
PythonExtensionsCollection

v. 0.15.1

Holger Queckenstedt

19.10.2023

CONTENTS CONTENTS

Contents

1 Introduction 1

2 Description 2

2.1 Modules . 2

2.2 Methods . 2

2.2.1 String operations with CString . 2

2.2.2 File access with CFile . 11

2.2.3 Utilities . 15

3 CComparison.py 16

3.1 Class: CComparison . 16

3.1.1 Method: Compare . 16

4 CFile.py 18

4.1 Class: enFileStatiType . 18

4.2 Class: CFile . 18

4.2.1 Method: Close . 18

4.2.2 Method: Delete . 19

4.2.3 Method: Write . 19

4.2.4 Method: Append . 20

4.2.5 Method: ReadLines . 20

4.2.6 Method: GetFileInfo . 22

4.2.7 Method: CopyTo . 22

4.2.8 Method: MoveTo . 23

5 CFolder.py 24

5.1 Function: rm dir readonly . 24

5.2 Class: CFolder . 24

5.2.1 Method: Delete . 24

5.2.2 Method: Create . 25

5.2.3 Method: CopyTo . 25

6 CString.py 27

6.1 Class: CString . 27

6.1.1 Method: NormalizePath . 27

6.1.2 Method: DetectParentPath . 28

6.1.3 Method: StringFilter . 29

6.1.4 Method: FormatResult . 31

A

CONTENTS CONTENTS

7 CUtils.py 32

7.1 Function: PrettyPrint . 32

7.2 Class: CTypePrint . 33

7.2.1 Method: TypePrint . 33

7.3 Class: CUtils . 33

7.3.1 Method: GetInstalledPackages . 34

8 Appendix 35

9 History 36

B

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The PythonExtensionsCollection extends the functionality of Python by some useful functions that are not avail-
able in Python immediately.

This covers for example file and folder operations, string operations like normalizing a path and a pretty print method.

The PythonExtensionsCollection contains several Python modules and every module has to be imported sepa-
rately in case of the functions inside are needed.

The sources of the PythonExtensionsCollection are available in GitHub.

Informations about how to install the PythonExtensionsCollection can be found in the README.

1

https://github.com/test-fullautomation/python-extensions-collection
https://github.com/test-fullautomation/python-extensions-collection/blob/develop/README.rst

CHAPTER 2. DESCRIPTION

Chapter 2

Description

2.1 Modules

The PythonExtensionsCollection contains the following modules:

1. CComparison

Compare two text files based on regular expressions.
Import: from PythonExtensionsCollection.Comparison.CComparison import CComparison

2. CFile

File operations like read, write, copy, move, ...
Import: from PythonExtensionsCollection.File.CFile import CFile

3. CFolder

Folder operations like create, delete, copy, ...
Import: from PythonExtensionsCollection.Folder.CFolder import CFolder

4. CString

String operations like normalize a path, string filter, format results, ...
Import: from PythonExtensionsCollection.String.CString import CString

5. CUtils

Pretty print of Python data types
Import: from PythonExtensionsCollection.Utils.CUtils import CTypePrint

2.2 Methods

Additionally to the interface descriptions in the second part of this document this section contains a more detailed
description of some assorted methods together with examples how to use.

2.2.1 String operations with CString

NormalizePath

It’s not easy to handle paths - and especially the path separators - independent from the operating system.

Under Linux it is obvious that single slashes are used as separator within paths. Whereas the Windows explorer uses
single backslashes. In both operating systems web addresses contains single slashes as separator when displayed in
web browsers.

Using single backslashes within code - as content of string variables - is dangerous because the combination of a
backslash and a letter can be interpreted as escape sequence - and this is maybe not the effect a user wants to have.

To avoid unwanted escape sequences backslashes have to be masked (by the usage of two of them: "\\"). But
also this could not be the best solution because there are also applications (like the Windows explorer) that are not
able to handle masked backslashes. They expect to get single backslashes within a path.

Preparing a path for best usage within code also includes collapsing redundant separators and up-level references.
Python already provides functions to do this, but the outcome (path contains slashes or backslashes) depends on the

2

CHAPTER 2. DESCRIPTION 2.2. METHODS

operating system. And like already mentioned above also under Windows backslashes might not be the preferred
choice.

It also has to be considered that redundant separators at the beginning of an address of a local network resource
(like \\server.com) and or inside an internet address (like https:\\server.com) must not be collapsed!

Unfortunately the Python function normpath does not consider this context.

To give the user full control about the format of a path, independent from the operating system and independent if
it’s a local path, a path to a local network resource or an internet address, the method NormalizePath() provides
lot’s of parameters to influence the result.

Example 1 (file system path)

path = r"C:\\subfolder1///../subfolder2\\\\../subfolder3\\"
path = CString.NormalizePath(path)
print(path)

Result (output contains slashes)

C:/subfolder3

Example 2 (file system path)

path = r"C:\\subfolder1///../subfolder2\\\\../subfolder3\\"
path = CString.NormalizePath(path, bWin=True)
print(path)

Result (output contains masked backslashes)

C:\\subfolder3

Example 3 (path of a local network resource)

path = r"\\anyserver.com\\part1//part2\\\\part3/part4"
path = CString.NormalizePath(path)
print(path)

Result

//anyserver.com/part1/part2/part3/part4

Example 4 (internet address)

path = r"http:\\anyserver.com\\part1//part2\\\\part3/part4"
path = CString.NormalizePath(path)
print(path)

Result

http://anyserver.com/part1/part2/part3/part4

3

CHAPTER 2. DESCRIPTION 2.2. METHODS

DetectParentPath

The method DetectParentPath computes the path to any parent folder inside a given path. Optionally
DetectParentPath is able to search for files inside the identified parent folder.

In the following examples we assume to have the following file system structure:

D:\pathtest\ABC\DEF\GHI\FILE.txt
D:\pathtest\ABC\FILE.txt
D:\pathtest\RST\UVW\XYZ\FILE.txt

We are inside folder GHI and want to know the path to folder ABC .

Python code

sStartPath = r"D:\pathtest\ABC\DEF\GHI"
sFolderName = "ABC"
sDestPath, listDestPaths, sDestFile, listDestFiles, sDestPathParent = ←↩

↪→ CString.DetectParentPath(sStartPath, sFolderName)
print(f"sDestPath = {sDestPath}")
print(f"listDestPaths = {listDestPaths}")
print(f"sDestFile = {sDestFile}")
print(f"listDestFiles = {listDestFiles}")
print(f"sDestPathParent = {sDestPathParent}")

Outcome

sDestPath = D:/pathtest/ABC
listDestPaths = ['D:/pathtest/ABC']
sDestFile = None
listDestFiles = None
sDestPathParent = D:/pathtest

sDestPath contains the path to sFolderName within sStartPath . sDestPathParent contains the path to
the parent folder of sDestPath . The meaning of the remaining return parameter are handled in the next examples.

It is possible to search for several folders.

We are inside folder GHI and want to know the path to folders ABC and DEF .

sStartPath = r"D:\pathtest\ABC\DEF\GHI"
sFolderName = "ABC;DEF"
sDestPath, listDestPaths, sDestFile, listDestFiles, sDestPathParent = ←↩

↪→ CString.DetectParentPath(sStartPath, sFolderName)

Outcome

sDestPath = D:/pathtest/ABC/DEF
listDestPaths = ['D:/pathtest/ABC/DEF', 'D:/pathtest/ABC']
sDestFile = None
listDestFiles = None
sDestPathParent = D:/pathtest/ABC

sFolderName is a semicolon separated list of folder names. Accordingly to this list of folder names listDestPaths

contains the paths to these folders. DetectParentPath searches in the path from right to left (from bottom level

up to top level). Therefore the folder DEF is the first one who is found. The order of elements in listDestPaths

is not synchronized with the order of folder names in sFolderName ! In every case sDestPath contains the first
element in the list. sDestPathParent contains the path to the parent folder of sDestPath .

It is possible to search for a file.

We are inside folder GHI and want to know the path to folder DEF and within this folder we want to know the
path to file FILE.txt .

sStartPath = r"D:\pathtest\ABC\DEF\GHI"
sFolderName = "DEF"
sFileName = "FILE.txt"
sDestPath, listDestPaths, sDestFile, listDestFiles, sDestPathParent = ←↩

↪→ CString.DetectParentPath(sStartPath, sFolderName, sFileName)

4

CHAPTER 2. DESCRIPTION 2.2. METHODS

Outcome

sDestPath = D:/pathtest/ABC/DEF
listDestPaths = ['D:/pathtest/ABC/DEF']
sDestFile = D:/pathtest/ABC/DEF/GHI/FILE.txt
listDestFiles = ['D:/pathtest/ABC/DEF/GHI/FILE.txt']
sDestPathParent = D:/pathtest/ABC

listDestPaths contains a list of all paths to sFolderName within sStartPath . sDestPath contains the

first element of listDestPaths . listDestFiles contains a list of all files with name sFileName found

within listDestPaths . sDestFile contains the first element of listDestFiles .

A semicolon separated list of file names in sFileName (like for sFolderName) is not supported.

Providing more than one folder together with a file name may cause overlapping results. But listDestFiles will
not contain any redundant paths to files.

sStartPath = r"D:\pathtest\ABC\DEF\GHI"
sFolderName = "ABC;DEF"
sFileName = "FILE.txt"
sDestPath, listDestPaths, sDestFile, listDestFiles, sDestPathParent = ←↩

↪→ CString.DetectParentPath(sStartPath, sFolderName, sFileName)

Outcome

sDestPath = D:/pathtest/ABC/DEF
listDestPaths = ['D:/pathtest/ABC/DEF', 'D:/pathtest/ABC']
sDestFile = D:/pathtest/ABC/DEF/GHI/FILE.txt
listDestFiles = ['D:/pathtest/ABC/DEF/GHI/FILE.txt', 'D:/pathtest/ABC/FILE.txt']
sDestPathParent = D:/pathtest/ABC

In the last example we go one further level up (pathtest). Because of the file search is recursive, also files in
parallel trees are found now.

sStartPath = r"D:\pathtest\ABC\DEF\GHI"
sFolderName = "pathtest"
sFileName = "FILE.txt"
sDestPath, listDestPaths, sDestFile, listDestFiles, sDestPathParent = ←↩

↪→ CString.DetectParentPath(sStartPath, sFolderName, sFileName)

Outcome

sDestPath = D:/pathtest
listDestPaths = ['D:/pathtest']
sDestFile = D:/pathtest/ABC/DEF/GHI/FILE.txt
listDestFiles = ['D:/pathtest/ABC/DEF/GHI/FILE.txt', 'D:/pathtest/ABC/FILE.txt', ←↩

↪→ 'D:/pathtest/RST/UVW/XYZ/FILE.txt']
sDestPathParent = D:/

5

CHAPTER 2. DESCRIPTION 2.2. METHODS

StringFilter

During the computation of strings there might occur the need to get to know if this string fulfils certain criteria or
not. Such a criterion can e.g. be that the string contains a certain substring. Also an inverse logic might be required:
In this case the criterion is that the string does not contain this substring.

It might also be required to combine several criteria to a final conclusion if in total the criterion for a string is
fulfilled or not. For example: The string must start with the string prefix and must also contain either the string
substring1 or the string substring2 but must also not end with the string suffix.

This method provides a bunch of predefined filters that can be used singly or combined to come to a final conclusion
if the string fulfils all criteria or not.

These filters can be e.g. used to select or exclude lines while reading from a text file. Or they can be used to select
or exclude files or folders while walking through the file system. The filters are divided into three different types:

1. Filters that are interpreted as raw strings (called ’standard filters’; no wild cards supported)

2. Filters that are interpreted as regular expressions (called ’regular expression based filters’; the syntax of regular
expressions has to be considered)

3. Boolean switches (e.g. indicating if also an empty string is accepted or not)

The input string might contain leading and trailing blanks and tabs. This kind of horizontal space is removed from
the input string before the standard filters start their work (except the regular expression based filters).

The regular expression based filters consider the original input string (including the leading and trailing space).

The outcome is that in case of the leading and trailing space shall be part of the criterion, the regular expression
based filters can be used only.

It is possible to decide if the standard filters shall work case sensitive or not. This decision has no effect on the regular
expression based filters.

The regular expression based filters always work with the original input string that is not modified in any way.

Except the regular expression based filters it is possible to provide more than one string for every standard filter (must
be a semikolon separated list in this case). A semicolon that shall be part of the search string, has to be masked in
this way: "\;" .

This method returns a boolean value that is True in case of all criteria are fulfilled, and False in case of some
or all of them are not fulfilled.

The default value for all filters is None (except bSkipBlankStrings). In case of a filter value is None this
filter has no influence on the result.

In case of all filters are None (default) the return value is True (except the string itself is None or the string

is empty and bSkipBlankStrings is True).

In case of the string is None , the return value is False , because nothing concrete can be done with None

strings.

Internally every filter has his own individual acknowledge that indicates if the criterion of this filter is fulfilled or not.

The meaning of criterion fulfilled of a filter is that the filter supports the final return value bAck of this method
with True .

The final return value bAck of this method is a logical join (AND) of all individual acknowledges (except

bSkipBlankStrings and sComment ; in case of their criteria are fulfilled, immediately False is returned).

Summarized:

� Filters are used to define criteria

� The return value of this method provides the conclusion - indicating if all criteria are fulfilled or not

All available filters are described in more detail in the interface description of StringFilter . Here we continue
with some code examples.

6

CHAPTER 2. DESCRIPTION 2.2. METHODS

Example 1

sString has to start with sStartsWith and has to contain sContains .

That’s true. Therefore StringFilter returns True .

StringFilter(sString = "Speed is 25 beats per minute",
bCaseSensitive = True,
bSkipBlankStrings = True,
sComment = None,
sStartsWith = "Sp",
sEndsWith = None,
sStartsNotWith = None,
sEndsNotWith = None,
sContains = "beats",
sContainsNot = None,
sInclRegEx = None,
sExclRegEx = None)

Example 2

sString must not end with sEndsNotWith . But does. Therefore StringFilter returns False - even in
case of other criterions are fulfilled.

StringFilter(sString = "Speed is 25 beats per minute",
bCaseSensitive = True,
bSkipBlankStrings = True,
sComment = None,
sStartsWith = "Sp",
sEndsWith = None,
sStartsNotWith = None,
sEndsNotWith = "minute",
sContains = "beats",
sContainsNot = None,
sInclRegEx = None,
sExclRegEx = None)

Example 3

sString must not contain sContainsNot . Because bCaseSensitive is True the spelling does not fit.

Therefore StringFilter returns True .

StringFilter(sString = "Speed is 25 beats per minute",
bCaseSensitive = True,
bSkipBlankStrings = True,
sComment = None,
sStartsWith = None,
sEndsWith = None,
sStartsNotWith = None,
sEndsNotWith = None,
sContains = None,
sContainsNot = "Beats",
sInclRegEx = None,
sExclRegEx = None)

7

CHAPTER 2. DESCRIPTION 2.2. METHODS

Example 4

sString must contain exactly two digits (postulated by regular expression based sInclRegEx). That’s true.

Therefore StringFilter returns True .

StringFilter(sString = "Speed is 25 beats per minute",
bCaseSensitive = True,
bSkipBlankStrings = True,
sComment = None,
sStartsWith = None,
sEndsWith = None,
sStartsNotWith = None,
sEndsNotWith = None,
sContains = None,
sContainsNot = None,
sInclRegEx = r"\d{2}",
sExclRegEx = None)

Example 5

sString must contain exactly three digits (postulated by regular expression based sInclRegEx). That’s not

true. Therefore StringFilter returns False - even in case of other criterions are fulfilled.

StringFilter(sString = "Speed is 25 beats per minute",
bCaseSensitive = True,
bSkipBlankStrings = True,
sComment = None,
sStartsWith = "Speed",
sEndsWith = None,
sStartsNotWith = None,
sEndsNotWith = None,
sContains = None,
sContainsNot = None,
sInclRegEx = r"\d{3}",
sExclRegEx = None)

Example 6

Leading and trailing spaces are removed from the input string sString at the beginning. In this example the

result is an empty input string. bSkipBlankStrings is set to True . In this case StringFilter immediately

returns False and all other filters are ignored.

StringFilter(sString = " ",
bCaseSensitive = True,
bSkipBlankStrings = True,
sComment = None,
sStartsWith = None,
sEndsWith = None,
sStartsNotWith = None,
sEndsNotWith = None,
sContains = None,
sContainsNot = None,
sInclRegEx = None,
sExclRegEx = None)

8

CHAPTER 2. DESCRIPTION 2.2. METHODS

Example 7

The input string sString starts with a character that is defined to be a comment character (sComment).

Therefore StringFilter immediately returns False and all other filters are ignored.

StringFilter(sString = "# Speed is 25 beats per minute",
bCaseSensitive = True,
bSkipBlankStrings = True,
sComment = "#",
sStartsWith = None,
sEndsWith = None,
sStartsNotWith = None,
sEndsNotWith = None,
sContains = "beats",
sContainsNot = None,
sInclRegEx = None,
sExclRegEx = None)

Example 8

Blanks around search strings (here sContains is " Alpha ") are considered, whereas the blanks around the

input string are removed before computation. Therefore " Alpha " cannot be found within the (shortened)

input string and StringFilter returns False .

StringFilter(sString = " Alpha is not beta; and beta is not gamma ",
bCaseSensitive = True,
bSkipBlankStrings = True,
sComment = None,
sStartsWith = None,
sEndsWith = None,
sStartsNotWith = None,
sEndsNotWith = None,
sContains = " Alpha ",
sContainsNot = None,
sInclRegEx = None,
sExclRegEx = None)

Example 9

In case of blanks around search strings have to be considered, a regular expression based filter has to be used (here
sInclRegEx).

This is possible because the regular expression based filters sInclRegEx and sExclRegEx work with the

original value of sString , and not with the shortened version with leading and trailing blanks removed! The
shortened version is applied to standard filters only.

In this example StringFilter returns True .

StringFilter(sString = " Alpha is not beta; and beta is not gamma ",
bCaseSensitive = True,
bSkipBlankStrings = True,
sComment = None,
sStartsWith = None,
sEndsWith = None,
sStartsNotWith = None,
sEndsNotWith = None,
sContains = None,
sContainsNot = None,
sInclRegEx = r"\s{3}Alpha",
sExclRegEx = None)

9

CHAPTER 2. DESCRIPTION 2.2. METHODS

Example 10

The meaning of "beta; and" in this example is: The criterion is fulfilled in case of either "beta" or " and"

can be found. That’s true - but this has nothing to do with the fact, that also this string "beta; and" can be
found. The semikolon is a separator character and therefore part of the syntax.

Nevertheless StringFilter returns True .

StringFilter(sString = "Alpha is not beta; and beta is not gamma",
bCaseSensitive = True,
bSkipBlankStrings = True,
sComment = None,
sStartsWith = None,
sEndsWith = None,
sStartsNotWith = None,
sEndsNotWith = None,
sContains = "beta; and",
sContainsNot = None,
sInclRegEx = None,
sExclRegEx = None)

Example 11

In this example the semicolon is masked with "\;" and therefore part of the search string sContains - and not
part of the syntax any more.

The meaning of "beta\; not" in this example is: The criterion is fulfilled in case of "beta; not" can be

found. That’s not True . Therefore StringFilter returns False .

StringFilter(sString = "Alpha is not beta; and beta is not gamma",
bCaseSensitive = True,
bSkipBlankStrings = True,
sComment = None,
sStartsWith = None,
sEndsWith = None,
sStartsNotWith = None,
sEndsNotWith = None,
sContains = r"beta\; not",
sContainsNot = None,
sInclRegEx = None,
sExclRegEx = None)

10

CHAPTER 2. DESCRIPTION 2.2. METHODS

2.2.2 File access with CFile

The motivation for the CFile module contains two main topics:

1. Extended user control by introducing further parameter for file access functions. With high priority CFile

enables the user to take care about that nothing existing is overwritten accidently.

2. Hide the file handles und use the mechanism of class variables to avoid access violations independent from the
way different operation systems like Windows and Unix are handling this.

This shortens the code, eases the implementation and makes tests (in which this module is used) more stable.

Examples

Define two variables with path and name of test files.

Under Windows:

sFile_1 = r"%TMP%\CFile_TestFile_1.txt"
sFile_2 = r"%TMP%\CFile_TestFile_2.txt"

Or under Linux:

sFile_1 = r"/tmp/CFile_TestFile_1.txt"
sFile_2 = r"/tmp/CFile_TestFile_2.txt"

The first class instance:

oFile_1 = CFile(sFile_1)

oFile_1 is the instance of a class - and not the file handle. The file handle is hidden, the user has nothing to do
with it.

Every class instance can work with one single file only (during the complete instance lifetime) and has exclusive access
to this file.

No other class instance is allowed to use this file. Therefore the second line in the following code throws an exception:

oFile_1_A = CFile(sFile_1)
oFile_1_B = CFile(sFile_1)

It’s more save to implement in this way:

try:
oFile_1 = CFile(sFile_1)

except Exception as reason:
print(str(reason))

For writing content to files two methods are available: Write() and Append() .

� Using Write() causes the class to open the file for writing (w) - in case of the file is not already opened
for writing.

� Using Append() causes the class to open the file for appending (a) - in case of the file is not already
opened for appending.

Switching between Write() and Append() causes an intermediate file handle close() internally!

Write some content to file:

bSuccess, sResult = oFile_1.Write("A B C")
print(f"sResult oFile_1.Write : '{sResult}' / bSuccess : {bSuccess}")

Most of the functions return at least bSuccess and sResult .

� bSuccess is True in case of no error occurred.

11

CHAPTER 2. DESCRIPTION 2.2. METHODS

� bSuccess is False in case of an error occurred.

� bSuccess is None in case of a very fatal error occurred - like an exception.

� sResult contains details about what happens during computation.

It is possible now to continue with using oFile_1.Write("...") ; the content will be appended - as long as the
file is still open for writing.

Some functions close the file handle (e.g. ReadLines()). Therefore sequences like

oFile_1.Write("...")
oFile_1.ReadLines("...")
oFile_1.Write("...")

should be avoided - because Write() after ReadLines() starts the file from scratch and the file content written

by the previous Write() calls is lost.

For appending content to a file use the function Append() .

Append content to file:

bSuccess, sResult = oFile_1.Append("A B C")

For reading content from a file use the function ReadLines() .

Read from file:

listLines_1, bSuccess, sResult = oFile_1.ReadLines()
for sLine in listLines_1:

print(f"{sLine}")

Additionally to bSuccess and sResult the function returnes a list of lines.

Internally ReadLines() takes care about:

� Closing the file - in case the file is still opened

� Opening the file for reading

� Reading the content line by line until the end of file is reached

� Closing the file

To avoid code like this

for sLine in listLines_1:
print(f"{sLine}")

it is also possible to let ReadLines() do this:

listLines_1, bSuccess, sResult = oFile_1.ReadLines(bToScreen=True)

A function to read only a single line from a file is not available, but it is possible to use some filter parameter
of ReadLines() to reduce the amount of content already during the file is read. This prevents the user from
implementing further loops.

Internally ReadLines() uses the string filter method StringFilter() . All filter related input parameter of

ReadLines() and StringFilter() are the same.

Let’s assume the following:

� The file sFile_1 contains empty lines

� The file sFile_1 contains also lines, that are commented out (with a hash (#) at the beginning)

� We want ReadLines() to skip empty lines and lines that are commented out

12

CHAPTER 2. DESCRIPTION 2.2. METHODS

This can be imlemented in the following way.

Read a subset of file content:

listLines_1, bSuccess, sResult = oFile_1.ReadLines(bSkipBlankLines=True,
sComment='#')

It is a good practice to close file handles as soon as possible. Therefore CFile provides the possibility to do this
explicitely.

Close a file handle:

bSuccess, sResult = oFile_1.Close()

This makes sense in case of later again access to this file is needed (the class object oFile_1 still exists).

Additionally to that the file handle is closed implicitely:

� in case of it is required (e.g. when switching between read and write access),

� in case of the class instance is destoyed.

Therefore an alternative to the Close() function is the deletion of the class instance:

del oFile_1

This makes sense in case of access to this file is not needed any more (therefore we also do not need the class object
any more).

It is recommended to prefer del (instead of Close()) to avoid to keep too much not used objects for a too long
length of time in memory.

A file can be copied to another file.

Copy a file:

bSuccess, sResult = oFile_1.CopyTo(sFile_2)

The destination (sFile_2 in the example above) can either be a full path and name of a file or the path only.

It makes a difference if the destination file exists or not. The optional parameter bOverwrite controls the behavior
of CopyTo() .

The default is that it is not allowed to overwrite an existing destination file: bOverwrite is False . CopyTo()

returns bSuccess = False in this case.

In case the user want to allow CopyTo() to overwrite existing destination files, it has to be coded explicitely:

bSuccess, sResult = oFile_1.CopyTo(sFile_2, bOverwrite=True)

A file can be moved to another file.

Move a file:

bSuccess, sResult = oFile_1.MoveTo(sFile_2)

Also MoveTo() supports bOverwrite . The behavior is the same as CopyTo() .

A file can be deleted.

Delete a file:

bSuccess, sResult = oFile_1.Delete()

It is possible to distinguish between two different motivations to delete a file:

1. Explicitely do a deletion
This requires that the file to be deleted, does exist.

2. Making sure only that the files does not exist
In this case it doesn’t matter that maybe there is nothing to delete because the file already does not exist.

13

CHAPTER 2. DESCRIPTION 2.2. METHODS

The optional parameter bConfirmDelete controls this behavior.

Default is that Delete() requires an existing file to delete:

bSuccess, sResult = oFile_1.Delete(bConfirmDelete=True)

In case of the file does not exist, Delete() returns bSuccess = False .

Delete() also returns bSuccess = False|None in case of an existing file cannot be deleted (e.g. because of an

access violation).

If it doesn’t matter it the file exists or not, it has to be coded explicitely:

bSuccess, sResult = oFile_1.Delete(bConfirmDelete=False)

In this case Delete() only returns bSuccess = False|None in case of an existing file cannot be deleted (e.g.

because of an access violation).

Avoid access violations

Like already mentioned above every instance of CFile has an exclusive access to it’s own file.

Only in case of CopyTo() and MoveTo() other files are involved: the destination files.

To avoid access violations it is not possible to copy or move a file to another file, that is under access of another
instance of CFile .

In the following example oFile_1.CopyTo(sFile_2) returns bSuccess = False because sFile_2 is already

in access by oFile_2 .

oFile_1 = CFile(sFile_1)
bSuccess, sResult = oFile_1.Write("A B C")

oFile_2 = CFile(sFile_2)
listLines_2, bSuccess, sResult = oFile_2.ReadLines()

bSuccess, sResult = oFile_1.CopyTo(sFile_2)

del oFile_1
del oFile_2

The solution is to delete the class instances as early as possible.

In the following example the copying is successful:

oFile_1 = CFile(sFile_1)
bSuccess, sResult = oFile_1.Write("A B C")

oFile_2 = CFile(sFile_2)
listLines_2, bSuccess, sResult = oFile_2.ReadLines()
del oFile_2

bSuccess, sResult = oFile_1.CopyTo(sFile_2)
del oFile_1

14

CHAPTER 2. DESCRIPTION 2.2. METHODS

2.2.3 Utilities

PrettyPrint

The idea behind the PrettyPrint() function is to resolve the content of composite data types and provide for
every parameter inside:

� the type

� the total number of elements inside (e.g. the number of keys inside a dictionary)

� the counter number of the current element

� the value

Example

The following Python code defines a composite data type and prints the content with PrettyPrint() :

dictTest = {'K1' : 'value',
'K2' : ["A", 22, True, (33, 'XYZ')],
'K3' : 10,
'K4' : {'A' : 1,

'B' : 2}}

PrettyPrint(dictTest)

Result

[DICT] (4/1) > {K1} [STR] : 'value'
[DICT] (4/2) > {K2} [LIST] (4/1) > [STR] : 'A'
[DICT] (4/2) > {K2} [LIST] (4/2) > [INT] : 22
[DICT] (4/2) > {K2} [LIST] (4/3) > [BOOL] : True
[DICT] (4/2) > {K2} [LIST] (4/4) > [TUPLE] (2/1) > [INT] : 33
[DICT] (4/2) > {K2} [LIST] (4/4) > [TUPLE] (2/2) > [STR] : 'XYZ'
[DICT] (4/3) > {K3} [INT] : 10
[DICT] (4/4) > {K4} [DICT] (2/1) > {A} [INT] : 1
[DICT] (4/4) > {K4} [DICT] (2/2) > {B} [INT] : 2

Every line of output has to be interpreted strictly from left to right.

For example the meaning of the fifth line of output

[DICT] (4/2) > {K2} [LIST] (4/4) > [TUPLE] (2/1) > [INT] : 33

is:

� The type of input parameter oData is dict

� The dictionary contains 4 keys

� The current line gives information about the second key of the dictionary

� The name of the second key is K2

� The value of the second key is of type list

� The list contains 4 elements

� The current line gives information about the fourth element of the list

� The fourth element of the list is of type tuple

� The tuple contains 2 elements

� The current line gives information about the first element of the tuple

� The first element of the tuple is of type int and has the value 33

Types are encapsulated in square brackets, counter in round brackets and key names are encapsulated in curly brackets.

15

CHAPTER 3. CCOMPARISON.PY

Chapter 3

CComparison.py

3.1 Class: CComparison

Imported by :

from PythonExtensionsCollection.Comparison.CComparison import CComparison

The class CComparison contains mechanisms to compare two files either based on the original version of these files
or based on an extract (made with regular expressions) to ensure that only relevant parts of the files are compared.

3.1.1 Method: Compare

Compares two files. While reading in all files empty lines are skipped.

Arguments:

� sFile 1

/ Condition: required / Type: str /

First file used for comparison.

� sFile 2

/ Condition: required / Type: str /

Second file used for comparison.

� sPatternFile

/ Condition: optional / Type: str / Default : None /

Pattern file containing a set of regular expressions (line by line). The regular expressions are used to make an
extract of both input files. In this case the extracts are compared (instead of the original file content).

� sIgnorePatternFile

/ Condition: optional / Type: str / Default : None /

Pattern file containing a set of strings (not regular expressuions; line by line). Every line containing one of the
strings, is skipped.

Returns:

� bIdentical

/ Type: bool /

Indicates if the two input files (or their extracts) have the same content or not.

� bSuccess

/ Type: bool /

Indicates if the computation of the method was successful or not.

16

CHAPTER 3. CCOMPARISON.PY 3.1. CLASS: CCOMPARISON

� sResult

/ Type: str /

The result of the computation of the method.

17

CHAPTER 4. CFILE.PY

Chapter 4

CFile.py

4.1 Class: enFileStatiType

Imported by :

from PythonExtensionsCollection.File.CFile import enFileStatiType

The class enFileStatiType defines the sollowing file states:

� closed

� openedforwriting

� openedforappending

� openedforreading

4.2 Class: CFile

Imported by :

from PythonExtensionsCollection.File.CFile import CFile

The class CFile provides a small set of file functions with extended parametrization (like switches defining if a file
is allowed to be overwritten or not).

Most of the functions at least returns bSuccess and sResult.

� bSuccess is True in case of no error occurred.

� bSuccess is False in case of an error occurred.

� bSuccess is None in case of a very fatal error occurred (exceptions).

� sResult contains details about what happens during computation.

Every instance of CFile handles one single file only and forces exclusive access to this file.

It is not possible to create an instance of this class with a file that is already in use by another instance.

It is also not possible to use CopyTo or MoveTo to overwrite files that are already in use by another instance. This
makes the file handling more save against access violations.

4.2.1 Method: Close

Closes the opened file.

Arguments:

(no args)

Returns:

18

CHAPTER 4. CFILE.PY 4.2. CLASS: CFILE

� bSuccess

/ Type: bool /

Indicates if the computation of the method was successful or not.

� sResult

/ Type: str /

The result of the computation of the method.

4.2.2 Method: Delete

Deletes the current file.

Arguments:

� bConfirmDelete

/ Condition: optional / Type: bool / Default : True /

Defines if it will be handled as error if the file does not exist.

If True: If the file does not exist, the method indicates an error (bSuccess = False).

If False: It doesn’t matter if the file exists or not.

Returns:

� bSuccess

/ Type: bool /

Indicates if the computation of the method was successful or not.

� sResult

/ Type: str /

The result of the computation of the method.

4.2.3 Method: Write

Writes the content of a variable Content to file.

Arguments:

� Content

/ Condition: required / Type: one of: str, list, tuple, set, dict, dotdict /

If Content is not a string, the Write method resolves the data structure before writing the content to file.

� nVSpaceAfter

/ Condition: optional / Type: int / Default : 0 /

Adds vertical space nVSpaceAfter (= number of blank lines) after Content.

� sPrefix

/ Condition: optional / Type: str / Default : None /

sPrefix is added to every line of output (in case of sPrefix is not None‘).

� bToScreen

/ Condition: optional / Type: bool / Default : False /

Prints Content also to screen (in case of bToScreen is True).

Returns:

� bSuccess

/ Type: bool /

Indicates if the computation of the method was successful or not.

� sResult

/ Type: str /

The result of the computation of the method.

19

CHAPTER 4. CFILE.PY 4.2. CLASS: CFILE

4.2.4 Method: Append

Appends the content of a variable Content to file.

Arguments:

� Content

/ Condition: required / Type: one of: str, list, tuple, set, dict, dotdict /

If Content is not a string, the Write method resolves the data structure before writing the content to file.

� nVSpaceAfter

/ Condition: optional / Type: int / Default : 0 /

Adds vertical space nVSpaceAfter (= number of blank lines) after Content.

� sPrefix

/ Condition: optional / Type: str / Default : None /

sPrefix is added to every line of output (in case of sPrefix is not None‘).

� bToScreen

/ Condition: optional / Type: bool / Default : False /

Prints Content also to screen (in case of bToScreen is True).

Returns:

� bSuccess

/ Type: bool /

Indicates if the computation of the method was successful or not.

� sResult

/ Type: str /

The result of the computation of the method.

4.2.5 Method: ReadLines

Reads content from current file. Returns an array of lines together with bSuccess and sResult (feedback).

The method takes care of opening and closing the file. The complete file content is read by ReadLines in one step,
but with the help of further parameters it is possible to reduce the content by including and excluding lines.

Internally ReadLines uses the string filter method StringFilter. All filter related input parameter of ReadLines
and StringFilter are the same.

The logical join of all filter is: AND.

Arguments:

� bCaseSensitive

/ Condition: optional / Type: bool / Default : True /

– If True, the standard filters work case sensitive, otherwise not.

– This has no effect to the regular expression based filters sInclRegEx and sExclRegEx.

� bSkipBlankLines

/ Condition: optional / Type: bool / Default : False /

If True, blank lines will be skipped, otherwise not.

� sComment

/ Condition: optional / Type: str / Default : None /

In case of a line starts with the string sComment, this line is skipped.

20

CHAPTER 4. CFILE.PY 4.2. CLASS: CFILE

� sStartsWith

/ Condition: optional / Type: str / Default : None /

– The criterion of this filter is fulfilled in case of the input string starts with the string sStartsWith

– More than one string can be provided (semicolon separated; logical join: OR)

� sEndsWith

/ Condition: optional / Type: str / Default : None /

– The criterion of this filter is fulfilled in case of the input string ends with the string sEndsWith

– More than one string can be provided (semicolon separated; logical join: OR)

� sStartsNotWith

/ Condition: optional / Type: str / Default : None /

– The criterion of this filter is fulfilled in case of the input string starts not with the string sStartsNotWith

– More than one string can be provided (semicolon separated; logical join: AND)

� sEndsNotWith

/ Condition: optional / Type: str / Default : None /

– The criterion of this filter is fulfilled in case of the input string ends not with the string sEndsNotWith

– More than one string can be provided (semicolon separated; logical join: AND)

� sContains

/ Condition: optional / Type: str / Default : None /

– The criterion of this filter is fulfilled in case of the input string contains the string sContains at any
position

– More than one string can be provided (semicolon separated; logical join: OR)

� sContainsNot

/ Condition: optional / Type: str / Default : None /

– The criterion of this filter is fulfilled in case of the input string does not contain the string sContainsNot
at any position

– More than one string can be provided (semicolon separated; logical join: AND)

� sInclRegEx

/ Condition: optional / Type: str / Default : None /

– Include filter based on regular expressions (consider the syntax of regular expressions!)

– The criterion of this filter is fulfilled in case of the regular expression sInclRegEx matches the input
string

– Leading and trailing blanks within the input string are considered

– bCaseSensitive has no effect

– A semicolon separated list of several regular expressions is not supported

� sExclRegEx

/ Condition: optional / Type: str / Default : None /

– Exclude filter based on regular expressions (consider the syntax of regular expressions!)

– The criterion of this filter is fulfilled in case of the regular expression sExclRegEx does not match the
input string

– Leading and trailing blanks within the input string are considered

– bCaseSensitive has no effect

– A semicolon separated list of several regular expressions is not supported

21

CHAPTER 4. CFILE.PY 4.2. CLASS: CFILE

� bLStrip

/ Condition: optional / Type: bool / Default : False /

If True, leading spaces are removed from line before the filters are used, otherwise not.

� bRStrip

/ Condition: optional / Type: bool / Default : True /

If True, trailing spaces are removed from line before the filters are used, otherwise not.

� bToScreen

/ Condition: optional / Type: bool / Default : False /

If True, the content read from file is also printed to screen, otherwise not.

4.2.6 Method: GetFileInfo

Returns the following informations about the file (encapsulated within a dictionary dFileInfo):

Returns:

� Key sFile

/ Type: str /

Path and name of current file

� Key bFileIsExisting

/ Type: bool /

True if file is existing, otherwise False

� Key sFileName

/ Type: str /

The name of the current file (incl. extension)

� Key sFileExtension

/ Type: str /

The extension of the current file

� Key sFileNameOnly

/ Type: str /

The pure name of the current file (without extension)

� Key sFilePath

/ Type: str /

The the path to current file

� Key bFilePathIsExisting

/ Type: bool /

True if file path is existing, otherwise False

4.2.7 Method: CopyTo

Copies the current file to sDestination, that can either be a path without file name or a path together with a file
name.

In case of the destination file already exists and bOverwrite is True, than the destination file will be overwritten.

In case of the destination file already exists and bOverwrite is False (default), than the destination file will not
be overwritten and CopyTo returns bSuccess = False.

Arguments:

22

CHAPTER 4. CFILE.PY 4.2. CLASS: CFILE

� sDestination

/ Condition: required / Type: string /

The path to destination file (either incl. file name or without file name)

� bOverwrite

/ Condition: optional / Type: bool / Default : False /

– In case of the destination file already exists and bOverwrite is True, than the destination file will be
overwritten.

– In case of the destination file already exists and bOverwrite is False (default), than the destination file
will not be overwritten and CopyTo returns bSuccess = False.

Returns:

� bSuccess

/ Type: bool /

Indicates if the computation of the method was successful or not.

� sResult

/ Type: str /

The result of the computation of the method.

4.2.8 Method: MoveTo

Moves the current file to sDestination, that can either be a path without file name or a path together with a file
name.

Arguments:

� sDestination

/ Condition: required / Type: string /

The path to destination file (either incl. file name or without file name)

� bOverwrite

/ Condition: optional / Type: bool / Default : False /

– In case of the destination file already exists and bOverwrite is True, than the destination file will be
overwritten.

– In case of the destination file already exists and bOverwrite is False (default), than the destination file
will not be overwritten and MoveTo returns bSuccess = False.

Returns:

� bSuccess

/ Type: bool /

Indicates if the computation was successful or not

� sResult

/ Type: str /

Contains details about what happens during computation

23

CHAPTER 5. CFOLDER.PY

Chapter 5

CFolder.py

5.1 Function: rm dir readonly

Calls os.chmod in case of shutil.rmtree (within Delete()) throws an exception (making files writable).

5.2 Class: CFolder

Imported by :

from PythonExtensionsCollection.Folder.CFolder import CFolder

The class CFolder provides a small set of folder functions with extended parametrization (like switches defining if a
folder is allowed to be overwritten or not).

Most of the functions at least returns bSuccess and sResult.

� bSuccess is True in case of no error occurred.

� bSuccess is False in case of an error occurred.

� bSuccess is None in case of a very fatal error occurred (exceptions).

� sResult contains details about what happens during computation.

Every instance of CFolder handles one single folder only and forces exclusive access to this folder.

It is not possible to create an instance of this class with a folder that is already in use by another instance.

The constructor of CFolder requires the input parameter sFolder, that is the path and the name of a folder that
is handled by the current class instance.

5.2.1 Method: Delete

Deletes the folder the current class instance contains.

Arguments:

� bConfirmDelete

/ Condition: optional / Type: bool / Default : True /

Defines if it will be handled as error if the folder does not exist.

If True: If the folder does not exist, the method indicates an error (bSuccess = False).

If False: It doesn’t matter if the folder exists or not.

Returns:

24

CHAPTER 5. CFOLDER.PY 5.2. CLASS: CFOLDER

� bSuccess

/ Type: bool /

Indicates if the computation of the method was successful or not.

� sResult

/ Type: str /

The result of the computation of the method.

5.2.2 Method: Create

Creates the current folder sFolder.

Arguments:

� bOverwrite

/ Condition: optional / Type: bool / Default : False /

– In case of the folder already exists and bOverwrite is True, than the folder will be deleted before creation.

– In case of the folder already exists and bOverwrite is False (default), than the folder will not be
touched.

In both cases the return value bSuccess is True - because the folder exists.

� bRecursive

/ Condition: optional / Type: bool / Default : False /

– In case of bRecursive is True, than the complete destination path will be created (including all inter-
mediate subfolders).

– In case of bRecursive is False, than it is expected that the parent folder of the new folder already
exists.

Returns:

� bSuccess

/ Type: bool /

Indicates if the computation of the method was successful or not.

� sResult

/ Type: str /

The result of the computation of the method.

5.2.3 Method: CopyTo

Copies the current folder to sDestination, that has to be a path to a folder within the source folder will be copied
to (with it’s original name),

In case of the destination folder already exists and bOverwrite is True, than the destination folder will be over-
written.

In case of the destination folder already exists and bOverwrite is False (default), than the destination folder will
not be overwritten and CopyTo returns bSuccess = False.

Arguments:

� sDestination

/ Condition: required / Type: string /

The path to destination folder

� bOverwrite

/ Condition: optional / Type: bool / Default : False /

25

CHAPTER 5. CFOLDER.PY 5.2. CLASS: CFOLDER

– In case of the destination folder already exists and bOverwrite is True, than the destination folder will
be overwritten.

– In case of the destination folder already exists and bOverwrite is False (default), than the destination
folder will not be overwritten and CopyTo returns bSuccess = False.

Returns:

� bSuccess

/ Type: bool /

Indicates if the computation of the method was successful or not.

� sResult

/ Type: str /

The result of the computation of the method.

26

CHAPTER 6. CSTRING.PY

Chapter 6

CString.py

6.1 Class: CString

Imported by :

from PythonExtensionsCollection.String.CString import CString

The class CString contains some string computation methods like e.g. normalizing a path.

6.1.1 Method: NormalizePath

Normalizes local paths, paths to local network resources and internet addresses

Arguments:

� sPath

/ Condition: required / Type: str /

The path to be normalized. Paths can start with environment variables. Accepted are notations for both
Windows (%ENVVAR%) and Linux (${ENVVAR}). Under Windows also the Linux notation will be resolved.

� bWin

/ Condition: optional / Type: bool / Default : False /

If True then returned path contains masked backslashes as separator, otherwise slashes

� sReferencePathAbs

/ Condition: optional / Type: str / Default : None /

In case of sPath is relative and sReferencePathAbs (expected to be absolute) is given, then the returned
absolute path is a join of both input paths

� bConsiderBlanks

/ Condition: optional / Type: bool / Default : False /

If True then the returned path is encapsulated in quotes - in case of the path contains blanks

� bExpandEnvVars

/ Condition: optional / Type: bool / Default : True /

If True then in the returned path environment variables are resolved, otherwise not.

� bMask

/ Condition: optional / Type: bool / Default : True (requires bWin=True)/

– If bWin is True and bMask is True then the returned path contains masked backslashes as separator.

– If bWin is True and bMask is False then the returned path contains single backslashes only - this might
be required for applications, that are not able to handle masked backslashes.

27

CHAPTER 6. CSTRING.PY 6.1. CLASS: CSTRING

– In case of bWin is False bMask has no effect.

Returns:

� sPath

/ Type: str /

The normalized path (is None in case of sPath is None)

6.1.2 Method: DetectParentPath

Computes the path to any parent folder inside a given path. Optionally DetectParentPath is able to search for files
inside the identified parent folder.

Arguments:

� sStartPath

/ Condition: required / Type: str /

The path in which to search for a parent folder

� sFolderName

/ Condition: required / Type: str /

The name of the folder to search for within sStartPath. It is possible to provide more than one folder name
separated by semicolon

� sFileName

/ Condition: optional / Type: str / Default : None /

The name of a file to search within the detected parent folder

Returns:

� sDestPath

/ Type: str /

Path and name of parent folder found inside sStartPath, None in case of sFolderName is not found
inside sStartPath. In case of more than one parent folder is found sDestPath contains the first result and
listDestPaths contains all results.

� listDestPaths

/ Type: list /

If sFolderName contains a single folder name this list contains only one element that is sDestPath. In case
of FolderName contains a semicolon separated list of several folder names this list contains all found paths of
the given folder names. listDestPaths is None (and not an empty list!) in case of sFolderName is not
found inside sStartPath.

� sDestFile

/ Type: str /

Path and name of sFileName, in case of sFileName is given and found inside listDestPaths. In case
of more than one file is found sDestFile contains the first result and listDestFiles contains all results.
sDestFile is None in case of sFileName is None and also in case of sFileName is not found inside
listDestPaths (and therefore also in case of sFolderName is not found inside sStartPath).

� listDestFiles

/ Type: list /

Contains all positions of sFileName found inside listDestPaths.

listDestFiles is None (and not an empty list!) in case of sFileName is None and also in case of
sFileName is not found inside listDestPaths (and therefore also in case of sFolderName is not found
inside sStartPath).

� sDestPathParent

/ Type: str /

The parent folder of sDestPath, None in case of sFolderName is not found inside sStartPath (sDestPath
is None).

28

CHAPTER 6. CSTRING.PY 6.1. CLASS: CSTRING

6.1.3 Method: StringFilter

This method provides a bunch of predefined filters that can be used singly or combined to come to a final conclusion
if the string fulfils all criteria or not.

These filters can be e.g. used to select or exclude lines while reading from a text file. Or they can be used to select
or exclude files or folders while walking through the file system.

The following filters are available:

bSkipBlankStrings

� Leading and trailing spaces are removed from the input string at the beginning

� In case of the result is an empty string and bSkipBlankStrings is True, the method immediately
returns False and all other filters are ignored

sComment

� In case of the input string starts with the string sComment, the method immediately returns False
and all other filters are ignored

� Leading blanks within the input string have no effect

� The decision also depends on bCaseSensitive

� The idea behind this decision is: Ignore a string that is commented out

sStartsWith

� The criterion of this filter is fulfilled in case of the input string starts with the string sStartsWith

� Leading blanks within the input string have no effect

� The decision also depends on bCaseSensitive

� More than one string can be provided (semicolon separated; logical join: OR)

sEndsWith

� The criterion of this filter is fulfilled in case of the input string ends with the string sEndsWith

� Trailing blanks within the input string have no effect

� The decision also depends on bCaseSensitive

� More than one string can be provided (semicolon separated; logical join: OR)

sStartsNotWith

� The criterion of this filter is fulfilled in case of the input string does not start with the string
sStartsNotWith

� Leading blanks within the input string have no effect

� The decision also depends on bCaseSensitive

� More than one string can be provided (semicolon separated; logical join: AND)

sEndsNotWith

� The criterion of this filter is fulfilled in case of the input string does not end with the string
sEndsNotWith

� Trailing blanks within the input string have no effect

� The decision also depends on bCaseSensitive

� More than one string can be provided (semicolon separated; logical join: AND)

sContains

� The criterion of this filter is fulfilled in case of the input string contains the string sContains at
any position

29

CHAPTER 6. CSTRING.PY 6.1. CLASS: CSTRING

� Leading and trailing blanks within the input string have no effect

� The decision also depends on bCaseSensitive

� More than one string can be provided (semicolon separated; logical join: OR)

sContainsNot

� The criterion of this filter is fulfilled in case of the input string does not contain the string
sContainsNot at any position

� Leading and trailing blanks within the input string have no effect

� The decision also depends on bCaseSensitive

� More than one string can be provided (semicolon separated; logical join: AND)

sInclRegEx

� Include filter based on regular expressions (consider the syntax of regular expressions!)

� The criterion of this filter is fulfilled in case of the regular expression sInclRegEx matches the input
string

� Leading and trailing blanks within the input string are considered

� bCaseSensitive has no effect

� A semicolon separated list of several regular expressions is not supported

sExclRegEx

� Exclude filter based on regular expressions (consider the syntax of regular expressions!)

� The criterion of this filter is fulfilled in case of the regular expression sExclRegEx does not match
the input string

� Leading and trailing blanks within the input string are considered

� bCaseSensitive has no effect

� A semicolon separated list of several regular expressions is not supported

Further arguments:

� sString

/ Condition: required / Type: str /

The input string that has to be investigated.

� bCaseSensitive

/ Condition: optional / Type: bool / Default : True /

If True, the standard filters work case sensitive, otherwise not.

� bDebug

/ Condition: optional / Type: bool / Default : False /

If True, additional output is printed to console (e.g. the decision of every single filter), otherwise not.

Returns:

� bAck

/ Type: bool /

Final statement about the input string sString after filter computation

Further details together with codde examples can be found within chapter Description, subsubsection StringFilter.

30

CHAPTER 6. CSTRING.PY 6.1. CLASS: CSTRING

6.1.4 Method: FormatResult

Formats the result string sResult depending on bSuccess:

� bSuccess is True indicates success

� bSuccess is False indicates an error

� bSuccess is None indicates an exception

Additionally the name of the method that causes the result, can be provided (optional). This is useful for debugging.

Arguments:

� sMethod

/ Condition: optional / Type: str / Default : (empty string) /

Name of the method that causes the result.

� bSuccess

/ Condition: optional / Type: bool / Default : True /

Indicates if the computation of the method sMethod was successful or not.

� sResult

/ Condition: optional / Type: str / Default : (empty string) /

The result of the computation of the method sMethod.

Returns:

� sResult

/ Type: str /

The formatted result string.

31

CHAPTER 7. CUTILS.PY

Chapter 7

CUtils.py

7.1 Function: PrettyPrint

Wrapper function to create and use a CTypePrint object. This wrapper function is responsible for printing out the
content to console and to a file (depending on input parameter).

The content itself is prepared by the method TypePrint of class CTypePrint. This happens PrettyPrint
internally.

The idea behind the PrettyPrint function is to resolve also the content of composite data types and provide for
every parameter inside:

� the type

� the total number of elements inside (e.g. the number of keys inside a dictionary)

� the counter number of the current element

� the value

Arguments:

� oData

/ Condition: required / Type: (any Python data type) /

A variable of any Python data type.

� hOutputFile

/ Condition: optional / Type: file handle / Default : None /

If handle is not None the content is written to this file, otherwise not.

� bToConsole

/ Condition: optional / Type: bool / Default : True /

If True the content is written to console, otherwise not.

� nIndent

/ Condition: optional / Type: int / Default : 0 /

Sets the number of additional blanks at the beginning of every line of output (indentation).

� sPrefix

/ Condition: optional / Type: str / Default : None /

Sets a prefix string that is added at the beginning of every line of output.

� bHexFormat

/ Condition: optional / Type: bool / Default : False /

If True the output is printed in hexadecimal format (but valid for strings only).

Returns:

32

CHAPTER 7. CUTILS.PY 7.2. CLASS: CTYPEPRINT

� listOutLines (list)

/ Type: list /

List of lines containing the prepared output

7.2 Class: CTypePrint

Imported by :

from PythonExtensionsCollection.Utils.CUtils import CTypePrint

The class CTypePrint provides a method (TypePrint) to compute the following data:

� the type

� the total number of elements inside (e.g. the number of keys inside a dictionary)

� the counter number of the current element

� the value

of simple and composite data types.

The call of this method is encapsulated within the function PrettyPrint inside this module.

7.2.1 Method: TypePrint

The method TypePrint computes details about the input variable oData.

Arguments:

� oData

/ Condition: required / Type: any Python data type /

Python variable of any data type.

� bHexFormat

/ Condition: optional / Type: bool / Default : False /

If True the output is provide in hexadecimal format.

Returns:

� listOutLines

/ Type: list /

List of lines containing the resolved content of oData.

7.3 Class: CUtils

Imported by :

from PythonExtensionsCollection.Utils.CUtils import CUtils

The class CUtils contains useful methods.

33

CHAPTER 7. CUTILS.PY 7.3. CLASS: CUTILS

7.3.1 Method: GetInstalledPackages

The method GetInstalledPackages computes a list of all installed Python packages. The list is returned as list
of tuples containing the name and the version of the package.

It is also possible to let the method dump the list to a text file.

Arguments:

� sOutputFile

/ Condition: optional / Type: string / Default : None /

Path and name of a file to dump the package list to.

Returns:

� listofTuplesPackages

/ Type: list /

List of tuples containing the name and the version of the package.

� bSuccess

/ Type: bool /

Indicates if the computation of the method was successful or not.

� sResult

/ Type: str /

The result of the computation of the method.

34

CHAPTER 8. APPENDIX

Chapter 8

Appendix

About this package:

Table 8.1: Package setup

Setup parameter Value

Name PythonExtensionsCollection

Version 0.15.1

Date 19.10.2023

Description Additional Python functions

Package URL python-extensions-collection

Author Holger Queckenstedt

Email Holger.Queckenstedt@de.bosch.com

Language Programming Language :: Python :: 3

License License :: OSI Approved :: Apache Software License

OS Operating System :: OS Independent

Python required >=3.0

Development status Development Status :: 4 - Beta

Intended audience Intended Audience :: Developers

Topic Topic :: Software Development

35

https://github.com/test-fullautomation/python-extensions-collection
mailto:Holger.Queckenstedt@de.bosch.com

CHAPTER 9. HISTORY

Chapter 9

History

0.1.0 08/2021

Initial version

0.2.0 02/2022

Code maintenance

0.3.0 20.05.2022

Documentation tool chain switched to GenPackageDoc

0.4.0 24.05.2022

- Documentation rebuild with GenPackageDoc v. 0.13.0
- Code maintenance

0.5.0 31.05.2022

Adapted to GenPackageDoc v. 0.15.0

0.6.0 02.06.2022

- Documentation rebuild with GenPackageDoc v. 0.16.0
- Code maintenance

0.7.0 10.06.2022

Module CFolder added (with methods: Create and Delete

0.8.0 28.06.2022

Module CFolder: Method: CopyTo added

0.9.0 27.07.2022

History reworked (requires GenPackageDoc v. 0.26.0 at least)

0.10.0 25.10.2022

Added CComparison module to compare two files (either based on original
content or based on pattern)

0.11.0 15.11.2022

Converted parts of the documentation from RST format to LaTeX format (to
improve the layout)

0.12.0 29.03.2023

Type
RobotFramework TestsuitesManagement.Config.CConfig.dotdict
added to CTypePrint

0.13.0 03.04.2023

Ignore pattern file added to CComparison

0.14.0 12.05.2023

Removed computation of obsolete dotdict class from method
CUtils::TypePrint

36

CHAPTER 9. HISTORY

PythonExtensionsCollection.pdf

Created at 15.01.2024 - 12:20:02

by GenPackageDoc v. 0.41.1

37

	1 Introduction
	2 Description
	2.1 Modules
	2.2 Methods
	2.2.1 String operations with CString
	NormalizePath
	DetectParentPath
	StringFilter

	2.2.2 File access with CFile
	2.2.3 Utilities
	PrettyPrint

	3 CComparison.py
	3.1 Class: CComparison
	3.1.1 Method: Compare

	4 CFile.py
	4.1 Class: enFileStatiType
	4.2 Class: CFile
	4.2.1 Method: Close
	4.2.2 Method: Delete
	4.2.3 Method: Write
	4.2.4 Method: Append
	4.2.5 Method: ReadLines
	4.2.6 Method: GetFileInfo
	4.2.7 Method: CopyTo
	4.2.8 Method: MoveTo

	5 CFolder.py
	5.1 Function: rm_dir_readonly
	5.2 Class: CFolder
	5.2.1 Method: Delete
	5.2.2 Method: Create
	5.2.3 Method: CopyTo

	6 CString.py
	6.1 Class: CString
	6.1.1 Method: NormalizePath
	6.1.2 Method: DetectParentPath
	6.1.3 Method: StringFilter
	6.1.4 Method: FormatResult

	7 CUtils.py
	7.1 Function: PrettyPrint
	7.2 Class: CTypePrint
	7.2.1 Method: TypePrint

	7.3 Class: CUtils
	7.3.1 Method: GetInstalledPackages

	8 Appendix
	9 History

