21/08/2023, 17:11

(2)_polynomial_tutorial

import numpy as np

from MCMC_aux import get model
import Parameters as par

import Models as mod

import Kernels as ker

import GP_Likelihood as gp

from MCMC import run MCMC as run
import plotting as plot

from saving import save

import auxiliary as aux

2813.2308006313287 16620.585819951895

Creating fake data to work with

Much like before, a cosine with a small jitter term is created as a fake set of data, this will
act as the activity to model our kernel from

time array with 20 values
time = np.arange(0,20,1)
set up the amplitude and period of the cosine

A = 10.
P = 5.
err = []

set up a random jitter to add to the data

for i in time:
err.append(np.random.uniform(-3,3))

generate the rvs and errors

rv = A*np.cos(time*((2*np.pi)/P))+err

rv_err = np.ones_like(rv)*3

We will additionally now add to this data by creating a polynomial and adding it on to our
rv values to simulate activity plus some polynomial signal

the polynomial we use will be y = 0.2x"2 + x -10, the polynomial model car

a0 = 5.

al = 1.

a2 = 0.2

a3 =0

create the polynomial and add it to the rv data
y = a3*(time**3) + a2*(time**2) + al*time + al

rv = rv +y

data_plot function will take the time, rv data, and rv errors and plot a scatter graph of
the data, similar to before but now the polynomial part is visible. Axis labels, legend, and
saving can all be controlled from the function inputs.

plot.data plot(time = time, rv = rv, y_err = rv_err)

file:///Users/bdixon/Github/MAGPy/(2)_polynomial_tutorial.html

1/10

21/08/2023,17:11 (2)_polynomial_tutorial

t Data
100 + }

80 - } }

60 }

RV [mys]

40 } } } }

20 } } }

T
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5
time [B|D]

Creating the kernel

A cosine Kernel is created the same as before using the par_create funciton which will
take only the name of the kernel and return an empty dictionary of hyperparameters to
be filled out. This dictionary can be printed to view the hyperparamer names.

Currently available kernels along with their hyperparameter names can be viewed by
running PrintKernelList:

ker.PrintKernelList ()

Implemented kernels:

{'Cosine': ['gp _amp', 'gp per'], 'ExpSquared': ['gp amp', 'gp_timescale'],
'"ExpSinSquared': ['gp amp', 'gp timescale', 'gp per'], 'QuasiPer': ['gp pe
r', 'gp_perlength', 'gp explength', 'gp amp'], 'JitterQuasiPer': ['gp per',
'gp_perlength', 'gp explength', 'gp amp', 'gp jit'], 'Matern5/2': ['gp amp',
'gp_timescale'], 'Matern3/2': ['gp amp', 'gp timescale', 'gp_Jjit']}

create the kernel

hparam = par.par create("Cosine")

print the hyperparameter dictionary
print (hparam)

{'gp_amp': 'gp_amp', 'gp_per': 'gp_per'}

Hyperparameters are then assigned in the same way as before but this time we give the
errors and whether we want the value to vary in the mcmc. By default vary is set to True
and the errors are 20% of the value.

assign values to the dictionary

hparam["gp_amp"] = par.parameter(value = 10., error = 0.5, vary = True)
hparam["gp _per"] = par.parameter(value = 5., error = 0.5, vary = True)
printing now prints the filled dictionary

print (hparam)

file:///Users/bdixon/Github/MAGPy/(2)_polynomial_tutorial.html 2/10

21/08/2023, 17:11

(2)_polynomial_tutorial

{'gp_amp': Parameter object: value = 10.0, error=0.5 (vary True)
, 'gp_per': Parameter object: value = 5.0, error=0.5 (vary = True)

}

Priors should then be created by pri_create function and appending it to the list of priors
in the same way as before. The pri_create function takes the parameter name, the prior
name, and the prior parameters as inputs which must be inputted in the correct form,
this form can be viewed by running the PRINTPRIORDER function.

view the correct form of prior parameter inputs
par .PRINTPRIORDER ()

Gaussian: List should take the form [mu, sigma] where all values are floats
or ints

Jeffery: List should take the form [minval, maxval] where all values are flo
ats or ints

Modified Jeffery: List should take the form [minval, maxval, kneeval] where
all values are floats or ints

Uniform: List should take the form [minval, maxval] where all values are flo
ats or ints

create empty prior list

prior list = []

uniform parameters used here so prior parameters inputted as [minval, maxv
pri amp = par.pri create('"gp_amp", "Uniform", [5.,15.])

then append the prior to the list

prior list.append(pri_ amp)

pri per = par.pri create('"gp per", "Uniform", [0.,10.])

prior list.append(pri_ per)

print the list of all the priors

print (prior list)

[('gp_amp', 'Uniform', {'minval': 5.0, 'maxval': 15.0}), ('gp_per', 'Unifor
m', {'minval': 0.0, 'maxval': 10.0})]

Model Parameters

Now the data contains a polynomial model, we must set up initial parameters for this
model to supply to the mcmc and allow us to plot the model.

We will start by defining a model list that contains the name of all models present in the
data, in this case this will just be a polynomial. Running PrintModelList will allow us to
see all the available models and their parameter names. We then create the model
parameter dictionary by running the mod_create function with the model list as the only
input. We can then print this to view the required parameters.

see available models
mod.PrintModelList ()

Implemented models
{'No Model': ['rvs'], 'Offset': ['rvs', 'offset'], 'Polynomial': ['al0', 'a
1', 'a2', 'a3'], 'Keplerian': ['time', 'P', 'K', 'ecc', 'omega', 't0']}

define the model list, in this case just polynomial
model list = ["Polynomial"]

create the model parameter dictionary

model par = mod.mod create(model list)

print (model par)

file:///Users/bdixon/Github/MAGPy/(2)_polynomial_tutorial.html 3/10

21/08/2023, 17:11

(2)_polynomial_tutorial

{'a0': 'a0', 'al': 'al', 'a2': 'a2', 'a3': 'a3'}
We must then define model parameters and priors in the same way as for the kernel
using the parameter function and the pri_create function

initial parameter values are set up for the model

model par["a0"]=par.parameter(value = 5., error=1l., vary=True)
model par["al"]=par.parameter(value 1., error=0.5, vary=True)
model par["a2"]=par.parameter(value = 0.2, error=0.1l, vary=True)
we know a3 is 0 so there is no need to vary it in the mcmc but we must sti
model par["a3"]=par.parameter(value = 0., error = 0.1, vary=False)
priors created in the same way as before

pri_val = par.pri create("a0", "Uniform", [0.,10.])

prior list.append(pri_val)

pri val = par.pri create("al", "Uniform", [0.,3.])

prior list.append(pri_val)

pri val = par.pri create("a2", "Uniform", [0.,1.])

prior list.append(pri_val)

printing the final prior list and model parameters

print ("Prior List:")
print(prior list)

print ("Model Parameters:")
print (model par)

Prior List:

[('gp_amp', 'Uniform', {'minval': 5.0, 'maxval': 15.0}), ('gp_per', 'Unifor
m', {'minval': 0.0, 'maxval': 10.0}), ('a0', 'Uniform', {'minval': 0.0, 'max
val': 10.0}), ('al', 'Uniform', {'minval': 0.0, 'maxval': 3.0}), ('a2', 'Uni
form', {'minval': 0.0, 'maxval': 1.0})]

Model Parameters:

{'a0': Parameter object: value = 5.0, error=1.0 (vary = True)

, 'al': Parameter object: value = 1.0, error=0.5 (vary = True)
, 'a2': Parameter object: value = 0.2, error=0.1 (vary = True)
, 'a3': Parameter object: value = 0.0, error=0.1 (vary = False)
}

Obtaining LoglL and GP values

As we are using a model, in order to run the GPLikelihood class we require the y values
for the model. The get_model function allows the y values to be obtained for all models
in the data given their parameters, names, and a time array. For plotting purposes this
time array is better to be far smoother than the actual time array to produce a good plot.
The GPLikelihood class should this time be defined and run with the time data, the rv
data, the rv errors, the hyperparameters, the kernel name, the model y values, and the
model parameters. This allows the GPLikelihood.LogL function to be run with the
prior_list which returns the initial log likelihood of the GP model.

In order to return the y values and errors of the GP model, a predicted x array must first
be defined which should be smoother and longer than the initial time array, in this case it
begins at -1 and ends at 21 with intervals of 0.1 which is around 10 times more data
points than the initial time array. This must be then inputted into the
GPLikelihood.predict function to return the y values and the errors of the GP.

model y in this case comes only from the polynomial in the data

model y = get model(model list, time, model par, to_ ecc=False)

GPLikelihood class called as loglik, run with the current inputs

loglik = gp.GPLikelihood(time, rv, rv_err, hparam, "Cosine", model y, model_

file:///Users/bdixon/Github/MAGPy/(2)_polynomial_tutorial.html

4/10

21/08/2023, 17:11

(2)_polynomial_tutorial

LogL obtained by running loglik.LogL with the prior list as the only input
logL = loglik.LogL(prior_list)

xpred is smoother and longer than time

xpred = np.arange(min(time)-1, max(time)+1l, 0.1)

GP_y and GP_err are arrays of the GP y values and errors of the same lengt
GP_y, GP_err = loglik.predict(xpred)

print('Initial Log Likelihood =', logL)

Initial Log Likelihood = -48.386799066089694

Plotting the GP

The GP y values and model y values could be manually plotted against xpred once
obtained in the previous step however the GP_plot function allows for an alternative
faster way of plotting. This time, we must give the time array, the rv data, the
hyperparameters, the kernel name, the rv errors, the model list, and the model
parameters. This will now return a plot of the data with the GP plotted over it in orange
and the combined model and GP plotted in blue along with its uncertainties in grey.
Xpred, axis labels, residuals, legend, and saving can all be controlled by the function
inputs.

GP_plot will plot the GP, the model and the data along with residuals if e
plot.GP_plot(time, rv, hparam, "Cosine", rv_err = rv_err, model list = model

120 4 Predicted GP
— Predicted Model+GP

100 1 t Data

80 1

60 -

RV [mys]

40

20 4

Residuals
(=]
|
.
.
.

T
0 5 10 15 20
Time [B]D]

Running the MCMC

The MCMC can be run by defining the run_MCMC function as 4 outputs: the first is the
LogL chain, this will be a 3d array of the log likelihood across all iterations and chain; the
second is the final hyperparameters, this will be a 3d array of all hyperparameters where
ncolumns = parameters, nrows = chains, and ndimensions = iterations; the third is the
final model parameters, this will be a 3d array of all model parameters where ncolumns =
parameters, nrows = chains, and ndimensions = iterations; the fourth is the completed
iterations, this will be the number of iterations that the code ran for, this may not be the
number that was set as it may reach convergence before that number is reached.

file:///Users/bdixon/Github/MAGPy/(2)_polynomial_tutorial.html

5/10

21/08/2023, 17:11

(2)_polynomial_tutorial
This function requires the inputs of iterations, the time array, the rv data, the rv error, the
hyperparameters, and the kernel name. For this run, as there is a model we will also
include the model parameters, the model list, the prior list, and the number of chains. If
the number of chains is not entered it defaults to 100.

This function will print the initial parameters and hyperparameters, the initial log
likelihood, the number of chains, the progress, the number of completed iterations, the
acceptance rate, and the time taken.

set up iterations and chains

iterations = 100

numb_chains = 100

run the mcmc function to return the 3d parameter arrays

logL_chain, fin hparams, fin model param, completed iterations = run(iterati

Initial hyper-parameter guesses:

[10.0, 5.0]

Initial model parameter guesses (ecc and omega are replaced by Sk and Ck):
[5.0, 1.0, 0.2, 0.0]

Initial Log Likelihood: -48.386799066089694
Number of chains: 100

Start Iterations

progress: |, | 100.0% Comp

lete

100 iterations have been completed with 100 contemporaneous chains

Acceptance Rate = 0.2514851485148515
-——- 0.05667688051859538 minutes —----

Mixing Plots

The mixing_plot funciton takes in the hyperparameter array, the kernel name, the
parameter array, the model list, and the logL array. It returns the MCMC chains for each
parameter where if the code had run for a sufficient number of iterations it should be
possible to see some convergence in the chains. This plot can be saved through the
function inputs. This plot and the next will still plot the parameters that are not set to
vary however they will easily be visible in the mixing plots by the straight lines as they
are not varying. These plots do not reach convergence as very few iterations were used
and the priors were likely too large.

show the mixing plots, in this case a 3 does not vary as we set it to not
plot.mixing plot(fin hparams, "Cosine", fin model param, model list, logL ctk

file:///Users/bdixon/Github/MAGPy/(2)_polynomial_tutorial.html

6/10

21/08/2023, 17:11

In

[

]:

logL

(2)_polynomial_tutorial

Mixing Chains

—20000 4

—40000 -

—60000 -

—80000 -

15.0

12.5 1

10.0 1

APamp

5.0 1

9Pper

2.5

1883

7.5 1

2.5

0.0

2.0 1

154

al

104

0.5

0.100 |
0.075 |
0 0.050 |

0.025 4

0.000

T T T T T T
0 20 40 60 80 100

Number of iterations

Corner Plots

The corner_plot function takes the same inputs as the mixing plot function minus the

logL array and will return 3 outputs. The first is a list of the final posterior values for each

parameter and hyperparameter, the second and third are the upper and lower errors on

thos values. These values are also all visible on top of each corner plot. This plot can

also be saved through the function inputs.

The code will produce seperate plots for the hyperparameters, model parameters, and

combined. These will also save individually.

corner plots also look poor in this case as only 100 iterations were run
final param values, final param erru, final param errd = plot.corner plot(fi

file:///Users/bdixon/Github/MAGPy/(2)_polynomial_tutorial.html 7/10

21/08/2023,17:11 (2)_polynomial_tutorial

_ +3.51
T T T T T 9Pper = 5‘35—9.5?

OPper

file:///Users/bdixon/Github/MAGPy/(2)_polynomial_tutorial.html 8/10

21/08/2023, 17:11

a0 = 4.51%342

(2)_polynomial_tutorial

al = 0.3430 ¢

al

a2 = 0.023008

az

a3 = 0.0570-%3

a3

a0

file:///Users/bdixon/Github/MAGPy/(2)_polynomial_tutorial.html

9/10

21/08/2023,17:11 (2)_polynomial_tutorial

9Pamp = 9-99:358

OPper = 5.3623 8

9Pper

a0 = 4.5173 42

a0

al = 0.343312

al

a2 = 0.0270 8

e, @
% e
. .

a2

Q
%%
L

aQ

a3 =0.0574 83

a3
o

GPamp 9Pper a0 al a2 a3

Parameter values after MCMC: [9.985849947307976, 5.355020293768974, 4.51041
9108459403, 0.3443697513016505, 0.022545357525885573, 0.051952411832212816]

Saving

The save function will save all outputs, initial conditions, final conditions, and posteriors
in seperate files in a chosen folder. If this folder does not exist a new one will be created.
These are all generated from the previous functions and shouold be inputted as done
below. The input burnin is optional and will save the posteriors with the desired burn in,
the input fin_to_skck defaults to False and is for Keplerians, this determines whether to
return the final parameters as Sk and Ck (True) or ecc and omega (False). As well as a
readable list of final parameter values, the function will output the parameter values in
the form of a latex table in the file 'final_param_table'.

enter in desired file path to saving function
save('/file/path/folder-name/', rv, time, rv_err, model list = model list, i

file:///Users/bdixon/Github/MAGPy/(2)_polynomial_tutorial.html 10/10

