSTM layers of 96 units, followed
by a fully connected layer. The only difference between the two used architectures is the type of
LSTM employed. Indeed, one consists of mono-directional LSTM layers, whereas the other consists
of bidirectional LSTM layers. The number of layers and the number of units were chosen for a fair
comparison with the work by Lin et al. [[15]].

We tested all the combinations of the architectures for the two students. Therefore, one combination
uses mono-directional LSTM layers in both students (mono-DS), while the other uses bidirectional
LSTM layers (bi-DS). Finally, a third combination, called Imbalanced Student (IS), has one of each
architecture.

Moreover, to analyze unlabeled data benefits, we set as baselines the single architectures with mono-
directional LSTM layers (mono-LSTM) and bidirectional LSTM layers (bi-LSTM), trained in a
fully-supervised way.

3.3 Hyper-parameters

In line with Lin et al. [15]], the batch size was set to 100. The batch contains both labeled and
unlabeled data proportionally to the composition of the training set. Consequently, in mono-LSTM



Table 1: Network architecture, where L represents the length (number of frames) of an utterance.

Layer Output
(type) Shape
Utterance x Lx 39
LSTM Lx 96
LSTM Lx 96
LSTM Lx 96
Dense Lx 48

Table 2: Optimal hyper-parameters found for mono-DS with the percentage of labeled data equal to
30% on the TIMIT dataset.

schedule o & AT AP con. loss  val. accuracy (%)
ramp-up 05 03 10 100 MSE 73.32
triangular 0.3 0.3 10 100 MSE 72.83
sinusoidal 0.5 04 10 100 MSE 73.60

and bi-LSTM, which contain only labeled data, the number of samples actually considered in each
batch was equal to %labeled x 100. In this way, the gradient updates for labeled samples were the
same for both DS and supervised training.

We adopted Adam with weight decay, a well-known optimizer which performs better than the
straightforward stochastic gradient descent. We selected learning rate = 0.01 and weight decay
wd = 10~* with preliminary experiments on mono-LSTM. For all the other hyper-parameters,
default values were used. Finding optimal settings for the optimizer was out of scope since our goal
was not to provide state-of-the-art SSL results on TIMIT but rather to show the benefits of DS training
for sequential data.

DS algorithm introduces four additional hyper-parameters not used in standard supervised learning
procedure: A%, A\5*** o, &, and Tiyc.. We performed an exhaustive grid search to tune them
and select between MSE and KL as consistency loss for each of the three learning schedules. The
grid search was only done for mono-DS with 30% of labeled data. Given the number of hyper-
parameters and the project’s time-scope, it was unfeasible to tune them also for bi-DS, IS and
different percentages of labeled data. Moreover, we kept T, fixed to 10 epochs, since in the
standard DS the ramp-up was over the first 5 epochs. A tuning of this hyper-parameter is left for
future work.

In the grid search, the training was run over 20 epochs. A\7*** and \5*** were searched in log space,
whereas o and £ in linear space. A summary of all the configurations tested in the grid search is shown
in Figure |2 In total, over 1500 hyper-parameter settings were considered. It is important to mention
that the most-right plots reveal the correlation between the two students, where it can be easily seen
that each student learns as much as the other for most of the cases. The top 10 hyper-parameter
settings are shown in Figure [3] and only triangular and sinusoidal cyclical schedules fall into this
ranking. The 10 most promising configurations for each learning schedule were further tested over a
more extended training of 100 epochs, and the final optimal hyper-parameters are shown in Table 2]

3.4 Practical setup

The work, accessible on GitHuﬂ was implemented from scratch using TensorFlow, a powerful and
open-source deep learning framework. The experiments were run on one GPU, using Google Colab
and Google Cloud Platform.

"https://github.com/simone-porcu/DT2119-Final-Project
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Figure 2: Scatter plot of more than 1.500 configurations tested in the grid search.
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Figure 3: Parallel coordinate plot showing the top 10 configurations from the grid search, the one
with the highest validation accuracy is highlighted in green.

4 Results

The optimal hyper-parameters previously found were used to train the models for 100 epochs with
different percentages of labeled data. Table[3]shows a comparison between the baseline mono-LSTM
and mono-DS. The comparison also takes into consideration the three different schedules investigated.
Mono-DS with the triangular cyclical schedule is the best model in the less supervised experiments,
i.e., with 1%, 3%, 5%, and 10% of labeled data, gaining ~ 9% test accuracy against mono-LSTM.
On the other hand, for 20% and 30% of labeled data, mono-DS with the ramp-up schedule is the best
one, gaining 7.96% and 6.36%, respectively, over mono-LSTM.

Table @] compares the baseline mono-LSTM and IS. It is noteworthy to highlight that the results for
IS refer to the mono-directional student. Indeed, the imbalanced configuration goal is to improve an
efficient small student (mono-directional) by training it with a larger and stronger one (bidirectional),
similar to what happens in knowledge distillation, except that both students share knowledge. The
conclusions are similar to mono-DS. IS with the triangular schedule outperforms all the other models,
apart from 30% of labeled data where IS with sinusoidal schedule achieved the highest accuracy.
Moreover, we can observe that, even though the bidirectional student should pump up the mono-
directional performance in the IS setup, this is not the case; indeed, there is no significant difference
between the accuracy achieved by mono-DS and IS.

Furthermore, additional experiments compared bi-LSTM to bi-DS, as shown in Table |§I Also in
this case, bi-DS outperforms bi-LSTM for all percentages of labeled samples. Besides, as expected,
bi-DS is better than mono-DS in terms of accuracy, given the relative capacity, at the cost of a less
scalable solution.

The results also point out that mono-DS with the triangular cyclical schedule outperforms bi-LSTM
for small percentages of labeled data, i.e., 1%, 3%, and 5% (compare Table [3|and . On the other
hand, considering the fully-supervised training, mono-LSTM is considerably worse than bi-LSTM.



This indicates that a network can beat a stronger one thanks to DS training by leveraging unlabeled
data.

Finally, mono-DS and IS were compared to SSL renowned methods tested on the TIMIT dataset, as
shown in Table [§] We can notice that both mono-DS and IS achieved better results than previous
work [1,|15]], including pMP [2], the current SSL state-of-the-art on TIMIT.

Table 3: Results on frame-based phone classification on the test and validation sets on the TIMIT
dataset for mono-LSTM and mono-DS, for each learning schedule.

Labeled mono-LSTM mono-DS ramp-up mono-DS tri mono-DS sin

Obs. (%) val. acc. testacc. val.acc. testacc. val.acc. testacc. val. acc. testacc.

1 50.81 51.59 56.34 56.20 56.66 56.69 55.77 55.63
3 57.13 56.73 62.27 61.99 63.14 63.08 62.59 61.93
5 59.74 59.65 65.00 64.27 65.34 65.22 64.68 64.62
10 62.84 61.86 68.15 67.07 68.33 67.82 67.81 67.29
20 66.83 65.39 71.39 70.60 71.03 70.12 70.91 70.46
30 69.21 67.91 73.32 72.23 72.83 71.62 73.60 72.20

Table 4: Results on frame-based phone classification on the test and validation sets on the TIMIT
dataset for mono-LSTM and IS (the accuracy of the mono-directional student is shown), for each
learning schedule.

Labeled mono-LSTM IS ramp-up IS tri IS sin

Obs. (%) val. acc. testacc. val.acc. testacc. val.acc. testacc. val.acc. testacc.

1 50.81 51.59 56.59 55.86 56.78 56.89 56.15 55.30
3 57.13 56.73 63.05 62.46 63.97 63.31 63.32 62.95
5 59.74 59.65 65.56 65.02 66.22 65.62 65.11 65.01
10 62.84 61.86 68.25 67.33 68.76 68.02 67.97 67.28
20 66.83 65.39 71.52 69.69 71.56 69.98 71.63 69.93
30 69.21 67.91 73.39 71.79 72.99 71.45 73.22 72.15

Table 5: Results on frame-based phone classification on the test and validation sets on the TIMIT
dataset for bi-LSTM and bi-DS, for each learning schedule.

Labeled bi-LSTM bi-DS ramp-up bi-DS tri bi-DS sin

Obs. (%) val. acc. testacc. val.acc. testacc. val.acc. testacc. val.acc. testacc.

56.48 56.60 59.70 59.74 59.65 59.63 58.80 58.75
63.99 62.50 67.16 65.90 67.29 66.92 67.14 66.47
66.28 65.19 69.22 68.10 69.28 68.85 69.34 68.35
69.40 68.50 72.21 71.29 72.40 71.21 72.77 71.12
72.97 71.40 75.39 73.61 74.72 73.88 75.37 74.22
73.57 72.40 75.90 74.48 76.21 75.09 76.74 75.38
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Table 6: Accuracy rates (%) for frame-based phone classification on the TIMIT dataset for mono-
LSTM, SSSAE [1f], pMP [_2], Teacher-Student [15]], mono-DS and IS. The optimal learning schedule
was chosen for each percentage of labeled samples according to the values in Table@

10% labeled 30% labeled

Method Reference
Test accuracy (%)

mono-LSTM this work 61.86 6791
SSSAE [ 67.03 69.65
pMP [12]] 67.22 71.06
Teacher-Student [115] 67.15 70.78
mono-DS this work 67.82 72.23
IS this work 68.02 72.15

70

Accuracy (%)
Accuracy (%)

62.5
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(a) Mono-LSTM, mono-DS and IS. (b) Bi-LSTM and bi-DS.

Figure 4: Frame-based phone recognition accuracy (%) for different percentages of labeled samples
on the TIMIT dataset.

5 Conclusions

In this paper, we conducted a significant number of experiments to validate DS training benefits for
sequential data. The results were consistent through all the experiments for different percentages of
labeled data. DS always outperforms the standard fully-supervised learning procedure given the same
architecture and hyper-parameters. Therefore, we can conclude that the DS approach is beneficial to
exploit large amounts of unlabeled samples even for handling sequential data such as speech. We
also introduced two novel scheduled learnings, employing triangular and sinusoidal cycling, which
showed slightly better results than ramp-up.

Further experiments could be to tune the hyper-parameters for each percentage of labeled data, taking
into consideration the learning rate and different optimizers. Future work may also focus on other data
augmentation methods. Finally, experiments on the sinusoidal/triangular cycle period may investigate
its influence on the performance, whose values were instead fixed in this project.
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