

pypdfium2-1.2.0/.gitignore

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: CC-BY-4.0

build/
dist/
tests/output/
data/*
!data/.gitkeep
docs/build/*
!docs/build/.gitkeep
sourcebuild/*
!sourcebuild/patches

**/__pycache__
**/.mypy_cache
**/.pytest_cache
*.pyc
*.vscode
*.egg-info
*.kate-swp
*.kdev4
.python-version
.presetup_done.txt

*.so
*.dll
*.dylib

pypdfium2-1.2.0/.readthedocs.yaml

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: CC-BY-4.0

Read the Docs configuration file
See https://docs.readthedocs.io/en/stable/config-file/v2.html for details

version: 2

formats:
 - pdf

sphinx:
 configuration: docs/source/conf.py

build:
 os: ubuntu-20.04
 tools:
 python: "3.9"

python:
 install:
 - method: pip
 path: .
 extra_requirements:
 - docs
 system_packages: true

pypdfium2-1.2.0/.reuse/dep5

Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: pypdfium2
Upstream-Contact: geisserml <geisserml@gmail.com>
Source: https://github.com/pypdfium2-team/pypdfium2

Sample paragraph, commented out:
#
Files: src/*
Copyright: $YEAR $NAME <$CONTACT>
License: ...

Files: pdfium
 pdfium.dll
 pdfium.dylib
 docs/markdown/devel/.about_wheel_license.md
Copyright: 2022 PDFium developers
License: (Apache-2.0 OR BSD-3-Clause) AND LicenseRef-PdfiumThirdParty
Comment:
 `.about_wheel_license.md` is a description file which exists only to state that
 `LicenseRef-PdfiumThirdParty` is used.

Files: tests/resources/render.pdf
 tests/resources/multipage.pdf
 tests/resources/encrypted.pdf
 tests/resources/nonascii_tênfilechứakýtựéèáàçß 发短信.pdf
Copyright: 2022 geisserml <geisserml@gmail.com>
License: CC-BY-4.0

Files: tests/resources/bookmarks.pdf
Copyright: 2020 Matthias Erll
License: LicenseRef-FairUse
Comment:
 Obtained from: https://github.com/pikepdf/pikepdf/blob/master/tests/resources/outlines.pdf
 No individual license stated for this data file. Project license is MPL-2.0.
 (https://github.com/pikepdf/pikepdf/blob/master/debian/copyright says "License assumed from LICENSE.txt in project root.")

Files: tests/resources/bookmarks_circular.pdf
Copyright: 2021 PDFium Developers
License: BSD-3-Clause OR Apache-2.0
Comment:
 Obtained from: https://pdfium.googlesource.com/pdfium/+/refs/heads/main/testing/resources/bookmarks_circular.pdf

Files: tests/resources/mediabox_missing.pdf
Copyright: 2020 Jerome Robert
License: LicenseRef-FairUse
Comment:
 Obtained from: https://github.com/pdfarranger/pdfarranger/blob/main/tests/test.pdf
 No individual license stated for this data file. Project license is GPL-3.0-or-later.

Files: tests/resources/cropbox.pdf
Copyright: 2021 Charlotte Curtis <c.f.curtis@gmail.com>
 2022 geisserml <geisserml@gmail.com>
License: LicenseRef-FairUse
Comment:
 Derived from: https://github.com/cfcurtis/pdfstitcher/blob/main/resources/testdoc.pdf
 No individual license stated for this data file. Project license is MPL-2.0.

Files: sourcebuild/patches/pdfium/public_headers.patch
 sourcebuild/patches/pdfium/shared_library.patch
 sourcebuild/patches/pdfium/win/build.patch
 sourcebuild/patches/pdfium/win/pdfium.patch
 sourcebuild/patches/pdfium/win/resources.rc
Copyright: 2021 Benoît Blanchon
License: LicenseRef-FairUse
Comment:
 Obtained from: https://github.com/bblanchon/pdfium-binaries/tree/master/patches
 For reuse, see https://github.com/bblanchon/pdfium-binaries/issues/55

Files: sourcebuild/patches/depot_tools/gclient_scm.patch
Copyright: 2021 BoLaMN
License: LicenseRef-FairUse
Comment:
 Obtained from: https://github.com/bblanchon/pdfium-binaries/pull/39

Files: sourcebuild/patches/pdfium/nativebuild.patch
 sourcebuild/patches/pdfium/skip_deps.patch
Copyright: 2022 geisserml <geisserml@gmail.com>
License: BSD-3-Clause OR Apache-2.0

pypdfium2-1.2.0/LICENSES/Apache-2.0.txt

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

pypdfium2-1.2.0/LICENSES/BSD-3-Clause.txt

Copyright (c) <year> <owner>.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

pypdfium2-1.2.0/LICENSES/CC-BY-4.0.txt

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree
to be bound by the terms and conditions of this Creative Commons
Attribution 4.0 International Public License ("Public License"). To the
extent this Public License may be interpreted as a contract, You are
granted the Licensed Rights in consideration of Your acceptance of
these terms and conditions, and the Licensor grants You such rights in
consideration of benefits the Licensor receives from making the
Licensed Material available under these terms and conditions.

Section 1 -- Definitions.

 a. Adapted Material means material subject to Copyright and Similar
 Rights that is derived from or based upon the Licensed Material
 and in which the Licensed Material is translated, altered,
 arranged, transformed, or otherwise modified in a manner requiring
 permission under the Copyright and Similar Rights held by the
 Licensor. For purposes of this Public License, where the Licensed
 Material is a musical work, performance, or sound recording,
 Adapted Material is always produced where the Licensed Material is
 synched in timed relation with a moving image.

 b. Adapter's License means the license You apply to Your Copyright
 and Similar Rights in Your contributions to Adapted Material in
 accordance with the terms and conditions of this Public License.

 c. Copyright and Similar Rights means copyright and/or similar rights
 closely related to copyright including, without limitation,
 performance, broadcast, sound recording, and Sui Generis Database
 Rights, without regard to how the rights are labeled or
 categorized. For purposes of this Public License, the rights
 specified in Section 2(b)(1)-(2) are not Copyright and Similar
 Rights.

 d. Effective Technological Measures means those measures that, in the
 absence of proper authority, may not be circumvented under laws
 fulfilling obligations under Article 11 of the WIPO Copyright
 Treaty adopted on December 20, 1996, and/or similar international
 agreements.

 e. Exceptions and Limitations means fair use, fair dealing, and/or
 any other exception or limitation to Copyright and Similar Rights
 that applies to Your use of the Licensed Material.

 f. Licensed Material means the artistic or literary work, database,
 or other material to which the Licensor applied this Public
 License.

 g. Licensed Rights means the rights granted to You subject to the
 terms and conditions of this Public License, which are limited to
 all Copyright and Similar Rights that apply to Your use of the
 Licensed Material and that the Licensor has authority to license.

 h. Licensor means the individual(s) or entity(ies) granting rights
 under this Public License.

 i. Share means to provide material to the public by any means or
 process that requires permission under the Licensed Rights, such
 as reproduction, public display, public performance, distribution,
 dissemination, communication, or importation, and to make material
 available to the public including in ways that members of the
 public may access the material from a place and at a time
 individually chosen by them.

 j. Sui Generis Database Rights means rights other than copyright
 resulting from Directive 96/9/EC of the European Parliament and of
 the Council of 11 March 1996 on the legal protection of databases,
 as amended and/or succeeded, as well as other essentially
 equivalent rights anywhere in the world.

 k. You means the individual or entity exercising the Licensed Rights
 under this Public License. Your has a corresponding meaning.

Section 2 -- Scope.

 a. License grant.

 1. Subject to the terms and conditions of this Public License,
 the Licensor hereby grants You a worldwide, royalty-free,
 non-sublicensable, non-exclusive, irrevocable license to
 exercise the Licensed Rights in the Licensed Material to:

 a. reproduce and Share the Licensed Material, in whole or
 in part; and

 b. produce, reproduce, and Share Adapted Material.

 2. Exceptions and Limitations. For the avoidance of doubt, where
 Exceptions and Limitations apply to Your use, this Public
 License does not apply, and You do not need to comply with
 its terms and conditions.

 3. Term. The term of this Public License is specified in Section
 6(a).

 4. Media and formats; technical modifications allowed. The
 Licensor authorizes You to exercise the Licensed Rights in
 all media and formats whether now known or hereafter created,
 and to make technical modifications necessary to do so. The
 Licensor waives and/or agrees not to assert any right or
 authority to forbid You from making technical modifications
 necessary to exercise the Licensed Rights, including
 technical modifications necessary to circumvent Effective
 Technological Measures. For purposes of this Public License,
 simply making modifications authorized by this Section 2(a)
 (4) never produces Adapted Material.

 5. Downstream recipients.

 a. Offer from the Licensor -- Licensed Material. Every
 recipient of the Licensed Material automatically
 receives an offer from the Licensor to exercise the
 Licensed Rights under the terms and conditions of this
 Public License.

 b. No downstream restrictions. You may not offer or impose
 any additional or different terms or conditions on, or
 apply any Effective Technological Measures to, the
 Licensed Material if doing so restricts exercise of the
 Licensed Rights by any recipient of the Licensed
 Material.

 6. No endorsement. Nothing in this Public License constitutes or
 may be construed as permission to assert or imply that You
 are, or that Your use of the Licensed Material is, connected
 with, or sponsored, endorsed, or granted official status by,
 the Licensor or others designated to receive attribution as
 provided in Section 3(a)(1)(A)(i).

 b. Other rights.

 1. Moral rights, such as the right of integrity, are not
 licensed under this Public License, nor are publicity,
 privacy, and/or other similar personality rights; however, to
 the extent possible, the Licensor waives and/or agrees not to
 assert any such rights held by the Licensor to the limited
 extent necessary to allow You to exercise the Licensed
 Rights, but not otherwise.

 2. Patent and trademark rights are not licensed under this
 Public License.

 3. To the extent possible, the Licensor waives any right to
 collect royalties from You for the exercise of the Licensed
 Rights, whether directly or through a collecting society
 under any voluntary or waivable statutory or compulsory
 licensing scheme. In all other cases the Licensor expressly
 reserves any right to collect such royalties.

Section 3 -- License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the
following conditions.

 a. Attribution.

 1. If You Share the Licensed Material (including in modified
 form), You must:

 a. retain the following if it is supplied by the Licensor
 with the Licensed Material:

 i. identification of the creator(s) of the Licensed
 Material and any others designated to receive
 attribution, in any reasonable manner requested by
 the Licensor (including by pseudonym if
 designated);

 ii. a copyright notice;

 iii. a notice that refers to this Public License;

 iv. a notice that refers to the disclaimer of
 warranties;

 v. a URI or hyperlink to the Licensed Material to the
 extent reasonably practicable;

 b. indicate if You modified the Licensed Material and
 retain an indication of any previous modifications; and

 c. indicate the Licensed Material is licensed under this
 Public License, and include the text of, or the URI or
 hyperlink to, this Public License.

 2. You may satisfy the conditions in Section 3(a)(1) in any
 reasonable manner based on the medium, means, and context in
 which You Share the Licensed Material. For example, it may be
 reasonable to satisfy the conditions by providing a URI or
 hyperlink to a resource that includes the required
 information.

 3. If requested by the Licensor, You must remove any of the
 information required by Section 3(a)(1)(A) to the extent
 reasonably practicable.

 4. If You Share Adapted Material You produce, the Adapter's
 License You apply must not prevent recipients of the Adapted
 Material from complying with this Public License.

Section 4 -- Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that
apply to Your use of the Licensed Material:

 a. for the avoidance of doubt, Section 2(a)(1) grants You the right
 to extract, reuse, reproduce, and Share all or a substantial
 portion of the contents of the database;

 b. if You include all or a substantial portion of the database
 contents in a database in which You have Sui Generis Database
 Rights, then the database in which You have Sui Generis Database
 Rights (but not its individual contents) is Adapted Material; and

 c. You must comply with the conditions in Section 3(a) if You Share
 all or a substantial portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not
replace Your obligations under this Public License where the Licensed
Rights include other Copyright and Similar Rights.

Section 5 -- Disclaimer of Warranties and Limitation of Liability.

 a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
 EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
 AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
 ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
 IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
 WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
 PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
 ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
 KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
 ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.

 b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
 TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
 NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
 INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
 COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
 USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
 ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
 DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
 IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.

 c. The disclaimer of warranties and limitation of liability provided
 above shall be interpreted in a manner that, to the extent
 possible, most closely approximates an absolute disclaimer and
 waiver of all liability.

Section 6 -- Term and Termination.

 a. This Public License applies for the term of the Copyright and
 Similar Rights licensed here. However, if You fail to comply with
 this Public License, then Your rights under this Public License
 terminate automatically.

 b. Where Your right to use the Licensed Material has terminated under
 Section 6(a), it reinstates:

 1. automatically as of the date the violation is cured, provided
 it is cured within 30 days of Your discovery of the
 violation; or

 2. upon express reinstatement by the Licensor.

 For the avoidance of doubt, this Section 6(b) does not affect any
 right the Licensor may have to seek remedies for Your violations
 of this Public License.

 c. For the avoidance of doubt, the Licensor may also offer the
 Licensed Material under separate terms or conditions or stop
 distributing the Licensed Material at any time; however, doing so
 will not terminate this Public License.

 d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
 License.

Section 7 -- Other Terms and Conditions.

 a. The Licensor shall not be bound by any additional or different
 terms or conditions communicated by You unless expressly agreed.

 b. Any arrangements, understandings, or agreements regarding the
 Licensed Material not stated herein are separate from and
 independent of the terms and conditions of this Public License.

Section 8 -- Interpretation.

 a. For the avoidance of doubt, this Public License does not, and
 shall not be interpreted to, reduce, limit, restrict, or impose
 conditions on any use of the Licensed Material that could lawfully
 be made without permission under this Public License.

 b. To the extent possible, if any provision of this Public License is
 deemed unenforceable, it shall be automatically reformed to the
 minimum extent necessary to make it enforceable. If the provision
 cannot be reformed, it shall be severed from this Public License
 without affecting the enforceability of the remaining terms and
 conditions.

 c. No term or condition of this Public License will be waived and no
 failure to comply consented to unless expressly agreed to by the
 Licensor.

 d. Nothing in this Public License constitutes or may be interpreted
 as a limitation upon, or waiver of, any privileges and immunities
 that apply to the Licensor or You, including from the legal
 processes of any jurisdiction or authority.

pypdfium2-1.2.0/LICENSES/LicenseRef-FairUse.txt

pypdfium2-1.2.0/LICENSES/LicenseRef-PdfiumThirdParty.txt

BEGIN agg23 (Anti-Grain Geometry 2.3) license note

//--
// Anti-Grain Geometry - Version 2.3
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//--
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//---

END agg23 (Anti-Grain Geometry 2.3) license note

BEGIN FreeType license

 The FreeType Project LICENSE

 2006-Jan-27

 Copyright 1996-2002, 2006 by
 David Turner, Robert Wilhelm, and Werner Lemberg

Introduction
============

 The FreeType Project is distributed in several archive packages;
 some of them may contain, in addition to the FreeType font engine,
 various tools and contributions which rely on, or relate to, the
 FreeType Project.

 This license applies to all files found in such packages, and
 which do not fall under their own explicit license. The license
 affects thus the FreeType font engine, the test programs,
 documentation and makefiles, at the very least.

 This license was inspired by the BSD, Artistic, and IJG
 (Independent JPEG Group) licenses, which all encourage inclusion
 and use of free software in commercial and freeware products
 alike. As a consequence, its main points are that:

 o We don't promise that this software works. However, we will be
 interested in any kind of bug reports. (`as is' distribution)

 o You can use this software for whatever you want, in parts or
 full form, without having to pay us. (`royalty-free' usage)

 o You may not pretend that you wrote this software. If you use
 it, or only parts of it, in a program, you must acknowledge
 somewhere in your documentation that you have used the
 FreeType code. (`credits')

 We specifically permit and encourage the inclusion of this
 software, with or without modifications, in commercial products.
 We disclaim all warranties covering The FreeType Project and
 assume no liability related to The FreeType Project.

 Finally, many people asked us for a preferred form for a
 credit/disclaimer to use in compliance with this license. We thus
 encourage you to use the following text:

 """
 Portions of this software are copyright © <year> The FreeType
 Project (www.freetype.org). All rights reserved.
 """

 Please replace <year> with the value from the FreeType version you
 actually use.

Legal Terms
===========

0. Definitions

 Throughout this license, the terms `package', `FreeType Project',
 and `FreeType archive' refer to the set of files originally
 distributed by the authors (David Turner, Robert Wilhelm, and
 Werner Lemberg) as the `FreeType Project', be they named as alpha,
 beta or final release.

 `You' refers to the licensee, or person using the project, where
 `using' is a generic term including compiling the project's source
 code as well as linking it to form a `program' or `executable'.
 This program is referred to as `a program using the FreeType
 engine'.

 This license applies to all files distributed in the original
 FreeType Project, including all source code, binaries and
 documentation, unless otherwise stated in the file in its
 original, unmodified form as distributed in the original archive.
 If you are unsure whether or not a particular file is covered by
 this license, you must contact us to verify this.

 The FreeType Project is copyright (C) 1996-2000 by David Turner,
 Robert Wilhelm, and Werner Lemberg. All rights reserved except as
 specified below.

1. No Warranty

 THE FREETYPE PROJECT IS PROVIDED `AS IS' WITHOUT WARRANTY OF ANY
 KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 PURPOSE. IN NO EVENT WILL ANY OF THE AUTHORS OR COPYRIGHT HOLDERS
 BE LIABLE FOR ANY DAMAGES CAUSED BY THE USE OR THE INABILITY TO
 USE, OF THE FREETYPE PROJECT.

2. Redistribution

 This license grants a worldwide, royalty-free, perpetual and
 irrevocable right and license to use, execute, perform, compile,
 display, copy, create derivative works of, distribute and
 sublicense the FreeType Project (in both source and object code
 forms) and derivative works thereof for any purpose; and to
 authorize others to exercise some or all of the rights granted
 herein, subject to the following conditions:

 o Redistribution of source code must retain this license file
 (`FTL.TXT') unaltered; any additions, deletions or changes to
 the original files must be clearly indicated in accompanying
 documentation. The copyright notices of the unaltered,
 original files must be preserved in all copies of source
 files.

 o Redistribution in binary form must provide a disclaimer that
 states that the software is based in part of the work of the
 FreeType Team, in the distribution documentation. We also
 encourage you to put an URL to the FreeType web page in your
 documentation, though this isn't mandatory.

 These conditions apply to any software derived from or based on
 the FreeType Project, not just the unmodified files. If you use
 our work, you must acknowledge us. However, no fee need be paid
 to us.

3. Advertising

 Neither the FreeType authors and contributors nor you shall use
 the name of the other for commercial, advertising, or promotional
 purposes without specific prior written permission.

 We suggest, but do not require, that you use one or more of the
 following phrases to refer to this software in your documentation
 or advertising materials: `FreeType Project', `FreeType Engine',
 `FreeType library', or `FreeType Distribution'.

 As you have not signed this license, you are not required to
 accept it. However, as the FreeType Project is copyrighted
 material, only this license, or another one contracted with the
 authors, grants you the right to use, distribute, and modify it.
 Therefore, by using, distributing, or modifying the FreeType
 Project, you indicate that you understand and accept all the terms
 of this license.

4. Contacts

 There are two mailing lists related to FreeType:

 o freetype@nongnu.org

 Discusses general use and applications of FreeType, as well as
 future and wanted additions to the library and distribution.
 If you are looking for support, start in this list if you
 haven't found anything to help you in the documentation.

 o freetype-devel@nongnu.org

 Discusses bugs, as well as engine internals, design issues,
 specific licenses, porting, etc.

 Our home page can be found at

 https://www.freetype.org

END FreeType license

BEGIN lcms license note

//---
//
// Little Color Management System
// Copyright (c) 1998-2020 Marti Maria Saguer
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//---
//

END lcms license note

BEGIN openjpeg license note

/*
 * The copyright in this software is being made available under the 2-clauses
 * BSD License, included below. This software may be subject to other third
 * party and contributor rights, including patent rights, and no such rights
 * are granted under this license.
 *
 * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
 * Copyright (c) 2002-2014, Professor Benoit Macq
 * Copyright (c) 2001-2003, David Janssens
 * Copyright (c) 2002-2003, Yannick Verschueren
 * Copyright (c) 2003-2007, Francois-Olivier Devaux
 * Copyright (c) 2003-2014, Antonin Descampe
 * Copyright (c) 2005, Herve Drolon, FreeImage Team
 * Copyright (c) 2008, 2011-2012, Centre National d'Etudes Spatiales (CNES), FR
 * Copyright (c) 2012, CS Systemes d'Information, France
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

END openjpeg license note

BEGIN zlib license

/* zlib.h -- interface of the 'zlib' general purpose compression library
 version 1.2.11, January 15th, 2017

 Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler

 This software is provided 'as-is', without any express or implied
 warranty. In no event will the authors be held liable for any damages
 arising from the use of this software.

 Permission is granted to anyone to use this software for any purpose,
 including commercial applications, and to alter it and redistribute it
 freely, subject to the following restrictions:

 1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.
 2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.
 3. This notice may not be removed or altered from any source distribution.

 Jean-loup Gailly Mark Adler
 jloup@gzip.org madler@alumni.caltech.edu

*/

END zlib license

BEGIN libjpeg-turbo license file

libjpeg-turbo Licenses
======================

libjpeg-turbo is covered by three compatible BSD-style open source licenses:

- The IJG (Independent JPEG Group) License, which is listed in
 README.ijg

 This license applies to the libjpeg API library and associated programs
 (any code inherited from libjpeg, and any modifications to that code.)

- The Modified (3-clause) BSD License, which is listed below

 This license covers the TurboJPEG API library and associated programs, as
 well as the build system.

- The [zlib License](https://opensource.org/licenses/Zlib)

 This license is a subset of the other two, and it covers the libjpeg-turbo
 SIMD extensions.

Complying with the libjpeg-turbo Licenses
===

This section provides a roll-up of the libjpeg-turbo licensing terms, to the
best of our understanding.

1. If you are distributing a modified version of the libjpeg-turbo source,
 then:

 1. You cannot alter or remove any existing copyright or license notices
 from the source.

 Origin
 - Clause 1 of the IJG License
 - Clause 1 of the Modified BSD License
 - Clauses 1 and 3 of the zlib License

 2. You must add your own copyright notice to the header of each source
 file you modified, so others can tell that you modified that file (if
 there is not an existing copyright header in that file, then you can
 simply add a notice stating that you modified the file.)

 Origin
 - Clause 1 of the IJG License
 - Clause 2 of the zlib License

 3. You must include the IJG README file, and you must not alter any of the
 copyright or license text in that file.

 Origin
 - Clause 1 of the IJG License

2. If you are distributing only libjpeg-turbo binaries without the source, or
 if you are distributing an application that statically links with
 libjpeg-turbo, then:

 1. Your product documentation must include a message stating:

 This software is based in part on the work of the Independent JPEG
 Group.

 Origin
 - Clause 2 of the IJG license

 2. If your binary distribution includes or uses the TurboJPEG API, then
 your product documentation must include the text of the Modified BSD
 License (see below.)

 Origin
 - Clause 2 of the Modified BSD License

3. You cannot use the name of the IJG or The libjpeg-turbo Project or the
 contributors thereof in advertising, publicity, etc.

 Origin
 - IJG License
 - Clause 3 of the Modified BSD License

4. The IJG and The libjpeg-turbo Project do not warrant libjpeg-turbo to be
 free of defects, nor do we accept any liability for undesirable
 consequences resulting from your use of the software.

 Origin
 - IJG License
 - Modified BSD License
 - zlib License

The Modified (3-clause) BSD License
===================================

Copyright (C)2009-2021 D. R. Commander. All Rights Reserved.
Copyright (C)2015 Viktor Szathmáry. All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.
- Neither the name of the libjpeg-turbo Project nor the names of its
 contributors may be used to endorse or promote products derived from this
 software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS",
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Why Three Licenses?
===================

The zlib License could have been used instead of the Modified (3-clause) BSD
License, and since the IJG License effectively subsumes the distribution
conditions of the zlib License, this would have effectively placed
libjpeg-turbo binary distributions under the IJG License. However, the IJG
License specifically refers to the Independent JPEG Group and does not extend
attribution and endorsement protections to other entities. Thus, it was
desirable to choose a license that granted us the same protections for new code
that were granted to the IJG for code derived from their software.

END libjpeg-turbo license file

BEGIN IJG (Independent JPEG Group) legal information

LEGAL ISSUES
============

In plain English:

1. We don't promise that this software works. (But if you find any bugs,
 please let us know!)
2. You can use this software for whatever you want. You don't have to pay us.
3. You may not pretend that you wrote this software. If you use it in a
 program, you must acknowledge somewhere in your documentation that
 you've used the IJG code.

In legalese:

The authors make NO WARRANTY or representation, either express or implied,
with respect to this software, its quality, accuracy, merchantability, or
fitness for a particular purpose. This software is provided "AS IS", and you,
its user, assume the entire risk as to its quality and accuracy.

This software is copyright (C) 1991-2020, Thomas G. Lane, Guido Vollbeding.
All Rights Reserved except as specified below.

Permission is hereby granted to use, copy, modify, and distribute this
software (or portions thereof) for any purpose, without fee, subject to these
conditions:
(1) If any part of the source code for this software is distributed, then this
README file must be included, with this copyright and no-warranty notice
unaltered; and any additions, deletions, or changes to the original files
must be clearly indicated in accompanying documentation.
(2) If only executable code is distributed, then the accompanying
documentation must state that "this software is based in part on the work of
the Independent JPEG Group".
(3) Permission for use of this software is granted only if the user accepts
full responsibility for any undesirable consequences; the authors accept
NO LIABILITY for damages of any kind.

These conditions apply to any software derived from or based on the IJG code,
not just to the unmodified library. If you use our work, you ought to
acknowledge us.

Permission is NOT granted for the use of any IJG author's name or company name
in advertising or publicity relating to this software or products derived from
it. This software may be referred to only as "the Independent JPEG Group's
software".

We specifically permit and encourage the use of this software as the basis of
commercial products, provided that all warranty or liability claims are
assumed by the product vendor.

END IJG (Independent JPEG Group) legal information

BEGIN ICU (International Components for Unicode) license file

COPYRIGHT AND PERMISSION NOTICE (ICU 58 and later)

Copyright © 1991-2020 Unicode, Inc. All rights reserved.
Distributed under the Terms of Use in https://www.unicode.org/copyright.html.

Permission is hereby granted, free of charge, to any person obtaining
a copy of the Unicode data files and any associated documentation
(the "Data Files") or Unicode software and any associated documentation
(the "Software") to deal in the Data Files or Software
without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, and/or sell copies of
the Data Files or Software, and to permit persons to whom the Data Files
or Software are furnished to do so, provided that either
(a) this copyright and permission notice appear with all copies
of the Data Files or Software, or
(b) this copyright and permission notice appear in associated
Documentation.

THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS
NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THE DATA FILES OR SOFTWARE.

Except as contained in this notice, the name of a copyright holder
shall not be used in advertising or otherwise to promote the sale,
use or other dealings in these Data Files or Software without prior
written authorization of the copyright holder.

Third-Party Software Licenses

This section contains third-party software notices and/or additional
terms for licensed third-party software components included within ICU
libraries.

1. ICU License - ICU 1.8.1 to ICU 57.1

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2016 International Business Machines Corporation and others
All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, provided that the above
copyright notice(s) and this permission notice appear in all copies of
the Software and that both the above copyright notice(s) and this
permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY
SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder
shall not be used in advertising or otherwise to promote the sale, use
or other dealings in this Software without prior written authorization
of the copyright holder.

All trademarks and registered trademarks mentioned herein are the
property of their respective owners.

2. Chinese/Japanese Word Break Dictionary Data (cjdict.txt)

 # The Google Chrome software developed by Google is licensed under
 # the BSD license. Other software included in this distribution is
 # provided under other licenses, as set forth below.
 #
 # The BSD License
 # http://opensource.org/licenses/bsd-license.php
 # Copyright (C) 2006-2008, Google Inc.
 #
 # All rights reserved.
 #
 # Redistribution and use in source and binary forms, with or without
 # modification, are permitted provided that the following conditions are met:
 #
 # Redistributions of source code must retain the above copyright notice,
 # this list of conditions and the following disclaimer.
 # Redistributions in binary form must reproduce the above
 # copyright notice, this list of conditions and the following
 # disclaimer in the documentation and/or other materials provided with
 # the distribution.
 # Neither the name of Google Inc. nor the names of its
 # contributors may be used to endorse or promote products derived from
 # this software without specific prior written permission.
 #
 #
 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 # CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 # BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 #
 #
 # The word list in cjdict.txt are generated by combining three word lists
 # listed below with further processing for compound word breaking. The
 # frequency is generated with an iterative training against Google web
 # corpora.
 #
 # * Libtabe (Chinese)
 # - https://sourceforge.net/project/?group_id=1519
 # - Its license terms and conditions are shown below.
 #
 # * IPADIC (Japanese)
 # - http://chasen.aist-nara.ac.jp/chasen/distribution.html
 # - Its license terms and conditions are shown below.
 #
 # ---------COPYING.libtabe ---- BEGIN--------------------
 #
 # /*
 # * Copyright (c) 1999 TaBE Project.
 # * Copyright (c) 1999 Pai-Hsiang Hsiao.
 # * All rights reserved.
 # *
 # * Redistribution and use in source and binary forms, with or without
 # * modification, are permitted provided that the following conditions
 # * are met:
 # *
 # * . Redistributions of source code must retain the above copyright
 # * notice, this list of conditions and the following disclaimer.
 # * . Redistributions in binary form must reproduce the above copyright
 # * notice, this list of conditions and the following disclaimer in
 # * the documentation and/or other materials provided with the
 # * distribution.
 # * . Neither the name of the TaBE Project nor the names of its
 # * contributors may be used to endorse or promote products derived
 # * from this software without specific prior written permission.
 # *
 # * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 # * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 # * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 # * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 # * REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 # * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 # * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 # * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 # * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 # * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 # * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 # * OF THE POSSIBILITY OF SUCH DAMAGE.
 # */
 #
 # /*
 # * Copyright (c) 1999 Computer Systems and Communication Lab,
 # * Institute of Information Science, Academia
 # * Sinica. All rights reserved.
 # *
 # * Redistribution and use in source and binary forms, with or without
 # * modification, are permitted provided that the following conditions
 # * are met:
 # *
 # * . Redistributions of source code must retain the above copyright
 # * notice, this list of conditions and the following disclaimer.
 # * . Redistributions in binary form must reproduce the above copyright
 # * notice, this list of conditions and the following disclaimer in
 # * the documentation and/or other materials provided with the
 # * distribution.
 # * . Neither the name of the Computer Systems and Communication Lab
 # * nor the names of its contributors may be used to endorse or
 # * promote products derived from this software without specific
 # * prior written permission.
 # *
 # * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 # * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 # * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 # * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 # * REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 # * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 # * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 # * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 # * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 # * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 # * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 # * OF THE POSSIBILITY OF SUCH DAMAGE.
 # */
 #
 # Copyright 1996 Chih-Hao Tsai @ Beckman Institute,
 # University of Illinois
 # c-tsai4@uiuc.edu http://casper.beckman.uiuc.edu/~c-tsai4
 #
 # ---------------COPYING.libtabe-----END--------------------------------
 #
 #
 # ---------------COPYING.ipadic-----BEGIN-------------------------------
 #
 # Copyright 2000, 2001, 2002, 2003 Nara Institute of Science
 # and Technology. All Rights Reserved.
 #
 # Use, reproduction, and distribution of this software is permitted.
 # Any copy of this software, whether in its original form or modified,
 # must include both the above copyright notice and the following
 # paragraphs.
 #
 # Nara Institute of Science and Technology (NAIST),
 # the copyright holders, disclaims all warranties with regard to this
 # software, including all implied warranties of merchantability and
 # fitness, in no event shall NAIST be liable for
 # any special, indirect or consequential damages or any damages
 # whatsoever resulting from loss of use, data or profits, whether in an
 # action of contract, negligence or other tortuous action, arising out
 # of or in connection with the use or performance of this software.
 #
 # A large portion of the dictionary entries
 # originate from ICOT Free Software. The following conditions for ICOT
 # Free Software applies to the current dictionary as well.
 #
 # Each User may also freely distribute the Program, whether in its
 # original form or modified, to any third party or parties, PROVIDED
 # that the provisions of Section 3 ("NO WARRANTY") will ALWAYS appear
 # on, or be attached to, the Program, which is distributed substantially
 # in the same form as set out herein and that such intended
 # distribution, if actually made, will neither violate or otherwise
 # contravene any of the laws and regulations of the countries having
 # jurisdiction over the User or the intended distribution itself.
 #
 # NO WARRANTY
 #
 # The program was produced on an experimental basis in the course of the
 # research and development conducted during the project and is provided
 # to users as so produced on an experimental basis. Accordingly, the
 # program is provided without any warranty whatsoever, whether express,
 # implied, statutory or otherwise. The term "warranty" used herein
 # includes, but is not limited to, any warranty of the quality,
 # performance, merchantability and fitness for a particular purpose of
 # the program and the nonexistence of any infringement or violation of
 # any right of any third party.
 #
 # Each user of the program will agree and understand, and be deemed to
 # have agreed and understood, that there is no warranty whatsoever for
 # the program and, accordingly, the entire risk arising from or
 # otherwise connected with the program is assumed by the user.
 #
 # Therefore, neither ICOT, the copyright holder, or any other
 # organization that participated in or was otherwise related to the
 # development of the program and their respective officials, directors,
 # officers and other employees shall be held liable for any and all
 # damages, including, without limitation, general, special, incidental
 # and consequential damages, arising out of or otherwise in connection
 # with the use or inability to use the program or any product, material
 # or result produced or otherwise obtained by using the program,
 # regardless of whether they have been advised of, or otherwise had
 # knowledge of, the possibility of such damages at any time during the
 # project or thereafter. Each user will be deemed to have agreed to the
 # foregoing by his or her commencement of use of the program. The term
 # "use" as used herein includes, but is not limited to, the use,
 # modification, copying and distribution of the program and the
 # production of secondary products from the program.
 #
 # In the case where the program, whether in its original form or
 # modified, was distributed or delivered to or received by a user from
 # any person, organization or entity other than ICOT, unless it makes or
 # grants independently of ICOT any specific warranty to the user in
 # writing, such person, organization or entity, will also be exempted
 # from and not be held liable to the user for any such damages as noted
 # above as far as the program is concerned.
 #
 # ---------------COPYING.ipadic-----END----------------------------------

3. Lao Word Break Dictionary Data (laodict.txt)

 # Copyright (C) 2016 and later: Unicode, Inc. and others.
 # License & terms of use: http://www.unicode.org/copyright.html
 # Copyright (c) 2015 International Business Machines Corporation
 # and others. All Rights Reserved.
 #
 # Project: https://github.com/rober42539/lao-dictionary
 # Dictionary: https://github.com/rober42539/lao-dictionary/laodict.txt
 # License: https://github.com/rober42539/lao-dictionary/LICENSE.txt
 # (copied below)
 #
 #	This file is derived from the above dictionary version of Nov 22, 2020
 # --
 # Copyright (C) 2013 Brian Eugene Wilson, Robert Martin Campbell.
 # All rights reserved.
 #
 # Redistribution and use in source and binary forms, with or without
 # modification, are permitted provided that the following conditions are met:
 #
 # Redistributions of source code must retain the above copyright notice, this
 # list of conditions and the following disclaimer. Redistributions in binary
 # form must reproduce the above copyright notice, this list of conditions and
 # the following disclaimer in the documentation and/or other materials
 # provided with the distribution.
 #
 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
 # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 # OF THE POSSIBILITY OF SUCH DAMAGE.
 # --

4. Burmese Word Break Dictionary Data (burmesedict.txt)

 # Copyright (c) 2014 International Business Machines Corporation
 # and others. All Rights Reserved.
 #
 # This list is part of a project hosted at:
 # github.com/kanyawtech/myanmar-karen-word-lists
 #
 # --
 # Copyright (c) 2013, LeRoy Benjamin Sharon
 # All rights reserved.
 #
 # Redistribution and use in source and binary forms, with or without
 # modification, are permitted provided that the following conditions
 # are met: Redistributions of source code must retain the above
 # copyright notice, this list of conditions and the following
 # disclaimer. Redistributions in binary form must reproduce the
 # above copyright notice, this list of conditions and the following
 # disclaimer in the documentation and/or other materials provided
 # with the distribution.
 #
 # Neither the name Myanmar Karen Word Lists, nor the names of its
 # contributors may be used to endorse or promote products derived
 # from this software without specific prior written permission.
 #
 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 # CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
 # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 # TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 # TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
 # THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 # SUCH DAMAGE.
 # --

5. Time Zone Database

 ICU uses the public domain data and code derived from Time Zone
Database for its time zone support. The ownership of the TZ database
is explained in BCP 175: Procedure for Maintaining the Time Zone
Database section 7.

 # 7. Database Ownership
 #
 # The TZ database itself is not an IETF Contribution or an IETF
 # document. Rather it is a pre-existing and regularly updated work
 # that is in the public domain, and is intended to remain in the
 # public domain. Therefore, BCPs 78 [RFC5378] and 79 [RFC3979] do
 # not apply to the TZ Database or contributions that individuals make
 # to it. Should any claims be made and substantiated against the TZ
 # Database, the organization that is providing the IANA
 # Considerations defined in this RFC, under the memorandum of
 # understanding with the IETF, currently ICANN, may act in accordance
 # with all competent court orders. No ownership claims will be made
 # by ICANN or the IETF Trust on the database or the code. Any person
 # making a contribution to the database or code waives all rights to
 # future claims in that contribution or in the TZ Database.

6. Google double-conversion

Copyright 2006-2011, the V8 project authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials provided
 with the distribution.
 * Neither the name of Google Inc. nor the names of its
 contributors may be used to endorse or promote products derived
 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

END ICU (International Components for Unicode) license file

pypdfium2-1.2.0/Makefile

SPDX-FileCopyrightText: 2021 Adam Huganir <adam@huganir.com>
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: CC-BY-4.0

install:
	bash ./utilities/install.sh

test:
	python3 -m pytest tests/

check:
	bash ./utilities/check.sh

update-all:
	python3 platform_setup/update_pdfium.py

setup-all:
	bash ./utilities/setup_all.sh

release:
	bash ./utilities/release.sh

.PHONY: build
build:
	bash ./utilities/build.sh

clean:
	bash ./utilities/clean.sh

docs-build:
	sphinx-build ./docs/source ./docs/build/html

docs-open:
	xdg-open ./docs/build/html/index.html

pypdfium2-1.2.0/PKG-INFO

Metadata-Version: 2.1
Name: pypdfium2
Version: 1.2.0
Summary: Python bindings to PDFium
Home-page: https://github.com/pypdfium2-team/pypdfium2
Author: pypdfium2-team
Author-email: geisserml@gmail.com
License: Apache-2.0 or BSD-3-Clause
Project-URL: Documentation, https://pypdfium2.readthedocs.io/
Project-URL: Source, https://github.com/pypdfium2-team/pypdfium2
Project-URL: Tracker, https://github.com/pypdfium2-team/pypdfium2/issues
Keywords: Python,PDF,PDFium
Platform: UNKNOWN
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Information Technology
Classifier: Intended Audience :: Education
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: Implementation :: CPython
Classifier: Programming Language :: Python :: Implementation :: PyPy
Classifier: Topic :: Multimedia :: Graphics
Classifier: Topic :: Software Development :: Libraries
Requires-Python: !=3.7.6,!=3.8.1,>=3.5
Description-Content-Type: text/markdown
Provides-Extra: converters
Provides-Extra: test
Provides-Extra: docs
Provides-Extra: utilities
License-File: LICENSES/Apache-2.0.txt
License-File: LICENSES/BSD-3-Clause.txt
License-File: LICENSES/CC-BY-4.0.txt
License-File: LICENSES/LicenseRef-PdfiumThirdParty.txt
License-File: .reuse/dep5

<!-- SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com> -->
<!-- SPDX-License-Identifier: CC-BY-4.0 -->

pypdfium2

[pypdfium2](https://github.com/pypdfium2-team/pypdfium2) is a Python 3 binding to [PDFium](https://pdfium.googlesource.com/pdfium/+/refs/heads/main), the liberal-licensed PDF rendering library authored by Foxit and maintained by Google.

Install/Update

Install from PyPI

```bash
pip3 install --no-build-isolation -U pypdfium2
```

Manual installation

The following steps require the system tools `git` and `gcc` to be installed and available in `PATH`. In addition, the Python dependencies `setuptools`, `setuptools-scm` `wheel`, `build`, and `ctypesgen` are needed. Also make sure that your `pip` version is up-to-date. For more information, please refer to [`dependencies.md`](docs/markdown/dependencies.md).

Package locally

To get pre-compiled binaries, generate bindings and install pypdfium2, you may run
```bash
make install
```
in the directory you downloaded the repository to. This will resort to building PDFium if no pre-compiled binaries are available for your platform.

Source build

If you wish to perform a source build regardless of whether PDFium binaries are available or not, you can do the following:
```bash
make build
```

In case building failed, you could try
```bash
python3 platform_setup/build_pdfium.py --nativebuild --check-deps
PYP_TARGET_PLATFORM="sourcebuild" python3 -m pip install . -v --no-build-isolation
```
to prefer the use of system-provided build tools over the toolchain PDFium ships with. The problem is that the toolchain is limited to a curated set of platforms, as PDFium target cross-compilation for "non-standard" architectures. (Make sure you installed all packages from the `Native Build` section of [`dependencies.md`](docs/markdown/dependencies.md), in addition to the default requirements.)

Examples

Using the command-line interface

Rasterise a PDF document:
```bash
pypdfium2 render document.pdf -o output_dir/ --scale 3
```

You may also rasterise multiple files at once:
```bash
pypdfium2 render doc_1.pdf doc_2.pdf doc_3.pdf -o output_dir/
```

Show the table of contents for a PDF:
```bash
pypdfium2 toc document.pdf
```

To obtain a list of subcommands, run `pypdfium2 help`. Individual help for each subcommand is available can be accessed in the same way (`pypdfium any_subcommand help`)

CLI documentation: https://pypdfium2.readthedocs.io/en/stable/shell_api.html

Using the support model

Import pypdfium2:

```python3
import pypdfium2 as pdfium
```

Open a PDF using the helper class `PdfDocument`:
```python3
doc = pdfium.PdfDocument(filename)
# ... use methods provided by the helper class
pdf = doc.raw
# ... work with the actual PDFium document handle
doc.close()
```

Open a PDF using the context manager `PdfContext`:
```python3
with pdfium.PdfContext(filename) as pdf:
    # ... work with the pdf
```

Render a single page:

```python3
with pdfium.PdfContext(filename) as pdf:
    pil_image = pdfium.render_page_topil(
        pdf,
        page_index = 0,
        scale = 1,
        rotation = 0,
        colour = (255, 255, 255, 255),
        annotations = True,
        greyscale = False,
        optimise_mode = pdfium.OptimiseMode.none,
    )

pil_image.save("out.png")
pil_image.close()
```

Render multiple pages concurrently:

```python3
for image, suffix in pdfium.render_pdf_topil(filename):
    image.save( 'out_{}.png'.format(suffix) )
    image.close()
```

Read the table of contents:

```python3
doc = pdfium.PdfDocument(filepath)
for item in doc.get_toc():
    print(
        '    ' * item.level +
        "{} -> {}  # {} {}".format(
            item.title,
            item.page_index + 1,
            item.view_mode,
            item.view_pos,
        )
    )
doc.close()
```

Support model documentation: https://pypdfium2.readthedocs.io/en/stable/python_api.html

Using the PDFium API

Rendering the first page of a PDF document:

```python3
import math
import ctypes
from PIL import Image
import pypdfium2 as pdfium

filename = "your/path/to/document.pdf"

doc = pdfium.FPDF_LoadDocument(filename, None)
page_count = pdfium.FPDF_GetPageCount(doc)
assert page_count >= 1

form_config = pdfium.FPDF_FORMFILLINFO(2)
form_fill = pdfium.FPDFDOC_InitFormFillEnvironment(doc, form_config)

page = pdfium.FPDF_LoadPage(doc, 0)
width = math.ceil(pdfium.FPDF_GetPageWidthF(page))
height = math.ceil(pdfium.FPDF_GetPageHeightF(page))

bitmap = pdfium.FPDFBitmap_Create(width, height, 0)
pdfium.FPDFBitmap_FillRect(bitmap, 0, 0, width, height, 0xFFFFFFFF)

render_args = [bitmap, page, 0, 0, width, height, 0,  pdfium.FPDF_LCD_TEXT | pdfium.FPDF_ANNOT]
pdfium.FPDF_RenderPageBitmap(*render_args)
pdfium.FPDF_FFLDraw(form_fill, *render_args)

cbuffer = pdfium.FPDFBitmap_GetBuffer(bitmap)
buffer = ctypes.cast(cbuffer, ctypes.POINTER(ctypes.c_ubyte * (width * height * 4)))

img = Image.frombuffer("RGBA", (width, height), buffer.contents, "raw", "BGRA", 0, 1)
img.save("out.png")

pdfium.FPDFBitmap_Destroy(bitmap)
pdfium.FPDF_ClosePage(page)

pdfium.FPDFDOC_ExitFormFillEnvironment(form_fill)
pdfium.FPDF_CloseDocument(doc)
```

For more examples of using the raw API, take a look at the [support model source code](src/pypdfium2/_helpers) and the [examples directory](examples).

Documentation for the [PDFium API](https://developers.foxit.com/resources/pdf-sdk/c_api_reference_pdfium/group___f_p_d_f_i_u_m.html) is available. pypdfium2 transparently maps all PDFium classes, enums and functions to Python. However, there can sometimes be minor differences between Foxit and open-source PDFium. In case of doubt, take a look at the inline source code documentation of PDFium.

Licensing

PDFium and pypdfium2 are available by the terms and conditions of either Apache 2.0 or BSD-3-Clause, at your choice.

Various other open-source licenses apply to the dependencies of PDFium. License texts for PDFium and its dependencies are included in the file [`LicenseRef-PdfiumThirdParty.txt`](LICENSES/LicenseRef-PdfiumThirdParty.txt), which is also shipped with binary redistributions.

Documentation and examples of pypdfium2 are CC-BY-4.0 licensed.

In Use

* The [doctr](https://mindee.github.io/doctr/) OCR library uses pypdfium2 to rasterise PDF documents.
* The [Extract-URLs](https://github.com/elescamilla/Extract-URLs/) project extracts URLs from PDFs using pypdfium2.

Development

PDFium builds are retrieved from [bblanchon/pdfium-binaries](https://github.com/bblanchon/pdfium-binaries). Python bindings are auto-generated with [ctypesgen](https://github.com/ctypesgen/ctypesgen)

Please see [#3](https://github.com/pypdfium2-team/pypdfium2/issues/3) for a list of platforms where binary wheels are available.
Some wheels are not tested, unfortunately. If you have access to a theoretically supported but untested system, please report success or failure on the issue or discussion panel.

For wheel naming conventions, please see [Python Packaging: Platform compatibility tags](https://packaging.python.org/specifications/platform-compatibility-tags/) and the various referenced PEPs. [This thread](https://discuss.python.org/t/wheel-platform-tag-for-windows/9025/5) may also provide helpful information.

pypdfium2 contains scripts to automate the release process:

* To build the wheels, run `make release`. This will download binaries and header files, write finished Python binary distributions to `dist/`, and run some checks.
* To clean up after a release, run `make clean`. This will remove downloaded files and build artifacts.

Testing

Run `make test`.

Publishing the wheels

* You may want to upload to [TestPyPI](https://test.pypi.org/legacy/) first to ensure everything works as expected:
  ```bash
  twine upload --verbose --repository-url https://test.pypi.org/legacy/ dist/*
  ```
* If all went well, upload to the real PyPI:
  ```bash
  twine upload dist/*
  ```


Issues

Since pypdfium2 is built using upstream binaries and an automatic bindings creator, issues that are not related to packaging or support model code probably need to be addressed upstream. However, the [pypdfium2 issues panel](https://github.com/pypdfium2-team/pypdfium2/issues) is always a good place to start if you have any problems, questions or suggestions.

If the cause of an issue could be determined to be in PDFium, the problem needs to be reported at the [PDFium bug tracker](https://bugs.chromium.org/p/pdfium/issues/list).

Issues related to pre-compiled binaries should be discussed at [pdfium-binaries](https://github.com/bblanchon/pdfium-binaries/issues), though.

If your issue is caused by the bindings generator, refer to the [ctypesgen bug tracker](https://github.com/ctypesgen/ctypesgen/issues).

Known limitations

Incompatibility with CPython 3.7.6 and 3.8.1

pypdfium2 cannot be used with releases 3.7.6 and 3.8.1 of the CPython interpreter due to a [regression](https://github.com/python/cpython/pull/16799#issuecomment-612353119) that broke ctypesgen-created string handling code.

Problems with `FPDFPage_Delete()`

While `FPDFPage_Delete()` first seems to reduce page count properly, the changes are not actually applied when saving the document. See issue [#96](https://github.com/pypdfium2-team/pypdfium2/issues/96).

Thanks

Patches to PDFium and DepotTools originate from the [pdfium-binaries](https://github.com/bblanchon/pdfium-binaries/) repository. Many thanks to @bblanchon and @BoLaMN.

History

pypdfium2 is the successor of *pypdfium* and *pypdfium-reboot*.

The initial *pypdfium* was packaged manually and did not get regular updates. There were no platform-specific wheels, but only a single wheel that contained binaries for 64-bit Linux, Windows and macOS.

pypdfium-reboot then added a script to automate binary deployment and bindings generation to simplify regular updates. However, it was still not platform specific.

pypdfium2 is a full rewrite of *pypdfium-reboot* to build platform-specific wheels. It also adds a basic support model and a command-line interface on top of the PDFium C API to simplify common use cases. Moreover, pypdfium2 includes facilities to build PDFium from source, to extend platform compatibility.

pypdfium2-1.2.0/README.md

<!-- SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com> -->
<!-- SPDX-License-Identifier: CC-BY-4.0 -->

pypdfium2

[pypdfium2](https://github.com/pypdfium2-team/pypdfium2) is a Python 3 binding to [PDFium](https://pdfium.googlesource.com/pdfium/+/refs/heads/main), the liberal-licensed PDF rendering library authored by Foxit and maintained by Google.

Install/Update

Install from PyPI

```bash
pip3 install --no-build-isolation -U pypdfium2
```

Manual installation

The following steps require the system tools `git` and `gcc` to be installed and available in `PATH`. In addition, the Python dependencies `setuptools`, `setuptools-scm` `wheel`, `build`, and `ctypesgen` are needed. Also make sure that your `pip` version is up-to-date. For more information, please refer to [`dependencies.md`](docs/markdown/dependencies.md).

Package locally

To get pre-compiled binaries, generate bindings and install pypdfium2, you may run
```bash
make install
```
in the directory you downloaded the repository to. This will resort to building PDFium if no pre-compiled binaries are available for your platform.

Source build

If you wish to perform a source build regardless of whether PDFium binaries are available or not, you can do the following:
```bash
make build
```

In case building failed, you could try
```bash
python3 platform_setup/build_pdfium.py --nativebuild --check-deps
PYP_TARGET_PLATFORM="sourcebuild" python3 -m pip install . -v --no-build-isolation
```
to prefer the use of system-provided build tools over the toolchain PDFium ships with. The problem is that the toolchain is limited to a curated set of platforms, as PDFium target cross-compilation for "non-standard" architectures. (Make sure you installed all packages from the `Native Build` section of [`dependencies.md`](docs/markdown/dependencies.md), in addition to the default requirements.)

Examples

Using the command-line interface

Rasterise a PDF document:
```bash
pypdfium2 render document.pdf -o output_dir/ --scale 3
```

You may also rasterise multiple files at once:
```bash
pypdfium2 render doc_1.pdf doc_2.pdf doc_3.pdf -o output_dir/
```

Show the table of contents for a PDF:
```bash
pypdfium2 toc document.pdf
```

To obtain a list of subcommands, run `pypdfium2 help`. Individual help for each subcommand is available can be accessed in the same way (`pypdfium any_subcommand help`)

CLI documentation: https://pypdfium2.readthedocs.io/en/stable/shell_api.html

Using the support model

Import pypdfium2:

```python3
import pypdfium2 as pdfium
```

Open a PDF using the helper class `PdfDocument`:
```python3
doc = pdfium.PdfDocument(filename)
# ... use methods provided by the helper class
pdf = doc.raw
# ... work with the actual PDFium document handle
doc.close()
```

Open a PDF using the context manager `PdfContext`:
```python3
with pdfium.PdfContext(filename) as pdf:
    # ... work with the pdf
```

Render a single page:

```python3
with pdfium.PdfContext(filename) as pdf:
    pil_image = pdfium.render_page_topil(
        pdf,
        page_index = 0,
        scale = 1,
        rotation = 0,
        colour = (255, 255, 255, 255),
        annotations = True,
        greyscale = False,
        optimise_mode = pdfium.OptimiseMode.none,
    )

pil_image.save("out.png")
pil_image.close()
```

Render multiple pages concurrently:

```python3
for image, suffix in pdfium.render_pdf_topil(filename):
    image.save( 'out_{}.png'.format(suffix) )
    image.close()
```

Read the table of contents:

```python3
doc = pdfium.PdfDocument(filepath)
for item in doc.get_toc():
    print(
        '    ' * item.level +
        "{} -> {}  # {} {}".format(
            item.title,
            item.page_index + 1,
            item.view_mode,
            item.view_pos,
        )
    )
doc.close()
```

Support model documentation: https://pypdfium2.readthedocs.io/en/stable/python_api.html

Using the PDFium API

Rendering the first page of a PDF document:

```python3
import math
import ctypes
from PIL import Image
import pypdfium2 as pdfium

filename = "your/path/to/document.pdf"

doc = pdfium.FPDF_LoadDocument(filename, None)
page_count = pdfium.FPDF_GetPageCount(doc)
assert page_count >= 1

form_config = pdfium.FPDF_FORMFILLINFO(2)
form_fill = pdfium.FPDFDOC_InitFormFillEnvironment(doc, form_config)

page = pdfium.FPDF_LoadPage(doc, 0)
width = math.ceil(pdfium.FPDF_GetPageWidthF(page))
height = math.ceil(pdfium.FPDF_GetPageHeightF(page))

bitmap = pdfium.FPDFBitmap_Create(width, height, 0)
pdfium.FPDFBitmap_FillRect(bitmap, 0, 0, width, height, 0xFFFFFFFF)

render_args = [bitmap, page, 0, 0, width, height, 0,  pdfium.FPDF_LCD_TEXT | pdfium.FPDF_ANNOT]
pdfium.FPDF_RenderPageBitmap(*render_args)
pdfium.FPDF_FFLDraw(form_fill, *render_args)

cbuffer = pdfium.FPDFBitmap_GetBuffer(bitmap)
buffer = ctypes.cast(cbuffer, ctypes.POINTER(ctypes.c_ubyte * (width * height * 4)))

img = Image.frombuffer("RGBA", (width, height), buffer.contents, "raw", "BGRA", 0, 1)
img.save("out.png")

pdfium.FPDFBitmap_Destroy(bitmap)
pdfium.FPDF_ClosePage(page)

pdfium.FPDFDOC_ExitFormFillEnvironment(form_fill)
pdfium.FPDF_CloseDocument(doc)
```

For more examples of using the raw API, take a look at the [support model source code](src/pypdfium2/_helpers) and the [examples directory](examples).

Documentation for the [PDFium API](https://developers.foxit.com/resources/pdf-sdk/c_api_reference_pdfium/group___f_p_d_f_i_u_m.html) is available. pypdfium2 transparently maps all PDFium classes, enums and functions to Python. However, there can sometimes be minor differences between Foxit and open-source PDFium. In case of doubt, take a look at the inline source code documentation of PDFium.

Licensing

PDFium and pypdfium2 are available by the terms and conditions of either Apache 2.0 or BSD-3-Clause, at your choice.

Various other open-source licenses apply to the dependencies of PDFium. License texts for PDFium and its dependencies are included in the file [`LicenseRef-PdfiumThirdParty.txt`](LICENSES/LicenseRef-PdfiumThirdParty.txt), which is also shipped with binary redistributions.

Documentation and examples of pypdfium2 are CC-BY-4.0 licensed.

In Use

* The [doctr](https://mindee.github.io/doctr/) OCR library uses pypdfium2 to rasterise PDF documents.
* The [Extract-URLs](https://github.com/elescamilla/Extract-URLs/) project extracts URLs from PDFs using pypdfium2.

Development

PDFium builds are retrieved from [bblanchon/pdfium-binaries](https://github.com/bblanchon/pdfium-binaries). Python bindings are auto-generated with [ctypesgen](https://github.com/ctypesgen/ctypesgen)

Please see [#3](https://github.com/pypdfium2-team/pypdfium2/issues/3) for a list of platforms where binary wheels are available.
Some wheels are not tested, unfortunately. If you have access to a theoretically supported but untested system, please report success or failure on the issue or discussion panel.

For wheel naming conventions, please see [Python Packaging: Platform compatibility tags](https://packaging.python.org/specifications/platform-compatibility-tags/) and the various referenced PEPs. [This thread](https://discuss.python.org/t/wheel-platform-tag-for-windows/9025/5) may also provide helpful information.

pypdfium2 contains scripts to automate the release process:

* To build the wheels, run `make release`. This will download binaries and header files, write finished Python binary distributions to `dist/`, and run some checks.
* To clean up after a release, run `make clean`. This will remove downloaded files and build artifacts.

Testing

Run `make test`.

Publishing the wheels

* You may want to upload to [TestPyPI](https://test.pypi.org/legacy/) first to ensure everything works as expected:
  ```bash
  twine upload --verbose --repository-url https://test.pypi.org/legacy/ dist/*
  ```
* If all went well, upload to the real PyPI:
  ```bash
  twine upload dist/*
  ```


Issues

Since pypdfium2 is built using upstream binaries and an automatic bindings creator, issues that are not related to packaging or support model code probably need to be addressed upstream. However, the [pypdfium2 issues panel](https://github.com/pypdfium2-team/pypdfium2/issues) is always a good place to start if you have any problems, questions or suggestions.

If the cause of an issue could be determined to be in PDFium, the problem needs to be reported at the [PDFium bug tracker](https://bugs.chromium.org/p/pdfium/issues/list).

Issues related to pre-compiled binaries should be discussed at [pdfium-binaries](https://github.com/bblanchon/pdfium-binaries/issues), though.

If your issue is caused by the bindings generator, refer to the [ctypesgen bug tracker](https://github.com/ctypesgen/ctypesgen/issues).

Known limitations

Incompatibility with CPython 3.7.6 and 3.8.1

pypdfium2 cannot be used with releases 3.7.6 and 3.8.1 of the CPython interpreter due to a [regression](https://github.com/python/cpython/pull/16799#issuecomment-612353119) that broke ctypesgen-created string handling code.

Problems with `FPDFPage_Delete()`

While `FPDFPage_Delete()` first seems to reduce page count properly, the changes are not actually applied when saving the document. See issue [#96](https://github.com/pypdfium2-team/pypdfium2/issues/96).

Thanks

Patches to PDFium and DepotTools originate from the [pdfium-binaries](https://github.com/bblanchon/pdfium-binaries/) repository. Many thanks to @bblanchon and @BoLaMN.

History

pypdfium2 is the successor of *pypdfium* and *pypdfium-reboot*.

The initial *pypdfium* was packaged manually and did not get regular updates. There were no platform-specific wheels, but only a single wheel that contained binaries for 64-bit Linux, Windows and macOS.

pypdfium-reboot then added a script to automate binary deployment and bindings generation to simplify regular updates. However, it was still not platform specific.

pypdfium2 is a full rewrite of *pypdfium-reboot* to build platform-specific wheels. It also adds a basic support model and a command-line interface on top of the PDFium C API to simplify common use cases. Moreover, pypdfium2 includes facilities to build PDFium from source, to extend platform compatibility.

pypdfium2-1.2.0/data/.gitkeep

pypdfium2-1.2.0/docs/Makefile

SPDX-FileCopyrightText: 2021 The Sphinx Authors
SPDX-License-Identifier: CC-BY-4.0

Minimal makefile for Sphinx documentation

You can set these variables from the command line, and also
from the environment for the first two.
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SOURCEDIR = source
BUILDDIR = build

Put it first so that "make" without argument is like "make help".
help:
	@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

.PHONY: help Makefile

Catch-all target: route all unknown targets to Sphinx using the new
"make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
	@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

pypdfium2-1.2.0/docs/build/.gitkeep

pypdfium2-1.2.0/docs/make.bat

@echo off

REM SPDX-FileCopyrightText: 2021 The Sphinx Authors
REM SPDX-License-Identifier: CC-BY-4.0
REM Command file for Sphinx documentation

pushd %~dp0

if "%SPHINXBUILD%" == "" (
	set SPHINXBUILD=sphinx-build
)
set SOURCEDIR=source
set BUILDDIR=build

if "%1" == "" goto help

%SPHINXBUILD% >NUL 2>NUL
if errorlevel 9009 (
	echo.
	echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
	echo.installed, then set the SPHINXBUILD environment variable to point
	echo.to the full path of the 'sphinx-build' executable. Alternatively you
	echo.may add the Sphinx directory to PATH.
	echo.
	echo.If you don't have Sphinx installed, grab it from
	echo.http://sphinx-doc.org/
	exit /b 1
)

%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
goto end

:help
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%

:end
popd

pypdfium2-1.2.0/docs/markdown/add_platform.md

<!-- SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com> -->
<!-- SPDX-License-Identifier: CC-BY-4.0 -->

Adding a new platform
=====================

This document is intended to outline the steps required to support a new platform in `pypdfium2` that was added to the builds from `pdfium-binaries`.

For a sample implementation, see [Pull Request #92](https://github.com/pypdfium2-team/pypdfium2/pull/92), which added support for `linux_x86`.

* Add a new attribute to the class `PlatformNames` in `platform_setup/packaging_base.py`, following the existing naming patterns.
* Insert a corresponding entry into the `ReleaseNames` dictionary in `platform_setup/update_pdfium.py`. The key is the `PlatformNames` attribute, while the value is the name of the file to download (without extension).
* Add the new wheel tag to the `_get_tag()` function of `platform_setup/setup_base.py`. Usually, these platform tags match or are derived from the return of `sysconfig.get_platform()` on a device of the platform in question. While Windows generally matches `sysconfig.get_platform()`, there are the `manylinux` and `musllinux` standards for Linux. Sometimes you may even have to use multiple tags (e. g. `macos_10_xx_{arch}.macos_11_xx_{arch}`). Please see related Python documentation, look at the release files of other projects on PyPI that support this platform, or ask at `discuss.python.org` if you cannot determine the tag. To the author's knowledge, there is no comprehensive list of all possible wheel tags, unfortunately.
* In `setup.py`, modify `install_handler()`: Add a check to recognise the new host platform and call `_setup()` with the corresponding `PlatformName` attribute as argument.
* In `utilities/setup_all.sh`, insert the new platform identifier into the `whl_targets` array.
* Test your changes:
 * Run something like this:
    ```bash
    # define the setup target (replace `platform_name` with the name of the new platform)
    export PYP_TARGET_PLATFORM="platform_name"
    # download the binary package and call ctypesgen
    python3 platform_setup/update_pdfium.py -p "$PYP_TARGET_PLATFORM"
    # craft the wheel, according to the target platform environment variable
    # (-n: no isolation, -x: skip dependency check)
    python3 -m build -n -x --wheel
    ```
 * If all went well, a wheel for the new platform should have been written to `dist/`. Inspect it with an archiver tool to ensure the `pypdfium2` directory contains all stuff from `src/pypdfium2/`, the bindings file `_pypdfium.py`, and the PDFium binary (one-of `pdfium`, `pdfium.dylib`, `pdfium.dll`).
 * Run `make release`. When done, confirm that there were no errors, the new platform wheel is present in `dist/`, and all sanity checks passed (`twine check` and `check-wheel-contents`).
 * Finally, create an entry for the next release in `docs/markdown/changelog.md` and note that you added support for a new platform.
 * Make a new branch, add and commit your changes. Example:
    ```bash
    # replace `new_platform` with any name of your liking
    # (if you are the maintainer yourself and intend to push the changes directly into main,
    # feel free to skip this step and the pull request)
    git branch new_platform; git checkout new_platform
    # show changed files
    git status
    # stage the changes
    git add file_1 file_2 ...  # or `git add *`
    # create a commit
    git commit -m "Added support for new platform xyz" -m "(longer description, if necessary)"
    ```
 (It may be more convenient to use a GUI such as `git-cola`, `qgit`, or `GitAhead`)
 * Submit a Pull Request:
    ```bash
    # using the interactive GitHub CLI
    gh pr create
    ```
 * At best, install the created wheel on the target platform, run the test suite (`python3 -m pytest tests/`) and report success or failure.

pypdfium2-1.2.0/docs/markdown/changelog.md

<!-- SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com> -->
<!-- SPDX-License-Identifier: CC-BY-4.0 -->

Changelog

1.2.0 (2022-03-28)

- Updated PDFium from `4955` to `4969`.
- Fixed running `setup.py` on Windows by not using `os.mknod()`, which is only available on Unix-like systems.
- Addressed some Windows-specific issues with the build script.

1.1.0 (2022-03-21)

- Updated PDFium from `4943` to `4955`.
- Improved style of subprocess calls to use lists rather than strings. This is more elegant, and safer in terms of whitespace handling.

1.0.0 (2022-03-14)

- Updated PDFium from `4915` to `4943`
- Added support for Linux x86 platform (i686).
- API-breaking changes:
 * Removed deprecated members `open_pdf()` and `print_toc()`.
 * Restructured rendering functions to provide multiple different output types:
 `render_page_topil()` and `render_page_tobytes()` replace `render_page()`; similarly, `render_pdf_topil()` and `render_pdf_tobytes()` replace `render_pdf()`.
 These functions are derived from `render_page_base()` and `render_pdf_base()`, respectively.
 * In `render_page_...()` and `render_pdf_...()`, we now only accept RGBA tuples for the colour parameter.
- The Pillow dependency is now optional in the core library.
- Removed workarounds for non-ascii filepaths on Windows. The issues with `FPDF_LoadDocument()` should be fixed since PDFium `4915`. Thanks to Lei Zhang and Tom Sepez of PDFium team.
- Added some boilerplate code to setup scripts to make sure imports always work when the file is invoked directly.
- Enhancements to `build_pdfium.py`:
 * Improved configuration handling to use dictionaries rather than lists. This is a lot more elegant and flexible.
 * Added an option to dynamically link against system libraries instead of statically linking against bundled dependencies.
 * Integrated a patch to speed up downloading by skipping unnecessary dependencies (such as Skia or V8).
 * Improved finding of system llvm/lld binaries for native build.
- Improved setup status tracking.
- Started removing manual line breaks to simplify editing. Any decent text editor or diff tool should provide automatic word wrap.

0.15.0 (2022-02-28)

- Updated PDFium from `4901` to `4915`.
- Improved build and update scripts:
 * Enhanced Python API accessibility so that the main functions can now be invoked directly, without the need for argparse.
 * Simplified code related to platform names and corresponding data directories to achieve more flexibility and reduce complexity.
 * Modified commands to ensure that paths or links are properly wrapped in double quotes.
 * Regrouped patches to be operating system specific.
- Updated setup configuration:
 * We are now using `setup_requires` for setup dependencies, rather than a custom `build` group in `extras_require`.
 * Explicitly blacklisted Python 3.7.6 and 3.8.1 as incompatible due to a regression in CPython that broke ctypesgen-created string handling code.
- Started moving type hints from code into docstrings. This makes the function headers easier to read and would help running the library with older versions of Python.

0.14.0 (2022-02-21)

- Updated PDFium from `4888` to `4901`.
- Completed support model for PDF boxes (new functions `get_bleedbox()`, `get_trimbox()`, and `get_artbox()`)
- Fixed automatic dependency installation for platforms where the Python executable is not named `python3`.
- Tweaked wheel tags to improve compatibility. Changed related code that assigns the tags.
- Completely reworked the setup infrastructure to achieve PEP 517 compliance. Thanks to Anderson Bravalheri for the invaluable help.
- Improved documentation:
 * Wrote instructions on how to add support for a new platform.
 * Restructured the table of contents.
 * Created a `.readthedocs.yaml` configuration, mainly to make the documentation builder use PEP 517 compliant setup.
- General clean-up and lots of minor enhancements.

0.13.1 (2022-02-15)

- Fixed a logical issue related to the internal class definitions and imports: `PdfContext` should be defined in `opener.py` rather than `classes.py`, since `PdfDocument` already requires importing components that use `PdfContext`, causing a possible circularity. While the Python interpreter seems to have automatically resolved these conflicts and the test suite passed, this has been a logical mistake to be addressed with this patch release.

0.13.0 (2022-02-14)

- Updated PDFium from `4874` to `4888`.
- In `render_page()`, the bitmap is now directly initialised with the right colour format, rather than always using RGBA and converting afterwards. This is expected to improve performance when rendering without alpha channel, in particular for greyscale.
- Installed a new support model class `PdfDocument` on top of the separate helper functions, for object oriented document access. This should be easier to use and more like the API of other Python PDF libraries.
- Fixed `setup.py` to always call `getdeps` first, before other imports that already require packages that `getdeps` should install.
- Restructured platform-specific setup to greatly reduce code duplication.
- Moved setup-related code into an own directory, to be able to use cleaner imports, and to avoid messing up the root directory of the repository.
- Adapted the Makefile to setup changes and added documentation commands.
- Improvements related to license files:
 * Made the repository fully compliant with the `reuse` standard.
 * Moved the PDFium wheel license into the `LICENSES/` directory and removed its embedded copies of `Apache-2.0` and `BSD-3-Clause` since they are duplicates.
- Fixed link on the PyPI page to point at the stable documentation, not the development build.

0.12.0 (2022-02-07)

- Updated PDFium from `4861` to `4874`.
- Restructured file opening to finally address the Windows issues with non-ascii filenames by implementing a support model for `FPDF_LoadCustomDocument()`, which allows us to do file reading on the Python side if necessary. For this purpose, the following changes to opener functions have been made:
 * Added `open_pdf_buffer()` to incrementally load a document from a byte buffer.
 * Added `open_pdf_native()` to load a PDF file, with reading being done in Python natively using `open_pdf_buffer()`.
 * Added `open_pdf_auto()`, which will use `FPDF_LoadDocument()` for regular file paths, `open_pdf_native()` for non-ascii filepaths on Windows, and `open_pdf_buffer()` for bytes or byte buffers.
 * Adapted `PdfContext` to use `open_pdf_auto()`.
 * Marked `open_pdf()` as deprecated. It should not be used anymore and may be removed at some point.
- Improved the command line interface to list help and version commands in the main help. Also made the internals more flexible to allow multiple names for the same command.
- Moved changelog, dependencies, contributing, and tasks files into `docs/markdown/`. They are now included in the Sphinx documentation using `myst-parser`.
- Splitted up support model tests into separate files for improved readability and extensibility.
- Cleaned up some typos, unused variables and excessive imports.

0.11.0 (2022-01-31)

- Updated PDFium from `4849` to `4861`.
- Overhauled the command-line interface to group different tasks in subcommands. It should be a lot cleaner now; easier to use and extend. These modifications make the command-line API incompatible with previous releases, though. In the course of this restructuring, the following functional changes were applied:
 * Made rendering output format customisable by providing control over the file extension to use, from which the `Pillow` library will be able to automatically determine the corresponding encoder.
 * Changed the rendering parser to accept multiple files at once.
 * Positional arguments are now used for file input.
 * Added CLI commands for merging PDFs and performing page tiling (N-up).
 * Temporarily removed support for working with encrypted PDFs while we are looking for a
 suitable way to take passwords of multiple files.
- Adapted documentation to the CLI changes.
- When opening from a byte buffer, any object that implements the `.read()` method is now accepted (previously, only `BytesIO` and `BufferedReader` were supported). Note that we do not automatically seek back to the start of the buffer anymore.
- Restructured installing the exit handler, so that its function is no longer inadvertently part of the public namespace.
- Removed the `None` defaults of the table of contents helper class `OutlineItem`. The parameters are now passed at construction time.
- Greatly improved `setup.py`: Formerly, running `pip3 install .` always triggered a source build, on behalf of platforms for which no wheel is available. With this release, the code was changed to detect the current platform and use pre-compiled binaries if available, with source build only as fallback.
- On setup, the version file is now always read literally (i. e. without importing the module), which makes it a lot less prone to errors.
- Modernised the update script code that reads and writes the version file.
- Added notes concerning the need for a recent version of pip when installing from source. Tried to improve compatibility with older releases in the scope of what is possible.
- Added test cases to ensure existence of version aliases and correctness of CLI entry point configuration.
- Updated the Makefile.
- Removed KDevelop project files from the repository.

0.10.0 (2022-01-24)

- Updated PDFium from `4835` to `4849`.
- Completely rearranged the internal structure of the support model. The public API should be mostly unaffected by these changes, however.
- Adapted documentation and tests to the support model changes.
- Modifications to exceptions:
 * `LoadPdfError` and `LoadPageError` were removed. The more general `PdfiumError` is now raised instead. This is because the exception handler may be used universally for more situations than just loading PDF documents or pages.
 * `PageIndexError` was replaced with `IndexError`. A custom exception seemed unnecessary for this case.
- New support models added:
 * Function `save_pdf()` to create a PDF file from an `FPDF_DOCUMENT` handle. This is demonstrated in the example [`merge_pdfs.py`](../../examples/merge_pdfs.py).
 * Methods `get_mediabox()` and `get_cropbox()` to retrieve PDF boxes of an `FPDF_PAGE`.
 * Made the utility functions `translate_viewmode()` and `translate_rotation()` public.
- Removed the in-library logging setup as it could cause issues for downstream users who wish to configure the pypdfium2 logger.
- Started backporting pypdfium2 to older Python versions by removing all uses of f-strings, keywords-only enforcement, and `pathlib` across the package. The minimum required Python version is now 3.5. (It might be possible to further reduce the requirement by moving type hints from the actual code into docstrings.)
- Minor optimisations have been made to the table of contents helper functions.
- Improved build scripts.
- Adapted the update script to upstream changes (thanks @bblanchon).
- Moved some scripts from the root directory into `utilities/` and changed the Makefile accordingly.
- Added a list of future [tasks](./tasks.md) to keep in mind.

Tracking changes started with version 0.10.0, so there are no entries for older releases.

pypdfium2-1.2.0/docs/markdown/contributing.md

<!-- SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com> -->
<!-- SPDX-License-Identifier: CC-BY-4.0 -->

Contributing

Contributions and improvements to pypdfium2 are very welcome. Here are a few instructions to help you with your contribution, and some rules that we would like you to follow:

* pypdfium2 adheres to the [SPDX standard][spdx-licenses] for license and copyright headers. If you create new files, please always add such a header. For binary files, you may add a corresponding section in [`.reuse/dep5`][dep5] (this is equivalent to a Debian copyright file). If you edit an existing file, please add your name and the current year to its copyright header, especially for larger work (i. e. more than 10 lines or particularly complex code). You can ensure standard compliance using [`reuse lint`][reuse-lint].
* Please always use spaces instead of tabs. You'll want to configure your editor to automatically replace a tab with four spaces. *Background*: Python code is formatted by indentation. If different indentation patterns are mixed in an inconsistent way, the Python interpreter will not be able to parse your code.
* Blank lines should contain as many spaces that they stay on the correct indentation level. This makes editing a lot easier. (VS Code: Uncheck "Editor: Trim Auto Whitespace")
* We do not manually wrap long lines to avoid spending time on line breaks, and instead rely on the text editor to do automatic word wrap.
* Files should always end with a newline character for consistency. (VS Code: Check "Files: Insert Final Newline")
* Code comments are appreciated wherever they improve readability.
* Please try to keep compatibility with the minimum supported Python version defined in [`setup.cfg`][setup-cfg]. This means to avoid newer features like f-strings or keywords-only enforcement. We also do not use type hints at the moment.
* For working with file paths, we prefer to use `os.path` / `shutil` / `glob` instead of `pathlib`.
* In the module itself, no relative imports must be used. Absolute imports are preferable. Outside the `src/` directory, realative imports are allowed, though.

[spdx-licenses]: https://spdx.org/licenses/
[reuse-lint]: https://pypi.org/project/reuse/
[dep5]: ../../.reuse/dep5
[setup-cfg]: ../../setup.cfg

pypdfium2-1.2.0/docs/markdown/dependencies.md

<!-- SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com> -->
<!-- SPDX-License-Identifier: CC-BY-4.0 -->

Dependencies

Runtime

* Python >= 3.5
* Pillow (optional)

Build

Python packages

* pip [^1]
* setuptools [^1]
* setuptools-scm [^2]
* build
* wheel
* ctypesgen [^3]

System packages

* git
* gcc

Nativebuild Extras

* llvm/clang
* lld
* gn (generate-ninja)
* ninja (ninja-build)

Important notes:
- If you have multiple versions of llvm, make sure the latest version also has a corresponding lld install!
- A C++17 compliant compiler is highly recommended.

Windows Extras

* Powershell
* Visual Studio
* Windows SDK

Tests

* pytest

Documentation

* sphinx
* sphinx-rtd-theme >= 1.0
* sphinxcontrib-programoutput
* docutils >= 0.17
* myst-parser

Utilities

* make
* importchecker
* codespell
* reuse
* twine
* check-wheel-contents

[^1]: A recent version is strongly recommended.

[^2]: Required for the `sdist` target to include all required files.

[^3]: You are encouraged to install the latest ctypesgen from git main, as lots of important improvements have been done since the last release on PyPI, which is rather outdated.

pypdfium2-1.2.0/docs/markdown/devel/.about_wheel_license.md

`LicenseRef-PdfiumThirdParty` applies for the PDFium binaries that are deployed to end users without being part of the repository (`pdfium` / `pdfium.dll` / `pdfium.dylib`). It consists of multiple licenses for third-party components of PDFium.

pypdfium2-1.2.0/docs/markdown/devel/tasks.md

<!-- SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com> -->
<!-- SPDX-License-Identifier: CC-BY-4.0 -->

Tasks
=====

(These are various tasks for the maintainer to keep in mind, in no specific order.)

* Rename `translate_...()` utility functions to something shorter. Maybe switch to dictionaries?
* Increase test coverage. Probably need to overhaul testing completely. We would like to have a test for every single passage of the support model code. Some automated tests for the setup infrastructure would also be nice.
* Add test case for rendering a PDF with interactive forms.
* Move development section of the Readme into a dedicated file and add some more information.
* Add a ctypes primer explaining how to interoperate with the PDFium C API.
* Add capabilities to render a certain area of a page (issue #38).
* Think about the possibility of using `FPDFPage_Flatten()` rather than `FPDF_FFLDraw()` and all the extra commands that it needs.
* Create a support model for progressive rendering (`FPDF_RenderPageBitmap_Start()` & `IFSDK_PAUSE`)
* Set the version appropriately when doing a source build (i. e. append current PDFium commit hash to version string).
* sourcebuild/win: fix dynamic values in resources.rc
* Look into setting up Github Actions CI.
* Ask Linux distributors to package PDFium, as this could greatly simplify the installation of pypdfium2 for many users. Since most distributions are already compiling PDFium for their Chromium package anyway, it should be feasible to build PDFium as a dynamically linked library and add a development package containing the header files. To prepare, we should add means to plug in PDFium headers from an arbitrary location using a custom setup environment variable (PDFIUM_INCLUDE_DIR or something).

pypdfium2-1.2.0/docs/markdown/planned_changes.md

<!-- SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com> -->
<!-- SPDX-License-Identifier: CC-BY-4.0 -->

Planned Changes
===============

The following API-breaking changes are planned or in consideration:
* Rename some utility functions or make them private.

pypdfium2-1.2.0/docs/source/add_platform.rst

.. SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
.. SPDX-License-Identifier: CC-BY-4.0

.. include:: ../markdown/add_platform.md
 :parser: myst_parser.sphinx_

pypdfium2-1.2.0/docs/source/changelog.rst

.. SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
.. SPDX-License-Identifier: CC-BY-4.0

.. include:: ../markdown/changelog.md
 :parser: myst_parser.sphinx_

pypdfium2-1.2.0/docs/source/conf.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: CC-BY-4.0

Configuration file for the Sphinx documentation builder.
#
This file only contains a selection of the most common options. For a full
list see the documentation:
https://www.sphinx-doc.org/en/master/usage/configuration.html

-- Path setup --

If extensions (or modules to document with autodoc) are in another directory,
add these directories to sys.path here. If the directory is relative to the
documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
import sys
sys.path.insert(0, os.path.abspath('.'))

-- Project information ---
import time

project = 'pypdfium2'
copyright = '{} pypdfium2-team'.format(time.strftime('%Y'))
author = 'pypdfium2-team'

-- General configuration ---

Add any Sphinx extension module names here, as strings. They can be
extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
ones.
extensions = [
 'sphinx.ext.autodoc',
 'sphinx.ext.intersphinx',
 'sphinx.ext.napoleon',
 'sphinxcontrib.programoutput',
 'myst_parser',
]

source_suffix = {
 '.rst': 'restructuredtext',
 '.md': 'markdown',
}

autodoc_preserve_defaults = True

autodoc_default_options = {
 'members': True,
 'undoc-members': True,
 'member-order': 'bysource',
}

intersphinx_mapping = {
 'python': ('https://docs.python.org/3', None),
 'PIL': ('https://pillow.readthedocs.io/en/stable/', None),
}

-- Options for HTML output ---

The theme to use for HTML and HTML Help pages. See the documentation for
a list of builtin themes.
#
html_theme = 'sphinx_rtd_theme'

pypdfium2-1.2.0/docs/source/contributing.rst

.. SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
.. SPDX-License-Identifier: CC-BY-4.0

.. include:: ../markdown/contributing.md
 :parser: myst_parser.sphinx_

pypdfium2-1.2.0/docs/source/dependencies.rst

.. SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
.. SPDX-License-Identifier: CC-BY-4.0

.. include:: ../markdown/dependencies.md
 :parser: myst_parser.sphinx_

pypdfium2-1.2.0/docs/source/index.rst

.. SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
.. SPDX-License-Identifier: CC-BY-4.0

pypdfium2
=========

.. _PDFium: https://developers.foxit.com/resources/pdf-sdk/c_api_reference_pdfium/group___f_p_d_f_i_u_m.html

Welcome to the documentation for the support model of pypdfium2.
For the low-level API, please also refer to the `PDFium`_ and :mod:`ctypes` documentation.

.. toctree::
 :maxdepth: 2
 :caption: Usage

 python_api
 shell_api
 planned_changes

.. toctree::
 :maxdepth: 2
 :caption: Development

 dependencies
 contributing
 add_platform

.. toctree::
 :maxdepth: 1
 :caption: Changelog

 changelog

Indices

* :ref:`genindex`
* :ref:`modindex`

pypdfium2-1.2.0/docs/source/planned_changes.rst

.. SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
.. SPDX-License-Identifier: CC-BY-4.0

.. include:: ../markdown/planned_changes.md
 :parser: myst_parser.sphinx_

pypdfium2-1.2.0/docs/source/python_api.rst

.. SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
.. SPDX-License-Identifier: CC-BY-4.0

==========
Python API
==========

Version
=======
.. automodule:: pypdfium2._version

Object oriented API
===================
.. automodule:: pypdfium2._helpers.classes

Functional API
==============

Opener/Closer

.. automodule:: pypdfium2._helpers.opener
.. automodule:: pypdfium2._helpers.nativeopener

Saver

.. automodule:: pypdfium2._helpers.saver

Page Renderer

.. automodule:: pypdfium2._helpers.page_renderer

Document Renderer

.. automodule:: pypdfium2._helpers.pdf_renderer

TOC Parser

.. automodule:: pypdfium2._helpers.toc

PDF Boxes

.. automodule:: pypdfium2._helpers.boxes

Utilities

.. automodule:: pypdfium2._helpers.utilities

Error Handler

.. automodule:: pypdfium2._helpers.error_handler

Constants
=========

.. automodule:: pypdfium2._helpers.constants

pypdfium2-1.2.0/docs/source/shell_api.rst

.. SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
.. SPDX-License-Identifier: CC-BY-4.0

Shell API
=========

pypdfium2 can also be used from the command-line.

Main help

``pypdfium2 help``

.. program-output:: python3 -m pypdfium2 help

Version

``pypdfium2 version``

.. program-output:: python3 -m pypdfium2 version

Renderer

``pypdfium2 render``

.. program-output:: python3 -m pypdfium2 render

Table of Contents Reader

``pypdfium2 toc``

.. program-output:: python3 -m pypdfium2 toc

Merger

``pypdfium2 merge``

.. program-output:: python3 -m pypdfium2 merge

Page Tiler

``pypdfium2 tile``

.. program-output:: python3 -m pypdfium2 tile

pypdfium2-1.2.0/examples/merge_pdfs.py

#! /usr/bin/env python3
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: CC-BY-4.0

import ctypes
import argparse
import pypdfium2 as pdfium

def _merge_pdfs(input_paths):

 dest_doc = pdfium.FPDF_CreateNewDocument()

 for in_path in reversed(input_paths):
 with pdfium.PdfContext(in_path) as src_doc:
 page_count = pdfium.FPDF_GetPageCount(src_doc)
 page_indices = (ctypes.c_int * page_count)(*[i for i in range(page_count)])
 pdfium.FPDF_ImportPagesByIndex(dest_doc, src_doc, page_indices, page_count, 0)

 return dest_doc

def parse_args():
 parser = argparse.ArgumentParser(
 description = "Merge PDF files with pypdfium2.",
)
 parser.add_argument(
 'input_paths',
 nargs = '+',
)
 parser.add_argument(
 '--output-path', '-o',
 required = True,
)
 return parser.parse_args()

def main(input_paths, output_path):
 merged_doc = _merge_pdfs(input_paths)
 with open(output_path, 'wb') as file_handle:
 pdfium.save_pdf(merged_doc, file_handle)

if __name__ == '__main__':
 args = parse_args()
 main(
 input_paths = args.input_paths,
 output_path = args.output_path,
)

pypdfium2-1.2.0/examples/render_rawapi.py

#! /usr/bin/env python3
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-FileCopyrightText: 2020 Yinlin Hu <huyinlin@gmail.com>
SPDX-License-Identifier: CC-BY-4.0

import sys
import math
import ctypes
from PIL import Image
import pypdfium2 as pdfium

if __name__ == "__main__":
 if len(sys.argv) == 1:
 print("Usage: example.py somefile.pdf")
 sys.exit()

 filename = sys.argv[1]

 doc = pdfium.FPDF_LoadDocument(filename, None)
 page_count = pdfium.FPDF_GetPageCount(doc)
 assert page_count >= 1

 form_config = pdfium.FPDF_FORMFILLINFO(2)
 form_fill = pdfium.FPDFDOC_InitFormFillEnvironment(doc, form_config)

 page = pdfium.FPDF_LoadPage(doc, 0)
 width = math.ceil(pdfium.FPDF_GetPageWidthF(page))
 height = math.ceil(pdfium.FPDF_GetPageHeightF(page))

 bitmap = pdfium.FPDFBitmap_Create(width, height, 0)
 pdfium.FPDFBitmap_FillRect(bitmap, 0, 0, width, height, 0xFFFFFFFF)

 render_args = [bitmap, page, 0, 0, width, height, 0, pdfium.FPDF_LCD_TEXT | pdfium.FPDF_ANNOT]
 pdfium.FPDF_RenderPageBitmap(*render_args)
 pdfium.FPDF_FFLDraw(form_fill, *render_args)

 cbuffer = pdfium.FPDFBitmap_GetBuffer(bitmap)
 buffer = ctypes.cast(cbuffer, ctypes.POINTER(ctypes.c_ubyte * (width * height * 4)))

 img = Image.frombuffer("RGBA", (width, height), buffer.contents, "raw", "BGRA", 0, 1)
 img.save("out.png")

 pdfium.FPDFBitmap_Destroy(bitmap)
 pdfium.FPDF_ClosePage(page)

 pdfium.FPDFDOC_ExitFormFillEnvironment(form_fill)
 pdfium.FPDF_CloseDocument(doc)

pypdfium2-1.2.0/examples/render_supportapi.py

#! /usr/bin/env python3
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: CC-BY-4.0

import os
import sys
import pypdfium2 as pdfium

if __name__ == '__main__':
 if len(sys.argv) == 1:
 print("Usage: example.py somefile.pdf")
 sys.exit()

 filename = sys.argv[1]

 with pdfium.PdfContext(filename) as pdf:
 n_pages = pdfium.FPDF_GetPageCount(pdf)

 page_indices = [i for i in range(n_pages)]

 generator = pdfium.render_pdf_topil(
 filename,
 page_indices = page_indices,
 scale = 1,
 rotation = 0,
 colour = (255, 255, 255, 255),
 annotations = True,
 greyscale = False,
 optimise_mode = pdfium.OptimiseMode.none,
 n_processes = os.cpu_count(),
)

 for image, suffix in generator:
 image.save("out_{}.png".format(suffix))
 image.close()

pypdfium2-1.2.0/platform_setup/__init__.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

pypdfium2-1.2.0/platform_setup/build_pdfium.py

#! /usr/bin/env python3
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

Attempt to download and build PDFium from source. This may take very long.
Only tested on Linux with glibc. Might not work on other platforms.

import os
import sys
import shutil
import argparse
import importlib.util
from os.path import join

if __name__ == '__main__': sys.modules['platform_setup'] = importlib.util.module_from_spec(importlib.util.spec_from_file_location('platform_setup', join(os.path.dirname(os.path.abspath(__file__)), '__init__.py')))

from platform_setup import check_deps
from platform_setup.packaging_base import (
 SB_Dir,
 Libnames,
 DataTree,
 PlatformNames,
 run_cmd,
 call_ctypesgen,
)

PatchDir = join(SB_Dir,'patches')
DepotToolsDir = join(SB_Dir,'depot_tools')
PDFiumDir = join(SB_Dir,'pdfium')
PDFiumBuildDir = join(PDFiumDir,'out','Default')
OutputDir = join(DataTree,PlatformNames.sourcebuild)
NB_BinaryDir = join(PDFiumDir,'third_party','llvm-build','Release+Asserts','bin')

DepotTools_URL = "https://chromium.googlesource.com/chromium/tools/depot_tools.git"
PDFium_URL = "https://pdfium.googlesource.com/pdfium.git"

DepotPatches = [
 (join(PatchDir,'depot_tools','gclient_scm.patch'), DepotToolsDir),
]
PdfiumMainPatches = [
 (join(PatchDir,'pdfium','public_headers.patch'), PDFiumDir),
 (join(PatchDir,'pdfium','shared_library.patch'), PDFiumDir),
]
PdfiumWinPatches = [
 (join(PatchDir,'pdfium','win','pdfium.patch'), PDFiumDir),
 (join(PatchDir,'pdfium','win','build.patch'), join(PDFiumDir,'build')),
]
PdfiumNativebuildPatches = [
 (join(PatchDir,'pdfium','nativebuild.patch'), join(PDFiumDir,'build')),
]
PdfiumSkipDepsPatches = [
 (join(PatchDir,'pdfium','skip_deps.patch'), PDFiumDir),
]

DefaultConfig = {
 'is_debug': False,
 'treat_warnings_as_errors': False,
 'pdf_is_standalone': True,
 'pdf_enable_v8': False,
 'pdf_enable_xfa': False,
 'pdf_use_skia': False,
}
NativebuildConfig = {
 'clang_use_chrome_plugins': False,
 'init_stack_vars': False,
 'use_cxx11': True,
}
SyslibsConfig = {
 'use_system_freetype': True,
 'use_system_lcms2': True,
 #'use_system_libjpeg': True,
 'use_system_libopenjpeg2': True,
 'use_system_libpng': True,
 'use_system_zlib': True,
 'sysroot': '/',
}

if sys.platform.startswith('linux'):
 DefaultConfig['use_custom_libcxx'] = True
 SyslibsConfig['use_custom_libcxx'] = False
elif sys.platform.startswith('darwin'):
 DefaultConfig['mac_deployment_target'] = '10.11.0'
 SyslibsConfig['use_system_xcode'] = True
elif sys.platform.startswith('win32'):
 DefaultConfig['pdf_use_win32_gdi'] = True

def dl_depottools(do_update):

 if not os.path.isdir(SB_Dir):
 os.makedirs(SB_Dir)

 is_update = True

 if os.path.isdir(DepotToolsDir):
 if do_update:
 print("DepotTools: Revert and update ...")
 run_cmd(['git', 'reset', '--hard', 'HEAD'], cwd=DepotToolsDir)
 run_cmd(['git', 'pull', DepotTools_URL], cwd=DepotToolsDir)
 else:
 print("DepotTools: Using existing repository as-is.")
 is_update = False
 else:
 print("DepotTools: Download ...")
 run_cmd(['git', 'clone', '--depth', '1', DepotTools_URL, DepotToolsDir], cwd=SB_Dir)

 os.environ['PATH'] += os.pathsep + DepotToolsDir

 return is_update

def _apply_patchset(patchset):
 for patch, cwd in patchset:
 run_cmd(['git', 'apply', '-v', patch], cwd=cwd)

def dl_pdfium(do_update, revision, GClient):

 is_sync = True

 if os.path.isdir(PDFiumDir):
 if do_update:
 print("PDFium: Revert / Sync ...")
 for dir in (PDFiumDir, join(PDFiumDir,'build')):
 run_cmd(['git', 'reset', '--hard', 'HEAD'], cwd=dir)
 else:
 is_sync = False
 print("PDFium: Using existing repository as-is.")
 else:
 print("PDFium: Download ...")
 run_cmd([GClient, 'config', '--unmanaged', PDFium_URL], cwd=SB_Dir)
 run_cmd(['git', 'clone', '--depth', '1', PDFium_URL], cwd=SB_Dir)

 if is_sync:
 _apply_patchset(PdfiumSkipDepsPatches)
 run_cmd([GClient, 'sync', '--revision', 'origin/{}'.format(revision), '--no-history', '--shallow'], cwd=SB_Dir)

 return is_sync

def patch_depottools():
 _apply_patchset(DepotPatches)

def _find_latest_llvm():

 # assuming there is a corresponding lld installed for the latest llvm

 llvm_prefix = 'llvm-'
 latest = None
 libdir = None

 for search_dir in ('/usr/lib', '/usr/local/lib'):
 for entry in os.listdir(search_dir):
 if not os.path.isdir(join(search_dir, entry)):
 continue
 if not entry.startswith('llvm-'):
 continue
 version = int(entry.split('-')[-1])
 if (latest is None) or (version > latest):
 latest = version
 libdir = search_dir

 assert None not in (latest, libdir)
 latest = str(latest)

 return join(libdir, llvm_prefix+latest, 'bin')

def _replace_binaries():

 llvm_dir = _find_latest_llvm()
 not_found = []

 for name in os.listdir(NB_BinaryDir):

 binary_path = join(NB_BinaryDir, name)
 replacement = join(llvm_dir, name)
 os.remove(binary_path)

 if not os.path.isfile(replacement):
 not_found.append(name)
 continue

 os.symlink(replacement, binary_path)

 if len(not_found) > 0:
 print("Warning: No system-provided replacements available for {}".format(not_found), file=sys.stderr)

def patch_pdfium():

 _apply_patchset(PdfiumMainPatches)

 if sys.platform.startswith('win32'):
 _apply_patchset(PdfiumWinPatches)
 shutil.copy(join(PatchDir,'pdfium','win','resources.rc'), join(PDFiumDir,'resources.rc'))

def patch_pdfium_nativebuild():
 _apply_patchset(PdfiumNativebuildPatches)
 _replace_binaries()

def configure(config, GN):

 if not os.path.exists(PDFiumBuildDir):
 os.makedirs(PDFiumBuildDir)

 with open(join(PDFiumBuildDir,'args.gn'), 'w') as args_handle:
 args_handle.write(config)

 run_cmd([GN, 'gen', PDFiumBuildDir], cwd=PDFiumDir)

def build(Ninja):
 run_cmd([Ninja, '-C', PDFiumBuildDir, 'pdfium'], cwd=PDFiumDir)

def find_lib(srcname=None, directory=PDFiumBuildDir):

 if srcname is not None:
 path = join(PDFiumBuildDir, srcname)
 if os.path.isfile(path):
 return path
 else:
 print("Warning: The file of given srcname does not exist.", file=sys.stderr)

 libpath = None

 for lname in Libnames:
 path = join(directory, lname)
 if os.path.isfile(path):
 libpath = path

 if libpath is None:
 raise RuntimeError("Build artifact not found.")

 return libpath

def pack(src_libpath, destname=None):

 if os.path.isdir(OutputDir):
 shutil.rmtree(OutputDir)
 os.makedirs(OutputDir)

 if destname is None:
 destname = os.path.basename(src_libpath)

 destpath = join(OutputDir, destname)
 shutil.copy(src_libpath, destpath)

 include_dir = join(OutputDir,'include')
 shutil.copytree(join(PDFiumDir,'public'), include_dir)

 call_ctypesgen(OutputDir, include_dir)
 shutil.rmtree(include_dir)

def _get_tool(tool, prefer_systools, win_append):

 exe = join(DepotToolsDir, tool)
 if sys.platform.startswith('win32'):
 exe += '.' + win_append

 if prefer_systools:
 _sh_exe = shutil.which(tool)
 if _sh_exe:
 exe = _sh_exe
 else:
 print("Warning: Host system does not provide '{}'".format(tool), file=sys.stderr)

 return exe

def _serialise_config(config_dict):

 config_str = ''
 sep = ''

 for key, value in config_dict.items():
 config_str += sep + '{} = '.format(key)
 if isinstance(value, bool):
 config_str += str(value).lower()
 elif isinstance(value, str):
 config_str += '"{}"'.format(value)
 else:
 raise TypeError("Not sure how to serialise type {}".format(type(value)))
 sep = '\n'

 return config_str

def main(
 b_argfile = None,
 b_srcname = None,
 b_destname = None,
 b_update = False,
 b_checkdeps = False,
 b_nativebuild = False,
 b_use_syslibs = False,
 b_revision = None,
):

 if b_revision is None:
 b_revision = 'main'

 # on Linux, rename the binary to `pdfium` to ensure it also works with older versions of ctypesgen
 if b_destname is None and sys.platform.startswith('linux'):
 b_destname = 'pdfium'

 if b_nativebuild:
 print("Using binaries provided by the system, if available.")
 else:
 print("Using binaries provided by the PDFium toolchain.")

 if b_checkdeps:
 check_deps.main(b_nativebuild)

 GClient = _get_tool('gclient', b_nativebuild, 'bat')
 GN = _get_tool('gn', b_nativebuild, 'bat')
 Ninja = _get_tool('ninja', b_nativebuild, 'exe')

 if sys.platform.startswith('win32'):
 os.environ['DEPOT_TOOLS_WIN_TOOLCHAIN'] = "0"

 if b_argfile is None:
 config_dict = DefaultConfig.copy()
 if b_nativebuild:
 config_dict.update(NativebuildConfig)
 if b_use_syslibs:
 config_dict.update(SyslibsConfig)
 config_str = _serialise_config(config_dict)

 else:
 with open(os.path.abspath(b_argfile), 'r') as file_handle:
 config_str = file_handle.read()

 print("\nBuild configuration:\n{}\n".format(config_str))

 depot_dl_done = dl_depottools(b_update)
 if depot_dl_done:
 patch_depottools()

 pdfium_dl_done = dl_pdfium(b_update, b_revision, GClient)

 if pdfium_dl_done:
 patch_pdfium()
 if b_nativebuild:
 patch_pdfium_nativebuild()

 configure(config_str, GN)
 build(Ninja)

 libpath = find_lib(b_srcname)
 pack(libpath, b_destname)

def parse_args(argv):

 parser = argparse.ArgumentParser(
 description = "A script to automate building PDFium from source and generating bindings with ctypesgen.",
)

 parser.add_argument(
 '--argfile', '-a',
 help = "A text file containing custom PDFium build configuration, to be evaluated by `gn gen`. Call `gn args --list out/Default/` in `sourcebuild/pdfium/` to obtain a list of possible options.",
)
 parser.add_argument(
 '--srcname', '-s',
 help = "Name of the generated PDFium binary file. This script tries to automatically find the binary, which should usually work. If it does not, however, this option may be used to explicitly provide the file name to look for.",
)
 parser.add_argument(
 '--destname', '-d',
 help = "Rename the binary to a different filename.",
)
 parser.add_argument(
 '--update', '-u',
 action = 'store_true',
 help = "Update existing PDFium/DepotTools repositories, removing local changes.",
)
 parser.add_argument(
 '--check-deps', '-c',
 action = 'store_true',
 help = "Check that all required dependencies are installed. (Automatically installs missing Python packages, complains about missing system dependencies.)",
)
 parser.add_argument(
 '--nativebuild', '-n',
 action = 'store_true',
 help = "Try to use system-provided tools if available, rather than pre-built binaries from the PDFium toolchain. Warning: This may or may not work, and should only be used as last resort if the regular build strategy failed.",
)
 parser.add_argument(
 '--use-syslibs', '-l',
 action = 'store_true',
 help = "Use system libraries instead of those bundled with PDFium. (Make sure that freetype, lcms2, libjpeg, libopenjpeg2, libpng and zlib are installed, and that $PKG_CONFIG_PATH is set correctly (e. g. to /usr/lib/x86_64-linux-gnu/pkgconfig)",
)
 parser.add_argument(
 '--revision', '-r',
 help = "PDFium revision to check out (defaults to main).",
)

 return parser.parse_args(argv)

def run_cli(argv=sys.argv[1:]):
 args = parse_args(argv)
 return main(
 b_argfile = args.argfile,
 b_srcname = args.srcname,
 b_destname = args.destname,
 b_update = args.update,
 b_checkdeps = args.check_deps,
 b_nativebuild = args.nativebuild,
 b_use_syslibs = args.use_syslibs,
 b_revision = args.revision,
)

if __name__ == '__main__':
 run_cli()

pypdfium2-1.2.0/platform_setup/check_deps.py

#! /usr/bin/env python3
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import os
import sys
import shutil
import importlib.util

if __name__ == '__main__': sys.modules['platform_setup'] = importlib.util.module_from_spec(importlib.util.spec_from_file_location('platform_setup', os.path.join(os.path.dirname(os.path.abspath(__file__)), '__init__.py')))

from platform_setup.packaging_base import run_cmd

PyPackages = (
 'build',
 'wheel',
 'ctypesgen',
 'setuptools',
 'setuptools-scm',
)
SysCommands = (
 'git',
 'gcc',
)
NB_SysCommands = (
 'gn',
 'ninja',
 'clang',
 'lld',
)

def _pip_install(pkg):
 run_cmd([sys.executable, '-m', 'pip', 'install', pkg], cwd=None)

def install_pydeps():

 for pkg in PyPackages:
 if not importlib.util.find_spec(pkg.replace('-', '_')):
 _pip_install(pkg)

 # Uninstalling ctypesgen sometimes leaves parts behind. In this case, `find_spec()` would still consider the library installed, although the command is unavailable.
 if not shutil.which('ctypesgen'):
 _pip_install('ctypesgen')

def check_sysdeps(sys_commands):

 missing = []
 found = []

 for dep_name in sys_commands:
 if shutil.which(dep_name):
 found.append(dep_name)
 else:
 missing.append(dep_name)

 print("Found system dependencies: {}".format(found))
 if len(missing) > 0:
 print("Missing system dependencies: {}".format(missing))

def main(prefer_st=False):

 sys_commands = SysCommands
 if prefer_st:
 sys_commands += NB_SysCommands

 check_sysdeps(sys_commands)
 install_pydeps()

if __name__ == '__main__':
 main()

pypdfium2-1.2.0/platform_setup/packaging_base.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

Non-stdlib imports not allowed in this file, as it is imported prior to the check_deps call

import subprocess
from glob import glob
from os.path import (
 expanduser,
 dirname,
 abspath,
 join,
)

Libnames = (
 'pdfium',
 'pdfium.dylib',
 'pdfium.dll',
 'libpdfium.so',
 'pdfium.so',
 'libpdfium',
 'libpdfium.dylib',
 'libpdfium.dll',
)

HomeDir = expanduser('~')
SourceTree = dirname(dirname(abspath(__file__)))
DataTree = join(SourceTree,'data')
SB_Dir = join(SourceTree,'sourcebuild')
ModuleDir = join(SourceTree,'src','pypdfium2')
VersionFile = join(ModuleDir,'_version.py')

class PlatformNames:
 darwin_x64 = 'darwin_x64'
 darwin_arm64 = 'darwin_arm64'
 linux_x64 = 'linux_x64'
 linux_x86 = 'linux_x86'
 linux_arm64 = 'linux_arm64'
 linux_arm32 = 'linux_arm32'
 windows_x64 = 'windows_x64'
 windows_x86 = 'windows_x86'
 windows_arm64 = 'windows_arm64'
 sourcebuild = 'sourcebuild'

def run_cmd(command, cwd, **kwargs):
 print('{} ("{}")'.format(command, cwd))
 return subprocess.run(command, cwd=cwd, **kwargs)

def call_ctypesgen(platform_dir, include_dir):

 bindings_file = join(platform_dir,'_pypdfium.py')

 ctypesgen_cmd = ['ctypesgen', '--library', 'pdfium', '--strip-build-path', platform_dir, '-L', '.'] + sorted(glob(join(include_dir,'*.h'))) + ['-o', bindings_file]
 run_cmd(ctypesgen_cmd, cwd=platform_dir)

 with open(bindings_file, 'r') as file_reader:
 text = file_reader.read()
 text = text.replace(platform_dir, '.')
 text = text.replace(HomeDir, '~')

 with open(bindings_file, 'w') as file_writer:
 file_writer.write(text)

def _get_ver_namespace():

 ver_namespace = {}
 with open(VersionFile, 'r') as fh:
 exec(fh.read(), ver_namespace)

 return ver_namespace

_ver_namespace = _get_ver_namespace()

def extract_version(variable_str):
 return _ver_namespace[variable_str]

pypdfium2-1.2.0/platform_setup/setup_base.py

#! /usr/bin/env python3
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import os
from os.path import (
 join,
 basename,
)
import shutil
import sysconfig
import setuptools
from glob import glob
from wheel.bdist_wheel import bdist_wheel as _bdist_wheel

from platform_setup.packaging_base import (
 Libnames,
 DataTree,
 SourceTree,
 ModuleDir,
 PlatformNames,
 extract_version,
)

def _clean():

 build_cache = join(SourceTree,'build')
 if os.path.exists(build_cache):
 shutil.rmtree(build_cache)

 delete_files = [join(ModuleDir, n) for n in (*Libnames, '_pypdfium.py')]

 for file in delete_files:
 if os.path.exists(file):
 os.remove(file)

def _copy_bindings(pl_name):

 # non-recursively collect all objects from the platform directory
 for src_path in glob(join(DataTree, pl_name, '*')):

 # copy platform-specific files into the sources, excluding possible directories
 if os.path.isfile(src_path):
 dest_path = join(ModuleDir, basename(src_path))
 shutil.copy(src_path, dest_path)

def _get_linux_tag(arch):
 return 'manylinux_2_17_{}.manylinux2014_{}'.format(arch, arch)

def _get_mac_tag(arch, *versions):

 assert len(versions) > 0

 template = 'macosx_{}_{}'

 tag = ''
 sep = ''
 for v in versions:
 tag += sep + template.format(v, arch)
 sep = '.'

 return tag

def _get_tag(pl_name):
 if pl_name == PlatformNames.darwin_x64:
 return _get_mac_tag('x86_64', '10_11', '11_0', '12_0')
 elif pl_name == PlatformNames.darwin_arm64:
 return _get_mac_tag('arm64', '11_0', '12_0')
 elif pl_name == PlatformNames.linux_x64:
 return _get_linux_tag('x86_64')
 elif pl_name == PlatformNames.linux_x86:
 return _get_linux_tag('i686')
 elif pl_name == PlatformNames.linux_arm64:
 return _get_linux_tag('aarch64')
 elif pl_name == PlatformNames.linux_arm32:
 return _get_linux_tag('armv7l')
 elif pl_name == PlatformNames.windows_x64:
 return 'win_amd64'
 elif pl_name == PlatformNames.windows_arm64:
 return 'win_arm64'
 elif pl_name == PlatformNames.windows_x86:
 return 'win32'
 elif pl_name == PlatformNames.sourcebuild:
 tag = sysconfig.get_platform()
 for char in ('-', '.'):
 tag = tag.replace(char, '_')
 return tag
 else:
 raise ValueError("Unknown platform directory {}".format(pl_name))

def _get_bdist(pl_name):

 class bdist (_bdist_wheel):

 def finalize_options(self, *args, **kws):
 _bdist_wheel.finalize_options(self, *args, **kws)
 self.plat_name_supplied = True

 def get_tag(self, *args, **kws):
 return 'py3', 'none', _get_tag(pl_name)

 return bdist

SetupKws = dict(
 version = extract_version('V_PYPDFIUM2'),
)

def mkwheel(pl_name):

 _clean()
 _copy_bindings(pl_name)

 setuptools.setup(
 package_data = {'': Libnames},
 cmdclass = {'bdist_wheel': _get_bdist(pl_name)},
 **SetupKws,
)

 _clean()

pypdfium2-1.2.0/platform_setup/update_pdfium.py

#! /usr/bin/env python3
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

Download the PDFium binaries and generate ctypes bindings

import os
from os.path import join
import sys
import shutil
import tarfile
import argparse
import traceback
import subprocess
import importlib.util
from urllib import request
from concurrent.futures import ThreadPoolExecutor

if __name__ == '__main__': sys.modules['platform_setup'] = importlib.util.module_from_spec(importlib.util.spec_from_file_location('platform_setup', join(os.path.dirname(os.path.abspath(__file__)), '__init__.py')))

from platform_setup.packaging_base import (
 DataTree,
 VersionFile,
 PlatformNames,
 run_cmd,
 extract_version,
 call_ctypesgen,
)

ReleaseRepo = "https://github.com/bblanchon/pdfium-binaries"
ReleaseURL = ReleaseRepo + "/releases/download/chromium%2F"
ReleaseExtension = "tgz"
ReleaseNames = {
 PlatformNames.darwin_x64 : 'pdfium-mac-x64',
 PlatformNames.darwin_arm64 : 'pdfium-mac-arm64',
 PlatformNames.linux_x64 : 'pdfium-linux-x64',
 PlatformNames.linux_x86 : 'pdfium-linux-x86',
 PlatformNames.linux_arm64 : 'pdfium-linux-arm64',
 PlatformNames.linux_arm32 : 'pdfium-linux-arm',
 PlatformNames.windows_x64 : 'pdfium-win-x64',
 PlatformNames.windows_x86 : 'pdfium-win-x86',
 PlatformNames.windows_arm64 : 'pdfium-win-arm64',
}

def _set_versions(*versions_list):

 with open(VersionFile, 'r') as fh:
 content = fh.read()

 for variable, current_ver, new_ver in versions_list:

 template = "{} = {}"
 previous = template.format(variable, current_ver)
 updated = template.format(variable, new_ver)

 print("'{}' -> '{}'".format(previous, updated))
 assert content.count(previous) == 1
 content = content.replace(previous, updated)

 with open(VersionFile, 'w') as fh:
 fh.write(content)

def get_latest_version():

 git_ls = run_cmd(['git', 'ls-remote', '{}.git'.format(ReleaseRepo)], cwd=None, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)

 git_ls = git_ls.stdout.decode('UTF-8')
 tag = git_ls.split('\t')[-1].replace('\n', '')
 version = int(tag.split('/')[-1])

 return version

def handle_versions(latest_version):

 v_minor = extract_version('V_MINOR')
 v_libpdfium = extract_version('V_LIBPDFIUM')

 if v_libpdfium < latest_version:
 print("New PDFium build")
 _set_versions(
 ('V_MINOR', v_minor, v_minor+1),
 ('V_LIBPDFIUM', v_libpdfium, latest_version),
)

 else:
 print("No new PDFium build - will re-create bindings without incrementing version")

def clear_data(download_files):
 for pl_dir in download_files:
 if os.path.isdir(pl_dir):
 shutil.rmtree(pl_dir)

def _get_package(args):

 dirpath, file_url, file_path = args
 print("Downloading {} -> {}".format(file_url, file_path))

 try:
 request.urlretrieve(file_url, file_path)
 except Exception:
 traceback.print_exc()
 return None

 return dirpath, file_path

def download_releases(latest_version, download_files):

 base_url = "{}{}/".format(ReleaseURL, latest_version)
 args = []

 for dirpath, arcname in download_files.items():

 filename = "{}.{}".format(arcname, ReleaseExtension)
 file_url = base_url + filename

 if not os.path.exists(dirpath):
 os.makedirs(dirpath)

 file_path = join(dirpath, filename)
 args.append((dirpath, file_url, file_path))

 archives = {}

 with ThreadPoolExecutor() as pool:

 for output in pool.map(_get_package, args):

 if output is not None:
 dirpath, file_path = output
 archives[dirpath] = file_path

 return archives

def unpack_archives(archives):

 for file in archives.values():

 extraction_path = join(os.path.dirname(file), 'build_tar')

 if ReleaseExtension == 'tgz':
 arc_opener = tarfile.open
 else:
 raise ValueError("Unknown archive extension {}".format(ReleaseExtension))

 with arc_opener(file) as archive:
 archive.extractall(extraction_path)

 os.remove(file)

def generate_bindings(archives):

 for platform_dir in archives.keys():

 build_dir = join(platform_dir,'build_tar')
 bin_dir = join(build_dir,'lib')
 dirname = os.path.basename(platform_dir)

 if dirname.startswith('windows'):
 target_name = 'pdfium.dll'
 bin_dir = join(build_dir,'bin')
 elif dirname.startswith('darwin'):
 target_name = 'pdfium.dylib'
 elif dirname.startswith('linux'):
 target_name = 'pdfium'
 else:
 raise ValueError("Unknown platform directory name '{}'".format(dirname))

 items = os.listdir(bin_dir)
 assert len(items) == 1

 shutil.move(join(bin_dir, items[0]), join(platform_dir, target_name))

 call_ctypesgen(platform_dir, join(build_dir,'include'))
 shutil.rmtree(build_dir)

def get_download_files(platforms):

 avail_keys = [k for k in ReleaseNames.keys()]
 if platforms is None:
 platforms = avail_keys

 download_files = {}

 for pl_name in platforms:

 if pl_name in ReleaseNames:
 download_files[join(DataTree, pl_name)] = ReleaseNames[pl_name]
 else:
 raise ValueError(
 "Unknown platform name '{}'. Available keys are {}.".format(pl_name, avail_keys)
)

 return download_files

def main(platforms):

 download_files = get_download_files(platforms)

 latest_version = get_latest_version()
 handle_versions(latest_version)
 clear_data(download_files)

 archives = download_releases(latest_version, download_files)
 unpack_archives(archives)
 generate_bindings(archives)

def parse_args(argv):
 parser = argparse.ArgumentParser(
 description = "Download pre-built PDFium packages and generate bindings",
)
 parser.add_argument(
 '--platforms', '-p',
 metavar = 'P',
 nargs = '*',
)
 return parser.parse_args(argv)

def run_cli(argv=sys.argv[1:]):
 args = parse_args(argv)
 return main(args.platforms)

if __name__ == '__main__':
 run_cli()

pypdfium2-1.2.0/pyproject.toml

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

[build-system]
build-backend = "setuptools.build_meta"
requires = [
 "setuptools>=46.1.0",
 "setuptools-scm",
 "build",
 "wheel",
 "ctypesgen",
]

pytest configuration
[tool.pytest.ini_options]
addopts = "--capture=no --verbose"

pypdfium2-1.2.0/setup.cfg

[metadata]
name = pypdfium2
description = Python bindings to PDFium
long_description = file: README.md
long_description_content_type = text/markdown
url = https://github.com/pypdfium2-team/pypdfium2
author = pypdfium2-team
author_email = geisserml@gmail.com
license = Apache-2.0 or BSD-3-Clause
license_files =
	LICENSES/Apache-2.0.txt
	LICENSES/BSD-3-Clause.txt
	LICENSES/CC-BY-4.0.txt
	LICENSES/LicenseRef-PdfiumThirdParty.txt
	.reuse/dep5
classifiers =
	Development Status :: 4 - Beta
	Intended Audience :: Developers
	Intended Audience :: Information Technology
	Intended Audience :: Education
	Programming Language :: Python :: 3
	Programming Language :: Python :: 3 :: Only
	Programming Language :: Python :: Implementation :: CPython
	Programming Language :: Python :: Implementation :: PyPy
	Topic :: Multimedia :: Graphics
	Topic :: Software Development :: Libraries
keywords = Python, PDF, PDFium
project_urls =
	Documentation = https://pypdfium2.readthedocs.io/
	Source = https://github.com/pypdfium2-team/pypdfium2
	Tracker = https://github.com/pypdfium2-team/pypdfium2/issues

[options]
packages = find:
package_dir =
	=src
setup_requires =
	setuptools-scm
	build
	wheel
	ctypesgen
python_requires = >=3.5, !=3.7.6, !=3.8.1
zip_safe = False

[options.packages.find]
where = src

[options.entry_points]
console_scripts =
	pypdfium2 = pypdfium2._cli.main:main

[options.extras_require]
converters =
	Pillow>=6.0
test =
	pytest
docs =
	sphinx>=4.4.0
	sphinx-rtd-theme>=1.0
	sphinxcontrib-programoutput
	docutils>=0.17
	myst-parser
utilities =
	importchecker
	codespell
	reuse
	twine
	check-wheel-contents

[egg_info]
tag_build =
tag_date = 0

pypdfium2-1.2.0/setup.py

#! /usr/bin/env python3
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import os
import sys
import sysconfig
import setuptools
import importlib.util
from os.path import (
 join,
 abspath,
 dirname,
 basename,
)

def include_platform_setup():

 mod_name = 'platform_setup'
 PlatSetupInit = join(dirname(abspath(__file__)), mod_name, '__init__.py')

 spec = importlib.util.spec_from_file_location(mod_name, PlatSetupInit)
 sys.modules[mod_name] = importlib.util.module_from_spec(spec)

def packaging_handler():

 target = os.environ.get('PYP_TARGET_PLATFORM', None)
 if target in (None, 'auto'):
 return True

 from platform_setup.setup_base import mkwheel, SetupKws
 from platform_setup.packaging_base import PlatformNames

 if target == 'sdist':
 setuptools.setup(**SetupKws)
 elif hasattr(PlatformNames, target):
 mkwheel(getattr(PlatformNames, target))
 else:
 raise ValueError("Invalid deployment target '{}'".format(target))

 return False

def install_handler():

 from platform_setup import check_deps
 from platform_setup.packaging_base import SourceTree, PlatformNames

 StatusFile = join(SourceTree, 'platform_setup', '.presetup_done.txt')

 def check_presetup():
 if os.path.exists(StatusFile):
 return False
 else:
 with open(StatusFile, 'w') as fh:
 fh.write('')
 return True

 W_Presetup = check_presetup()
 if W_Presetup: check_deps.main()

 from platform_setup import build_pdfium, update_pdfium
 from platform_setup.setup_base import mkwheel

 class HostPlatform:

 def __init__(self):
 plat_name = sysconfig.get_platform().lower()
 for char in ('-', '.'):
 plat_name = plat_name.replace(char, '_')
 self.plat_name = plat_name

 def is_platform(self, start, end):
 if self.plat_name.startswith(start):
 if self.plat_name.endswith(end):
 return True
 return False

 def _setup(pl_name):
 if W_Presetup: update_pdfium.main([basename(pl_name)])
 mkwheel(pl_name)

 host = HostPlatform()

 if host.is_platform('macosx', 'arm64'):
 _setup(PlatformNames.darwin_arm64)
 elif host.is_platform('macosx', 'x86_64'):
 _setup(PlatformNames.darwin_x64)
 elif host.is_platform('linux', 'armv7l'):
 _setup(PlatformNames.linux_arm32)
 elif host.is_platform('linux', 'aarch64'):
 _setup(PlatformNames.linux_arm64)
 elif host.is_platform('linux', 'x86_64'):
 _setup(PlatformNames.linux_x64)
 elif host.is_platform('linux', 'i686'):
 _setup(PlatformNames.linux_x86)
 elif host.is_platform('win', 'arm64'):
 _setup(PlatformNames.windows_arm64)
 elif host.is_platform('win', 'amd64'):
 _setup(PlatformNames.windows_x64)
 elif host.is_platform('win32', ''):
 _setup(PlatformNames.windows_x86)
 else:
 # Platform without pre-built binaries - try a regular sourcebuild
 if W_Presetup: build_pdfium.main()
 mkwheel(PlatformNames.sourcebuild)

def main():
 include_platform_setup()
 cont = packaging_handler()
 if cont: install_handler()

if __name__ == '__main__':
 main()

pypdfium2-1.2.0/sourcebuild/patches/depot_tools/gclient_scm.patch

diff --git a/gclient_scm.py b/gclient_scm.py
index ea8f7734..d03b9da8 100644
--- a/gclient_scm.py
+++ b/gclient_scm.py
@@ -1005,7 +1005,7 @@ class GitWrapper(SCMWrapper):
 # to stdout
 self.Print('')
 cfg = gclient_utils.DefaultIndexPackConfig(url)
- clone_cmd = cfg + ['clone', '--no-checkout', '--progress']
+ clone_cmd = cfg + ['clone', '--no-checkout', '--progress', '--depth=1']
 if self.cache_dir:
 clone_cmd.append('--shared')
 if options.verbose:

pypdfium2-1.2.0/sourcebuild/patches/pdfium/nativebuild.patch

diff --git a/config/compiler/BUILD.gn b/config/compiler/BUILD.gn
index 9a193bb..61fd085 100644
--- a/config/compiler/BUILD.gn
+++ b/config/compiler/BUILD.gn
@@ -1218,7 +1218,7 @@ config("compiler_deterministic") {
 } else {
 # -ffile-compilation-dir is an alias for both -fdebug-compilation-dir=
 # and -fcoverage-compilation-dir=.
- cflags += ["-ffile-compilation-dir=."]
+ cflags += []
 }
 if (!is_win) {
 # We don't use clang -cc1as on Windows (yet? https://crbug.com/762167)
--
2.25.1

pypdfium2-1.2.0/sourcebuild/patches/pdfium/public_headers.patch

diff --git a/public/cpp/fpdf_deleters.h b/public/cpp/fpdf_deleters.h
index 633ddf5e3..3ecd19e0b 100644
--- a/public/cpp/fpdf_deleters.h
+++ b/public/cpp/fpdf_deleters.h
@@ -5,15 +5,15 @@
 #ifndef PUBLIC_CPP_FPDF_DELETERS_H_
 #define PUBLIC_CPP_FPDF_DELETERS_H_

-#include "public/fpdf_annot.h"
-#include "public/fpdf_dataavail.h"
-#include "public/fpdf_edit.h"
-#include "public/fpdf_formfill.h"
-#include "public/fpdf_javascript.h"
-#include "public/fpdf_structtree.h"
-#include "public/fpdf_text.h"
-#include "public/fpdf_transformpage.h"
-#include "public/fpdfview.h"
+#include "../fpdf_annot.h"
+#include "../fpdf_dataavail.h"
+#include "../fpdf_edit.h"
+#include "../fpdf_formfill.h"
+#include "../fpdf_javascript.h"
+#include "../fpdf_structtree.h"
+#include "../fpdf_text.h"
+#include "../fpdf_transformpage.h"
+#include "../fpdfview.h"

 // Custom deleters for using FPDF_* types with std::unique_ptr<>.

diff --git a/public/cpp/fpdf_scopers.h b/public/cpp/fpdf_scopers.h
index ff57c1b48..2ed295d88 100644
--- a/public/cpp/fpdf_scopers.h
+++ b/public/cpp/fpdf_scopers.h
@@ -8,7 +8,7 @@
 #include <memory>
 #include <type_traits>

-#include "public/cpp/fpdf_deleters.h"
+#include "fpdf_deleters.h"

 // Versions of FPDF types that clean up the object at scope exit.

diff --git a/public/fpdfview.h b/public/fpdfview.h
index e996d4a3b..b8c4b3dc2 100644
--- a/public/fpdfview.h
+++ b/public/fpdfview.h
@@ -176,9 +176,6 @@ typedef int FPDF_ANNOT_APPEARANCEMODE;
 // Dictionary value types.
 typedef int FPDF_OBJECT_TYPE;

-#if defined(COMPONENT_BUILD)
-// FPDF_EXPORT should be consistent with |export| in the pdfium_fuzzer
-// template in testing/fuzzers/BUILD.gn.
 #if defined(WIN32)
 #if defined(FPDF_IMPLEMENTATION)
 #define FPDF_EXPORT __declspec(dllexport)
@@ -192,9 +189,6 @@ typedef int FPDF_OBJECT_TYPE;
 #define FPDF_EXPORT
 #endif // defined(FPDF_IMPLEMENTATION)
 #endif // defined(WIN32)
-#else
-#define FPDF_EXPORT
-#endif // defined(COMPONENT_BUILD)

 #if defined(WIN32) && defined(FPDFSDK_EXPORTS)
 #define FPDF_CALLCONV __stdcall

pypdfium2-1.2.0/sourcebuild/patches/pdfium/shared_library.patch

diff --git a/BUILD.gn b/BUILD.gn
index bf0994aee..021d1bd99 100644
--- a/BUILD.gn
+++ b/BUILD.gn
@@ -160,7 +160,7 @@ group("pdfium_public_headers") {
]
 }

-component("pdfium") {
+shared_library("pdfium") {
 libs = []
 configs += [":pdfium_strict_config"]
 public_configs = [":pdfium_public_config"]
@@ -199,6 +199,9 @@ component("pdfium") {
 "gdi32.lib",
 "user32.lib",
]
+ sources = [
+ "resources.rc"
+]
 }

 if (is_mac) {

pypdfium2-1.2.0/sourcebuild/patches/pdfium/skip_deps.patch

diff --git a/DEPS b/DEPS
index 7477626..83f0ffc 100644
--- a/DEPS
+++ b/DEPS
@@ -220,9 +220,6 @@ deps = {
 'condition': 'host_os == "win"',
 },

- 'testing/corpus':
- Var('pdfium_git') + '/pdfium_tests@' + Var('pdfium_tests_revision'),
-
 'third_party/abseil-cpp':
 Var('chromium_git') + '/chromium/src/third_party/abseil-cpp.git@' +
 Var('abseil_revision'),
@@ -246,10 +243,6 @@ deps = {
 Var('chromium_git') + '/chromium/src/third_party/freetype2.git@' +
 Var('freetype_revision'),

- 'third_party/googletest/src':
- Var('chromium_git') + '/external/github.com/google/googletest.git@' +
- Var('gtest_revision'),
-
 'third_party/icu':
 Var('chromium_git') + '/chromium/deps/icu.git@' + Var('icu_revision'),

@@ -274,9 +267,6 @@ deps = {
 Var('chromium_git') + '/chromium/deps/nasm.git@' +
 Var('nasm_source_revision'),

- 'third_party/skia':
- Var('skia_git') + '/skia.git@' + Var('skia_revision'),
-
 'third_party/test_fonts':
 Var('chromium_git') + '/chromium/src/third_party/test_fonts.git@' +
 Var('test_fonts_revision'),
@@ -299,61 +289,9 @@ deps = {
 'dep_type': 'cipd',
 },

- 'tools/code_coverage':
- Var('chromium_git') + '/chromium/src/tools/code_coverage.git@' +
- Var('code_coverage_revision'),
-
 'tools/memory':
 Var('chromium_git') + '/chromium/src/tools/memory@' +
 Var('tools_memory_revision'),
-
- # TODO(crbug.com/pdfium/1650): Set up autorollers for goldctl.
- 'tools/skia_goldctl/linux': {
- 'packages': [
- {
- 'package': 'skia/tools/goldctl/linux-amd64',
- 'version': 'eZ3k373CYgRxlu4JKph6e-_7xkP02swy_jePFFMiyIQC',
- }
-],
- 'dep_type': 'cipd',
- 'condition': 'checkout_linux',
- },
-
- 'tools/skia_goldctl/mac_amd64': {
- 'packages': [
- {
- 'package': 'skia/tools/goldctl/mac-amd64',
- 'version': 'nHUjLIViYsLxRjv-zDdmzqT8p1R3VoyHq5gdGkKeMYwC',
- }
-],
- 'dep_type': 'cipd',
- 'condition': 'checkout_mac',
- },
-
- 'tools/skia_goldctl/mac_arm64': {
- 'packages': [
- {
- 'package': 'skia/tools/goldctl/mac-arm64',
- 'version': '-mc865SGfJAqreLZM6fkn8tgCJ7u5QLk5zm7r-ZRJ9gC',
- }
-],
- 'dep_type': 'cipd',
- 'condition': 'checkout_mac',
- },
-
- 'tools/skia_goldctl/win': {
- 'packages': [
- {
- 'package': 'skia/tools/goldctl/windows-amd64',
- 'version': 'iEqqRADI7znrc6pG-MVnc5pBZwD25koILREPC6x2AFAC',
- }
-],
- 'dep_type': 'cipd',
- 'condition': 'checkout_win',
- },
-
- 'v8':
- Var('chromium_git') + '/v8/v8.git@' + Var('v8_revision'),
 }

 recursedeps = []

pypdfium2-1.2.0/sourcebuild/patches/pdfium/win/build.patch

diff --git a/toolchain/win/BUILD.gn b/toolchain/win/BUILD.gn
index adec621f8..01990e2fa 100644
--- a/toolchain/win/BUILD.gn
+++ b/toolchain/win/BUILD.gn
@@ -212,7 +212,7 @@ template("msvc_toolchain") {
 }

 tool("rc") {
- command = "$python_path $tool_wrapper_path rc-wrapper $env rc.exe /nologo $sys_include_flags{{defines}} {{include_dirs}} /fo{{output}} {{source}}"
+ command = "rc.exe /nologo $sys_include_flags{{defines}} {{include_dirs}} /fo{{output}} {{source}}"
 depsformat = "msvc"
 outputs = ["$object_subdir/{{source_name_part}}.res"]
 description = "RC {{output}}"

pypdfium2-1.2.0/sourcebuild/patches/pdfium/win/pdfium.patch

diff --git a/core/fxge/win32/cgdi_printer_driver.cpp b/core/fxge/win32/cgdi_printer_driver.cpp
index 51b164659..cae49ea56 100644
--- a/core/fxge/win32/cgdi_printer_driver.cpp
+++ b/core/fxge/win32/cgdi_printer_driver.cpp
@@ -15,6 +15,7 @@
 #include "core/fxcrt/fx_memory.h"
 #include "core/fxcrt/fx_system.h"
 #include "core/fxcrt/retain_ptr.h"
+#include "core/fxcrt/widestring.h"
 #include "core/fxge/cfx_font.h"
 #include "core/fxge/cfx_windowsrenderdevice.h"
 #include "core/fxge/dib/cfx_dibextractor.h"

pypdfium2-1.2.0/sourcebuild/patches/pdfium/win/resources.rc

1 VERSIONINFO
FILEVERSION 	$VERSION_CSV
PRODUCTVERSION 	$VERSION_CSV
BEGIN
 BLOCK "StringFileInfo"
 BEGIN
 BLOCK "040904E4"
 BEGIN
 VALUE "CompanyName", "Google Inc."
 VALUE "FileDescription", "PDFium"
 VALUE "FileVersion", "$VERSION"
 VALUE "InternalName", "pdfium"
 VALUE "OriginalFilename", "pdfium.dll"
 VALUE "ProductName", "pdfium"
 VALUE "ProductVersion", "$VERSION"
 VALUE "LegalCopyright", "Copyright 2022 PDFium Authors."
 END
 END

 BLOCK "VarFileInfo"
 BEGIN
 VALUE "Translation", 0x409, 1252
 END
END

pypdfium2-1.2.0/src/pypdfium2/__init__.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import atexit
import logging
from pypdfium2 import _version
from pypdfium2._namespace import *

logger = logging.getLogger(__name__)

__version__ = _version.V_PYPDFIUM2
__pdfium_version__ = _version.V_LIBPDFIUM

FPDF_InitLibrary()
atexit.register(FPDF_DestroyLibrary)

pypdfium2-1.2.0/src/pypdfium2/__main__.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

from pypdfium2._cli.main import main

if __name__ == '__main__':
 main()

pypdfium2-1.2.0/src/pypdfium2/_cli/__init__.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

pypdfium2-1.2.0/src/pypdfium2/_cli/_parser.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import sys
import argparse

HelpFlags = ('help', '--help', '-h', '/h', '?', '/?')
VersionFlags = ('version', '--version', '-v')

class ArgParser (argparse.ArgumentParser):

 # Cutsomised argument parser

 def __init__(self, *args, **kws):
 super().__init__(*args, **kws)

 def parse_args(self, argv=None, namespace=None):

 if argv is None:
 argv = sys.argv[1:]

 if len(argv) < 1 or (argv[0].lower() in HelpFlags):
 self.print_help(sys.stderr)
 sys.exit()

 return super().parse_args(argv, namespace)

class _SubcommandItem:

 def __init__(
 self,
 names,
 method,
 help = "",
):
 if isinstance(names, str):
 self.names = (names,)
 else:
 self.names = names
 self.method = method
 self.help = help

class CliParser:

 def __init__(
 self,
 program,
 version,
 description,
 argv = sys.argv,
):
 self.program = program
 self.version = version
 self.description = description
 self.argv = argv
 self._subs = []

 def add_subcommand(self, *args, **kws):
 self._subs.append(_SubcommandItem(*args, **kws))

 @staticmethod
 def _get_cmd_help(flags, message):

 help = ''

 sep = ''
 for flag in flags:
 help += sep + flag
 sep = ', '

 if len(flags) > 1:
 help = '({})'.format(help)

 help += '\n' + ' '*4 + message

 return help

 def _get_main_help(self):

 help = ''

 help += '{} {}'.format(self.program, self.version) + '\n'
 help += self.description + '\n'*2

 help += self._get_cmd_help(
 HelpFlags, "Show the main help an exit",
) + '\n'
 help += self._get_cmd_help(
 VersionFlags, "Show the versions of bindings and library",
) + '\n'

 sep = ''
 for sub in self._subs:
 help += sep + self._get_cmd_help(sub.names, sub.help)
 sep = '\n'

 return help

 def run(self):

 if len(self.argv) < 1 or self.argv[0] in HelpFlags:
 print(self._get_main_help())
 sys.exit()

 main_arg = self.argv[0]

 if main_arg in VersionFlags:
 print("{} {}".format(self.program, self.version))
 sys.exit()

 sc_found = False

 for sub in self._subs:
 if main_arg.lower() in [n.lower() for n in sub.names]:
 sub.method(
 argv = self.argv[1:],
 prog = "{} {}".format(self.program, main_arg),
 desc = sub.help,
)
 sc_found = True
 break

 if not sc_found:
 print("Error: Argument '{}' is not a valid subcommand".format(main_arg), file=sys.stderr)

pypdfium2-1.2.0/src/pypdfium2/_cli/main.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import sys
from pypdfium2._version import (
 V_PYPDFIUM2,
 V_LIBPDFIUM,
)
from pypdfium2._cli._parser import CliParser
from pypdfium2._cli import (
 renderer,
 toc,
 merger,
 tiler,
)

def main(argv=sys.argv[1:]):

 parser = CliParser(
 program = "pypdfium2",
 version = "{} (libpdfium {})".format(V_PYPDFIUM2, V_LIBPDFIUM),
 description = "Command line interface to the pypdfium2 Python library",
 argv = argv,
)

 parser.add_subcommand(
 "render",
 method = renderer.main,
 help = "Rasteries pages of a PDF file",
)
 parser.add_subcommand(
 "toc",
 method = toc.main,
 help = "Show the table of contents for a PDF document",
)
 parser.add_subcommand(
 "merge",
 method = merger.main,
 help = "Concatenate PDF files",
)
 parser.add_subcommand(
 "tile",
 method = tiler.main,
 help = "Perform page tiling (N-up compositing)",
)

 parser.run()

pypdfium2-1.2.0/src/pypdfium2/_cli/merger.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import ctypes
from pypdfium2 import _namespace as pdfium
from pypdfium2._cli._parser import ArgParser

def _merge_pdfs(input_paths):

 dest_doc = pdfium.FPDF_CreateNewDocument()

 for in_path in reversed(input_paths):
 with pdfium.PdfContext(in_path) as src_doc:
 page_count = pdfium.FPDF_GetPageCount(src_doc)
 page_indices = (ctypes.c_int * page_count)(*[i for i in range(page_count)])
 pdfium.FPDF_ImportPagesByIndex(dest_doc, src_doc, page_indices, page_count, 0)

 return dest_doc

def parse_args(argv, prog, desc):

 parser = ArgParser(
 prog = prog,
 description = desc,
)

 parser.add_argument(
 'inputs',
 nargs = '+',
 help = "A sequence of PDF files to concatenate",
)
 parser.add_argument(
 '--output', '-o',
 required = True,
 help = "Target path for the output document",
)

 return parser.parse_args(argv)

def main(argv, prog, desc):

 args = parse_args(argv, prog, desc)
 merged_doc = _merge_pdfs(args.inputs)

 with open(args.output, 'wb') as file_handle:
 pdfium.save_pdf(merged_doc, file_handle)

pypdfium2-1.2.0/src/pypdfium2/_cli/renderer.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import os
import ast
from pypdfium2 import _namespace as pdfium
from pypdfium2._cli._parser import ArgParser
from os.path import (
 join,
 abspath,
 basename,
 splitext,
)

def rotation_type(string):
 rotation = int(string)
 if rotation not in (0, 90, 180, 270):
 raise ValueError("Invalid rotation value {}".format(rotation))
 return rotation

def colour_type(string):

 if string.lower() == 'none':
 return None

 else:

 colour = ast.literal_eval(string)

 if not isinstance(colour, (tuple, list)):
 raise ValueError("Invalid colour type {}. Must be list or tuple.".format(type(colour)))
 if not len(colour) in (3, 4):
 raise ValueError("Invalid number of colour values. Must be 3 or 4.")
 if not all(isinstance(val, int) and 0 <= val <= 255 for val in colour):
 raise ValueError("Colour values must be integers ranging from 0 to 255.")

 return colour

def pagetext_type(value):

 if not value:
 return

 page_indices = []
 splitted = value.split(',')

 for page_or_range in splitted:

 if '-' in page_or_range:

 start, end = page_or_range.split('-')
 start = int(start) - 1
 end = int(end) - 1

 if start < end:
 pages = [i for i in range(start, end+1)]
 else:
 pages = [i for i in range(start, end-1, -1)]

 page_indices.extend(pages)

 else:

 page_indices.append(int(page_or_range) - 1)

 return page_indices

def parse_args(argv, prog, desc):

 parser = ArgParser(
 prog = prog,
 description = desc,
)

 parser.add_argument(
 'inputs',
 nargs = '+',
 help = "PDF documents to render",
)
 parser.add_argument(
 '--output', '-o',
 type = abspath,
 required = True,
 help = "Output directory where to place the serially numbered images",
)
 parser.add_argument(
 '--format', '-f',
 default = 'png',
 help = "File extension of the image format to use",
)
 parser.add_argument(
 '--pages',
 default = None,
 type = pagetext_type,
 help = "Numbers of the pages to render (defaults to all)",
)
 parser.add_argument(
 '--scale',
 default = 1,
 type = float,
 help = "Define the resolution of the output images. By default, one PDF point (1/72in) is rendered to 1x1 pixel. This factor scales the number of pixels that represent one point.",
)
 parser.add_argument(
 '--rotation',
 default = 0,
 type = rotation_type,
 help = "Rotate pages by 90, 180 or 270 degrees",
)
 parser.add_argument(
 '--colour',
 default = (255, 255, 255, 255),
 type = colour_type,
 help = "Page background colour. Defaults to white. It can be given in RGBA format as a sequence of integers ranging from 0 to 255, or it may be 'none' for transparent background."
)
 parser.add_argument(
 '--no-annotations',
 action = 'store_true',
 help = "Option to prevent rendering of PDF annotations",
)
 parser.add_argument(
 '--optimise-mode',
 default = pdfium.OptimiseMode.none,
 type = lambda string: pdfium.OptimiseMode[string.lower()],
 help = "Select a rendering optimisation mode (none, lcd_display, printing)",
)
 parser.add_argument(
 '--greyscale',
 action = 'store_true',
 help = "Whether to render in greyscale mode (no colours)",
)
 parser.add_argument(
 '--processes',
 default = os.cpu_count(),
 type = int,
 help = "The number of processes to use for rendering (defaults to the number of CPU cores)"
)

 return parser.parse_args(argv)

def main(argv, prog, desc):

 args = parse_args(argv, prog, desc)

 for input_path in args.inputs:

 prefix = splitext(basename(input_path))[0] + '_'

 renderer = pdfium.render_pdf_topil(
 input_path,
 page_indices = args.pages,
 scale = args.scale,
 rotation = args.rotation,
 colour = args.colour,
 annotations = not args.no_annotations,
 greyscale = args.greyscale,
 optimise_mode = args.optimise_mode,
 n_processes = args.processes,
)

 for image, suffix in renderer:
 output_path = "{}.{}".format(join(args.output, prefix+suffix), args.format)
 image.save(output_path)
 image.close()

pypdfium2-1.2.0/src/pypdfium2/_cli/tiler.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import ctypes
import os.path
from enum import Enum
from pypdfium2 import _namespace as pdfium
from pypdfium2._cli._parser import ArgParser

class Units (Enum):
 PT = 0
 MM = 1
 CM = 2
 IN = 3

def units_to_pt(value, unit: Units):
 if unit is Units.PT:
 return value
 elif unit is Units.IN:
 return value*72
 elif unit is Units.CM:
 return (value*72) / 2.54
 elif unit is Units.MM:
 return (value*72) / 25.4
 else:
 raise ValueError("Invalid unit type {}".format(unit))

def parse_args(argv, prog, desc):

 parser = ArgParser(
 prog = prog,
 description = desc,
)
 parser.add_argument(
 'input',
 help = "PDF file on which to perform N-up compositing",
)
 parser.add_argument(
 '--output', '-o',
 type = os.path.abspath,
 help = "Target path for the new document",
)
 parser.add_argument(
 '--rows', '-r',
 type = int,
 required = True,
 help = "Number of rows (horizontal tiles)",
)
 parser.add_argument(
 '--cols', '-c',
 type = int,
 required = True,
 help = "Number of columns (vertical tiles)",
)
 parser.add_argument(
 '--width',
 type = float,
 required = True,
 help = "Target width",
)
 parser.add_argument(
 '--height',
 type = float,
 required = True,
 help = "Target height",
)
 parser.add_argument(
 '--unit', '-u',
 default = Units.MM,
 type = lambda string: Units[string.upper()],
 help = "Unit for target width and height (pt, mm, cm, in)",
)

 return parser.parse_args(argv)

def main(argv, prog, desc):

 args = parse_args(argv, prog, desc)

 width = units_to_pt(args.width, args.unit)
 height = units_to_pt(args.height, args.unit)

 with pdfium.PdfContext(args.input) as src_pdf:

 dest_pdf = pdfium.FPDF_ImportNPagesToOne(
 src_pdf,
 ctypes.c_float(width), # output_width
 ctypes.c_float(height), # output_height
 ctypes.c_size_t(args.cols), # num_pages_on_x_axis
 ctypes.c_size_t(args.rows), # num_pages_on_y_axis
)

 with open(args.output, 'wb') as file_handle:
 pdfium.save_pdf(dest_pdf, file_handle)

 pdfium.close_pdf(dest_pdf)

pypdfium2-1.2.0/src/pypdfium2/_cli/toc.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

from pypdfium2 import _namespace as pdfium
from pypdfium2._cli._parser import ArgParser

def parse_args(argv, prog, desc):
 parser = ArgParser(
 prog = prog,
 description = desc,
)
 parser.add_argument(
 'input',
 help = "PDF document of which to print the outline",
)
 parser.add_argument(
 '--max-depth',
 type = int,
 default = 15,
 help = "Maximum recursion depth to consider when parsing the table of contents",
)
 return parser.parse_args(argv)

def print_toc(toc):
 for item in toc:
 print(
 ' ' * item.level +
 '{} -> {} # {} {}'.format(
 item.title,
 item.page_index + 1,
 item.view_mode,
 item.view_pos,
)
)

def main(argv, prog, desc):
 args = parse_args(argv, prog, desc)
 doc = pdfium.PdfDocument(args.input)
 print_toc(doc.get_toc())
 doc.close()

pypdfium2-1.2.0/src/pypdfium2/_helpers/__init__.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

full support model namespace

from pypdfium2._helpers.constants import *
from pypdfium2._helpers.error_handler import *
from pypdfium2._helpers.utilities import *
from pypdfium2._helpers.opener import *
from pypdfium2._helpers.nativeopener import *
from pypdfium2._helpers.page_renderer import *
from pypdfium2._helpers.pdf_renderer import *
from pypdfium2._helpers.toc import *
from pypdfium2._helpers.saver import *
from pypdfium2._helpers.boxes import *
from pypdfium2._helpers.classes import *

pypdfium2-1.2.0/src/pypdfium2/_helpers/boxes.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

from ctypes import c_float, byref
from pypdfium2 import _pypdfium as pdfium

def _get_box(page, box_function, fallback_function):

 left, bottom, right, top = c_float(), c_float(), c_float(), c_float()

 ret_code = box_function(page, byref(left), byref(bottom), byref(right), byref(top))
 if not ret_code:
 return fallback_function(page)

 return (left.value, bottom.value, right.value, top.value)

def get_mediabox(page):
 """
 Get the MediaBox of *page* in PDF canvas units (usually 1/72in).
 Falls back to ANSI A (0, 0, 612, 792) if the page does not define a MediaBox.

 Parameters:
 page (``FPDF_PAGE``): PDFium page object handle.

 Returns:
 A tuple of four float coordinates.
 """
 return _get_box(page, pdfium.FPDFPage_GetMediaBox, lambda _p: (0, 0, 612, 792))

def get_cropbox(page):
 """ Get the CropBox of *page* (Fallback: :func:`get_mediabox`) """
 return _get_box(page, pdfium.FPDFPage_GetCropBox, get_mediabox)

def get_bleedbox(page):
 """ Get the BleedBox of *page* (Fallback: :func:`get_cropbox`) """
 return _get_box(page, pdfium.FPDFPage_GetBleedBox, get_cropbox)

def get_trimbox(page):
 """ Get the TrimBox of *page* (Fallback: :func:`get_cropbox`) """
 return _get_box(page, pdfium.FPDFPage_GetTrimBox, get_cropbox)

def get_artbox(page):
 """ Get the ArtBox of *page* (Fallback: :func:`get_cropbox`) """
 return _get_box(page, pdfium.FPDFPage_GetArtBox, get_cropbox)

pypdfium2-1.2.0/src/pypdfium2/_helpers/classes.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

from pypdfium2._helpers import (
 opener,
 saver,
 toc,
 pdf_renderer,
 page_renderer,
)

class PdfDocument:
 """
 Document class that maps the functional support model to an object-oriented API, unifying the separate helpers.

 Parameters:
 input_obj: The file or data to load using :func:`.open_pdf_auto`.
 password: A password to unlock the PDF, if encrypted.
 """

 def __init__(
 self,
 input_obj,
 password = None,
):
 self._input_obj = input_obj
 self._password = password
 self._pdf, self._ld_data = opener.open_pdf_auto(
 self._input_obj,
 password = self._password,
)

 @property
 def raw(self):
 """ Get the raw PDFium ``FPDF_DOCUMENT`` handle. """
 return self._pdf

 def close(self):
 """
 Close the document to release allocated memory. This method must be called when done with processing the PDF.
 """
 return opener.close_pdf(self._pdf, self._ld_data)

 def save(self, *args, **kws):
 """
 Save the PDF into an output byte buffer (see :func:`.save_pdf`).
 """
 return saver.save_pdf(self._pdf, *args, **kws)

 def get_toc(self, **kws):
 """
 Incrementally read the document's table of contents (see :func:`.get_toc`).
 """
 yield from toc.get_toc(self._pdf, **kws)

 def render_page_tobytes(self, index, **kws):
 """
 Render a single page to bytes (see :func:`.render_page_tobytes`).
 """
 return page_renderer.render_page_tobytes(
 self._pdf,
 page_index = index,
 **kws
)

 def render_pdf_tobytes(self, **kws):
 """
 Incrementally render multiple pages to bytes (see :func:`.render_pdf_tobytes`).
 """
 yield from pdf_renderer.render_pdf_tobytes(
 self._input_obj,
 password = self._password,
 **kws
)

 def render_page_topil(self, index, **kws):
 """
 Render a single page to a :mod:`PIL` image (see :func:`.render_page_topil`).
 """
 return page_renderer.render_page_topil(
 self._pdf,
 page_index = index,
 **kws
)

 def render_pdf_topil(self, **kws):
 """
 Incrementally render multiple pages to :mod:`PIL` images (see :func:`.render_pdf_topil`).
 """
 yield from pdf_renderer.render_pdf_topil(
 self._input_obj,
 password = self._password,
 **kws
)

pypdfium2-1.2.0/src/pypdfium2/_helpers/constants.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

from enum import Enum

class OptimiseMode (Enum):
 """ How to optimise page rendering """

 none = 0 #: Do not use any optimisations
 lcd_display = 1 #: Optimise for LCD displays
 printing = 2 #: Optimise for printing

class ViewMode (Enum):
 """
 Modes that define how target coordinates of a bookmark should be interpreted.
 Refer to the PDF 1.6 reference manual, section 8.2 for more information.
 """

 Unknown = 0
 XYZ = 1
 Fit = 2
 FitH = 3
 FitV = 4
 FitR = 5
 FitB = 6
 FitBH = 7
 FitBV = 8

pypdfium2-1.2.0/src/pypdfium2/_helpers/error_handler.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

from pypdfium2 import _pypdfium as pdfium

class PdfiumError (RuntimeError):
 """
 An exception from the PDFium library.
 """
 pass

def handle_pdfium_error(valid=True):
 """
 Check the last PDFium error code and raise an exception accordingly.

 Parameters:
 valid (bool):
 If :data:`False`, also raise an exception if ``FPDF_GetLastError()`` returns ``FPDF_ERR_SUCCESS``.

 Returns:
 :class:`int` – The error code as returned by PDFium.
 """

 last_error = pdfium.FPDF_GetLastError()

 if last_error == pdfium.FPDF_ERR_SUCCESS:
 if not valid:
 raise PdfiumError("Even though no errors were reported, something invalid happened.")
 elif last_error == pdfium.FPDF_ERR_UNKNOWN:
 raise PdfiumError("An unknown error occurred.")
 elif last_error == pdfium.FPDF_ERR_FILE:
 raise PdfiumError("The file could not be found or opened.")
 elif last_error == pdfium.FPDF_ERR_FORMAT:
 raise PdfiumError("Data format error.")
 elif last_error == pdfium.FPDF_ERR_PASSWORD:
 raise PdfiumError("Missing or wrong password.")
 elif last_error == pdfium.FPDF_ERR_SECURITY:
 raise PdfiumError("Unsupported security scheme.")
 elif last_error == pdfium.FPDF_ERR_PAGE:
 raise PdfiumError("Page not found or content error.")
 else:
 raise ValueError("Unknown PDFium error code {}.".format(last_error))

 return last_error

pypdfium2-1.2.0/src/pypdfium2/_helpers/nativeopener.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import ctypes
from os.path import abspath
from pypdfium2 import _pypdfium as pdfium
from pypdfium2._helpers.error_handler import handle_pdfium_error

def is_buffer(obj):
 """
 Check whether an object is a byte buffer that implements ``seek()``, ``tell()``,
 and ``readinto()``.

 Returns:
 :data:`True` if the object implements all required methods, :data:`False` otherwise.
 """

 if all(callable(getattr(obj, a, None)) for a in ('seek', 'tell', 'readinto')):
 return True
 else:
 return False

class _reader_class:
 """
 Class that implements the callback for ``FPDF_FILEACCESS.m_GetBlock()``, to incrementally read file data from a buffer.
 """

 def __init__(self, buffer):
 self.buffer = buffer

 def __call__(self, param, position, p_buf, size):
 c_buf = (ctypes.c_char * size).from_address(ctypes.addressof(p_buf.contents))
 self.buffer.seek(position)
 self.buffer.readinto(c_buf)
 return 1

class LoaderDataHolder:
 """
 Class to store data associated to an ``FPDF_DOCUMENT`` that was opened using ``FPDF_LoadCustomDocument()``.

 Parameters:
 file_handle:
 File buffer that implements the ``close()`` method.
 reader_instance:
 File access callable that must remain available for as long as the PDF is worked with.
 """

 def __init__(
 self,
 file_handle = None,
 reader_instance = None,
):
 self.file_handle = file_handle
 self.reader_instance = reader_instance

 def close(self):

 # access the reader variable again to make sure that even a heavily optimising interpreter would not prematurely delete the object
 id(self.reader_instance)

 if self.file_handle is not None:
 self.file_handle.close()

def open_pdf_buffer(buffer, password=None):
 """
 Open a PDF document incrementally from a byte buffer using ``FPDF_LoadCustomDocument()`` and a ctypes callback function.

 Parameters:
 buffer (typing.BinaryIO):
 A byte buffer as defined in :func:`.is_buffer`.
 password (str | bytes | None):
 A password to unlock the document, if encrypted.

 Returns:
 ``Tuple[pdfium.FPDF_DOCUMENT, LoaderDataHolder]``

 See also :func:`.open_pdf_auto`. **The same warnings apply!**
 """

 if not is_buffer(buffer):
 raise ValueError("Buffer must implement the methods seek(), tell(), and readinto().")

 buffer.seek(0, 2)
 file_len = buffer.tell()
 buffer.seek(0)

 FuncType = ctypes.CFUNCTYPE(
 # restype
 ctypes.c_int,
 # argtypes
 ctypes.POINTER(None),
 ctypes.c_ulong,
 ctypes.POINTER(ctypes.c_ubyte),
 ctypes.c_ulong,
)

 fileaccess = pdfium.FPDF_FILEACCESS()
 fileaccess.m_FileLen = file_len
 fileaccess.m_GetBlock = FuncType(_reader_class(buffer))

 pdf = pdfium.FPDF_LoadCustomDocument(ctypes.byref(fileaccess), password)
 ld_data = LoaderDataHolder(buffer, fileaccess.m_GetBlock)

 if pdfium.FPDF_GetPageCount(pdf) < 1:
 handle_pdfium_error(False)

 return pdf, ld_data

def open_pdf_native(filepath, password=None):
 """
 Open a PDF document from a file path, managing all file access natively in Python using :func:`.open_pdf_buffer`, without having to load the whole file into memory at once. This provides more independence from file access in PDFium.

 Parameters:
 filepath (str):
 File path to a PDF document.
 password (str | bytes | None):
 A password to unlock the document, if encrypted.

 Returns:
 ``Tuple[pdfium.FPDF_DOCUMENT, LoaderDataHolder]``

 See also :func:`.open_pdf_auto`. **The same warnings apply!**
 """

 file_handle = open(abspath(filepath), 'rb')
 return open_pdf_buffer(file_handle, password)

pypdfium2-1.2.0/src/pypdfium2/_helpers/opener.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import io
from pypdfium2 import _pypdfium as pdfium
from pypdfium2._helpers.nativeopener import (
 is_buffer,
 open_pdf_buffer,
)
from pypdfium2._helpers.error_handler import handle_pdfium_error

class PdfContext:
 """
 Context manager to open and automatically close again a PDFium document.

 Parameters:
 input_obj: The file or data to load using :func:`.open_pdf_auto`.
 password: A password to unlock the PDF, if encrypted.

 Returns:
 ``FPDF_DOCUMENT`` handle to the raw PDFium object.
 """

 def __init__(
 self,
 input_obj,
 password = None,
):
 self.input_obj = input_obj
 self.password = password
 self.ld_data = None

 def __enter__(self):
 self.pdf, self.ld_data = open_pdf_auto(
 self.input_obj,
 password = self.password,
)
 return self.pdf

 def __exit__(self, exc_type, exc_value, exc_traceback):
 close_pdf(self.pdf, self.ld_data)

def open_pdf_auto(input_obj, password=None):
 """
 Open a document from a file path or in-memory data.

 If the input is a file path, ``FPDF_LoadDocument()`` will be used.
 If the input is bytes or a byte buffer, :func:`.open_pdf_buffer` will be used.

 Parameters:
 input_obj (str | bytes | typing.BinaryIO):
 File path to a PDF document, bytes, or a byte buffer.
 password (str | bytes | None):
 A password to unlock the document, if encrypted.

 Returns:
 ``Tuple[pdfium.FPDF_DOCUMENT, Optional[LoaderDataHolder]]`` –
 The handle to a PDFium document, and a :class:`.LoaderDataHolder` object to store associated file access data. The latter may be :data:`None` if no custom file access was required.

 Warning:
 Callers **MUST** ensure that the :class:`.LoaderDataHolder` object remain available for as long as they work with the PDF. That means it has to be accessed again when done with processing, to prevent Python from automatically deleting the object. This can be achieved by passing it as second parameter to :func:`.close_pdf`, which is also necessary to release the acquired file buffer. If attempting to access the ``FPDF_DOCUMENT`` handle after the loader data has been deleted, a segmentation fault would occur.
 """

 if isinstance(input_obj, bytes):
 input_obj = io.BytesIO(input_obj)

 ld_data = None

 if isinstance(input_obj, str):
 pdf = pdfium.FPDF_LoadDocument(input_obj, password)
 if pdfium.FPDF_GetPageCount(pdf) < 1:
 handle_pdfium_error(False)
 elif is_buffer(input_obj):
 pdf, ld_data = open_pdf_buffer(input_obj, password)
 else:
 raise ValueError(
 "Input must be a file path, bytes or a byte buffer, but it is {}.".format(type(input_obj))
)

 return pdf, ld_data

def close_pdf(pdf, loader_data=None):
 """
 Close an in-memory PDFium document.

 Parameters:
 pdf (``FPDF_DOCUMENT``):
 The PDFium document object to close using ``FPDF_CloseDocument()``.
 loader_data (LoaderDataHolder):
 Object that stores custom file access data associated to the PDF, as returned by :func:`.open_pdf_auto`, :func:`.open_pdf_buffer`, or :func:`.open_pdf_native`.
 """

 pdfium.FPDF_CloseDocument(pdf)
 if loader_data is not None:
 loader_data.close()

pypdfium2-1.2.0/src/pypdfium2/_helpers/page_renderer.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import math
import ctypes
from pypdfium2 import _pypdfium as pdfium
from pypdfium2._helpers.constants import OptimiseMode
from pypdfium2._helpers.utilities import (
 colour_as_hex,
 translate_rotation,
)

try:
 from PIL import Image
except ImportError:
 have_pil = False
else:
 have_pil = True

def _get_clformat(use_alpha, greyscale):

 px = 'BGRA', pdfium.FPDFBitmap_BGRA

 if not use_alpha:
 if greyscale:
 px = 'L', pdfium.FPDFBitmap_Gray
 else:
 px = 'BGR', pdfium.FPDFBitmap_BGR

 return px

_clformat_pil = {
 'BGRA': 'RGBA',
 'BGR': 'RGB',
 'L': 'L',
}

class BitmapDataHolder:
 """
 Class to store a bitmap handle and the pointer to its data.

 Parameters:
 bm_handle (``FPDF_BITMAP``): Handle to a PDFium bitmap.
 bm_array_ptr (``LP_c_ubyte_Array_[N]``): Pointer to ctypes bitmap data.
 """

 def __init__(self, bm_handle, bm_array_ptr):
 self.bm_handle = bm_handle
 self.bm_array_ptr = bm_array_ptr

 def get_data(self):
 """ Retrieve the raw ctypes data from ``bm_array_ptr.contents`` (``c_ubyte_Array_[N]``). """
 return self.bm_array_ptr.contents

 def close(self):
 """ Release resources associated to the bitmap. """
 pdfium.FPDFBitmap_Destroy(self.bm_handle)

def render_page_base(
 pdf,
 page_index = 0,
 scale = 1,
 rotation = 0,
 colour = (255, 255, 255, 255),
 annotations = True,
 greyscale = False,
 optimise_mode = OptimiseMode.none,
):
 """
 Render a single PDF page to ctypes data using PDFium.
 Base function for :func:`.render_pdf_tobytes` and :func:`.render_pdf_topil`.

 Parameters:

 pdf (``FPDF_DOCUMENT``):
 A raw PDFium document handle.

 page_index (int):
 Zero-based index of the page to render.

 scale (float):
 Define the quality (or size) of the image.
 By default, one PDF point (1/72in) is rendered to 1x1 pixel. This factor scales the number of pixels that represent one point.
 Higher values increase quality, file size and rendering duration, while lower values reduce them.
 Note that UserUnit is not taken into account, so if you are using pypdfium2 in conjunction with an other PDF library, you may want to check for a possible ``/UserUnit`` in the page dictionary and multiply this scale factor with it.

 rotation (int):
 Rotate the page by 90, 180, or 270 degrees. Value 0 means no rotation.

 colour (None | typing.Tuple[int, int, int, typing.Optional[int]]):
 Page background colour. Defaults to white.
 It can either be :data:`None`, or values of red, green, blue, and alpha ranging from 0 to 255.
 If :data:`None`, the bitmap will not be filled with a colour, resulting in transparent background.
 For RGB, 0 will include nothing of the colour in question, while 255 will completely include it. For Alpha, 0 means full transparency, while 255 means no transparency.

 annotations (bool):
 Whether to render page annotations.

 greyscale (bool):
 Whether to render in greyscale mode (no colours).

 optimise_mode (OptimiseMode):
 Optimise rendering for LCD displays or for printing.

 Returns:

 :class:`BitmapDataHolder`, :class:`str`, ``Tuple[int, int]`` – Bitmap data holder, used colour format, and image size.

 Call :meth:`BitmapDataHolder.get_data` to obtain the raw ctypes byte array. ``bytes(data_holder.get_data())`` may be used to acquire an independent copy of the data as Python bytes. When you have finished working with the ctypes byte array, call :meth:`BitmapDataHolder.close` to release allocated memory.

 The colour format can be ``BGRA``, ``BGR``, or ``L``, depending on the parameters *colour* and *greyscale*.

 The image size is given in pixels as a tuple (width, height).
 """

 if colour is None:
 fpdf_colour, use_alpha = None, True
 else:
 fpdf_colour, use_alpha = colour_as_hex(*colour)

 cl_format, cl_pdfium = _get_clformat(use_alpha, greyscale)
 n_colours = len(cl_format)

 page_count = pdfium.FPDF_GetPageCount(pdf)
 if not 0 <= page_index < page_count:
 raise IndexError("Page index {} is out of bounds for document with {} pages.".format(page_index, page_count))

 form_config = pdfium.FPDF_FORMFILLINFO(2)
 form_fill = pdfium.FPDFDOC_InitFormFillEnvironment(pdf, form_config)
 page = pdfium.FPDF_LoadPage(pdf, page_index)

 width = math.ceil(pdfium.FPDF_GetPageWidthF(page) * scale)
 height = math.ceil(pdfium.FPDF_GetPageHeightF(page) * scale)
 if rotation in (90, 270):
 width, height = height, width

 bitmap = pdfium.FPDFBitmap_CreateEx(width, height, cl_pdfium, None, width*n_colours)
 if fpdf_colour is not None:
 pdfium.FPDFBitmap_FillRect(bitmap, 0, 0, width, height, fpdf_colour)

 render_flags = 0x00
 if annotations:
 render_flags |= pdfium.FPDF_ANNOT
 if greyscale:
 render_flags |= pdfium.FPDF_GRAYSCALE

 if optimise_mode is OptimiseMode.none:
 pass
 elif optimise_mode is OptimiseMode.lcd_display:
 render_flags |= pdfium.FPDF_LCD_TEXT
 elif optimise_mode is OptimiseMode.printing:
 render_flags |= pdfium.FPDF_PRINTING
 else:
 raise ValueError("Invalid optimise_mode {}".format(optimise_mode))

 render_args = (bitmap, page, 0, 0, width, height, translate_rotation(rotation), render_flags)
 pdfium.FPDF_RenderPageBitmap(*render_args)
 pdfium.FPDF_FFLDraw(form_fill, *render_args)

 cbuf_ptr = pdfium.FPDFBitmap_GetBuffer(bitmap)
 cbuf_array_ptr = ctypes.cast(cbuf_ptr, ctypes.POINTER(ctypes.c_ubyte * (width*height*n_colours)))
 data_holder = BitmapDataHolder(bitmap, cbuf_array_ptr)

 pdfium.FPDF_ClosePage(page)
 pdfium.FPDFDOC_ExitFormFillEnvironment(form_fill)

 return data_holder, cl_format, (width, height)

def render_page_tobytes(*args, **kws):
 """
 Render a single page to bytes. Parameters are the same as for :func:`.render_page_base`.

 Returns:
 :class:`bytes`, :class:`str`, Tuple[int, int]
 """
 data_holder, cl_format, size = render_page_base(*args, **kws)
 data = bytes(data_holder.get_data())
 data_holder.close()
 return data, cl_format, size

def render_page_topil(*args, **kws):
 """
 Render a single page to a :mod:`PIL` image. Parameters are the same as for :func:`.render_page_base`.

 Returns:
 :class:`PIL.Image.Image`
 """

 if not have_pil:
 raise RuntimeError("Pillow library needs to be installed for render_page_topil().")

 data_holder, cl_format, size = render_page_base(*args, **kws)
 pil_image = Image.frombytes(_clformat_pil[cl_format], size, data_holder.get_data(), "raw", cl_format, 0, 1)
 data_holder.close()

 return pil_image

pypdfium2-1.2.0/src/pypdfium2/_helpers/pdf_renderer.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import os
import concurrent.futures
from pypdfium2 import _pypdfium as pdfium
from pypdfium2._helpers import page_renderer
from pypdfium2._helpers.opener import PdfContext
from pypdfium2._helpers.constants import OptimiseMode

def _process_page(render_meth, input_obj, index, password, scale, rotation, colour, annotations, greyscale, optimise_mode):

 with PdfContext(input_obj, password) as pdf:
 result = render_meth(
 pdf, index,
 scale = scale,
 rotation = rotation,
 colour = colour,
 annotations = annotations,
 greyscale = greyscale,
 optimise_mode = optimise_mode,
)

 return index, result

def _invoke_process_page(args):
 return _process_page(*args)

def render_pdf_base(
 render_meth,
 input_obj,
 page_indices = None,
 password = None,
 n_processes = os.cpu_count(),
 scale = 1,
 rotation = 0,
 colour = (255, 255, 255, 255),
 annotations = True,
 greyscale = False,
 optimise_mode = OptimiseMode.none,
):
 """
 Rasterise multiple pages of a PDF using an arbitrary page rendering method.
 Base function for :func:`.render_pdf_tobytes` and :func:`.render_pdf_topil`.

 Parameters:
 input_obj (str | bytes | typing.BinaryIO):
 The PDF document to render. It may be given as file path, bytes, or byte buffer.
 page_indices (typing.Sequence[int]):
 A list of zero-based page indices to render.

 The other parameters are the same as for :func:`.render_page_base`.
 """

 with PdfContext(input_obj, password) as pdf:
 n_pages = pdfium.FPDF_GetPageCount(pdf)
 n_digits = len(str(n_pages))

 if page_indices is None or len(page_indices) == 0:
 page_indices = [i for i in range(n_pages)]
 if not all(0 <= i < n_pages for i in page_indices):
 raise ValueError("Out of range page index detected.")

 args = [(render_meth, input_obj, i, password, scale, rotation, colour, annotations, greyscale, optimise_mode) for i in page_indices]

 with concurrent.futures.ProcessPoolExecutor(n_processes) as pool:
 for index, image in pool.map(_invoke_process_page, args):
 suffix = str(index+1).zfill(n_digits)
 yield image, suffix

def render_pdf_tobytes(*args, **kws):
 """
 Render multiple pages of a PDF to bytes. See :func:`.render_pdf_base` and :func:`.render_page_tobytes`.

 Yields:
 :class:`tuple`, :class:`str`
 """
 yield from render_pdf_base(page_renderer.render_page_tobytes, *args, **kws)

def render_pdf_topil(*args, **kws):
 """
 Render multiple pages of a PDF to :mod:`PIL` images. See :func:`.render_pdf_base` and :func:`.render_page_topil`.

 Yields:
 :class:`PIL.Image.Image`, :class:`str`
 """
 yield from render_pdf_base(page_renderer.render_page_topil, *args, **kws)

pypdfium2-1.2.0/src/pypdfium2/_helpers/saver.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import ctypes
from pypdfium2 import _pypdfium as pdfium

class _writer_class:

 def __init__(self, buffer):
 self.buffer = buffer
 if not callable(getattr(self.buffer, 'write', None)):
 raise ValueError("Output buffer must implement the write() method.")

 def __call__(self, _filewrite, data, size):
 block = ctypes.cast(data, ctypes.POINTER(ctypes.c_ubyte * size))
 self.buffer.write(block.contents)
 return 1

def save_pdf(pdf, buffer):
 """
 Write the data of a PDFium document into an output buffer.

 Parameters:
 pdf (``FPDF_DOCUMENT``):
 Handle to a PDFium document.
 buffer:
 A byte buffer to capture the data. It may be anything that implements the ``write()`` method.
 """

 WriteFunctype = ctypes.CFUNCTYPE(
 # restype
 ctypes.c_int,
 # argtypes
 ctypes.POINTER(pdfium.FPDF_FILEWRITE),
 ctypes.POINTER(None),
 ctypes.c_ulong,
)

 filewrite = pdfium.FPDF_FILEWRITE()
 filewrite.WriteBlock = WriteFunctype(_writer_class(buffer))

 pdfium.FPDF_SaveAsCopy(pdf, ctypes.byref(filewrite), pdfium.FPDF_INCREMENTAL)

pypdfium2-1.2.0/src/pypdfium2/_helpers/toc.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import ctypes
import logging
from pypdfium2 import _pypdfium as pdfium
from pypdfium2._helpers.utilities import translate_viewmode

logger = logging.getLogger(__name__)

class OutlineItem:
 """
 An entry in the table of contents ("bookmark").

 Parameters:
 level (int):
 The number of parent items.
 title (str):
 String of the bookmark.
 page_index (int):
 Zero-based index of the page the bookmark is pointing to.
 view_mode (ViewMode):
 A mode defining how to interpret the coordinates of *view_pos*.
 view_pos (typing.Sequence[float]):
 Target position on the page the viewport should jump to. It is a sequence of float values in PDF points. Depending on *view_mode*, it can contain between 0 and 4 coordinates.
 """

 def __init__(
 self,
 level,
 title,
 page_index,
 view_mode,
 view_pos,
):
 self.level = level
 self.title = title
 self.page_index = page_index
 self.view_mode = view_mode
 self.view_pos = view_pos

def _get_toc_entry(pdf, bookmark, level):
 """
 Convert a raw PDFium bookmark to an :class:`.OutlineItem`.
 """

 # title
 t_buflen = pdfium.FPDFBookmark_GetTitle(bookmark, None, 0)
 t_buffer = ctypes.create_string_buffer(t_buflen)
 pdfium.FPDFBookmark_GetTitle(bookmark, t_buffer, t_buflen)
 title = t_buffer.raw[:t_buflen].decode('utf-16-le')[:-1]

 # page index
 dest = pdfium.FPDFBookmark_GetDest(pdf, bookmark)
 page_index = pdfium.FPDFDest_GetDestPageIndex(pdf, dest)

 # viewport
 n_params = ctypes.c_ulong()
 view_pos = (pdfium.FS_FLOAT * 4)()
 view_mode = pdfium.FPDFDest_GetView(dest, n_params, view_pos)
 view_pos = list(view_pos)[:n_params.value]
 view_mode = translate_viewmode(view_mode)

 return OutlineItem(
 level = level,
 title = title,
 page_index = page_index,
 view_mode = view_mode,
 view_pos = view_pos,
)

def get_toc(
 pdf,
 parent = None,
 level = 0,
 max_depth = 15,
 seen = None,
):
 """
 Parse the outline ("table of contents") of a PDF document.

 Parameters:
 pdf (``FPDF_DOCUMENT``):
 The PDFium document of which to read the outline.
 max_depth (int):
 The maximum recursion depth to consider when analysing the table of contents.

 Yields:
 :class:`OutlineItem`
 """

 if level >= max_depth:
 return []

 bookmark = pdfium.FPDFBookmark_GetFirstChild(pdf, parent)

 if seen is None:
 seen = set()

 while bookmark:

 address = ctypes.addressof(bookmark.contents)
 if address in seen:
 logger.critical("A circular bookmark reference was detected whilst parsing the table of contents.")
 break
 else:
 seen.add(address)

 yield _get_toc_entry(pdf, bookmark, level)

 yield from get_toc(
 pdf,
 parent = bookmark,
 level = level + 1,
 max_depth = max_depth,
 seen = seen,
)

 bookmark = pdfium.FPDFBookmark_GetNextSibling(pdf, bookmark)

pypdfium2-1.2.0/src/pypdfium2/_helpers/utilities.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

from pypdfium2 import _pypdfium as pdfium
from pypdfium2._helpers.constants import ViewMode

def translate_viewmode(viewmode):
 """
 Convert a PDFium view mode integer to an attribute of the :class:`.ViewMode` enum.

 Parameters:
 viewmode (int): PDFium view mode integer.

 Returns:
 :class:`.ViewMode`
 """

 if viewmode == pdfium.PDFDEST_VIEW_UNKNOWN_MODE:
 return ViewMode.Unknown
 elif viewmode == pdfium.PDFDEST_VIEW_XYZ:
 return ViewMode.XYZ
 elif viewmode == pdfium.PDFDEST_VIEW_FIT:
 return ViewMode.Fit
 elif viewmode == pdfium.PDFDEST_VIEW_FITH:
 return ViewMode.FitH
 elif viewmode == pdfium.PDFDEST_VIEW_FITV:
 return ViewMode.FitV
 elif viewmode == pdfium.PDFDEST_VIEW_FITR:
 return ViewMode.FitR
 elif viewmode == pdfium.PDFDEST_VIEW_FITB:
 return ViewMode.FitB
 elif viewmode == pdfium.PDFDEST_VIEW_FITBH:
 return ViewMode.FitBH
 elif viewmode == pdfium.PDFDEST_VIEW_FITBV:
 return ViewMode.FitBV
 else:
 raise ValueError("Unknown PDFium viewmode value {}".format(viewmode))

def translate_rotation(rotation):
 """
 Convert a rotation value in degrees to a PDFium rotation constant.

 Parameters:
 rotation (int): Rotation value in degrees (0, 90, 180, 270).

 Returns:
 :class:`int` – A PDFium rotation constant (0, 1, 2, 3).
 """

 if rotation == 0:
 return 0
 elif rotation == 90:
 return 1
 elif rotation == 180:
 return 2
 elif rotation == 270:
 return 3
 else:
 raise ValueError("Invalid rotation {}".format(rotation))

def _hex_digits(c):

 hxc = hex(c)[2:]
 if len(hxc) == 1:
 hxc = "0" + hxc

 return hxc

def colour_as_hex(r, g, b, a=255):
 """
 Convert a colour given as values of red, green, blue, and alpha ranging from 0 to 255 to a single integer in 32-bit ARGB format.

 Returns:
 :class:`int`, :class:`bool` – The colour integer, and a logical value that is :data:`True` if an alpha channel is needed, or :data:`False` if it is not needed.
 """

 use_alpha = True
 if a == 255:
 use_alpha = False

 colours = (a, r, g, b)
 for c in colours:
 assert 0 <= c <= 255

 hxc_str = "0x"
 for c in colours:
 hxc_str += _hex_digits(c)

 hxc_int = int(hxc_str, 0)

 return hxc_int, use_alpha

pypdfium2-1.2.0/src/pypdfium2/_namespace.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

This namespace encompasses all public pypdfium2 members

from pypdfium2._pypdfium import *
from pypdfium2._helpers import *

pypdfium2-1.2.0/src/pypdfium2/_version.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

V_MAJOR = 1
V_MINOR = 2
V_PATCH = 0
V_BETA = None

V_PYPDFIUM2 = "{}.{}.{}".format(V_MAJOR, V_MINOR, V_PATCH) #: pypdfium2 version string
if V_BETA is not None:
 V_PYPDFIUM2 += "b{}".format(V_BETA)

V_LIBPDFIUM = 4969 #: PDFium library version integer (git tag)

pypdfium2-1.2.0/src/pypdfium2.egg-info/PKG-INFO

Metadata-Version: 2.1
Name: pypdfium2
Version: 1.2.0
Summary: Python bindings to PDFium
Home-page: https://github.com/pypdfium2-team/pypdfium2
Author: pypdfium2-team
Author-email: geisserml@gmail.com
License: Apache-2.0 or BSD-3-Clause
Project-URL: Documentation, https://pypdfium2.readthedocs.io/
Project-URL: Source, https://github.com/pypdfium2-team/pypdfium2
Project-URL: Tracker, https://github.com/pypdfium2-team/pypdfium2/issues
Keywords: Python,PDF,PDFium
Platform: UNKNOWN
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Information Technology
Classifier: Intended Audience :: Education
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: Implementation :: CPython
Classifier: Programming Language :: Python :: Implementation :: PyPy
Classifier: Topic :: Multimedia :: Graphics
Classifier: Topic :: Software Development :: Libraries
Requires-Python: !=3.7.6,!=3.8.1,>=3.5
Description-Content-Type: text/markdown
Provides-Extra: converters
Provides-Extra: test
Provides-Extra: docs
Provides-Extra: utilities
License-File: LICENSES/Apache-2.0.txt
License-File: LICENSES/BSD-3-Clause.txt
License-File: LICENSES/CC-BY-4.0.txt
License-File: LICENSES/LicenseRef-PdfiumThirdParty.txt
License-File: .reuse/dep5

<!-- SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com> -->
<!-- SPDX-License-Identifier: CC-BY-4.0 -->

pypdfium2

[pypdfium2](https://github.com/pypdfium2-team/pypdfium2) is a Python 3 binding to [PDFium](https://pdfium.googlesource.com/pdfium/+/refs/heads/main), the liberal-licensed PDF rendering library authored by Foxit and maintained by Google.

Install/Update

Install from PyPI

```bash
pip3 install --no-build-isolation -U pypdfium2
```

Manual installation

The following steps require the system tools `git` and `gcc` to be installed and available in `PATH`. In addition, the Python dependencies `setuptools`, `setuptools-scm` `wheel`, `build`, and `ctypesgen` are needed. Also make sure that your `pip` version is up-to-date. For more information, please refer to [`dependencies.md`](docs/markdown/dependencies.md).

Package locally

To get pre-compiled binaries, generate bindings and install pypdfium2, you may run
```bash
make install
```
in the directory you downloaded the repository to. This will resort to building PDFium if no pre-compiled binaries are available for your platform.

Source build

If you wish to perform a source build regardless of whether PDFium binaries are available or not, you can do the following:
```bash
make build
```

In case building failed, you could try
```bash
python3 platform_setup/build_pdfium.py --nativebuild --check-deps
PYP_TARGET_PLATFORM="sourcebuild" python3 -m pip install . -v --no-build-isolation
```
to prefer the use of system-provided build tools over the toolchain PDFium ships with. The problem is that the toolchain is limited to a curated set of platforms, as PDFium target cross-compilation for "non-standard" architectures. (Make sure you installed all packages from the `Native Build` section of [`dependencies.md`](docs/markdown/dependencies.md), in addition to the default requirements.)

Examples

Using the command-line interface

Rasterise a PDF document:
```bash
pypdfium2 render document.pdf -o output_dir/ --scale 3
```

You may also rasterise multiple files at once:
```bash
pypdfium2 render doc_1.pdf doc_2.pdf doc_3.pdf -o output_dir/
```

Show the table of contents for a PDF:
```bash
pypdfium2 toc document.pdf
```

To obtain a list of subcommands, run `pypdfium2 help`. Individual help for each subcommand is available can be accessed in the same way (`pypdfium any_subcommand help`)

CLI documentation: https://pypdfium2.readthedocs.io/en/stable/shell_api.html

Using the support model

Import pypdfium2:

```python3
import pypdfium2 as pdfium
```

Open a PDF using the helper class `PdfDocument`:
```python3
doc = pdfium.PdfDocument(filename)
# ... use methods provided by the helper class
pdf = doc.raw
# ... work with the actual PDFium document handle
doc.close()
```

Open a PDF using the context manager `PdfContext`:
```python3
with pdfium.PdfContext(filename) as pdf:
    # ... work with the pdf
```

Render a single page:

```python3
with pdfium.PdfContext(filename) as pdf:
    pil_image = pdfium.render_page_topil(
        pdf,
        page_index = 0,
        scale = 1,
        rotation = 0,
        colour = (255, 255, 255, 255),
        annotations = True,
        greyscale = False,
        optimise_mode = pdfium.OptimiseMode.none,
    )

pil_image.save("out.png")
pil_image.close()
```

Render multiple pages concurrently:

```python3
for image, suffix in pdfium.render_pdf_topil(filename):
    image.save( 'out_{}.png'.format(suffix) )
    image.close()
```

Read the table of contents:

```python3
doc = pdfium.PdfDocument(filepath)
for item in doc.get_toc():
    print(
        '    ' * item.level +
        "{} -> {}  # {} {}".format(
            item.title,
            item.page_index + 1,
            item.view_mode,
            item.view_pos,
        )
    )
doc.close()
```

Support model documentation: https://pypdfium2.readthedocs.io/en/stable/python_api.html

Using the PDFium API

Rendering the first page of a PDF document:

```python3
import math
import ctypes
from PIL import Image
import pypdfium2 as pdfium

filename = "your/path/to/document.pdf"

doc = pdfium.FPDF_LoadDocument(filename, None)
page_count = pdfium.FPDF_GetPageCount(doc)
assert page_count >= 1

form_config = pdfium.FPDF_FORMFILLINFO(2)
form_fill = pdfium.FPDFDOC_InitFormFillEnvironment(doc, form_config)

page = pdfium.FPDF_LoadPage(doc, 0)
width = math.ceil(pdfium.FPDF_GetPageWidthF(page))
height = math.ceil(pdfium.FPDF_GetPageHeightF(page))

bitmap = pdfium.FPDFBitmap_Create(width, height, 0)
pdfium.FPDFBitmap_FillRect(bitmap, 0, 0, width, height, 0xFFFFFFFF)

render_args = [bitmap, page, 0, 0, width, height, 0,  pdfium.FPDF_LCD_TEXT | pdfium.FPDF_ANNOT]
pdfium.FPDF_RenderPageBitmap(*render_args)
pdfium.FPDF_FFLDraw(form_fill, *render_args)

cbuffer = pdfium.FPDFBitmap_GetBuffer(bitmap)
buffer = ctypes.cast(cbuffer, ctypes.POINTER(ctypes.c_ubyte * (width * height * 4)))

img = Image.frombuffer("RGBA", (width, height), buffer.contents, "raw", "BGRA", 0, 1)
img.save("out.png")

pdfium.FPDFBitmap_Destroy(bitmap)
pdfium.FPDF_ClosePage(page)

pdfium.FPDFDOC_ExitFormFillEnvironment(form_fill)
pdfium.FPDF_CloseDocument(doc)
```

For more examples of using the raw API, take a look at the [support model source code](src/pypdfium2/_helpers) and the [examples directory](examples).

Documentation for the [PDFium API](https://developers.foxit.com/resources/pdf-sdk/c_api_reference_pdfium/group___f_p_d_f_i_u_m.html) is available. pypdfium2 transparently maps all PDFium classes, enums and functions to Python. However, there can sometimes be minor differences between Foxit and open-source PDFium. In case of doubt, take a look at the inline source code documentation of PDFium.

Licensing

PDFium and pypdfium2 are available by the terms and conditions of either Apache 2.0 or BSD-3-Clause, at your choice.

Various other open-source licenses apply to the dependencies of PDFium. License texts for PDFium and its dependencies are included in the file [`LicenseRef-PdfiumThirdParty.txt`](LICENSES/LicenseRef-PdfiumThirdParty.txt), which is also shipped with binary redistributions.

Documentation and examples of pypdfium2 are CC-BY-4.0 licensed.

In Use

* The [doctr](https://mindee.github.io/doctr/) OCR library uses pypdfium2 to rasterise PDF documents.
* The [Extract-URLs](https://github.com/elescamilla/Extract-URLs/) project extracts URLs from PDFs using pypdfium2.

Development

PDFium builds are retrieved from [bblanchon/pdfium-binaries](https://github.com/bblanchon/pdfium-binaries). Python bindings are auto-generated with [ctypesgen](https://github.com/ctypesgen/ctypesgen)

Please see [#3](https://github.com/pypdfium2-team/pypdfium2/issues/3) for a list of platforms where binary wheels are available.
Some wheels are not tested, unfortunately. If you have access to a theoretically supported but untested system, please report success or failure on the issue or discussion panel.

For wheel naming conventions, please see [Python Packaging: Platform compatibility tags](https://packaging.python.org/specifications/platform-compatibility-tags/) and the various referenced PEPs. [This thread](https://discuss.python.org/t/wheel-platform-tag-for-windows/9025/5) may also provide helpful information.

pypdfium2 contains scripts to automate the release process:

* To build the wheels, run `make release`. This will download binaries and header files, write finished Python binary distributions to `dist/`, and run some checks.
* To clean up after a release, run `make clean`. This will remove downloaded files and build artifacts.

Testing

Run `make test`.

Publishing the wheels

* You may want to upload to [TestPyPI](https://test.pypi.org/legacy/) first to ensure everything works as expected:
  ```bash
  twine upload --verbose --repository-url https://test.pypi.org/legacy/ dist/*
  ```
* If all went well, upload to the real PyPI:
  ```bash
  twine upload dist/*
  ```


Issues

Since pypdfium2 is built using upstream binaries and an automatic bindings creator, issues that are not related to packaging or support model code probably need to be addressed upstream. However, the [pypdfium2 issues panel](https://github.com/pypdfium2-team/pypdfium2/issues) is always a good place to start if you have any problems, questions or suggestions.

If the cause of an issue could be determined to be in PDFium, the problem needs to be reported at the [PDFium bug tracker](https://bugs.chromium.org/p/pdfium/issues/list).

Issues related to pre-compiled binaries should be discussed at [pdfium-binaries](https://github.com/bblanchon/pdfium-binaries/issues), though.

If your issue is caused by the bindings generator, refer to the [ctypesgen bug tracker](https://github.com/ctypesgen/ctypesgen/issues).

Known limitations

Incompatibility with CPython 3.7.6 and 3.8.1

pypdfium2 cannot be used with releases 3.7.6 and 3.8.1 of the CPython interpreter due to a [regression](https://github.com/python/cpython/pull/16799#issuecomment-612353119) that broke ctypesgen-created string handling code.

Problems with `FPDFPage_Delete()`

While `FPDFPage_Delete()` first seems to reduce page count properly, the changes are not actually applied when saving the document. See issue [#96](https://github.com/pypdfium2-team/pypdfium2/issues/96).

Thanks

Patches to PDFium and DepotTools originate from the [pdfium-binaries](https://github.com/bblanchon/pdfium-binaries/) repository. Many thanks to @bblanchon and @BoLaMN.

History

pypdfium2 is the successor of *pypdfium* and *pypdfium-reboot*.

The initial *pypdfium* was packaged manually and did not get regular updates. There were no platform-specific wheels, but only a single wheel that contained binaries for 64-bit Linux, Windows and macOS.

pypdfium-reboot then added a script to automate binary deployment and bindings generation to simplify regular updates. However, it was still not platform specific.

pypdfium2 is a full rewrite of *pypdfium-reboot* to build platform-specific wheels. It also adds a basic support model and a command-line interface on top of the PDFium C API to simplify common use cases. Moreover, pypdfium2 includes facilities to build PDFium from source, to extend platform compatibility.

pypdfium2-1.2.0/src/pypdfium2.egg-info/SOURCES.txt

.gitignore
.readthedocs.yaml
Makefile
README.md
pyproject.toml
setup.cfg
setup.py
.reuse/dep5
LICENSES/Apache-2.0.txt
LICENSES/BSD-3-Clause.txt
LICENSES/CC-BY-4.0.txt
LICENSES/LicenseRef-FairUse.txt
LICENSES/LicenseRef-PdfiumThirdParty.txt
data/.gitkeep
docs/Makefile
docs/make.bat
docs/build/.gitkeep
docs/markdown/add_platform.md
docs/markdown/changelog.md
docs/markdown/contributing.md
docs/markdown/dependencies.md
docs/markdown/planned_changes.md
docs/markdown/devel/.about_wheel_license.md
docs/markdown/devel/tasks.md
docs/source/add_platform.rst
docs/source/changelog.rst
docs/source/conf.py
docs/source/contributing.rst
docs/source/dependencies.rst
docs/source/index.rst
docs/source/planned_changes.rst
docs/source/python_api.rst
docs/source/shell_api.rst
examples/merge_pdfs.py
examples/render_rawapi.py
examples/render_supportapi.py
platform_setup/__init__.py
platform_setup/build_pdfium.py
platform_setup/check_deps.py
platform_setup/packaging_base.py
platform_setup/setup_base.py
platform_setup/update_pdfium.py
sourcebuild/patches/depot_tools/gclient_scm.patch
sourcebuild/patches/pdfium/nativebuild.patch
sourcebuild/patches/pdfium/public_headers.patch
sourcebuild/patches/pdfium/shared_library.patch
sourcebuild/patches/pdfium/skip_deps.patch
sourcebuild/patches/pdfium/win/build.patch
sourcebuild/patches/pdfium/win/pdfium.patch
sourcebuild/patches/pdfium/win/resources.rc
src/pypdfium2/__init__.py
src/pypdfium2/__main__.py
src/pypdfium2/_namespace.py
src/pypdfium2/_version.py
src/pypdfium2.egg-info/PKG-INFO
src/pypdfium2.egg-info/SOURCES.txt
src/pypdfium2.egg-info/dependency_links.txt
src/pypdfium2.egg-info/entry_points.txt
src/pypdfium2.egg-info/not-zip-safe
src/pypdfium2.egg-info/requires.txt
src/pypdfium2.egg-info/top_level.txt
src/pypdfium2/_cli/__init__.py
src/pypdfium2/_cli/_parser.py
src/pypdfium2/_cli/main.py
src/pypdfium2/_cli/merger.py
src/pypdfium2/_cli/renderer.py
src/pypdfium2/_cli/tiler.py
src/pypdfium2/_cli/toc.py
src/pypdfium2/_helpers/__init__.py
src/pypdfium2/_helpers/boxes.py
src/pypdfium2/_helpers/classes.py
src/pypdfium2/_helpers/constants.py
src/pypdfium2/_helpers/error_handler.py
src/pypdfium2/_helpers/nativeopener.py
src/pypdfium2/_helpers/opener.py
src/pypdfium2/_helpers/page_renderer.py
src/pypdfium2/_helpers/pdf_renderer.py
src/pypdfium2/_helpers/saver.py
src/pypdfium2/_helpers/toc.py
src/pypdfium2/_helpers/utilities.py
tests/__init__.py
tests/conftest.py
tests/test_cli_renderer.py
tests/test_helpers_boxes.py
tests/test_helpers_document.py
tests/test_helpers_loading.py
tests/test_helpers_renderer.py
tests/test_helpers_saver.py
tests/test_helpers_toc.py
tests/test_helpers_utilities.py
tests/test_module_entrypoint.py
tests/test_module_versions.py
tests/output/.gitkeep
tests/resources/bookmarks.pdf
tests/resources/bookmarks_circular.pdf
tests/resources/cropbox.pdf
tests/resources/encrypted.pdf
tests/resources/mediabox_missing.pdf
tests/resources/multipage.pdf
tests/resources/nonascii_tênfilechứakýtựéèáàçß 发短信.pdf
tests/resources/render.pdf
utilities/build.sh
utilities/check.sh
utilities/clean.sh
utilities/install.sh
utilities/release.sh
utilities/setup_all.sh

pypdfium2-1.2.0/src/pypdfium2.egg-info/dependency_links.txt

pypdfium2-1.2.0/src/pypdfium2.egg-info/entry_points.txt

[console_scripts]
pypdfium2 = pypdfium2._cli.main:main

pypdfium2-1.2.0/src/pypdfium2.egg-info/not-zip-safe

pypdfium2-1.2.0/src/pypdfium2.egg-info/requires.txt

[converters]
Pillow>=6.0

[docs]
sphinx>=4.4.0
sphinx-rtd-theme>=1.0
sphinxcontrib-programoutput
docutils>=0.17
myst-parser

[test]
pytest

[utilities]
importchecker
codespell
reuse
twine
check-wheel-contents

pypdfium2-1.2.0/src/pypdfium2.egg-info/top_level.txt

pypdfium2

pypdfium2-1.2.0/tests/__init__.py

SPDX-FileCopyrightText: 2021 Adam Huganir <adam@huganir.com>
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

pypdfium2-1.2.0/tests/conftest.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import logging
import os
from os.path import (
 join,
 dirname,
 abspath,
)

lib_logger = logging.getLogger('pypdfium2')
lib_logger.addHandler(logging.StreamHandler())

TestDir = dirname(abspath(__file__))
SourceTree = dirname(TestDir)
ResourceDir = join(TestDir,'resources')
OutputDir = join(TestDir,'output')

class TestFiles:
 render = join(ResourceDir,'render.pdf')
 encrypted = join(ResourceDir,'encrypted.pdf')
 multipage = join(ResourceDir,'multipage.pdf')
 bookmarks = join(ResourceDir,'bookmarks.pdf')
 bookmarks_circular = join(ResourceDir,'bookmarks_circular.pdf')
 cropbox = join(ResourceDir,'cropbox.pdf')
 mediabox_missing = join(ResourceDir,'mediabox_missing.pdf')
 nonascii = join(ResourceDir,'nonascii_tênfilechứakýtựéèáàçß 发短信.pdf')

def iterate_testfiles(skip_encrypted=True):

 encrypted = (TestFiles.encrypted,)

 for attr_name in dir(TestFiles):

 if attr_name.startswith('_'):
 continue

 member = getattr(TestFiles, attr_name)
 if skip_encrypted and member in encrypted:
 continue

 yield member

def test_paths():

 dirs = (TestDir, SourceTree, ResourceDir, OutputDir)
 for dirpath in dirs:
 print(dirpath)
 assert os.path.isdir(dirpath)

 for filepath in iterate_testfiles(False):
 print(filepath)
 assert os.path.isfile(filepath)

pypdfium2-1.2.0/tests/output/.gitkeep

pypdfium2-1.2.0/tests/resources/bookmarks.pdf

1 One
One.

1.1 One-A
One A.

1.2 One-B
One B.

1.2.1 One-B-I

One B I.

1.2.2 One-B-II

One B II.

2 Two
Two.

1

3 Three
Three.

3.1 Three-A
Three A.

3.2 Three-B
Three B.

2

			One

			One-A

			One-B

			One-B-I

			One-B-II

			Two

			Three

			Three-A

			Three-B

pypdfium2-1.2.0/tests/resources/bookmarks_circular.pdf

Page1

Page2

			A Good Beginning

			A Good Ending

pypdfium2-1.2.0/tests/resources/cropbox.pdf

A1

A2

A3

A4

B1

B2

B3

B4

C1

C2

C3

C4

D1

D2

D3

D4

E1

E2

E3

E4

pypdfium2-1.2.0/tests/resources/encrypted.pdf

pypdfium2-1.2.0/tests/resources/mediabox_missing.pdf

pypdfium2-1.2.0/tests/resources/multipage.pdf

Page
1

Page
2

Page
3

pypdfium2-1.2.0/tests/resources/nonascii_tênfilechứakýtựéèáàçß 发短信.pdf

Non-Ascii
Test File

tênfilechứakýtựéèáàçß

pypdfium2-1.2.0/tests/resources/render.pdf

Test File

Test A

Test B

Test C

pypdfium2-1.2.0/tests/test_cli_renderer.py

SPDX-FileCopyrightText: 2021 Adam Huganir <adam@huganir.com>
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import pytest
import os.path
import pypdfium2 as pdfium
from pypdfium2._cli import renderer

@pytest.mark.parametrize(
 "test_input, expected",
 [
 ("0", 0),
 ("90", 90),
 ("180", 180),
 ("270", 270),
],
)
def test_rotation_type(test_input, expected):
 assert renderer.rotation_type(test_input) == expected

def test_rotation_type_fail_oob():
 with pytest.raises(ValueError, match="Invalid rotation value"):
 renderer.rotation_type("101")
 with pytest.raises(ValueError, match="invalid literal for int()"):
 renderer.rotation_type("string")

@pytest.mark.parametrize(
 "test_input, expected",
 [
 ("None", None),
 ("none", None),
],
)
def test_colour_type(test_input, expected):
 assert renderer.colour_type(test_input) == expected

@pytest.mark.parametrize(
 "test_input, expected",
 [
 ("", None),
 ("1,2", [0, 1]),
 ("3-5", [2, 3, 4]),
 ("5-3", [4, 3, 2]),
 ("1", [0]),
],
)
def test_pagetext_type(test_input, expected):
 assert renderer.pagetext_type(test_input) == expected

def test_parse_args():

 argv = [
 'path/to/document.pdf',
 '-o', 'output_dir/',
 '--pages', '1,4,5-7,6-4',
 '--scale', '2',
 '--rotation', '90',
 '--colour', '(255, 255, 255, 255)',
 '--optimise-mode', 'none',
 '--processes', '4',
]

 args = renderer.parse_args(argv, prog="", desc="")

 assert args.inputs == ['path/to/document.pdf']
 assert args.output == os.path.abspath('output_dir/')
 assert args.pages == [0, 3, 4, 5, 6, 5, 4, 3]
 assert args.scale == 2
 assert args.rotation == 90
 assert args.colour == (255, 255, 255, 255)
 assert args.no_annotations == False
 assert args.optimise_mode == pdfium.OptimiseMode.none
 assert args.greyscale == False
 assert args.processes == 4

pypdfium2-1.2.0/tests/test_helpers_boxes.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import pypdfium2 as pdfium
from .conftest import TestFiles

def _load_pages(pdf):
 n_pages = pdfium.FPDF_GetPageCount(pdf)
 return [pdfium.FPDF_LoadPage(pdf, i) for i in range(n_pages)]

def _close_pages(pages):
 for page in pages:
 pdfium.FPDF_ClosePage(page)

def _assert_boxes_eq(box, expected):
 #print(box)
 assert type(box) is type(expected)
 assert tuple([round(val, 4) for val in box]) == expected

def _check_boxes(pages, mediaboxes, cropboxes):

 assert len(pages) == len(mediaboxes) == len(cropboxes)

 for page, exp_mediabox in zip(pages, mediaboxes):
 _assert_boxes_eq(pdfium.get_mediabox(page), exp_mediabox)

 for page, exp_cropbox in zip(pages, cropboxes):
 _assert_boxes_eq(pdfium.get_cropbox(page), exp_cropbox)

 # todo: add test files that actually contain BleedBox, TrimBox, and ArtBox

 for page, exp_bleedbox in zip(pages, cropboxes):
 _assert_boxes_eq(pdfium.get_bleedbox(page), exp_bleedbox)

 for page, exp_trimbox in zip(pages, cropboxes):
 _assert_boxes_eq(pdfium.get_trimbox(page), exp_trimbox)

 for page, exp_artbox in zip(pages, cropboxes):
 _assert_boxes_eq(pdfium.get_artbox(page), exp_artbox)

def test_boxes_normal():

 with pdfium.PdfContext(TestFiles.multipage) as pdf:

 pages = _load_pages(pdf)
 boxes = (
 (0, 0, 595.2756, 841.8897),
 (0, 0, 595.2756, 419.5275),
 (0, 0, 297.6378, 419.5275),
)

 _check_boxes(pages, boxes, boxes)
 _close_pages(pages)

def test_mediabox_fallback():

 with pdfium.PdfContext(TestFiles.mediabox_missing) as pdf:

 pages = _load_pages(pdf)
 boxes = (
 (0, 0, 612, 792),
 (0, 0, 612, 792),
)

 _check_boxes(pages, boxes, boxes)
 _close_pages(pages)

def test_cropbox_different():

 with pdfium.PdfContext(TestFiles.cropbox) as pdf:

 pages = _load_pages(pdf)

 mediaboxes = [(0, 0, 612, 792) for i in range(20)]
 for i in range(12, 16):
 mediaboxes[i] = (0, 0, 419.52, 595.32)

 cropboxes = [(53, 35, 559, 757) for i in range(20)]
 for i in range(12, 16):
 cropboxes[i] = (48, 86, 371.52, 509.32)

 _check_boxes(pages, mediaboxes, cropboxes)
 _close_pages(pages)

pypdfium2-1.2.0/tests/test_helpers_document.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import io
from PIL import Image
from .conftest import (
 TestFiles,
 iterate_testfiles,
)
import pypdfium2 as pdfium
from pypdfium2._cli.toc import print_toc

def _pdfdoc_load(input_obj):
 doc = pdfium.PdfDocument(input_obj)
 page = pdfium.FPDF_LoadPage(doc.raw, 0)
 pdfium.FPDF_ClosePage(page)
 doc.close()

def test_pdfdoc_loadfiles():
 for filepath in iterate_testfiles():
 _pdfdoc_load(filepath)

def test_pdfdoc_renderpage():
 doc = pdfium.PdfDocument(TestFiles.render)
 image = doc.render_page_topil(0)
 assert isinstance(image, Image.Image)
 doc.close()

def test_pdfdoc_renderpdf():

 doc = pdfium.PdfDocument(TestFiles.multipage)

 i = 0
 for image, suffix in doc.render_pdf_topil():
 assert isinstance(image, Image.Image)
 assert isinstance(suffix, str)
 i+= 1
 assert i == 3

 doc.close()

def test_pdfdoc_save():
 doc = pdfium.PdfDocument(TestFiles.multipage)
 pdfium.FPDFPage_Delete(doc.raw, 0)
 buffer = io.BytesIO()
 doc.save(buffer)
 doc.close()
 assert buffer.tell() > 100000
 buffer.close()

def _compare_numarray(array, expected):
 assert type(array) is type(expected)
 assert len(array) == len(expected)
 for val_a, val_b in zip(array, expected):
 assert round(val_a) == val_b

def _compare_bookmark(
 bookmark,
 title,
 page_index,
 view_mode,
 view_pos,
):
 assert bookmark.title == title
 assert bookmark.page_index == page_index
 assert bookmark.view_mode == view_mode
 _compare_numarray(bookmark.view_pos, view_pos)

def test_pdfdoc_gettoc():

 doc = pdfium.PdfDocument(TestFiles.bookmarks)
 toc = doc.get_toc()

 # check first bookmark
 _compare_bookmark(
 next(toc),
 title = "One",
 page_index = 0,
 view_mode = pdfium.ViewMode.XYZ,
 view_pos = [89, 758, 0],
)

 # check common values
 for bookmark in toc:
 assert isinstance(bookmark, pdfium.OutlineItem)
 assert bookmark.view_mode is pdfium.ViewMode.XYZ
 assert round(bookmark.view_pos[0]) == 89

 # check last bookmark
 _compare_bookmark(
 bookmark,
 title = "Three-B",
 page_index = 1,
 view_mode = pdfium.ViewMode.XYZ,
 view_pos = [89, 657, 0]
)

 doc.close()

def test_pdfdoc_gettoc_maxdepth():

 doc = pdfium.PdfDocument(TestFiles.bookmarks)
 toc = doc.get_toc(max_depth=1)

 i = 0
 for bookmark in toc: i+= 1
 assert i == 3

 doc.close()

def test_pdfdoc_gettoc_print():
 doc = pdfium.PdfDocument(TestFiles.bookmarks)
 print_toc(doc.get_toc(max_depth=1))
 doc.close()

pypdfium2-1.2.0/tests/test_helpers_loading.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import io
import pytest
import pypdfium2 as pdfium
from .conftest import TestFiles

def _load_pdfct(file_or_data, password=None, page_count=1):
 with pdfium.PdfContext(file_or_data, password) as pdf:
 assert isinstance(pdf, pdfium.FPDF_DOCUMENT)
 assert pdfium.FPDF_GetPageCount(pdf) == page_count

def test_pdfct_str():
 in_path = TestFiles.render
 assert isinstance(in_path, str)
 _load_pdfct(in_path)

def test_pdfct_bytes():
 with open(TestFiles.render, 'rb') as file:
 data = file.read()
 assert isinstance(data, bytes)
 _load_pdfct(data)

def test_pdfct_bytesio():
 with open(TestFiles.render, 'rb') as file:
 buffer = io.BytesIO(file.read())
 assert isinstance(buffer, io.BytesIO)
 _load_pdfct(buffer)
 buffer.close()

def test_pdfct_bufreader():
 with open(TestFiles.render, 'rb') as buf_reader:
 assert isinstance(buf_reader, io.BufferedReader)
 _load_pdfct(buf_reader)

def test_pdfct_encrypted():
 _load_pdfct(TestFiles.encrypted, 'test_user')
 _load_pdfct(TestFiles.encrypted, 'test_owner')
 _load_pdfct(TestFiles.encrypted, 'test_user')
 with open(TestFiles.encrypted, 'rb') as buf_reader:
 _load_pdfct(buf_reader, password='test_user')

def test_pdfct_encrypted_fail():
 pw_err_context = pytest.raises(pdfium.PdfiumError, match="Missing or wrong password.")
 with pw_err_context:
 _load_pdfct(TestFiles.encrypted)
 with pw_err_context:
 _load_pdfct(TestFiles.encrypted, 'string')
 with pw_err_context:
 _load_pdfct(TestFiles.encrypted, 'string')

def test_open_native():

 pdf, ld_data = pdfium.open_pdf_native(TestFiles.multipage)

 # ensure that accessing the PDF works
 pdfium.FPDFPage_Delete(pdf, 1)
 page = pdfium.FPDF_LoadPage(pdf, 0)
 rotation = pdfium.FPDFPage_GetRotation(page)
 print("Page {} has rotation {}".format(page, rotation))
 pdfium.FPDF_ClosePage(page)

 pdfium.close_pdf(pdf, ld_data)

def test_open_nonascii_pdfct():
 _load_pdfct(TestFiles.nonascii)

pypdfium2-1.2.0/tests/test_helpers_renderer.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import pytest
from PIL import Image
from os.path import join
import pypdfium2 as pdfium
from .conftest import TestFiles, OutputDir

def _check_render_normal(pdf):

 pil_image = pdfium.render_page_topil(pdf, 0)

 assert pil_image.mode == 'RGB'
 assert pil_image.size == (595, 842)
 assert pil_image.getpixel((0, 0)) == (255, 255, 255)
 assert pil_image.getpixel((150, 180)) == (129, 212, 26)
 assert pil_image.getpixel((150, 390)) == (42, 96, 153)
 assert pil_image.getpixel((150, 570)) == (128, 0, 128)

 pil_image.close()

def test_render_page_filepath():
 with pdfium.PdfContext(TestFiles.render) as pdf:
 _check_render_normal(pdf)

def test_render_page_bytes():
 with open(TestFiles.render, 'rb') as fh:
 data = fh.read()
 with pdfium.PdfContext(data) as pdf:
 _check_render_normal(pdf)

def test_render_nonascii():
 with pdfium.PdfContext(TestFiles.nonascii) as pdf:
 pil_image = pdfium.render_page_topil(pdf, 0)
 pil_image.save(join(OutputDir,'render_nonascii.png'))

def _check_render_encrypted(file_or_data):

 with pdfium.PdfContext(file_or_data, 'test_user') as pdf:
 pil_image_a = pdfium.render_page_topil(pdf, 0)
 assert pil_image_a.mode == 'RGB'
 assert pil_image_a.size == (596, 842)

 with pdfium.PdfContext(file_or_data, 'test_owner') as pdf:
 pil_image_b = pdfium.render_page_topil(pdf, 0)
 assert pil_image_b.mode == 'RGB'
 assert pil_image_b.size == (596, 842)

 assert pil_image_a == pil_image_b

 pil_image_a.close()
 pil_image_b.close()

def test_render_page_encypted_file():
 _check_render_encrypted(TestFiles.encrypted)

def test_render_page_encrypted_bytes():
 with open(TestFiles.encrypted, 'rb') as fh:
 data = fh.read()
 _check_render_encrypted(data)

def test_render_page_alpha():

 with pdfium.PdfContext(TestFiles.render) as pdf:
 pil_image = pdfium.render_page_topil(
 pdf, 0,
 colour = None,
)

 assert pil_image.mode == 'RGBA'
 assert pil_image.size == (595, 842)
 assert pil_image.getpixel((0, 0)) == (0, 0, 0, 0)
 assert pil_image.getpixel((62, 66)) == (0, 0, 0, 186)
 assert pil_image.getpixel((150, 180)) == (129, 212, 26, 255)
 assert pil_image.getpixel((150, 390)) == (42, 96, 153, 255)
 assert pil_image.getpixel((150, 570)) == (128, 0, 128, 255)

 pil_image.close()

def test_render_page_rotation():

 with pdfium.PdfContext(TestFiles.render) as pdf:

 image_0 = pdfium.render_page_topil(
 pdf, 0,
 rotation = 0
)
 image_0.save(join(OutputDir,'rotate_0.png'))
 image_0.close()

 image_90 = pdfium.render_page_topil(
 pdf, 0,
 rotation = 90
)
 image_90.save(join(OutputDir,'rotate_90.png'))
 image_90.close()

 image_180 = pdfium.render_page_topil(
 pdf, 0,
 rotation = 180
)
 image_180.save(join(OutputDir,'rotate_180.png'))
 image_180.close()

 image_270 = pdfium.render_page_topil(
 pdf, 0,
 rotation = 270
)
 image_270.save(join(OutputDir,'rotate_270.png'))
 image_270.close()

def test_render_pdf():

 with pdfium.PdfContext(TestFiles.multipage) as pdf:
 n_pages = pdfium.FPDF_GetPageCount(pdf)

 n_digits = len(str(n_pages))
 i = 0

 renderer = pdfium.render_pdf_topil(
 TestFiles.multipage,
 colour = (255, 255, 255),
)
 for image, suffix in renderer:
 assert isinstance(image, Image.Image)
 assert suffix == str(i+1).zfill(n_digits)
 image.close()
 i += 1

def test_render_pdf_frombytes():

 with open(TestFiles.multipage, 'rb') as file_handle:
 file_bytes = file_handle.read()

 for image, suffix in pdfium.render_pdf_topil(file_bytes):
 assert isinstance(image, Image.Image)
 assert isinstance(suffix, str)
 assert image.mode == 'RGB'
 image.close()

def test_render_greyscale():

 with pdfium.PdfContext(TestFiles.render) as pdf:

 image_a = pdfium.render_page_topil(
 pdf, 0,
 greyscale = True,
)
 image_a.save(join(OutputDir,'greyscale.png'))
 assert image_a.mode == 'L'
 image_a.close()

 image_b = pdfium.render_page_topil(
 pdf, 0,
 greyscale = True,
 colour = None,
)
 assert image_b.mode == 'RGBA'
 image_b.save(join(OutputDir,'greyscale_alpha.png'))
 image_b.close()

@pytest.mark.parametrize(
 "colour",
 [
 (255, 255, 255, 255),
 (60, 70, 80, 100),
 (255, 255, 255),
 (0, 255, 255),
 (255, 0, 255),
 (255, 255, 0),
]
)
def test_render_bgcolour(colour):

 with pdfium.PdfContext(TestFiles.render) as pdf:
 pil_image = pdfium.render_page_topil(
 pdf, 0,
 colour = colour,
)

 px_colour = colour
 if len(colour) == 4:
 if colour[3] == 255:
 px_colour = colour[:-1]

 bg_pixel = pil_image.getpixel((0, 0))
 assert bg_pixel == px_colour

 pil_image.close()

def _abstest_render_tobytes(img_info):
 data, cl_format, size = img_info
 assert isinstance(data, bytes)
 assert isinstance(cl_format, str)
 assert 1 <= len(cl_format) <= 4
 assert all (c in ('RGBLA') for c in cl_format)
 assert len(size) == 2
 assert all(isinstance(s, int) for s in size)
 assert len(data) == size[0] * size[1] * len(cl_format)

def test_render_page_tobytes():
 with pdfium.PdfContext(TestFiles.render) as pdf:
 _abstest_render_tobytes(pdfium.render_page_tobytes(pdf, 0))

def test_render_pdf_tobytes():
 for img_info, num in pdfium.render_pdf_tobytes(TestFiles.multipage):
 _abstest_render_tobytes(img_info)
 assert num.isdigit()

pypdfium2-1.2.0/tests/test_helpers_saver.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import io
import os
import ctypes
from os.path import join
import pypdfium2 as pdfium
from .conftest import TestFiles, OutputDir

def test_save_pdf_tobuffer():

 pdf, ld_data = pdfium.open_pdf_auto(TestFiles.multipage)
 pdfium.FPDFPage_Delete(pdf, ctypes.c_int(0))

 buffer = io.BytesIO()
 pdfium.save_pdf(pdf, buffer)
 buffer.seek(0)

 data = buffer.read()

 exp_start = b"%PDF-1.6"
 exp_end = b"%EOF\r\n"

 assert data[:len(exp_start)] == b"%PDF-1.6"
 assert data[-len(exp_end):] == b"%EOF\r\n"

 pdfium.close_pdf(pdf, ld_data)

def test_save_pdf_tofile():

 src_pdf, ld_data = pdfium.open_pdf_auto(TestFiles.cropbox)

 # page tiling (n-up)
 dest_pdf = pdfium.FPDF_ImportNPagesToOne(
 src_pdf,
 ctypes.c_float(1190), # width
 ctypes.c_float(1684), # height
 ctypes.c_size_t(2), # number of horizontal pages
 ctypes.c_size_t(2), # number of vertical pages
)

 output_path = join(OutputDir,'n-up.pdf')
 with open(output_path, 'wb') as file_handle:
 pdfium.save_pdf(dest_pdf, file_handle)

 pdfium.close_pdf(src_pdf, ld_data)
 pdfium.close_pdf(dest_pdf)

 assert os.path.isfile(output_path)

pypdfium2-1.2.0/tests/test_helpers_toc.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import logging
import pypdfium2 as pdfium
from pypdfium2._cli.toc import print_toc
from .conftest import TestFiles

def test_read_toc():

 with pdfium.PdfContext(TestFiles.bookmarks) as pdf:
 toc = pdfium.get_toc(pdf)
 print()
 print_toc(toc)

def test_read_toc_circular(caplog):
 with caplog.at_level(logging.CRITICAL):
 with pdfium.PdfContext(TestFiles.bookmarks_circular) as pdf:
 toc = pdfium.get_toc(pdf)
 print_toc(toc)
 assert "circular bookmark reference" in caplog.text

pypdfium2-1.2.0/tests/test_helpers_utilities.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import pytest
import pypdfium2 as pdfium

@pytest.mark.parametrize(
 "test_input, expected",
 [
 (0, 0),
 (90, 1),
 (180, 2),
 (270, 3),
]
)
def test_translate_rotation(test_input, expected):
 translated = pdfium.translate_rotation(test_input)
 assert translated == expected

@pytest.mark.parametrize(
 "values, expected",
 [
 ((255, 255, 255, 255), (0xFFFFFFFF, False)),
 ((255, 255, 255), (0xFFFFFFFF, False)),
 ((0, 255, 255, 255), (0xFF00FFFF, False)),
 ((255, 0, 255, 255), (0xFFFF00FF, False)),
 ((255, 255, 0, 255), (0xFFFFFF00, False)),
 ((255, 255, 255, 0), (0x00FFFFFF, True)),
]
)
def test_colour_to_hex(values, expected):
 assert pdfium.colour_as_hex(*values) == expected

pypdfium2-1.2.0/tests/test_module_entrypoint.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import inspect
import configparser
from os.path import join
from .conftest import SourceTree

def test_entrypoint():

 setup_cfg = configparser.ConfigParser()
 setup_cfg.read(join(SourceTree,'setup.cfg'))
 console_scripts = setup_cfg['options.entry_points']['console_scripts']

 entry_point = console_scripts.split('=')[-1].strip().split(':')
 module_path = entry_point[0]
 method_name = entry_point[1]

 namespace = {}
 exec("from {} import {}".format(module_path, method_name), namespace)

 assert method_name in namespace
 function = namespace[method_name]

 assert callable(function)
 print(inspect.signature(function))

pypdfium2-1.2.0/tests/test_module_versions.py

SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

import pkg_resources
import pypdfium2 as pdfium
from pypdfium2._version import (
 V_PYPDFIUM2,
 V_LIBPDFIUM,
)

def _get_pkg_version(pkgname):
 return pkg_resources.get_distribution(pkgname).version

def test_version_aliases():
 assert pdfium.__version__ == V_PYPDFIUM2 == _get_pkg_version('pypdfium2')
 assert pdfium.__pdfium_version__ == V_LIBPDFIUM

pypdfium2-1.2.0/utilities/build.sh

#! /usr/bin/env bash
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: CC-BY-4.0

set -v

python3 platform_setup/build_pdfium.py --check-deps
export PYP_TARGET_PLATFORM="sourcebuild"
python3 -m build -n -x --wheel
bash ./utilities/install.sh

pypdfium2-1.2.0/utilities/check.sh

#! /usr/bin/env bash
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

set -v

find . -path ./sourcebuild -prune -o -name '*.py' -print |xargs -n 1 importchecker
codespell --skip="./sourcebuild,./docs/build,./data,./.git,__pycache__,.mypy_cache," -L "tabe,splitted"
reuse lint

pypdfium2-1.2.0/utilities/clean.sh

#! /usr/bin/env bash
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

set -v

rm -rf src/pypdfium2.egg-info/
rm -rf dist
rm -rf data/*
rm -f tests/output/*

pypdfium2-1.2.0/utilities/install.sh

#! /usr/bin/env bash
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

set -v

python3 -m pip install . -v --no-build-isolation
unlink platform_setup/.presetup_done.txt

pypdfium2-1.2.0/utilities/release.sh

#! /usr/bin/env bash
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

set -v

bash utilities/clean.sh
bash utilities/check.sh

bash utilities/install.sh
python3 -m pytest tests/

python3 platform_setup/update_pdfium.py
bash utilities/setup_all.sh

twine check dist/*
check-wheel-contents dist/*.whl

pypdfium2-1.2.0/utilities/setup_all.sh

#! /usr/bin/env bash
SPDX-FileCopyrightText: 2022 geisserml <geisserml@gmail.com>
SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

set -v

build wheels
whl_targets=(
 "darwin_arm64"
 "darwin_x64"
 "linux_arm64"
 "linux_arm32"
 "linux_x64"
 "linux_x86"
 "windows_arm64"
 "windows_x64"
 "windows_x86"
)
for target in ${whl_targets[*]}; do
 echo "$target"
 PYP_TARGET_PLATFORM="$target" python3 -m build -n -x --wheel
done

package source distribution
PYP_TARGET_PLATFORM="sdist" python3 -m build -n -x --sdist

