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ABSTRACT

Biochemical signaling pathways in living cells are often highly organized into spatially
segregated volumes and surfaces of scaffolds, subcellular compartments, and organelles
comprising small numbers of interacting molecules. At this level of granularity stochastic
behavior dominates, well-mixed continuum approximations based on concentrations break
down and a particle-based approach is more accurate and more efficient. We describe
and validate a new version of the open-source MCell simulation program (MCell4), which
supports generalized 3D Monte Carlo modeling of diffusion and chemical reaction of
discrete molecules and macromolecular complexes in solution, on surfaces representing
membranes, and combinations thereof. The main improvements in MCell4 compared to the
previous versions, MCell3 and MCell3-R, include a Python interface and native BioNetGen
reaction language (BNGL) support. MCell4’s Python interface opens up completely new
possibilities of interfacing with external simulators and implementing sophisticated event-
driven multiscale/multiphysics simulations. The native BNGL support through a new open-
source library libBNG (also introduced in this paper) provides the capability to run a given
BNGL model spatially resolved in MCell4 and, with appropriate simplifying assumptions,
in the BioNetGen simulation environment, greatly accelerating and simplifying model
validation and comparison.
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1 Introduction

Living cells are complex structures in which biomolecules and biochemical processes are spatially organized
and span the extracellular space, plasma membrane, cytosol and subcellular organelles. These biochemical
processes are intrinsically multiscale since they are based on molecular interactions on a small scale leading to
emergent behavior of cells on a larger scale. Due to the dynamic nature of biochemical processes on different
temporal and spatial scales, appropriate mathematical tools are required to understand the underlying
dynamics and to dissect the mechanisms that control system behavior [1]. Overall, understanding how
cellular design dictates function is essential to understanding life and disease, in the brain, heart, or elsewhere.
MCell (Monte Carlo Cell) is a biochemistry simulation tool that uses spatially realistic 3D cellular models
and stochastic Monte Carlo algorithms to simulate the movements and interactions of discrete molecules
within and between cells[2, 3, 4, 5]. Here we describe MCell4, a new version of MCell.

One of the most important new features in MCell4 is a flexible Python application programming interface
(API), that allows coupling between MCell and other simulation engines or custom code. The integration of
MCell, which performs reaction-diffusion simulations in the spatial and temporal scales of nm to 10s of pm
and ps to 10s of seconds, with other simulation engines will facilitate the generation of multiscale hybrid
models, as we demonstrate here with an example.

A second important addition to MCell4 is an efficient support for rule-based modeling using the BioNetGen
(BNG) Language (BNGL). BNG is an open source software package for representing and simulating bio-
chemical reactions [6]. While powerful, BNG models are non-spatial. Support for models expressed using
BNGL in MCell4 can help dissect the role space plays in different scenarios. This is not a trivial task since
both the time scales of diffusion and reactions [7] as well as the spatial localization of proteins condition the
results.

First, we present the design principles of MCell4 and its API, and next we introduce the new BioNetGen
library. And finally, we demonstrate some of the new features in MCell 4 with examples and present a hybrid
model coupling spatial simulations in MCell with ordinary differential equations (ODEs).

1.1 Particle-Based Reaction Dynamics Tools

In particle-based reaction-diffusion simulations, each molecule is represented as an individual agent.
Molecules diffuse either in volumes or on membranes and may affect each other by reacting upon col-
lision. A review of the currently maintained particle-based stochastic simulators that describes Smoldyn [7],
eGFRD [8], SpringSaLaD [9], ReaDDy [10], and MCell was recently published in [11].

MCell is a particle-based simulator that represents molecules as point particles. The typical simulation
time-step in MCell is 1ps, and the simulated times can stretch from seconds to minutes. Briefly, MCell
operates as follows. As a volume molecule diffuses, all molecules within a given radius along its trajectory,
or at the point of collision on a surface, are considered for a reaction. For surface molecules, the molecule
first diffuses, and then its neighbors are evaluated for reaction. There is no volume exclusion for molecules
diffusing in 3D volumes, and molecules on surfaces (in membranes) occupy a fixed area. MCell allows
defining arbitrary geometry, and complex models such as a 180 tm?® 3DEM reconstruction of hippocampal
neuropil have been used to construct a geometrically-precise simulation of 100s of neuronal synapses at once
[5]. A detailed description of mathematical foundations of MCell’s algorithms can be found here [2, 3, 4].
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MCell3-R [12] is an extension of MCell that supports BNGL [13] and allows modeling of protein complexes or
polymers by using rule-based definition of reactions. MCell3-R uses a library called NFSim [14] to compute
the products of reaction rules for reactions described in BNGL.

MCell4 is a new C++ implementation of MCell, providing a versatile Python interface in addition to many
other improvements. In particular it is significantly faster when dealing with complex reaction networks
expressed as rules in BNGL. And most of MCell’s features introduced previously [4] have been retained.
First, let us briefly go over the motivation for the new features in MCell4.

1.2 MCell4 Python Application Programming Interface

We had two important motivations behind the creation of the MCell4 Python API: 1) to give the users the
freedom to customize their models in a full-featured modern programming language, and 2) create an easy
way to couple MCell4 with other simulation platforms to allow multi-scale, multi-physics simulations.

The main goal when designing the new API for MCell4 was to allow definition of complex models combining
many reaction pathways distributed over complex geometry. Thus, one of the main requirements was to
enable modularity with reusable components that can be independently validated. One can then build
complex models by combining existing or new modules.

Similar to the approach in the PySB modeling framework [15], a model in MCell4 is seen as a piece of
software, and the same processes used in software development can also be applied to biological model
development. The most important ones are: 1) incremental development where the model is built step by
step, relying on solid foundations of modeling done and validated before, 2) modularity that provides the
capability to create self-contained, reusable libraries, 3) unit testing and validation to verify that parts of the
model behave as expected, and 4) human-readable and writable model code that can be stored using git or
other code version control software which, besides being essential for incremental development, also allows
code reviews [16] so that other team members can inspect the latest changes to the model.

1.3 Motivation for a New BioNetGen Library

NFSim [14] is a C++ library that provides BioNetGen support, implements the network-free method, and
is used in MCell3-R [12]. To use a BNGL model in MCell3-R, the BNGL file first needs to be parsed by the
BioNetGen compiler; then, a converter generates MDL, MDLR, and XML files. These files then constitute the
model to be simulated in MCell3-R. The main disadvantage with this approach is that the original BNGL file
is not a part of the MCell3-R model anymore, and every time changes are made to it, the converter must
be run again, and any potential changes made by hand to our MCell3-R model files will be lost. There are
also performance and memory consumption issues with MCell3-R when the simulated system has a huge
number of potential reactions.

For a seamless integration of BNGL in MCell4, a better solution was needed. Therefore, we implemented
anew library for the BioNetGen language that contains a BNGL parser and a network-free BNG reaction
engine whose main purpose is to compute the reaction products given a reaction rule and reactants. This
BNG library (libBNG) was designed with independence from MCell4 in mind so that it can be used in other
simulation tools. libBNG does not support all special features and keywords of the BioNetGen tool suite
yet, most notably, functions are not supported, but the set of supported features is sufficient for any MCell4
model. And note that when needed, functions can be represented in MCell4’s Python code. Sources of
libBNG are available under the MIT license here: [17].

1.4 MCell4 Features
Here we briefly enumerate some of the features of MCell4. In the results section we have chosen a few

relevant examples specifically to demonstrate some of these features. When appropriate, we will indicate
which example uses the mentioned feature.

1.4.1 Python/C++ API for Model Creation and Model Execution
All models can now be created in Python. While CellBlender (see section 1.5) allows creation of some of the

simpler models without the need to write Python code by hand, for more complicated customized models
at least part of the model needs to include a custom Python script. While CellBlender allows inclusion of
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custom python scripts in a model, for simplicity and explanatory power, all the examples presented in the
results section of this paper are written purely in Python.

1.4.2 The Reaction Language is Now BNGL

In MCell4 the reaction language is BNGL [13]. Thus, MCell4 fully supports rule-based reactions and all
models use this feature.

Most importantly, the support for BNGL and NFSim means that MCell4 allows direct, agent-based evaluation
of reaction rules and thus enables spatially-resolved network-free simulations of interactions between and
among volume and surface molecules. The CaMKII model in the results section 3.1.2 would not be possible
without the spatial network-free simulation allowed by MCell4.

1.4.3 Ability to Go Back and Forth between MCell4 and BNG Simulator Environments

The new BNG library [17] allows direct loading and parsing of a BNG model and using it in realistic
3D cellular geometry. This allows simulation and comparison of results of non-spatial (simulated with
BioNetGen solvers) and spatial (simulated with MCell4) implementations of the same BNG model. This is
demonstrated with several of the examples in the results section, namely: SNARE (3.1.1), and CaMKII (3.1.2).

And if the spatial features are found to be unimportant for a given model, and simulation speed is of more
concern, then by keeping the BNGL file as a separate module, one can run it with the BNG simulator when
appropriate. See section 2.4.3 for an example.

1.4.4 Other Advanced Features

Among the more advanced features introduced in MCell4 is the possibility to include transcellular and
transmembrane interactions between surface molecules on such membranes. MCell4 also allows both
coarse-grained and fine-grained customization of models through time-step customization and callbacks.
Callbacks allow to run custom Python code in the event of a reaction or molecule-wall collision.

Finally, the new Python API introduced in MCell4 entails the ability to run multi-scale multi-physics hybrid
simulations taking advantage of all the existing Python packages. For an example of a hybrid model see
section 3.3.

1.5 Model Creation and Visualization in CellBlender

CellBlender is a Blender [18] addon that allows creation and visualization of MCell4 models. CellBlender
was updated from its previous MCell3 version and the main new features are: automatic generation of well
structured Python code for complete MCell4 models from their CellBlender representations, execution and
visualization of these models, and visualization of simulation runs from externally created Python-only
models. CellBlender offers an easy way how to start with MCell through built-in examples (Fig. 1 shows a
Rat Neuromuscular Junction model example), and tutorials [19].

2 Methods

2.1 MCell4: a Bird’s Eye View

We will briefly review MCell4’s architecture and fundamental apects of its API, starting with Fig. 2.

MCell advances simulation time by running iterations. Duration of an iteration is given by a user-defined
time step (usually 1 ps). Scheduler keeps track of events to be run in each iteration and the main simulation
loop implemented in the World object asks scheduler to handle subsequent events (Fig. 3) until the desired
number of iterations was run.

2.2 Python API Generator: a Closer Look
The MCell4 physics engine is implemented in C++. To ensure a reliable correspondence between a model

representation in python and in C++, the quality of the user experience when creating a model, and a well
maintained documentation, we have have developed a Python API generator, which reads a file in the YAML
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Figure 1: MCell4 models can be created, executed, and visualized using CellBlender, an addon for Blender. The
capabilities of Blender are indispensible for creating complex geometries for MCell4 models.

hon Interface
it \ Scheduler H Events ‘
Model Representation \ / P
/ imulation

4 :

/' \ | BNG Library

McelampL |/
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Figure 2: MCell4 is composed of four main components: 1) PyMCell library provides Python interface and contains
classes to hold the model representation, 2) MCell4 engine implements the simulation algorithms, 3) BNG (BioNetGen)
library provides methods to resolve BioNetGen reactions, and 4) MDL (Model Description Language) parser for
backwards compatibility with MCell3.

’ World H Scheduler H BaseEvent ‘

)
\ I I J

Rel Event | DiffuseReactEvent || MolRxnCountEvent || VizOutputEvent
- create new - diffuse molecules - count molecules or || - dump molecule
molecules reactions positions

Figure 3: Scheduler executes time step iterations which consists of discrete events executed in this order: 1) ReleaseEvent
creates new molecules, 2) MolRxnCountEvent counts numbers of molecules of or how many times a reaction occurred, 3)
VizOutputEvent stores molecule locations for visualization in CellBlender, and 4) DiffuseReactEvent diffuses molecules,
checks collisions, and executes reactions. Only the DiffuseReactEvent has to be executed each time step to move time,
other events listed here are optional.
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format and automatically generates all the base C++ classes, their corresponding Python API representations,
code for informative error messages, and documentation.

Thanks to the API generator schematically represented in Fig. 4, when new features are added to MCell4,
one only needs to modify the single API definition in the YAML format to ensure that both the API and the
documentation reflect the new features.

Base C++ classes that hold the model
/ representation

/ Python interface to C++ code through
pybind11

Definition of AP|
classes in YAML

. APl
format generator

\ \{ as Python code, e.g., for checkpointing

\\* AP definition for Python code editors

C++ code to export model representation ‘

ﬂ Documentation in RST markup language

Figure 4: API generator reads a high-level definition of the MCell4 Python interface and generates code and documenta-
tion. Automatic generation of a tool’s API gives the possibility to easily modify or extend the API while making sure
that all parts including documentation stay consistent. The API generator is a general tool that can be also used (with
minor modifications) for other software tools that combine C++ and Python [20].

2.3 MCell4 Model Structure

An important aspect to allow reusability (e.g., [21]) is to have a predefined model structure. This way,
every piece of code for a given component (such as reaction definitions, geometry, initial model state, and
observables) is in a file with a specified name and follows a predefined coding style. Such model structure
(shown in Fig. 5) aids modelers to use someone else’s code by standardizing where precisely each part of the
model is. Another advantage of a predefined model structure is the capability to combine parts of existing
models into one model (Fig. 6).

parameters.py
(used by all
other files)

e g "-\\
-
1

subsystem.py L )
or -—‘inslanliatiun‘py “—( observables.py ‘
subsystem.bngl 1 -

model.py arrows show dependencies

Figure 5: The main files of a base MCell4 model are: 1) parameters.py with all the model parameters, 2) subsystem.py
that captures information on species and reactions in a way that this subsystem module is independent of a particular
model and can be used as a reusable module, 3) geometry.py with a definition of 3D geometry objects, 4) instantiation.py
that usually defines the initial model state, i.e., which geometry objects are created in the simulation and the number
and positions of molecules to be released at a given time, 5) observables.py with lists of characteristics to be measured
during simulation, and 6) model.py where all the parts of the model are being put together and that allows to define a
simulation loop with optional interactions with external simulators. Model.py is the only required file.

2.3.1 MCell4 Python API Example

A simple model example that shows the MCell4 API with Subsystem, Instantiation, and Model classes is
shown in Fig. 7. Because of this example’s simplicity, we do not show the division into separate files as it
was shown in Fig. 5.
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Figure 6: Modularity of the model allows to include multiple subsystem definitions into a single model. As an example,
we show individual modules used to construct a model of a new synaptic pathway that is affected by other processes.
So, we need to also include models that individually define the presynaptic terminal with its presynaptic pathways and
synaptic spine with its post-synaptic pathways.

MCell4 Pyt

API

import mcell as m

subsystem = m.Subsystem()
a = m.Species(
name = 'a’', # this species will be called 'a‘,
diffusion_constant_3d = le-6 # molecules of 'a' are volume
# molecules and diffuse in 3D space
)
subsystem.add_species(a)

instantiation = m.Instantiation()

# ReleaseSite defines which and how many molecules will be released
# either when simulation starts (default) or at a predefined time
rel_a = m.ReleaseSite(

name = ‘rel_a',

complex = a, # molecules of which species to release
number_to_release = 10, # copy number

location = (0, 0, 0) # all these molecules will be released

# at (x, y, z) location (0, 0, 0)
)
instantiation.add_release_site(rel_a)

model = m.Model()
model.add_subsystem(subsystem) # include information on species
model.add_instantiation(instantiation) # include molecule release site

model.initialize() # initialize simulation state
model.run_iterations(10) # simulate 10 iterations
model.end_simulation() # final simulation step

Figure 7: Example of a simple MCell4 model that releases 10 volume molecules of species ‘a” and simulates their diffusion
for 10 iterations with a default time step of 1ps. Please note that for this and following exaples, a system variable
PYTHONPATH must be set so that the Python interpreter knows where to find the MCell4 library [22].
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24 Graph-Based Approach To Protein Modeling

BNGL [23] allows to intuitively model protein complexes by representing them as undirected graphs. Such
graphs contain two types of nodes: elementary molecules and components. Component nodes represent binding
sites of this protein and can also express state of the whole protein or its binding site. A graph representing a
single protein is an elementary molecule node with component nodes connected to it through edges. To form a
dimer, two individual components of different proteins are bound by creating an edge between them. A
graph with one or more elementary molecules with their components is called a complex. A reaction rule
defines a graph transformation that manipulates the graph of reactants. A reaction rule usually manipulates
edges to connect or diconnect complexes or change state of a component. It can also modify the elementary
molecules such as in a reaction A + B -> C where we don not care about the reaction details and do not
need to model individual binding sites. An example of applying a reaction rule that connects complexes
and changes state is shown in Fig. 8. Terminology note: what we call elementary molecule type is called a
molecule type in BioNetGen. In MCell, molecules are whole molecules such as protein complexes that act as
individual agents in the simulation. For better clarity, we adopt the name elementary molecule for the base
building blocks of complexes. The tool SpringSaLaD [9] uses the same distinction.

(A) Reaction A(CO~R) +  B(c1) > A(c0~8!1).B(c1!1)

rule

(B)Reactants  A(c0~S,c0~R) +  B(c1~Uc2~X) ->  A(c0~S,c0~S!).B(c1~U!1,c2~X)

and product

representation CO.E COR oy el U 'C_z,,x =

i

of reactants 1A~ B
and products
(G) Reactants " " - =
changed into ‘DD ~S‘; {A /,,,‘,991 S Hc“ruv‘ - '{B /,,,327— X ] ?) Apply changes determined
products in step 2) onto reactants

Q- 2
(D) Reactants

<0~S ¢0-R | (c1-U c2~X
~(al— ~—g—
v i

(E) Rule - H
reactant A(c0~R) + B(c1) ‘I:BIR ‘ ‘ﬂ:. :e)al\éltaa%{:acuam patterns onto
patterns ‘ },— -~ o~ | ‘

A B
(F) Rule -

- — 2) Map product(s) onto

product A(c0~S!1).B(c1!1) \cu-s Hc1-unchanged } ra)acta‘;tppatterr:s)and

‘AI,«'" B \15 ‘ determine changes

Figure 8: Example of a graph transformation with BNG reaction rules. In this example, reactants are defined with
molecule types A(cO~R~S,c0~R~S) and B(c1~U~V,c2~X~Y) where A and B are names of the molecule types, c0 is a
component of A that can be in one of the states R and S, and similarly c2 and c3 are components of B. (A) is the example
reaction rule, (B) are example species reactants and products in the BNGL syntax, and (C) shows a graph representation
of the rule in (B).

Application of the rule is done in the following steps: 1) a mapping from each molecule and each component from
reactant patterns (E) onto reactants (D) is computed (dotted arrows), if the state of a component is set in the pattern, the
corresponding reactant’s component state must match. The next step 2) is to compute a mapping of the rule product
pattern (F) onto reactant patterns (E). The difference between the reaction rule product pattern and the reactant patterns
tells what changes need to be made to generate the product. In this example, a bond between A’s component c0 with
state R and B’s component c1 is created. The state of A’s component c0 is changed to S. Once the mappings are computed,
we follow the arrows leading from the reaction rule product pattern (F) to reactant patterns (E) and then to reactants (D)
and 3) perform changes on the reactants resulting in the product graph (G). Each graph component of the product graph
is a separate product and there is exactly one product in this example.

This graph-based approach is essential when dealing with combinatorial complexity. To make an ordinary
differential equation (ODE) model of a protein with 10 sites where each can be unphosphorylated, phospho-
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rylated or bound to another protein requires 3! ODEs [24]. Compared to this, a BNGL model of the same
protein will have just six reversible reaction rules (assuming no interaction between these 10 sites). Such a
model can then be simulated using network-free simulation methods [25].

2.4.1 Extension of BNGL for Volume-Surface Reactions

BNGL compartments [26] allow defining hierarchical volumes or surfaces where simulated molecules are
located. To model a transport reaction that moves a volume molecule from one compartment through a
channel (located in a membrane) into another volume compartment, one must specify the direction of this
transport. We will show such a reaction using hierarchy of compartments in Fig. 9.

Figure 9: Example of compartments, EC is extracellular space, PM is the plasma membrane, and CP is cytoplasm. A is a
molecule that diffuses freely in 3D space, and T is located in a membrane.

In BNGL, a reaction that defines the transport of A from compartment EC into CP using transporter T is
represented with the following rule:

AQEC + T@PM -> A@CP + T@PM

To model multiple instances of cells or organelles, this definition needs to be replicated with different
compartments like this:

AGEC + T@PM1 -> A@CP1 + T@PM1
AGEC + T@PM2 -> A@CP2 + T@PM2

MCell3 uses general a specification of orientations [4] where the rule above is represented as:

A+ T > A, + T

A’ (apostrophe) means that the molecule A hits molecule T from the outside (defined below) of the com-
partment, T” means that the surface molecule T must be oriented towards the outside. And for products,
A, (comma) says to create A on the inside and T” means that T will still be oriented towards the outside.
Geometry objects in MCell are composed of triangles and outside is where the normal vector of the triangle
points to. More details on the MCell3 molecule orientations can be found in [4].

To avoid the repetition of reaction rules for each compartment and to keep the BNG language consistent (the
MCell3 solution is not compatible with the BNGL grammar), we defined an extension to the BNG language
that uses compartment classes called @IN and @OUT. The original BNG reaction with specific compartments
is then more generally defined as:

A@OUT + T -> AQIN + T

When this rule is applied to reactants A@QEC and T@PM, we know that the compartment OUT for this specific
rule usage is EC, and the inside of surface compartment PM is CP, thus IN is CP. We insert this information
to the rule A@QOUT + T -> A@IN + T and get AQEC + T@PM -> A@CP + T@PM which is the same as the
example rule we started with.

One more issue to deal with is the orientation of the transporter in the membrane. One might need to model
flippases and floppases (e.g., [27]) that change the orientation of a receptor in a membrane. In MCell3, this
is handled by orientations where comma means heading inwards, and apostrophe means outwards. In
MCell4, when a molecule is created in a membrane, its orientation is always heading outwards (T” in the
MCell3 notation). If one needs to define orientation explicitly, a component of an elementary molecule can
be used. One can extend the definition of the molecule type T to contain a component ‘0" with two states
called INWARDS and OUTWARDS. Our rule constrained to a specific state of the transporter will be then:
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AQOUT + T(0~OUTWARDS) -> A@IN + T(0o~OUTWARDS)

To flip the orientation, a standard BNGL rule F + T(o~OUTWARDS) -> F + T(o~INWARDS) can be used;
here, F is a surface molecule flippase.

To summarize, we introduced an extension to the BNG language where compartment classes @IN and @OUT
allow defining general volume+surface molecule reaction rules that can be applied regardless of specific
compartments.

2.4.2 Units and Interoperability between MCell4 and BioNetGen

Usage of the BNGL language offers an excellent interchange format since the same model definition can be
executed by MCell, BioNetGen that implements various simulation approaches such as ODE, SSA, PLA,
and NFSim, and other tools. However, BioNetGen does not have pre-described units and the user is free
to use any unit system they deem suitable and are compatible with the underlying algorithms. To allow
model interchange, we define a set of units to be used when BNGL models are used by MCell4 and when
the model is exported for BioNetGen as shown in Table 1.

Simulation  tool | Volume-volume or | Surface- Unimolecular| Compartment| Seed species

and mode of usage | volume-surface bi- | surface reaction rate | volume (initial
molecular reaction | bimolecular molecule
rate reaction rate release)

value

MCell4 with de- | M~1s™! pm? N-1s7! | 571 um? N

fault units

MCell with BNG | pm?® N-'s7! pm3N-1s1 571 um? N

units; BioNetGen

ODE, SSA, PLA

BioNetGen NFSim | N~'s! N-ls! 57! ignored N

Table 1: Units used by MCell and suggested units for BioNetGen. Unit N represents the number of molecules, M is molar
concentration. BioNetGen interprets membranes (2D compartments) as thin volumes of thickness 10 nm. BioNetGen
NFSim does not fully support compartmental BNGL yet and the volume of the compartment must be incorporated into
the rate units of the reactions occurring in that compartment, therefore the NFSim’s bimolecular reaction rate unit does
not contain a volumetric component. Aditional units that MCell uses are: distances are in pm and diffusion constants
are incm? s~

An MCell model is defined by a combination of Python and BNGL code. Although the recommended
approach is to capture all the reaction rules and initial molecule releases using BNGL, it might be beneficial
to use Python code for these definitions as well (e.g., to generate reaction networks programmatically). There
are also spatial model aspects that cannot be captured by BNGL. To simplify model validation, MCell4
provides automated means to export the model defined both by Python and by BNGL into pure BNGL.
A best-effort approach is used during this export. All model features that can be exported into BNGL are
exported and error messages are printed for the model aspects that have no equivalent in BNGL. If no
essential model aspects were skipped, the exported model can be used for validation of MCell simulation
results. Verifying results using multiple tools can show errors in the model or in the simulation tools and
such validation is a recommended step in an MCell model development.

2.4.3 Example of an MCell4 Model with BioNetGen Specification

To demonstrate the support for BNGL in MCell4, we show a simple example (Fig. 11) that loads information
on species and reaction rules, molecule releases, and compartment information from a BNGL file (Fig. 10).

One aspect deserving a mention is that the file in Fig. 10 is a standard BNGL file that can be used directly by
other tools such as BioNetGen so no extra conversion steps are needed for the BNGL file to be used elsewhere.
This allows for fast validation of the modeled reaction network with BioNetGen’s ODE or other solvers and
checking it against spatial simulation results in MCell without the need to have multiple representations of
the same model.
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BNGL

begin parameters
# provide diffusion constant for used molecule species
MCELL_DIFFUSION_CONSTANT_3D_A 1.0e-6
MCELL DIFFUSION_CONSTANT 3D B 2.0e-6
MCELL_DIFFUSION_CONSTANT_3D_C 1.3e-6

end parameters

begin compartments
# 3D (volume) compartment with volume lum™3
CP 31

end compartments

begin seed species
# release 100 molecules of A and 100 of B in compartment CP
A@CP 100
B@CP 100

end seed species

begin reaction rules
# a simple rule telling that when A and B react, C is the product
# rate is assumed to be in um”3%1/Nx1/s
A+ B ->C 100

end reaction rules

Figure 10: BNGL file that defines a compartment CP, tells to release 100 of A’s and B’s into it, and when A and B react, C
is the product.

MCell4 Python API

import mcell as m
model = m.Model()

# specify that this model uses BioNetGen units (see Table 1)
model.config.use_bng_units = True

# load the information on species (diffusion constants),

# reaction rules, also creates compartment CP as a box with

# volume lum™3 and creates release sites for molecules A and B
model.load_bngl('sybsystem.bngl")

model.initialize() # initialize simulation state
model.run_iterations(10) # simulate 10 iterations
model.end_simulation() # final simulation step

Figure 11: MCell4 Python code that demonstrates loading of the BNGL file from Fig.10 (referenced as subsystem.bngl).
Here, we are loading the whole BNGL file. It is also possible to load only specific parts of the BNGL file such as only
reaction rules or compartment and molecule release information and also to replace BNGL compartments with actual 3D
geometry.
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3 Results

3.1 Testing & Validation

We performed extensive testing and validation to make sure MCell4 provides correct results. As the main
references were the previous versions MCell3 [4] and MCell3-R [12] used. One can obtain identical results
for MCell3/MCell3-R and MCell4 by using specific compilation options. These options ensure that the
molecules are simulated in the same order. A testsuite containing more than 350 MCell3 and MCell3-R tests
that verify correct results was created. Simulation results were also validated against BioNetGen with ODE
solver [6] and with NFSim [14] by running equivalent models with MCell4 and with BioNetGen with up
to 1024 different random seeds. The diffusion constants for MCell4 were set to a high value to emulate a
well-mixed solution. The averages of last iteration counts of molecules of given species were then compared.
More than 45 of such tests are a part of the MCell4 testsuite [28]. Some of these tests also serve as examples
are are referenced from MCell4’s API reference manual [29].

3.1.1 SNARE Complex

We implemented a cooperative dual Ca®* sensor model for neurotransmitter release, the SNARE complex [30]
as another example of an MCell4 implementation with BioNetGen Specification. The model accounts for
the binding of up to five calcium ions to the sensor and the synchronous or asynchronous release of
neurotransmitters. An adapted version of the model was previously implemented in an older version of
MCell [31]. The model is composed of 36 state variables, calcium ions and 64 reactions. There are different
possible implementations of the model in BNGL language. The one presented here is compatible with
MCell4, and allows to simulate the model in BioNetGen and MCell4 without modifying the code. It consists
of three molecules types and ten reaction rules (Fig. 12). The snare complex (represented as snare) is an
elementary molecule that has eight components: five s, that represent the binding site for calcium molecules
in the synchronous sensor; two a components that represent the binding sites for calcium in the asynchronous
sensor; and one component called dv with two states (~ 0 ~ 1), that represents a docked vesicle to the snare
complex (~ 1) or its absence (~ 0). Additionally there are calcium ions (Ca®") that bind and unbind to the
complex. The release of neurotransmitters is emulated with the variable V_release(), which captures the
timing of the release but does not release neurotransmitters. Fig 13A shows the states of the model, and the
synchronous and asynchronous release. Assuming well-mixed conditions, a large volume containing the
surface complexes, a large number of complexes and a constant calcium concentration, the results obtained
with ODE BioNetGen simulations and the spatial model in MCell4 give qualitative similar results (Fig 13B).
The source code for this example can be found [32].

3.1.2 CaMKII Model with Large Reaction Network

To demonstrate correct results for systems with large reaction networks, we used a CaMKII dodecamer
model which is an extension of a model described in [33].

The protein complex CaMKII dodecamer is composed of two CaMKII hexameric rings stacked on top of
each other. Each CaMKII monomer with calmodulin (CaM) binding site can be in one of 18 states. Then the
total number of states in which the dodecamer CaMKII complex can be is 18'2/12 ~ 10'2 (the division by 12
is to remove symmetric states). This is an example of the combinatorial complexity mentioned in section 2.4
where it is simply not feasible to generate the whole reaction network upfront and a network-free approach
must be used. Fig. 14 shows the results of this validation.

Here we also show an extension of the aforementioned model [33], where we can now observe the effects
of the geometry of the compartment on the simulation results thanks to MCell4. Figure 15 shows three
different variations of the model, where the first variation is the homogeneously distributed molecules
in the compartment (equivalent to the well-mixed versioned published previously, Figure 15 A), and two
variations with a small subcompartment, located near the top of the larger compartment, which in our
model is not transparent to CaMKII and CaM molecules. In the first variation all the molecules are still
homogeneously distributed throughout the compartment, but the the CaMKII and CaM molecules in the
subcompartment and the rest of the compartment do not mix (Figure 15 B), and in the second variation
half of CaMKII molecules are placed in the subcompartment and the other half in the remainder of the
compartment, while CaM is still distributed homogeneously throughout the entire volume (Figure 15).
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BNGL

begin compartments
# Plasma membrane (PM) 2D compartment with volume 0.01 um x SA um™2
PM 2 6e-4
# Cytoplasm (CP) 3D volume compartment with volume le-3um™3
CP 3 le-3 PM
end compartments

begin molecule types
snare(s~0~1~2~3~4~5,a~0~1~2,dv~0~1)
Ca
V_release()

end molecule types

begin species
# SNARE complex are released in the PM
snare(s~0,a~0,dv~1)@PM 70
# Fixed calcium number in the cytosol
Ca@CP Ca0

end species

begin observables
Molecules SNARE_sync snare(s~5)
Molecules SNARE_async snare(a~2)
Molecules V_release V_release()
end observables

begin reaction rules
# Calcium binding to the synchronous component of the sensor
snare(s~0)@PM + Ca@CP <-> snare(s~1)@PM 5xksp, 1xb”0xksm
snare(s~1)@PM + Ca@CP <-> snare(s~2)@PM 4xksp, 2xb"1xksm
snare(s~2)@PM + Ca@CP <-> snare(s~3)@PM 3xksp, 3*b"2xksm
snare(s~3)@PM + Ca@CP <-> snare(s~4)@PM 2xksp, 4xb”3xksm
snare(s~4)@PM + Ca@CP <-> snare(s~5)@PM 1lxksp, 5xb™4xksm

# Calcium binding to asynchronous component of the sensor
snare(a~0)@PM + Ca@CP <-> snare(a~1)@PM 2xkap, 1xb”0xkam
snare(a~1)@PM + Ca@CP <-> snare(a~2)@PM lxkap, 2xb”1xkam

# Synchronous vesicle release

sync: snare(s~5,dv~1)@M -> snare(s~5,dv~0)@PM + V_release()@CP gamma

# Asynchronous vesicle release

async: snare(dv~1,a~2)@PM -> snare(dv~0,a~2)@PM + V_release()@CP axgamma
# Vesicle docking to SNARE

snare(dv~0) -> snare(dv~1) k_dock
end reaction rules

end model

Figure 12: BNGL compartmental code implementation of the snare complex model. One 3D compartment is defined
cytosol (CP) and its associated plasma membrane (PM). Molecule types are defined, and their released sites specified:
snare molecules are released in the PM, and Calcium ions in the Cytosol. This is followed by the observables, and the
reaction rules governing the interactions.
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Figure 13: (A) Schematic diagram of the state variables of the SNARE complex model. It consists of 36 states, S and A
represent the synchronous and asynchronous components of the complex, which can be in five and two different states
respectively (B-D) Independent Simulations of the model with ODEs in BioNetGen and in MCell4.

We sought to observe the effect of these three conditions on CaMKII phosphorylation as a result of Ca2*
influx into the compartment. In all three conditions a Ca?* influx is simulated from a single point source
located in the center of the top face of the compartment. As in [33] the CaZ* influx was such that at the peak
the free calcium concentration was ~ 10uM, and fall back to nearly steady state levels within 100. As we can
see these spatial differences have a small but significant effect on CaMKII phosphorylation levels in response
Ca?* influx. These differences would have been impossible to investigate without the combination of the
network-free simulations and the diffusion in space accomplished in MCell4.

3.1.3 Volume-Surface and Surface-Surface Reactions: Membrane Localization Model

We used a membrane localization model from [34] (section 2A) to validate volume-surface and surface-
surface reactions.

The model analyzes how membrane localization stabilizes protein-protein interactions: a pair of protein
binding partners A and B that can also localize to the membrane surface by binding a lipid M and this binding
to a membrane constrains the space where the molecules diffuse and thus promotes complex formation. The
model uses a simulation box of dimensions 0.47 x 0.47 x 5um?. Surface molecules M are released on one of
the smaller sides of this box, and edges of this bottom side are set to be reflective, so the surface molecules
cannot diffuse to other sides.

MCell divides surface areas into tiles. A maximum of one molecule can occupy one tile at a time - this tiling
models volume exclusion for surface molecules. A parameter surface grid density sets the density of the
tiles. The initial density of surface molecules in the model is 17000 molecules/ um?, and we set the surface
grid density to 40000 tiles/pum?.
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Figure 14: Validation of MCell4 simulation against BioNetGen NFSim (BNG) and MCell3R using CaMKII model. The
input BNGL model for NFSim was obtained by automatic BNGL export from the MCell4 model. The simulation ran
for 100000 iterations (0.1 s), lines in the graphs show averages from 256 runs with different random seeds, and bands
represent one standard deviation. Molecules in MCell3R and MCell4 use diffusion constant 10~3cm? /s to emulate a
well-mixed solution (the usual value is around 10~®cm? /s). Graph titles represents these BNGL observable patterns:
CaM1C - CaM(C~ 1, N~ 0,camkii), CaM1N - CaM(C ~ 0,N ~ 1,camkii), KCaM2N — CaMKII(Y286 ~ U,cam!1).CaM(C
~ O,N ~ 2,camkii!l). The model starts far from equilibrium; therefore there is an initial jump in the Ca and CaM(C ~ 0,N
~ 1,camkii) concentrations. The molecule names are explained in [33].
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Figure 15: The effect of trapping CaMKII and CaM inside a subcompartment on CaMKII phosphorylation. Three different
conditions where simulated. (A) All molecules are homogeneously distributed throughout the whole compartment. (B)
With a small subcompartment, near the top of the larger compartment which is reflective to CaMKII and CaM, but is
transparent to calcium ions and PP1. All the molecules are homogeneously distributed throughout both compartments.
(C) The subcompartment is reflective to CaMKII and CaM and 50% of the CaMKII molecules are trapped inside the
subcompartment, and the rest of the molecules are distributed homogeneously throughout the remainder of the larger
compartment. The plots show an average of 60 runs, bands represent standard error of the mean.

Figure 16: Simulation results for the membrane localization
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Figure 17: Stochastic simulation allows to model systems that exhibit switching between multiple steady states. Copy
numbers of unphosphorylated kinase A and its phosphorylated variant Ap are shown for a single simulation run of
MCell4, MCell3, and NFSim. The NFSim model was obtained by automatically exporting the MCell4 model into BNGL.
The graphs also show solutions obtained with a deterministic ODE model for which data from [34] were used. Results
demonstrate that the MCell results correctly reach one of the stable steady states for which copy numbers are shown with
the ODE result. The simulation stays in such a state, and then due to stochastic behavior, another state switch occurs.

3.1.4 Stochastic Fluctuations in a System with Multiple Steady States: Autophosphorylation

Another validation model from [34] (section 2B) shows stochastic fluctuations in a system with multiple
steady states. A deterministic ODE solution does not show these multiple steady states and almost immedi-
ately stabilizes in one of them. In Fig. 17 we show the output of MCell and automatically exported BNGL
model (more details on BNGL export are in 2.4.2) simulated with NFSim along with steady states shown
with ODE solutions.

3.2 Performance

With relatively small reaction networks (less than 100 or so reactions), the performance of MCell4 is similar to
MCell3 as shown in Fig. 18 (A). MCell3 was already heavily optimized, so there were not many opportunities
for further optimizations. MCell3 contains optimization of cache performance that speeds up models with
large geometries, and this optimization is not present in MCell4. This is why MCell3 is faster than MCell4 for
the Neuropil (full model) with about 4 million triangles that define its geometry. The situation is different
when comparing MCell4 and MCell3-R with models that use large BNGL-defined reaction networks 18
(B). MCell3-R uses NFSim as a library to compute reaction products for BNG reactions. With large reaction
networks containing possibly 10'° of reactions or more, MCell3-R keeps all those computed reactions in
memory and gradually slows down due to this. Such reaction networks can be easily defined in BNGL,
e.g., for polymerization used in the SynGAP with TARP model. We tried to implement reaction cache
cleanup in MCell3-R, but it has shown to be very difficult, and this attempt was abandoned. MCell4 with
BNG library keeps track of how many molecules of each species are there in the simulated system and
periodically removes from cache reactions and species that are not used. This allows simulating very complex
reaction networks with a potentially infinite number of species and reactions without excessive memory and
performance impact.

3.3 Hybrid Simulation Example

The MCell4’s Python API allows interacting with a running MCell4 simulation. A demonstration that will be
shown in this section models one selected molecular species in Python code using a differential equation
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and the remaining species in MCell as particles. As a basis for this demonstration of hybrid simulation, we
used a circadian clock model also published in article [34], originally based on article [36].

The model simulates the behavior of an activator protein A and repressor protein R that are produced from
mRNA transcribed from a single copy of a gene (one for each protein). Coupling of A and R expression
is driven by positive feedback of the activator A, which binds to each gene’s promoters to enhance tran-
scription. Protein R also binds to A to effectively degrade it, and all proteins and mRNA are also degraded
spontaneously at a constant rate.

Compared to the original model in [36], authors of [34] speeded-up the reaction rates of the model from hours
to seconds by multiplying the reaction rates by 3600. Since the purpose of this example is the demonstration
of a hybrid model in MCell4 and its validation that requires many runs, we made another change that
accelerates the simulation, namely we reduced the simulation volume to 0.25um by a factor of 268 and
multiplied unimolecular reaction rates by the same factor. The kinetics of bimolecular reactions is speeded-up
by the same rate just by reducing the volume.

In the hybrid model, protein R is simulated as a concentration (using well-mixed approach), the other species
are simulated as particles. We used an MCell4 model as a basis. In this base model, there are several reactions
that consume or produce R (Fig. 19). These needed to be replaced with reactions that do not model R as a
particle (Fig. 20). The main simulation loop pseudo-code is shown in in Fig. 21.

BNGL Reactions

A_and_R_to_AR: A + R -> AR AR_kon # 1/Mx1/s
R_to_0: R ->0 R_koff #1/s
mRNA_R_to_mRNA_R plus_R: mRNA_R -> mRNA_R + R mRNA_R_koff # 1/s
AR_to_R: AR -> R AR_koff #1/s

Figure 19: Reaction rules affecting protein R in particle-only model.

BNGL Reactions

A_to_AR: A -> AR A_koff # 1/s
# R_to_0: - modeled as ODE
# MRNA_R_to_mRNA_R_plus_R: - modeled as ODE
AR to 0: AR -> 0 AR koff # 1/s

Figure 20: Reaction rules affecting protein R in hybrid model.

To validate that the results of the hybrid variant are correct, we ran 1024 instances of stochastic simulations
with different initial random seeds. We also compared the effect of two different diffusion constant values
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MCell4 Pseudo-code

num_R = 0.0 # in N, initial copy number of Rs,
# modeled as a floating-point value

T_STEP = 5e-7 # in us, simulation time step
NA = 6.0221409e+23 # in N/mol, Avogardo's constant
VOLUME = 4.188993 x le-15 # in 1, simulated volume

for i in range(ITERATIONS):
# 1) Run particle-based simulation for 1 time step
model.run_iterations(1)

# 2) Update the concentration-based copy number of Rs

# 2.1) Rs consumed by original reaction A + R -> AR

dR_due_A_to_AR =
-model.get_number_of_reactions_in_last_iteration('A_to_AR')

# 2.2) Rs consumed by original reaction R -> 0
dR_due_R_to_0 =
-(num_R * R_koff * TIME_STEP)

# 2.3) Rs produced by original reaction mRNA_R -> mRNA_R + R
dR_due_mRNA_R =
model.get_number_of_molecules('mRNA_R') * mRNA_R_koff * T_STEP

# 2.4) Rs produced by original reaction AR -> R
dR_due_AR_to_0 =
model.get_number_of_reactions_in_last_iteration('AR_to_0')

# 2.5) Update the copy number of Rs
num_R +=
dR_due_A_to_AR + dR_due_R_to_0 + dR_due_mRNA_R + dR_due_AR to_0

3) Update rate of reaction A -> AR (originally A + R -> AR):
Sets the rate A_koff using concentration of R effectively
converting a bimolecular reaction rate from 1/Mx1/s to a
unimolecular rate in 1/s.

Concentration is here computed with copy number of Rs
truncated to the closest integer to avoid reactions happening
when there is less than 1.0 Rs.

concentration_R = floor(numR) / NA / VOLUME # in 1/M
model.set_reaction_rate('A_to_AR', concentration_R * AR_kon)

oW W R R W

Figure 21: Pseudo-code of the main simulation loop that: 1) runs an iteration of particle-based simulation, 2) updates
the copy number of R based on the current MCell state, and 3) updates rate of reaction A -> AR that was originally
a bimolecular reaction A + R -> AR. N is a unit representing the copy number. This code was rewritten to show the
actual computations in a more comprehensible way, the actual MCell4 Python code is available in the GitHub repository
accompanying this article [32].
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Figure 22: (A) Result of a stochastic simulation of the circadian clock model with NFSim. Copy numbers of molecules
A and R show periodic oscillation. A low pass frequency filter was used to smooth the values of A and R. The reason
for the smoothing was to get a numerical value related to the actual peak, these peaks from low-pass filtered data do
not represent actual average peaks but can be better used as a proxy for the actual time of a peak that can be compared
afterwards. (B) The error bars capture the mean and standard deviation of such low pass filtered peak times for different
model and simulation algorithm variants. Each of the variants was run 1024 times. One can see that SSA, NFSim,
and the hybrid MCell model with a fast diffusion constant D = 10 S5cm? /s variants give practically the same results.
Hybrid MCell model with slower D = 10~7cm? /s shows faster oscillation than the non-spatial models SSA and NFSim,
and MCell with fast diffusion constant. The pure particle-based MCell model with D = 10~7cm? /s shows the fastest
oscillations.

when using MCell. Results that show average oscillation frequencies are shown in Fig. 22 and copy numbers
of molecules A and R in Fig. 23.

When using a fast diffusion constant of 10 7cm? /s for all molecules, all simulation approaches produce
practically the same results. A significant advantage of using hybrid modeling is that for this specific
example, the MCell hybrid model’s simulation speed is 4x faster. This is thanks to: 1) Allowing 5x longer
time step by not having to model the fastest reactions for particle-based molecules. The time step for the
particle-only model has to be 10~7s to precisely model these fast reactions. 2) Not having to model species R
as particles.

This is a relatively simple example where we compute the ODE separately with Python code, but it shows the
strength of this approach where one can couple other engines to MCell4 and achieve multi-scale simulations.

4 Conclusions

41 Summary

We have described MCell4, a particle-based reaction-diffusion tool based on Monte Carlo algorithms that
allows spatially realistic simulation of volume and surface molecules in a detailed 3D geometry. MCell4
builds on features of MCell3 (and MCell3-R). On top of that, it provides a Python API that permits controlling
the simulation through Python code.

With Python API, one can change geometry, reaction rates, create or remove molecules, execute reactions,
etc., this all during simulation. This powerful new feature allows construction and execution of multi-scale
hybrid models.

Another distinction between MCell3 and MCell4 is that the reactions are now nativelly written in BioNetGen
language. This allows a seamless transition between MCell4 and BNG simulation environments and has
dramatically improved the ability to run network free simulations compared to the NFSim engine used
previously in MCell3-R [12, 14].

As we have demonstrated here through example models, MCell4 has introduced many new features
including the ability to create a fully spatial network-free model with realistic geometry, the ability to go
back and forth between MCell4 and BNG environments, and transmembrane or transcellular interactions
between surface molecules.
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Figure 23: (A) Average copy number values for A and R proteins from 1024 runs for NFSim, SSA, and MCell with fast
diffusion constant match each other. To get even better match, one would need to run more than 1024 runs because
stochastic molecular simulations show high variability when the copy number of some of the species is low which is true
here for both A and R. (B), (C) Average copy numbers for MCell simulations with slow diffusion constant. Shown as
separate plots from (A) to highlight the spatial simulation effect when molecules diffuse slowly.

MCell4 is a significant improvement on the previous version in terms of simulation speed, number of
features, as well as usability, and allows to simulate new systems that could not be modeled previously.

4.2 Availability and Future Directions

MCell4 is available under the MIT license. For easy usage, a package containing MCell, Blender, Blender
plugin CellBlender, and other tools is available along with detailed documentation and tutorial online at [37].
A part of MCell4 is a new C++ library for parsing the BioNetGen language and provides methods to process
BioNetGen reactions. This library libBNG is also available under the MIT license [17].

MCell4 does not support the definition of spatial complexes that could be useful for instance when modeling
the post-synaptic density [5] or actin filament networks [38] where simply replacing these polymers with a
single point in space is inadequate. Furthermore, improved volume exclusion will be important. We have
plans to combine particle-based simulation with concentration or well-mixed simulation algorithms such as
SSA [39] or the finite element method that uses PDEs (partial differential equations), e.g., [40]. Such hybrid
modeling will provide means to simulate longer timescales while still being spatially accurate and able to
correctly handle cases when the copy number of molecules is low. All these features will be the focus of
future developments.
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