Module facetorch.analyzer.predictor.post

Expand source code
from abc import abstractmethod
from typing import List, Optional, Tuple, Union

import torch
from codetiming import Timer
from itertools import compress
from facetorch.base import BaseProcessor
from facetorch.datastruct import Prediction
from facetorch.logger import LoggerJsonFile
from torchvision import transforms

logger = LoggerJsonFile().logger


class BasePredPostProcessor(BaseProcessor):
    @Timer(
        "BasePredPostProcessor.__init__",
        "{name}: {milliseconds:.2f} ms",
        logger=logger.debug,
    )
    def __init__(
        self,
        transform: transforms.Compose,
        device: torch.device,
        optimize_transform: bool,
        labels: List[str],
    ):
        """Base class for predictor post processors.

        All predictor post processors should subclass it.
        All subclass should overwrite:

        - Methods:``run``, used for running the processing

        Args:
            device (torch.device): Torch device cpu or cuda.
            transform (transforms.Compose): Transform compose object to be applied to the image.
            optimize_transform (bool): Whether to optimize the transform.
            labels (List[str]): List of labels.

        """
        super().__init__(transform, device, optimize_transform)
        self.labels = labels

    def create_pred_list(
        self, preds: torch.Tensor, indices: List[int]
    ) -> List[Prediction]:
        """Create a list of predictions.

        Args:
            preds (torch.Tensor): Tensor of predictions, shape (batch, _).
            indices (List[int]): List of label indices, one for each sample.

        Returns:
            List[Prediction]: List of predictions.

        """
        assert (
            len(indices) == preds.shape[0]
        ), "Predictions and indices must have the same length."

        pred_labels = [self.labels[indx] for indx in indices]

        pred_list = []
        for i, label in enumerate(pred_labels):
            pred = Prediction(label, preds[i])
            pred_list.append(pred)
        return pred_list

    @abstractmethod
    def run(self, preds: Union[torch.Tensor, Tuple[torch.Tensor]]) -> List[Prediction]:
        """Abstract method that runs the predictor post processing functionality and returns a list of prediction data structures, one for each face in the batch.

        Args:
            preds (Union[torch.Tensor, Tuple[torch.Tensor]]): Output of the predictor model.

        Returns:
            List[Prediction]: List of predictions.

        """


class PostArgMax(BasePredPostProcessor):
    @Timer("PostArgMax.__init__", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
    def __init__(
        self,
        transform: transforms.Compose,
        device: torch.device,
        optimize_transform: bool,
        labels: List[str],
        dim: int,
    ):
        """Initialize the predictor postprocessor that runs argmax on the prediction tensor and returns a list of prediction data structures.

        Args:
            transform (Compose): Composed Torch transform object.
            device (torch.device): Torch device cpu or cuda.
            optimize_transform (bool): Whether to optimize the transform using TorchScript.
            labels (List[str]): List of labels.
            dim (int): Axis along which to apply the argmax.
        """
        super().__init__(transform, device, optimize_transform, labels)
        self.dim = dim

    @Timer("PostArgMax.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
    def run(self, preds: torch.Tensor) -> List[Prediction]:
        """Post-processes the prediction tensor using argmax and returns a list of prediction data structures, one for each face.

        Args:
            preds (torch.Tensor): Batch prediction tensor.

        Returns:
            List[Prediction]: List of prediction data structures containing the predicted labels and confidence scores for each face in the batch.
        """
        indices = torch.argmax(preds, dim=self.dim).cpu().numpy().tolist()
        pred_list = self.create_pred_list(preds, indices)

        return pred_list


class PostSigmoidBinary(BasePredPostProcessor):
    @Timer(
        "PostSigmoidBinary.__init__",
        "{name}: {milliseconds:.2f} ms",
        logger=logger.debug,
    )
    def __init__(
        self,
        transform: transforms.Compose,
        device: torch.device,
        optimize_transform: bool,
        labels: List[str],
        threshold: float = 0.5,
    ):
        """Initialize the predictor postprocessor that runs sigmoid on the prediction tensor and returns a list of prediction data structures.

        Args:
            transform (Compose): Composed Torch transform object.
            device (torch.device): Torch device cpu or cuda.
            optimize_transform (bool): Whether to optimize the transform using TorchScript.
            labels (List[str]): List of labels.
            threshold (float): Probability threshold for positive class.
        """
        super().__init__(transform, device, optimize_transform, labels)
        self.threshold = threshold

    @Timer(
        "PostSigmoidBinary.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug
    )
    def run(self, preds: torch.Tensor) -> List[Prediction]:
        """Post-processes the prediction tensor using argmax and returns a list of prediction data structures, one for each face.

        Args:
            preds (torch.Tensor): Batch prediction tensor.

        Returns:
            List[Prediction]: List of prediction data structures containing the predicted labelsand confidence scores for each face in the batch.
        """
        preds = torch.sigmoid(preds.squeeze(1))
        preds_thresh = preds.where(preds >= self.threshold, torch.zeros_like(preds))
        indices = torch.round(preds_thresh)
        indices = indices.cpu().numpy().astype(int).tolist()
        pred_list = self.create_pred_list(preds, indices)

        return pred_list


class PostEmbedder(BasePredPostProcessor):
    def __init__(
        self,
        transform: transforms.Compose,
        device: torch.device,
        optimize_transform: bool,
        labels: List[str],
    ):
        """Initialize the predictor postprocessor that extracts the embedding from the prediction tensor and returns a list of prediction data structures.

        Args:
            transform (Compose): Composed Torch transform object.
            device (torch.device): Torch device cpu or cuda.
            optimize_transform (bool): Whether to optimize the transform using TorchScript.
            labels (List[str]): List of labels.
        """
        super().__init__(transform, device, optimize_transform, labels)

    @Timer("PostEmbedder.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
    def run(self, preds: torch.Tensor) -> List[Prediction]:
        """Extracts the embedding from the prediction tensor and returns a list of prediction data structures, one for each face.

        Args:
            preds (torch.Tensor): Batch prediction tensor.

        Returns:
            List[Prediction]: List of prediction data structures containing the predicted embeddings.
        """
        if isinstance(preds, tuple):
            preds = preds[0]

        indices = [0] * preds.shape[0]
        pred_list = self.create_pred_list(preds, indices)

        return pred_list


class PostMultiLabel(BasePredPostProcessor):
    def __init__(
        self,
        transform: transforms.Compose,
        device: torch.device,
        optimize_transform: bool,
        labels: List[str],
        dim: int,
        threshold: float = 0.5,
    ):
        """Initialize the predictor postprocessor that extracts multiple labels from the confidence scores.

        Args:
            transform (Compose): Composed Torch transform object.
            device (torch.device): Torch device cpu or cuda.
            optimize_transform (bool): Whether to optimize the transform using TorchScript.
            labels (List[str]): List of labels.
            dim (int): Axis along which to apply the softmax.
            threshold (float): Probability threshold for including a label. Only labels with a confidence score above the threshold are included. Defaults to 0.5.
        """
        super().__init__(transform, device, optimize_transform, labels)
        self.dim = dim
        self.threshold = threshold

    @Timer("PostMultiLabel.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
    def run(self, preds: torch.Tensor) -> List[Prediction]:
        """Extracts multiple labels and puts them in other[multi] predictions. The most likely label is put in the label field. Confidence scores are returned in the logits field.

        Args:
            preds (torch.Tensor): Batch prediction tensor.

        Returns:
            List[Prediction]: List of prediction data structures containing the most prevailing label, confidence scores, and multiple labels for each face.
        """
        if isinstance(preds, tuple):
            preds = preds[0]

        indices = torch.argmax(preds, dim=self.dim).cpu().numpy().tolist()

        pred_list = []
        for i in range(preds.shape[0]):
            preds_sample = preds[i]
            label_filter = (preds_sample > self.threshold).cpu().numpy().tolist()
            labels_true = list(compress(self.labels, label_filter))
            pred = Prediction(
                label=self.labels[indices[i]],
                logits=preds_sample,
                other={"multi": labels_true},
            )
            pred_list.append(pred)

        return pred_list


class PostLabelConfidencePairs(BasePredPostProcessor):
    def __init__(
        self,
        transform: transforms.Compose,
        device: torch.device,
        optimize_transform: bool,
        labels: List[str],
        offsets: Optional[List[float]] = [0.25, 0.05],
    ):
        """Initialize the predictor postprocessor that zips the confidence scores with the labels.

        Args:
            transform (Compose): Composed Torch transform object.
            device (torch.device): Torch device cpu or cuda.
            optimize_transform (bool): Whether to optimize the transform using TorchScript.
            labels (List[str]): List of labels.
            offsets (List[float]): Offsets for the confidence scores. Defaults to [0.25, 0.05].
        """
        super().__init__(transform, device, optimize_transform, labels)

        if offsets is None:
            offsets = [0] * len(labels)
        self.offsets = offsets

    @Timer(
        "PostLabelConfidencePairs.run",
        "{name}: {milliseconds:.2f} ms",
        logger=logger.debug,
    )
    def run(self, preds: torch.Tensor) -> List[Prediction]:
        """Extracts the confidence scores and puts them in other[label] predictions.

        Args:
            preds (torch.Tensor): Batch prediction tensor.

        Returns:
            List[Prediction]: List of prediction data structures containing the logits and label logit pairs.
        """
        if isinstance(preds, tuple):
            preds = preds[0]

        pred_list = []
        for i in range(preds.shape[0]):
            preds_sample = preds[i]
            other_labels = {
                label: preds_sample.cpu().numpy().tolist()[j] + self.offsets[j]
                for j, label in enumerate(self.labels)
            }
            pred = Prediction(
                label="other",
                logits=preds_sample,
                other=other_labels,
            )
            pred_list.append(pred)

        return pred_list

Classes

class BasePredPostProcessor (transform: torchvision.transforms.transforms.Compose, device: torch.device, optimize_transform: bool, labels: List[str])

Base class for predictor post processors.

All predictor post processors should subclass it. All subclass should overwrite:

  • Methods:run, used for running the processing

Args

device : torch.device
Torch device cpu or cuda.
transform : transforms.Compose
Transform compose object to be applied to the image.
optimize_transform : bool
Whether to optimize the transform.
labels : List[str]
List of labels.
Expand source code
class BasePredPostProcessor(BaseProcessor):
    @Timer(
        "BasePredPostProcessor.__init__",
        "{name}: {milliseconds:.2f} ms",
        logger=logger.debug,
    )
    def __init__(
        self,
        transform: transforms.Compose,
        device: torch.device,
        optimize_transform: bool,
        labels: List[str],
    ):
        """Base class for predictor post processors.

        All predictor post processors should subclass it.
        All subclass should overwrite:

        - Methods:``run``, used for running the processing

        Args:
            device (torch.device): Torch device cpu or cuda.
            transform (transforms.Compose): Transform compose object to be applied to the image.
            optimize_transform (bool): Whether to optimize the transform.
            labels (List[str]): List of labels.

        """
        super().__init__(transform, device, optimize_transform)
        self.labels = labels

    def create_pred_list(
        self, preds: torch.Tensor, indices: List[int]
    ) -> List[Prediction]:
        """Create a list of predictions.

        Args:
            preds (torch.Tensor): Tensor of predictions, shape (batch, _).
            indices (List[int]): List of label indices, one for each sample.

        Returns:
            List[Prediction]: List of predictions.

        """
        assert (
            len(indices) == preds.shape[0]
        ), "Predictions and indices must have the same length."

        pred_labels = [self.labels[indx] for indx in indices]

        pred_list = []
        for i, label in enumerate(pred_labels):
            pred = Prediction(label, preds[i])
            pred_list.append(pred)
        return pred_list

    @abstractmethod
    def run(self, preds: Union[torch.Tensor, Tuple[torch.Tensor]]) -> List[Prediction]:
        """Abstract method that runs the predictor post processing functionality and returns a list of prediction data structures, one for each face in the batch.

        Args:
            preds (Union[torch.Tensor, Tuple[torch.Tensor]]): Output of the predictor model.

        Returns:
            List[Prediction]: List of predictions.

        """

Ancestors

Subclasses

Methods

def create_pred_list(self, preds: torch.Tensor, indices: List[int]) ‑> List[Prediction]

Create a list of predictions.

Args

preds : torch.Tensor
Tensor of predictions, shape (batch, _).
indices : List[int]
List of label indices, one for each sample.

Returns

List[Prediction]
List of predictions.
Expand source code
def create_pred_list(
    self, preds: torch.Tensor, indices: List[int]
) -> List[Prediction]:
    """Create a list of predictions.

    Args:
        preds (torch.Tensor): Tensor of predictions, shape (batch, _).
        indices (List[int]): List of label indices, one for each sample.

    Returns:
        List[Prediction]: List of predictions.

    """
    assert (
        len(indices) == preds.shape[0]
    ), "Predictions and indices must have the same length."

    pred_labels = [self.labels[indx] for indx in indices]

    pred_list = []
    for i, label in enumerate(pred_labels):
        pred = Prediction(label, preds[i])
        pred_list.append(pred)
    return pred_list
def run(self, preds: Union[torch.Tensor, Tuple[torch.Tensor]]) ‑> List[Prediction]

Abstract method that runs the predictor post processing functionality and returns a list of prediction data structures, one for each face in the batch.

Args

preds : Union[torch.Tensor, Tuple[torch.Tensor]]
Output of the predictor model.

Returns

List[Prediction]
List of predictions.
Expand source code
@abstractmethod
def run(self, preds: Union[torch.Tensor, Tuple[torch.Tensor]]) -> List[Prediction]:
    """Abstract method that runs the predictor post processing functionality and returns a list of prediction data structures, one for each face in the batch.

    Args:
        preds (Union[torch.Tensor, Tuple[torch.Tensor]]): Output of the predictor model.

    Returns:
        List[Prediction]: List of predictions.

    """

Inherited members

class PostArgMax (transform: torchvision.transforms.transforms.Compose, device: torch.device, optimize_transform: bool, labels: List[str], dim: int)

Initialize the predictor postprocessor that runs argmax on the prediction tensor and returns a list of prediction data structures.

Args

transform : Compose
Composed Torch transform object.
device : torch.device
Torch device cpu or cuda.
optimize_transform : bool
Whether to optimize the transform using TorchScript.
labels : List[str]
List of labels.
dim : int
Axis along which to apply the argmax.
Expand source code
class PostArgMax(BasePredPostProcessor):
    @Timer("PostArgMax.__init__", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
    def __init__(
        self,
        transform: transforms.Compose,
        device: torch.device,
        optimize_transform: bool,
        labels: List[str],
        dim: int,
    ):
        """Initialize the predictor postprocessor that runs argmax on the prediction tensor and returns a list of prediction data structures.

        Args:
            transform (Compose): Composed Torch transform object.
            device (torch.device): Torch device cpu or cuda.
            optimize_transform (bool): Whether to optimize the transform using TorchScript.
            labels (List[str]): List of labels.
            dim (int): Axis along which to apply the argmax.
        """
        super().__init__(transform, device, optimize_transform, labels)
        self.dim = dim

    @Timer("PostArgMax.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
    def run(self, preds: torch.Tensor) -> List[Prediction]:
        """Post-processes the prediction tensor using argmax and returns a list of prediction data structures, one for each face.

        Args:
            preds (torch.Tensor): Batch prediction tensor.

        Returns:
            List[Prediction]: List of prediction data structures containing the predicted labels and confidence scores for each face in the batch.
        """
        indices = torch.argmax(preds, dim=self.dim).cpu().numpy().tolist()
        pred_list = self.create_pred_list(preds, indices)

        return pred_list

Ancestors

Methods

def run(self, preds: torch.Tensor) ‑> List[Prediction]

Post-processes the prediction tensor using argmax and returns a list of prediction data structures, one for each face.

Args

preds : torch.Tensor
Batch prediction tensor.

Returns

List[Prediction]
List of prediction data structures containing the predicted labels and confidence scores for each face in the batch.
Expand source code
@Timer("PostArgMax.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
def run(self, preds: torch.Tensor) -> List[Prediction]:
    """Post-processes the prediction tensor using argmax and returns a list of prediction data structures, one for each face.

    Args:
        preds (torch.Tensor): Batch prediction tensor.

    Returns:
        List[Prediction]: List of prediction data structures containing the predicted labels and confidence scores for each face in the batch.
    """
    indices = torch.argmax(preds, dim=self.dim).cpu().numpy().tolist()
    pred_list = self.create_pred_list(preds, indices)

    return pred_list

Inherited members

class PostSigmoidBinary (transform: torchvision.transforms.transforms.Compose, device: torch.device, optimize_transform: bool, labels: List[str], threshold: float = 0.5)

Initialize the predictor postprocessor that runs sigmoid on the prediction tensor and returns a list of prediction data structures.

Args

transform : Compose
Composed Torch transform object.
device : torch.device
Torch device cpu or cuda.
optimize_transform : bool
Whether to optimize the transform using TorchScript.
labels : List[str]
List of labels.
threshold : float
Probability threshold for positive class.
Expand source code
class PostSigmoidBinary(BasePredPostProcessor):
    @Timer(
        "PostSigmoidBinary.__init__",
        "{name}: {milliseconds:.2f} ms",
        logger=logger.debug,
    )
    def __init__(
        self,
        transform: transforms.Compose,
        device: torch.device,
        optimize_transform: bool,
        labels: List[str],
        threshold: float = 0.5,
    ):
        """Initialize the predictor postprocessor that runs sigmoid on the prediction tensor and returns a list of prediction data structures.

        Args:
            transform (Compose): Composed Torch transform object.
            device (torch.device): Torch device cpu or cuda.
            optimize_transform (bool): Whether to optimize the transform using TorchScript.
            labels (List[str]): List of labels.
            threshold (float): Probability threshold for positive class.
        """
        super().__init__(transform, device, optimize_transform, labels)
        self.threshold = threshold

    @Timer(
        "PostSigmoidBinary.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug
    )
    def run(self, preds: torch.Tensor) -> List[Prediction]:
        """Post-processes the prediction tensor using argmax and returns a list of prediction data structures, one for each face.

        Args:
            preds (torch.Tensor): Batch prediction tensor.

        Returns:
            List[Prediction]: List of prediction data structures containing the predicted labelsand confidence scores for each face in the batch.
        """
        preds = torch.sigmoid(preds.squeeze(1))
        preds_thresh = preds.where(preds >= self.threshold, torch.zeros_like(preds))
        indices = torch.round(preds_thresh)
        indices = indices.cpu().numpy().astype(int).tolist()
        pred_list = self.create_pred_list(preds, indices)

        return pred_list

Ancestors

Methods

def run(self, preds: torch.Tensor) ‑> List[Prediction]

Post-processes the prediction tensor using argmax and returns a list of prediction data structures, one for each face.

Args

preds : torch.Tensor
Batch prediction tensor.

Returns

List[Prediction]
List of prediction data structures containing the predicted labelsand confidence scores for each face in the batch.
Expand source code
@Timer(
    "PostSigmoidBinary.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug
)
def run(self, preds: torch.Tensor) -> List[Prediction]:
    """Post-processes the prediction tensor using argmax and returns a list of prediction data structures, one for each face.

    Args:
        preds (torch.Tensor): Batch prediction tensor.

    Returns:
        List[Prediction]: List of prediction data structures containing the predicted labelsand confidence scores for each face in the batch.
    """
    preds = torch.sigmoid(preds.squeeze(1))
    preds_thresh = preds.where(preds >= self.threshold, torch.zeros_like(preds))
    indices = torch.round(preds_thresh)
    indices = indices.cpu().numpy().astype(int).tolist()
    pred_list = self.create_pred_list(preds, indices)

    return pred_list

Inherited members

class PostEmbedder (transform: torchvision.transforms.transforms.Compose, device: torch.device, optimize_transform: bool, labels: List[str])

Initialize the predictor postprocessor that extracts the embedding from the prediction tensor and returns a list of prediction data structures.

Args

transform : Compose
Composed Torch transform object.
device : torch.device
Torch device cpu or cuda.
optimize_transform : bool
Whether to optimize the transform using TorchScript.
labels : List[str]
List of labels.
Expand source code
class PostEmbedder(BasePredPostProcessor):
    def __init__(
        self,
        transform: transforms.Compose,
        device: torch.device,
        optimize_transform: bool,
        labels: List[str],
    ):
        """Initialize the predictor postprocessor that extracts the embedding from the prediction tensor and returns a list of prediction data structures.

        Args:
            transform (Compose): Composed Torch transform object.
            device (torch.device): Torch device cpu or cuda.
            optimize_transform (bool): Whether to optimize the transform using TorchScript.
            labels (List[str]): List of labels.
        """
        super().__init__(transform, device, optimize_transform, labels)

    @Timer("PostEmbedder.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
    def run(self, preds: torch.Tensor) -> List[Prediction]:
        """Extracts the embedding from the prediction tensor and returns a list of prediction data structures, one for each face.

        Args:
            preds (torch.Tensor): Batch prediction tensor.

        Returns:
            List[Prediction]: List of prediction data structures containing the predicted embeddings.
        """
        if isinstance(preds, tuple):
            preds = preds[0]

        indices = [0] * preds.shape[0]
        pred_list = self.create_pred_list(preds, indices)

        return pred_list

Ancestors

Methods

def run(self, preds: torch.Tensor) ‑> List[Prediction]

Extracts the embedding from the prediction tensor and returns a list of prediction data structures, one for each face.

Args

preds : torch.Tensor
Batch prediction tensor.

Returns

List[Prediction]
List of prediction data structures containing the predicted embeddings.
Expand source code
@Timer("PostEmbedder.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
def run(self, preds: torch.Tensor) -> List[Prediction]:
    """Extracts the embedding from the prediction tensor and returns a list of prediction data structures, one for each face.

    Args:
        preds (torch.Tensor): Batch prediction tensor.

    Returns:
        List[Prediction]: List of prediction data structures containing the predicted embeddings.
    """
    if isinstance(preds, tuple):
        preds = preds[0]

    indices = [0] * preds.shape[0]
    pred_list = self.create_pred_list(preds, indices)

    return pred_list

Inherited members

class PostMultiLabel (transform: torchvision.transforms.transforms.Compose, device: torch.device, optimize_transform: bool, labels: List[str], dim: int, threshold: float = 0.5)

Initialize the predictor postprocessor that extracts multiple labels from the confidence scores.

Args

transform : Compose
Composed Torch transform object.
device : torch.device
Torch device cpu or cuda.
optimize_transform : bool
Whether to optimize the transform using TorchScript.
labels : List[str]
List of labels.
dim : int
Axis along which to apply the softmax.
threshold : float
Probability threshold for including a label. Only labels with a confidence score above the threshold are included. Defaults to 0.5.
Expand source code
class PostMultiLabel(BasePredPostProcessor):
    def __init__(
        self,
        transform: transforms.Compose,
        device: torch.device,
        optimize_transform: bool,
        labels: List[str],
        dim: int,
        threshold: float = 0.5,
    ):
        """Initialize the predictor postprocessor that extracts multiple labels from the confidence scores.

        Args:
            transform (Compose): Composed Torch transform object.
            device (torch.device): Torch device cpu or cuda.
            optimize_transform (bool): Whether to optimize the transform using TorchScript.
            labels (List[str]): List of labels.
            dim (int): Axis along which to apply the softmax.
            threshold (float): Probability threshold for including a label. Only labels with a confidence score above the threshold are included. Defaults to 0.5.
        """
        super().__init__(transform, device, optimize_transform, labels)
        self.dim = dim
        self.threshold = threshold

    @Timer("PostMultiLabel.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
    def run(self, preds: torch.Tensor) -> List[Prediction]:
        """Extracts multiple labels and puts them in other[multi] predictions. The most likely label is put in the label field. Confidence scores are returned in the logits field.

        Args:
            preds (torch.Tensor): Batch prediction tensor.

        Returns:
            List[Prediction]: List of prediction data structures containing the most prevailing label, confidence scores, and multiple labels for each face.
        """
        if isinstance(preds, tuple):
            preds = preds[0]

        indices = torch.argmax(preds, dim=self.dim).cpu().numpy().tolist()

        pred_list = []
        for i in range(preds.shape[0]):
            preds_sample = preds[i]
            label_filter = (preds_sample > self.threshold).cpu().numpy().tolist()
            labels_true = list(compress(self.labels, label_filter))
            pred = Prediction(
                label=self.labels[indices[i]],
                logits=preds_sample,
                other={"multi": labels_true},
            )
            pred_list.append(pred)

        return pred_list

Ancestors

Methods

def run(self, preds: torch.Tensor) ‑> List[Prediction]

Extracts multiple labels and puts them in other[multi] predictions. The most likely label is put in the label field. Confidence scores are returned in the logits field.

Args

preds : torch.Tensor
Batch prediction tensor.

Returns

List[Prediction]
List of prediction data structures containing the most prevailing label, confidence scores, and multiple labels for each face.
Expand source code
@Timer("PostMultiLabel.run", "{name}: {milliseconds:.2f} ms", logger=logger.debug)
def run(self, preds: torch.Tensor) -> List[Prediction]:
    """Extracts multiple labels and puts them in other[multi] predictions. The most likely label is put in the label field. Confidence scores are returned in the logits field.

    Args:
        preds (torch.Tensor): Batch prediction tensor.

    Returns:
        List[Prediction]: List of prediction data structures containing the most prevailing label, confidence scores, and multiple labels for each face.
    """
    if isinstance(preds, tuple):
        preds = preds[0]

    indices = torch.argmax(preds, dim=self.dim).cpu().numpy().tolist()

    pred_list = []
    for i in range(preds.shape[0]):
        preds_sample = preds[i]
        label_filter = (preds_sample > self.threshold).cpu().numpy().tolist()
        labels_true = list(compress(self.labels, label_filter))
        pred = Prediction(
            label=self.labels[indices[i]],
            logits=preds_sample,
            other={"multi": labels_true},
        )
        pred_list.append(pred)

    return pred_list

Inherited members

class PostLabelConfidencePairs (transform: torchvision.transforms.transforms.Compose, device: torch.device, optimize_transform: bool, labels: List[str], offsets: Optional[List[float]] = [0.25, 0.05])

Initialize the predictor postprocessor that zips the confidence scores with the labels.

Args

transform : Compose
Composed Torch transform object.
device : torch.device
Torch device cpu or cuda.
optimize_transform : bool
Whether to optimize the transform using TorchScript.
labels : List[str]
List of labels.
offsets : List[float]
Offsets for the confidence scores. Defaults to [0.25, 0.05].
Expand source code
class PostLabelConfidencePairs(BasePredPostProcessor):
    def __init__(
        self,
        transform: transforms.Compose,
        device: torch.device,
        optimize_transform: bool,
        labels: List[str],
        offsets: Optional[List[float]] = [0.25, 0.05],
    ):
        """Initialize the predictor postprocessor that zips the confidence scores with the labels.

        Args:
            transform (Compose): Composed Torch transform object.
            device (torch.device): Torch device cpu or cuda.
            optimize_transform (bool): Whether to optimize the transform using TorchScript.
            labels (List[str]): List of labels.
            offsets (List[float]): Offsets for the confidence scores. Defaults to [0.25, 0.05].
        """
        super().__init__(transform, device, optimize_transform, labels)

        if offsets is None:
            offsets = [0] * len(labels)
        self.offsets = offsets

    @Timer(
        "PostLabelConfidencePairs.run",
        "{name}: {milliseconds:.2f} ms",
        logger=logger.debug,
    )
    def run(self, preds: torch.Tensor) -> List[Prediction]:
        """Extracts the confidence scores and puts them in other[label] predictions.

        Args:
            preds (torch.Tensor): Batch prediction tensor.

        Returns:
            List[Prediction]: List of prediction data structures containing the logits and label logit pairs.
        """
        if isinstance(preds, tuple):
            preds = preds[0]

        pred_list = []
        for i in range(preds.shape[0]):
            preds_sample = preds[i]
            other_labels = {
                label: preds_sample.cpu().numpy().tolist()[j] + self.offsets[j]
                for j, label in enumerate(self.labels)
            }
            pred = Prediction(
                label="other",
                logits=preds_sample,
                other=other_labels,
            )
            pred_list.append(pred)

        return pred_list

Ancestors

Methods

def run(self, preds: torch.Tensor) ‑> List[Prediction]

Extracts the confidence scores and puts them in other[label] predictions.

Args

preds : torch.Tensor
Batch prediction tensor.

Returns

List[Prediction]
List of prediction data structures containing the logits and label logit pairs.
Expand source code
@Timer(
    "PostLabelConfidencePairs.run",
    "{name}: {milliseconds:.2f} ms",
    logger=logger.debug,
)
def run(self, preds: torch.Tensor) -> List[Prediction]:
    """Extracts the confidence scores and puts them in other[label] predictions.

    Args:
        preds (torch.Tensor): Batch prediction tensor.

    Returns:
        List[Prediction]: List of prediction data structures containing the logits and label logit pairs.
    """
    if isinstance(preds, tuple):
        preds = preds[0]

    pred_list = []
    for i in range(preds.shape[0]):
        preds_sample = preds[i]
        other_labels = {
            label: preds_sample.cpu().numpy().tolist()[j] + self.offsets[j]
            for j, label in enumerate(self.labels)
        }
        pred = Prediction(
            label="other",
            logits=preds_sample,
            other=other_labels,
        )
        pred_list.append(pred)

    return pred_list

Inherited members