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Abstract

We propose the application of a semi-supervised learning
method to improve the performance of acoustic modelling for
automatic speech recognition with limited linguistically an-
notated material. Our method combines sparse autoencoders
with feed-forward networks, thus taking advantage of both un-
labelled and labelled data simultaneously through mini-batch
stochastic gradient descent. We tested the method with vary-
ing proportions of labelled vs unlabelled observations in frame-
based phoneme classification on the TIMIT database. Our ex-
periments show that the method outperforms standard super-
vised models of similar complexity for an equal amount of
labelled data and provides competitive error rates compared
to state-of-the-art graph-based semi-supervised learning tech-
niques.

Index Terms: automatic speech recognition, deep learning,
semi-supervised learning, autoencoders, sparsity

1. Introduction

Deep Learning has revolutionised research in Automatic Speech
Recognition (ASR) as well as many other fields of application
of machine learning (see [1, 2] for extensive reviews). Despite,
the recent significant improvements made in word error rates
(WERs), most of the experiments have been reported on large
fully-labelled data sets. The initial paradigm, where unsuper-
vised initialisation of the network weights was followed by su-
pervised fine-tuning of the parameters [3, 4], was abandoned in
favour of fully supervised methods with more efficient models
(e.g. [5]). However, for under-resources languages, where large
amounts of labelled data are not available, non fully supervised
learning techniques are still relevant.

Unsupervised learning in the context of ASR has been
an active topic for many years in the attempt to reduce the
amount of handcrafted information needed to build the sys-
tems. Many of the studies focus on finding linguistic infor-
mation from speech in a completely unsupervised way (e.g.
[6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17], resulting in a recent
attempt to standardise this effort in a challenge [18].

In the context of deep neural networks, unsupervised learn-
ing has been mainly applied to the task of initialising the net-
work weight of a model that was, otherwise, fully specified.
The limit of this approach was that the resulting initial weights
are not specifically optimised for the problem at hand. As an
example, we would find the same representations for speech or
speaker recognition which have orthogonal objectives.

An alternative learning paradigm, that has recently been ap-
plied in the field of computer vision as well as ASR, is semi-
supervised learning where labelled and unlabelled observations
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are used jointly [19, 20, 21, 22]. Here the goal is not to discover
linguistic information in an unsupervised way, but, rather, to
reduce the need for annotated material.

Semi-supervised learning using neural networks has also
been explored in [23, 24, 25, 26], by means of a self-training
scheme. The self-training scheme is, however, based on heuris-
tics and prone to reinforcing poor predictions.

In [20, 21], the authors propose a number of algorithms
employing graph based learning (GBL-SSL), and obtain better
WERs over a baseline neural network. In [22] the authors ex-
tend the initial results from frame based phone classification to
large vocabulary ASR. Graph based learning is, however, com-
putationally intensive, and the addition of a new data point re-
quires the reevaluation of the graph laplacian.

In [27], Ranzato and Szummer propose a semi-supervised
learning method based on linearly combining the supervised
cost function of a deep classifier with the unsupervised cost
function of a deep autoencoder and minimising the combina-
tion of costs through mini-batch stochastic gradient descent via
standard backpropagation. The authors apply their method to
finding representations of text documents for information re-
trieval and classification.

We propose to use a similar approach to frame-based phone
recognition in ASR. Although our objective function is the same
as the one proposed in [27], our setup is different in a number of
ways. Firstly, instead of the compact and lower dimensional en-
coding used in [27], we employ sparse encoding. Secondly, in-
stead of stacking a number of encoders, decoders and classifiers
in a deep architecture as in [27], we use a single layer model.
This is motivated by work in [19], where the authors analyse the
effect of several model parameters in unsupervised learning of
neural networks on computer vision benchmark data sets such
as CIFAR-10 and NORB. They conclude that state-of-the-art
results can be achieved with single layer networks regardless of
the learning method, if an optimal model setup is chosen.

The method bears some similarities to the so called Ladder
Networks, introduced in [28] and used in the context of semi-
supervised learning in [29]. However, our method explicitly op-
timises the combined supervised and unsupervised criteria for
each layer of the network independently, whereas, in Ladder
Networks the optimisation is performed for all layers conjunc-
tively. This makes Ladder Networks much more complex to
optimise, albeit very powerful models. Finally, Rasmus et al. in
[29] use batch-normalisation which was not tested in this study.

In order to test the method, we perform phone recognition
on the TIMIT data set and compare the performance of our
model with the results obtained with standard supervised learn-
ing models of similar complexity. We also compare our results
with the computationally more expensive GBL methods that are
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Figure 1: Flow chart for the cost calculation in a single layer of the network. Three components are considered: encoder, decoder, and
classifier. The loss is a weighted sum of cross-entropy Ec and reconstruction loss Er. If several layers are stacked together, only the

encoder is retained after training.

state-of-the-art in semi-supervised learning.

Note that the goal of this work is not to improve the absolute
state-of-the-art of phone recognition, but to provide alternative
methods for reducing the amount of hand-crafted annotations
that are required to build speech recognisers. However, the cur-
rent state-of-the-art results in phone classification are also re-
ported for reference.

The paper is organised as follows: Section 2 describes the
method. Section 3 reports details on the experimental setup.
Section 4 reports the results and, finally, Section 5 concludes
the paper.

2. Method

The architecture of a single layer of our model is depicted in
Figure 1. If we remove the bottom path, this is equivalent to an
autoencoder with a set of encoding weights, a logistic layer, a
subsequent set of decoding weights and a new non-linearity. In
our model, the representation z obtained by the encoder is also
fed to a classifier in parallel with the regular decoder. The aim
of combining unsupervised and supervised cost functions is to
use both the unlabelled and labelled data in an efficient way in
order to obtain good representations of the input as well as good
prediction and discriminative abilities from our network.

Although the figure depicts a single layer, in [27] it was
shown that a stack of such elements can be trained layer-by-
layer in a greedy way. In our experiments, only single layer
models were considered.

The model is trained optimising the combined cost of the
reconstruction error E'r and the classification errors Ec given
respectively by the autoencoder and the classification network.
The combination is linear and defined as:

E =Egr+akc ey
where « is a hyper-parameter controlling the proportion of the
two costs in the objective function. o is optimised on a vali-
dation set that is independent from the training set. Its optimal
value depends in general on the proportion between labelled and
unlabelled examples in the training set, as will also be shown in
Section 4.

In the supervised setting, the cost function is the cross-
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entropy logloss given by:

Nc
Ec = - yilogh @)
i=1
Wc),z + be,
- exp((We);z + be;) 3)

> exp(We)iz + bes)’

where, for the classification network: h denotes softmax output,
(Wc); is the jth row of the weight matrix W, b is the set
of biases and N¢ is the number of output classes.

The variable z denotes the output of the encoder network
and is defined as:

z = tanh(WEaz + bE)7 4)

Where WEg and bg are the weights and biases of the encoder
network, and « is the input to the entire model.

In the unsupervised path through the model, the decoder
attempts to reconstruct the input « from the encoded vector z
using the set of weights W and set of biases bp. The decoder
output & is computed as

& = tanh(Wpz + bp). 5)

The cost function, in this case, is the Lo norm of the recon-
struction error, that is, the difference between original input
and the reconstructed input &:

Ep = ||z — 2| (©6)
This a standard cost function for an auto-encoder. In practice,
we compute the cost E'r averaged over a batch of p points,
through an optimisation called mini-batch Stochastic Gradient
Descent (SGD). We apply a process called “corruption”, that is
we randomly set to zero some elements of the input vector. This
has been found to help the network learn better representations
of the input data [30].

When the input datapoint is not accompanied by a label, the
classifier part of the layer is not updated, and the loss function
simply reduces to Er. This model can be iteratively applied to
several layers. It is important to note that the update of encoder
weights Wg is dependent both on the decoder weights Wp
and on the classifier weights W, and the delta propagated in
the backpropagation algorithm will be a linear combination of



Table 1: Results on frame-based phone classification on the test and validation sets on the TIMIT material. Our method (SSSAE) is
compared to a neural network trained with supervised backpropagation with the same amount of labelled data. The total number of
training frames is 1068818. The value of « is optimised on the validation set as the proportion of labelled examples is varied.

Results on TIMIT
Labelled Observations Neural Network SSSAE
% # valid. acc. (%) testacc. (%) valid acc. (%) test acc. (%) «
1 10688 57.46 57.93 59.65 59.84 100
3 32065 61.71 61.31 64.12 64.20 150
5 53441 63.20 63.30 65.44 65.71 150
10 106881 65.78 65.82 66.96 67.03 400
20 213763 68.02 67.80 69.31 69.18 600
30 320644 69.08 68.83 69.80 69.65 900

the deltas calculated in both parts. We used an adaptive learning
rate scheme in which the learning rate decays linearly after a
certain number of epochs.

The size of the hidden representation z is larger than the
input size in our experiments. Consequently, we promote spar-
sity in our feature representation. In autoencoders, encoding
and decoding weights are often tied, which means that the de-
coder weight matrix is the transpose of the encoder weight ma-
trix: Wp = Wg’. This reduces the amount of free parameters
available, but also the expressive power of the model. In our ex-
periments, instead, we optimise Wp and Wg independently.
This makes our model more expressive at the cost of more com-
putational overhead and possible delayed convergence. Another
aspect that increases the computational cost of our model is the
use of sparse autoencoders as opposed to autoencoders with bot-
tleneck architecture which have fewer nodes in hidden layer
and, consequently, reduced memory and computational com-
plexity. However, the computational cost is linear in the num-
ber of training samples, and thus it is more efficient than graph
based semi-supervised learning algorithms which have cubic
complexity O(N?) where N is the number of data points.

3. Experiments
3.1. Experimental Setup

We performed our experiments on the standard TIMIT data
set [31] for frame-based phone classification. =~ We used
the standard core test set of 192 sentences, and a develop-
ment/validation set of 184 sentences. For training, we had 3512
sentences. Similarly as a part of standard procedure of experi-
ments on TIMIT, glottal stop segments are excluded. The data
is created with the help of standard recipes given in [32, 33].
The input to our network was created by first extracting a 39-
dimensional feature vectors for each frame. The feature vec-
tor is made of 12 MFCC coefficients computed at a rate of
10 ms with an overlapping window of 20 ms, 1 energy coef-
ficient, deltas and delta-deltas. For each time step, the features
obtained 5 frames to the left to 5 frames to the right are con-
catenated together to form a final vector with dimensionality of
11 x 39 = 429 coefficients as in [34]. Speaker-dependent mean
and variance normalisation was also applied.

The total number of frames in the training set is 1068816.
The validation set has 56005 frames in total, and the test set has
57919 frames. These counts are in line with the experiments
of [20, 35]. For training, we used the standard phone set of 48
phones, collapsed into 39 phones for evaluation as in [36]. This
means, the output layer will have 48 nodes, but at the time of
evaluation, the 48 phonemes will be reduced to 39 phonemes.
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This procedure has also been used in [20]. Although it is more
common to use senones as the target labels for the classification
network as in [34], the output of our classification network was
based on phonemes in order to be able to compare with other
studies on semi-supervised learning for speech.

To simulate the effect of missing labels during training, the
training set was divided into a labelled portion and an unlabelled
portion of data set. The percentage of labelled frames in the
training set was varied from 1% to 30% with intermediate steps:
3%, 5%, 10%, 20%. For each of these conditions, we optimised
the hyper-parameter v on the validation set. All the accuracy
results are reported for the optimal value of c. Finally the num-
ber of nodes in the encoder network was also optimised on the
validation set resulting in an optimal value of 10000 nodes.

As a baseline, we compare the results obtained with our
method with those obtained with a similar neural network
trained with supervised backpropagation, on the same amount
of labelled examples. The network contained a single hidden
layer of 2000 units as in [20, 35]. Finally, we compare our re-
sults with those obtained in the literature on semi-supervised
learning.

3.2. Practical Setup

We used Kaldi [32] and PDNN [33] for feature extraction,
Theano [37] for symbolic algebra and GPU computing. The
experiments were run on a Titan X card installed on a Ubuntu
14.04 based machine.

4. Results

Figure 2 illustrates the results that are also detailed in Table 1.
We report the frame-level classification accuracy rates for the
neural network trained in a supervised way (NN) and the pro-
posed single layer semi-supervised sparse auto-encoder (SS-
SAE) for varying percentage of labelled data. Both test set and
validation set accuracy are reported. Table 1 also reports the
number of labelled frames (observations) and the value of the
hyper-parameter « that was optimised independently for each
case on the validation set.

The results for the supervised model are similar to those
obtained with an equivalent model in [20, 35].

Our results show that the proposed semi-supervised method
always outperforms the supervised baseline by as much as 2.9%
absolute improvement. As expected this advantage decreases
when the proportion of labelled training examples is increased.
The validation and test errors are always very close, indicating
that the parameters optimised on the validation set generalise
well to the test set and both models avoid over-fitting.



Results on TIMIT
T T T
70 - B
® 650 :
oy
g
=
3
<
ol —e—  SSEAE test |
—m— SSEAE validation
—o— NN test
—+— NN validation
\ \ \ \ \ \ \

0 5 10 15 20 25 30

% labelled examples

Figure 2: Frame-based phone recognition accuracy (%) ver-
sus percentage of labelled training examples on the TIMIT
database. NN: neural network trained with supervised back-
propagation. SSSAE: our method. Both validation and test
accuracy rates are shown. See Table 1 for the corresponding
numerical values.

Table 2: Accuracy rates (%) for frame-based phone classifica-
tion on TIMIT for the baseline (NN), the four different algo-
rithms in GBL-SSL [20] and our model, SSSAE

Comparison with other methods
10% labelled  30% labelled

Method  Reference Test accuracy (%)

NN this work 65.94 69.24
LP [20] 65.47 69.24
MP [20] 65.48 69.24
MAD [20] 66.53 70.25
pMP [20] 67.22 71.06
SSSAE  this work 67.03 69.65

As expected, the optimal value for «v is strongly dependent
on the proportion of labelled material. The higher the propor-
tion the more weight the algorithm gives to the classification
error, compared to the unsupervised reconstruction error.

In Table 2 we compare the performance of our system to
the results obtained with graph based semi-supervised learning
methods published in [20] on 10% and 30% labelled data. We
observe that our system performs better than all the techniques
mentioned except the Prior Regularised Measure Propagation
(pMP) algorithm.

Finally, it is interesting to consider the current state-of-the-
art performance in phone classification on the TIMIT database
as an upper bound to the results that can be obtained on that
data set. To our knowledge, the best performing method is
based on hierarchical convolutional deep maxout networks and
achieves 16.5% Phone Error Rate (or, equivalently, 83.5% ac-
curacy) [38].
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5. Conclusions

We reported results on frame based phone classification on the
TIMIT database using semi-supervised learning based on sparse
autoencoders. We observe that our method outperforms a neu-
ral network of similar complexity trained with supervised back-
propagation on the same amount of labelled training data in all
experimental conditions. Our results also outperform many of
the semi-supervised learning methods proposed in the literature
for a similar task, with the exception of Prior-Regularised Mea-
sure Propagation (pMP) method. As expected, the advantage
of using our method decreases when the proportion of labelled
training observations is increased. However, we can argue that
in realistic situations we will always find an abundance of unla-
belled data as compared to data that was carefully annotated. As
a consequence, it becomes more important for us to investigate
our model when the percentage of labelled data is low.

The results we obtain, although comparable with the state-
of-the-art in semi-supervised learning, are not comparable with
the current state-of-the-art in phone recognition on the TIMIT
database which is 16.5% Phone Error Rate (or, equivalently,
83.5% accuracy) [38]. The reason for this is twofold: Firstly,
the above results only use a fraction of the labels provided by
the TIMIT database for training. Secondly, the goal of the work
is to compare semi-supervised and supervised learning in sim-
ilar settings, and, therefore, many parameters that could be op-
timised have been left out in this study. For example, state-
of-the-art ASR methods take advantage of the ability of neu-
ral networks to deal with correlated inputs. Filterbank features
have been found to perform better with these models than the
previously popular MFCCs. The reason for using MFCCs in
this study was to allow for comparison with previous results in
the literature that also used the same features.

In spite of the promising results, in order to draw general
conclusions on ASR, we would need to test our method on a
word recognition task, and, in particular, on large-vocabulary
ASR. However, the improvements we see in frame-level phone
classification are an incentive to continue work in this direc-
tion. Possible improvements may be obtained by using alter-
native features (e.g. filterbank features), testing the effect of
adding depth to the model by stacking several blocks of autoen-
coders/classifiers, and, finally experimenting with techniques
such as batch-normalisation.
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