
Light on Python

November 26, 2015

Contents

1 Objects 2

1.1 Introduction . 2

1.2 Your �rst program . 2

1.3 Specifying your own classes . 3

1.4 Indentation, capitals and the use of _ . 5

2 Encapsulation 6

2.1 Interfaces . 6

2.2 Modules . 7

2.3 Polymorphism . 8

3 A pinch of functional programming 10

3.1 List comprehensions . 10

3.2 Transforming all elements of a list . 11

3.3 Selecting certain elements from a list . 12

3.4 Computing sum from a list . 12

3.5 Free functions and lambda expressions . 13

4 Inheritance 15

4.1 Implementation inheritance . 15

4.2 Interface inheritance . 16

4.3 Inheriting from library classes . 17

5 Objects and the real world 18

5.1 Domain Modeling . 18

5.2 Pong . 18

1

Chapter 1

Objects

1.1 Introduction

This course is for the adventurous:

• You'll learn Python the way a child would, even if you are an adult. Children are experts in learning. They
learn by doing, and pick up words along the way. In this text the same approach is followed. Not everything
is defined or even explained. Just try to find out how the example code works by guessing

and experimenting. The steps taken may seem large and sometimes arbitrary. It's a bit like being dropped
into the jungle without a survival course. But don't worry, computer programming isn't nearly as dangerous.
And the steps taken in fact follow a carefully planned path. Regularly try to put together something yourself.
Play with it. Evolution has selected playing as the preferred way of learning. I will not claim to improve on
that.

• You'll be addressed like an adult, even if you are a child. Simple things will be explained simple, but the
complexity of complex things will not avoided. The right, professional terminology will be used. If you don't
know a word, like �terminology�, Google for it. Having a separate child's world populated by comic �gures,
Santa Claus and storks bringing babies is a recent notion. Before all that, it was quite normal to have twelve
year old geniuses. But don't worry, programming can be pure fun, both for children and adults.

• You'll focus upon a very e�ective way of using Python right from the start. It is called Object Oriented
Programming. And you'll learn some Functional Programming as well. Don't bother what these words
mean. It'll become clear underway.Mixing two ways of programming is no greater problem than children
being brought up with two or more languages: no problem at all. By the way, those children have markedly
healthier brains once they get older. There are also less important things to learn about Python. You can do
so gradually if you wish, while using it. Just stay curious and look things up on the Internet.

I learned to program as a child, my father was programming the �rst computers in the early 1950's. We climbed
through a window into the basement of the o�ce building of his employer, a multinational oil company. Security
was no issue then. Programming turned out to be fun indeed. And it still is, for me!

1.2 Your �rst program

Install Python 3.x. The Getting Started topic on www.python.org will tell you how. You will also need an editor.
If you're on Windows, Google for Notepad++. If you're on Linux or Apple, you can use Gedit. Then run the
following program:

1 cities = [’Londen’, ’Paris’, ’New York’, ’Berlin’] # Store 4 strings into a list
2 print (’Class is:’, type (cities)) # Verify that it is indeed a list
3

2

CHAPTER 1. OBJECTS 3

4 print (’Before sorting:’, cities) # Print the unsorted list
5 cities.sort () # Sort the list
6 print (’After sorting: ’, cities) # Print the sorted list

Listing 1.1: prog/sort.py

The pieces of text at the end of each line, starting with #, are comments. Comments don't do anything, they just
explain what's happening. 'London', 'Paris', 'New York' and 'Berlin' are strings, pieces of text. You can recognize
such pieces of text by the quotes around them. Programmers would say these four objects are instances of class
string. To clarify, a particular dog is an instance of class Dog. There may be classes for which there are no instances.
Class Dinosaur is such a class, since there are no (living) dinosaurs left. So a class in itself is merely a description
of a certain category of objects.

Line 1 of the previous program is actually shorthand for line 1 of the following program:

1 cities = list ((’Londen’, ’Paris’, ’New York’, ’Berlin’)) # Construct list object from ’tuple’ of 4 string objects
2 print (’Class is:’, type (cities)) # Verify that it is indeed a list
3

4 print (’Before sorting:’, cities) # Print the unsorted list
5 cities.sort () # Sort the list
6 print (’After sorting: ’, cities) # Print the sorted list

Listing 1.2: prog/sort2.py

So you construct objects of a certain class by using the name of that class, followed by (). Inside this () there
maybe things used in constructing the object. In this case the object is of class list, and there's a so called tuple of
cities inside the (). Since the tuple itself is also enclosed in (), you'll have list ((...)), as can be seen in the source
code. For example (1, 2, 3) is a tuple of numbers, and list ((1, 2, 3)) is a list constructed from this. We could also
have constructed this list with the shorthand notation [1, 2, 3], which means exactly the same thing as list ((1, 2,
3)). A tuple is an immutable group of objects. So you could never sort a tuple itself. But the list you construct
from it is mutable, so you can sort it.

Once it works, try to make small alterations and watch what happens. Actually do this, it will speed up learning

1.3 Specifying your own classes

Generally, in a computer program you work with many di�erent classes of objects: buttons and lists, images and
texts, movies and music tracks, aliens and spaceships, chessboards and pawns.

So, looking at the �real� world: you are an instance of class HumanBeing. Your mother is also an instance of class
HumanBeing. But the object under your table wagging its tail is an instance of class Dog. Objects can do things,
often with other objects. You're mother and you can walk the dog. And your dog can bark, as dogs do.

Lets create a Dog class in Python, and then have some actual objects (dogs) of this class (species):

1 class Dog: # The species is called Dog
2 def bark (self): # Define that this dog itself can bark
3 print (’Wraff!’) # Which means saying "Wraff"
4

5

6 your_dog = Dog () # And than lets have an actual dog
7

8 your_dog.bark () # And make it bark

Listing 1.3: /prog/dog.py

Now lets allow di�erent dogs to bark di�erently by adding a constructor that puts a particular sound in a particular
dog when it's instantiated (born), and then instantiate your neighbours dog as well:

1 class Dog: # Define the dog species
2 def __init__ (self, sound): # Constructor, named __init__, accepts provided sound
3 self.sound = sound # Stores accepted sound into self.sound field inside new dog

CHAPTER 1. OBJECTS 4

4

5 def bark (self): # Define bark method
6 print (self.sound) # Prints the self.sound field stored inside this dog
7

8 your_dog = Dog (’Wraff’) # Instantiate dog, provide sound "Wraff" to constructor
9 neighbours_dog = Dog (’Wooff’) # Instantiate dog, provide sound "Wooff" to constructor

10

11 your_dog.bark () # Prints "Wraff"
12 neighbours_dog.bark () # Prints "Wooff"

Listing 1.4: /prog/neighbours_dog.py

After running this program and again experimenting with small alterations, lets expand it further. You and your
mother will walk your dog and the neighbours dog:

1 class HumanBeing: # Define the human species
2 def walk (self, dog): # The human itself walks the dog
3 print (’\nLets go!’) # \n means start on new line
4 dog.escape () # Just lets it escape
5

6 class Dog: # Define the dog species
7 def __init__ (self, sound): # Constructor, named __init__, accepts provided sound
8 self.sound = sound # Stores accepted sound into self.sound field inside new dog
9

10 def bark (self): # Define bark method
11 print (self.sound) # It prints the self.sound field stored inside this dog
12

13 def escape (self): # Define escape method
14 print (’Run to tree’) # The dog will run to the nearest tree
15 self.bark () # It then calls upon its own bark method
16 self.bark () # And yet again
17

18 your_dog = Dog (’Wraff’) # Instantiate dog, provide sound "Wraff" to constructor
19 neighbours_dog = Dog (’Wooff’) # Instantiate dog, provide sound "Wooff" to constructor
20

21 you = HumanBeing () # Create yourself
22 mother = HumanBeing () # Create your mother
23

24 you.walk (your_dog) # You walk your own dog
25 mother.walk (neighbours_dog) # your mother walks the neighbours dog

Listing 1.5: prog/walking_the_dogs

Run the above program and make sure you understand every step of it. Add some print statements printing
numbers, to �nd out in which order it's executed. Adding such print statements is a simple and e�ective method
to debug a program (�nd out where it goes wrong).

In the last example the walk method, de�ned on line 2, receives two parameters (lumps of data) to do its job: self
and dog. It then calls (activates) the escape method of that particular dog: dog.escape (). Lets follow program
execution from line 24: you.walk (your_dog). This results in calling the walk method de�ned on line 2, with
parameter self referring to object you and parameter dog referring to object your_dog. The object you before the
dot in you.walk (your_dog) is passed to the walk method as the �rst parameter, called self, and your_dog is passed
to the walk method as the second parameter, dog.

Parameters used in calling a method, like you and your_dog in line 24 are called actual parameters. Parameters that
are used in de�ning a method, like self and dog in line 2 are called formal parameters. The use of formal parameters
is necessary since you cannot predict what the names of the actual parameters will be. In the statement mother.walk
(neighbours_dog) on line 25, di�erent actual parameters, mother and neighbour_dog, will be substituted for the
same formal parameters, self and dog. Passing parameters to a method is a general way to transfer information to
that method.

CHAPTER 1. OBJECTS 5

1.4 Indentation, capitals and the use of _

As can be seen from the listings, indentation is used to tell Python that something is a part of something else, e.g.
that methods are part of a class, or that statements are part of a method. You have to be concise here. Most
Python programmers indent with multiples of 4 spaces. For my own non-educational programs I prefer tabs.

Python is case-sensitive: uppercase and lowercase letters are considered distinct. When you specify your own classes,
it is common practice to start them with a capital letter and use capitals on word boundaries: HumanBeing. For
objects, their attributes (which are also objects) and their methods, in Python it is common to start with a lowercase
letter and use _ on word boundaries: bark, your_dog.

Constructors, the special methods that are used to initialize objects (give them their start values), are always named
__init__.

There's a recommendation about how to stylize your Python source code, it's called PEP 0008 and its widely
followed. But it is strictly Python and I am mostly using a mix of Python and C++, so I don't usually abide
by these rules. But in this course I will, for the greater part. If you want to learn a style that is consistent
over multiple programming languages, use capitals on word boundaries for objects, atributes and methods as
well instead of _, but always start them with a lowercase letter. By the way WritingClassNamesLikeThis or
writingAllOtherNamesLikeThis is called camel case, while writing_all_other_names_like_this is called pothole
case.

Chapter 2

Encapsulation

2.1 Interfaces

All objects of a certain class have the same attributes, but with distinct values, e.g. all objects of class Dog have the
attribute self.sound. And all objects of a certain class have the same methods. For our class Dog in the last example,
those are the methods __init__, bark and escape. Objects can have dozens or even hundreds of attributes and
methods. In line 4 of the previous example, method walk of a particular instance of class HumanBeing, referred to
as self, calls method escape of a particular instance of class Dog, referred to as dog.

So in the example you.walk calls your_dog.escape and mother.walk calls neighbours_dog.escape. Verify this by
reading through the code step by step, and make sure not to proceed until you fully and thoroughly understand
this.

In general any object can call any method of any other object. And it also can access any attribute of any other
object. So objects are highly dependent upon each other. That may become a problem. Suppose change your
program, e.g. by renaming a method. Then all other objects that used to call this method by its old name will
not work anymore. And changing a name is just simple. You may also remove formal parameters, change their
meaning, or remove a method altogether. In general, in a changing world, you may change your design. As your
program grows bigger and bigger, the impact of changing anything becomes disastrous.

To limit the impact of changing a design, standardization is the answer. Suppose we have two subclasses of
HumanBeing : NatureLover and CouchPotato. Objects of class NatureLover go out with their dogs to enjoy a walk.
Objects of class CouchPotato just deliberately let the dog escape at the doorstep, that it might walk itself while
they're watching their favorite soap. While they both have a walk method, walking the dog means something quite
di�erent to either of them. A programmer would say that their interface is standard (walk), but their implementation
is di�erent (calling dog.follow_me versus calling dog.escape). Let's see this in code:

1 class NatureLover: # Define a type of human being that loves nature
2 def walk (self, dog): # The NatureLover walks the dog, really
3 print (’\nC\’mon!’) # \n means start on new line, \’ means ’ inside string
4 dog.follow_me () # Just lets it escape
5

6 class CouchPotato: # Define a type of human being that loves couchhanging
7 def walk (self, dog): # The CouchPotato walks the dog, well, lets it go
8 print (’\nBugger off!’) # \n means start on new line
9 dog.escape () # Just lets it escape

10

11 class Dog: # Define the dog species
12 def __init__ (self, sound): # Constructor, named __init__, accepts provided sound
13 self.sound = sound # Stores accepted sound into self.sound field inside new dog
14

15 def _bark (self): # Define _bark method, not part of interface of dog
16 print (self.sound) # It prints the self.sound field stored inside this dog
17

6

CHAPTER 2. ENCAPSULATION 7

18 def follow_me (self): # Define escape method
19 print (’Walk behind’) # The dog walks one step behind the boss
20 self._bark () # It then calls upon its own _bark method
21 self._bark () # And yet again
22

23 def escape (self): # Define escape method
24 print (’Hang head’) # The dog hangs his head
25 self._bark () # It then calls upon its own _bark method
26 self._bark () # And yet again
27

28 your_dog = Dog (’Wraff’) # Instantiate dog, provide sound "Wraff" to constructor
29 his_dog = Dog (’Howl’) # Instantiate dog, provide sound "Howl" to constructor
30

31 you = NatureLover () # Create yourself
32 your_friend = CouchPotato () # Create your friend
33

34 you.walk (your_dog) # Interface: walk dog, implementation: going out together
35 your_friend.walk (his_dog) # Interface: walk dog, implementation: sending dog out

Listing 2.1: prog/nature_potato.py

There's a bit more to this example program. Instances of class Dog are meant to be creatable anywhere in the
code, in which case constructor __init__ will be called. And their follow_me and escape methods are meant to
be callable anywhere in the code as well. In other words, the __init__, follow_me and escape methods constitute
the interface of class Dog, meant for public use. And then there's the _bark method. As you can see it starts with
_. By starting a method with a single _, Python programmers indicate that this method does not belong to the
interface of the class, but is only meant for private use. In this case, _bark is only called by methods follow_me
and escape of the Dog class itself. What exactly constitutes private use and what doesn't will be worked out further
after explanation of Python's module concept.

It is also possible to prepend a _ to an attribute name, to indicate that this attribute is not part of the interface.
But this is rarely done, since many programmers feel that attributes shouldn't be part of the interface anyhow.
While there's certainly some sense in that, it is not a general truth. One should always be open to picking the
best solution at hand, which sometimes means deviating from textbook wisdom or common practice. Of course
following common practice has some advantages of its own, and when working in a team, the best solution may be
a standard solution.

2.2 Modules

Python programs can be split into multiple source �les called modules. Let's do that with the previous example
program:

1 import bosses
2 import dogs
3

4 your_dog = dogs.Dog (’Wraff’) # Instantiate dog, provide sound "Wraff" to constructor
5 his_dog = dogs.Dog (’Howl’) # Instantiate dog, provide sound "Howl" to constructor
6

7 you = bosses.NatureLover () # Create yourself
8 your_friend = bosses.CouchPotato () # Create your friend
9

10 you.walk (your_dog) # Interface: walk dog, implementation: going out together
11 your_friend.walk (his_dog) # Interface: walk dog, implementation: sending dog out

Listing 2.2: prog/dog_walker/dog_walker

1 class NatureLover: # Define a type of human being that loves nature
2 def walk (self, dog): # The NatureLover walks the dog, really
3 print (’\nC\’mon!’) # \n means start on new line, \’ means ’ inside string
4 dog.follow_me () # Just lets it escape

CHAPTER 2. ENCAPSULATION 8

5

6 class CouchPotato: # Define a type of human being that loves couchhanging
7 def walk (self, dog): # The CouchPotato walks the dog, well, lets it go
8 print (’\nBugger off!’) # \n means start on new line
9 dog.escape () # Just lets it escape

Listing 2.3: prog/dog_walker/bosses.py

1 class Dog: # Define the dog species
2 def __init__ (self, sound): # Constructor, named __init__, accepts provided sound
3 self.sound = sound # Stores accepted sound into self.sound field inside new dog
4

5 def _bark (self): # Define _bark method, not part of interface of dog
6 print (self.sound) # It prints the self.sound field stored inside this dog
7

8 def escape (self): # Define escape method
9 print (’Hang head’) # The dog hangs his head

10 self._bark () # It then calls upon its own _bark method
11 self._bark () # And yet again
12

13 def follow_me (self): # Define escape method
14 print (’Walk behind’) # The dog walks one step behind the boss
15 self._bark () # It then calls upon its own _bark method
16 self._bark () # And yet again

Listing 2.4: prog/dog_walker/dogs.py

As can be seen, program dog_walker.py imports modules bosses.py and dogs.py. By putting these modules in
separate �les, they could also be used in other programs than dog_walker. In order to make this type of reuse
practical, it is important that the classes de�ned in bosses.py and dogs.py have a standard interface that doesn't
change whenever any detail in the Boss or Dog classes changes. To make clear what that interface is, using the
_ pre�x is crucial. Anything being pre�xed by a single _, like the _bark method in the above example, does not
belong to the interface and is not meant to be accessed outside the module where it is de�ned. Python does only
enforce this partially, it is mainly a convention to be followed voluntarily.

2.3 Polymorphism

In the previous example, class NatureLover and class CouchPotato have the same interface, namely only method
walk. Since they have the same interface they may be used in similar ways, even though their implementation of
the interface is di�erent. Consider the following program:

1 import random # One of Python’s many standard modules
2

3 import bosses
4 import dogs
5

6 # Create a list of random bosses
7 humanBeings = [] # Create an emptpy list
8 for index in range (10): # Repeat the following 10 times, index running from 0 to 9
9 humanBeings.append (# Append a random HumanBeing to the list by

10 random.choice ((bosses.NatureLover, bosses.CouchPotato)) () # randomly selecting its class
11) # and calling its contructor
12

13 # Let them all walk a new dog with an random sound
14 for humanBeing in humanBeings: # Repeat the following for every humanBeing in the list
15 humanBeing.walk (# Call implementation of walk method for that type of humanBeing
16 dogs.Dog (# Construct a new dog as parameter to the walk method
17 random.choice (# Pick a random sound
18 (’Wraff’, ’Wooff’, ’Howl’, ’Kaii’, ’Shreek’) # fom this tuple of sounds
19)

CHAPTER 2. ENCAPSULATION 9

20)
21)

Listing 2.5: prog/dog_walker/poly_walker.py

The humanBeings list contains objects of di�erent classes: NatureLover and CouchPotato. Such a list is called
polymorphic which means: �of many shapes�. Since objects of class NatureLover and objects of class CouchPotato
have the same interface, in this case only the walk method, this is not a problem, we can write humanBeing.walk,
no matter whether we deal with a NatureLover or with a CouchPotato. But how they do this walking, the
implementation, is di�erent. A NatureLover will join the dog, a CouchPotato will let it go alone.

So providing a standard interface has more advantages than design �exibility alone. If objects of distinct classes
have the same interface, they can easily be used without exactly knowing what particular object class you're dealing
with. All elements of the humanBeing know how to walk. Except they do it di�erently. Since you don't have to
know whether you're dealing with a NatureLover or a CouchPotato to call its walk method, you can store objects
of both classes randomly in one object collection, in this case a list, without keeping track of their exact class. It
is enough to know they can all walk. This careless way of handling di�erent types of objects is called duck typing.
If it walks like a duck, swims like a duck, sounds like a duck, let's treat it like a duck. A collection, e.g. a list,
containing types of various classes is called a polymorphic object collection. Polymorphic means: of varying shape.

Objects, encapsulation, standard interfaces and polymorphism are important ingredients in the way of programming
that was brie�y mentioned in the introduction: Object Oriented Programming. You now know what this means:
programming in such a way that you deal with objects that contain attributes and methods. Objects naturally
�know� things (attributes) and �can do� things (methods). The alternative would be to keep data and program
statements completely separated, a way of working called Procedural Programming.

Chapter 3

A pinch of functional programming

3.1 List comprehensions

In the introduction the promise was made to teach you some Functional Programming as well. While this may
sound a bit arbitrary and even careless, it is not. The aim of this course is to lead you straight to e�cient
programming habits, not to merely �ood you with assorted facts. The combination of Object Oriented Programming
and Functional Programming is especially powerful. To show a �rst glimpse of that power, lets slightly reformulate
the previous example, using something called a list comprehension.

1 import random # One of Python’s many standard modules
2

3 import bosses
4 import dogs
5

6 # Create a list of random bosses
7 human_beings = [# Start a so called list comprehension
8 random.choice (# Pick a random class
9 (bosses.NatureLover, bosses.CouchPotato) # out of this tuple

10) () # and call its constructor to instantiate an object
11 for index in range (10) # repeatedly, while letting index run from 0 to 9
12] # End the list comprehension, it will hold 10 objects
13

14 # Let them all walk a new dog with an random sound
15 for human_being in human_beings: # Repeat the following for every human being in the list
16 human_being.walk (# Call implementation of walk method for that type of human being
17 dogs.Dog (# Construct a dog as parameter to the walk method
18 random.choice (# Pick a random sound
19 (’Wraff’, ’Wooff’, ’Howl’, ’Kaii’, ’Shreek’) # fom this tuple of sounds
20)
21)
22)

Listing 3.1: prog/dog_walker/func_walker.py

While this example resembles the one before, there's a di�erence. In listing 2.5 you told the computer step by step
what to do. In line 7 you �rst created an empty list, although that is not what you wanted in the end. And then
you entered a so called loop, starting at line 8. Cycling through this loop ten times, new HumanBeing objects get
appended to the list one by one, index running from 0 to 9.

In listing 3.1 you do not �rst create an empty list. You just specify directly what you want in the end, a list of
random objects of class HumanBeing, one for each value of index where index running form 0 to 9.

Suppose you want a box with hundred chocolates. You could go to a shop and do the following:

Tell the shopkeeper to give you an empty box

10

CHAPTER 3. A PINCH OF FUNCTIONAL PROGRAMMING 11

While counting from 1 to 100:
Tell the shopkeeper to put in a chocolate

This is the approach taken in listing 2.5. But you could also take a di�erent approach:

Tell the shopkeeper to give you a box with 100 chocolates counted out for you.

This is the approach taken in listing 3.1.

To tell the shopkeeper chocolate by chocolate how to prepare a box of hundred chocolates is unnatural to most,
except for extreme control freaks. But telling a computer step by step what to do is natural to most programmers.
There are a number of disadvantages to the control freak approach:

1. Telling the shopkeeper step by step how to �ll the chocolate box keeps you occupied. It would be confusing
to meanwhile direct the shopkeeper to �ll a bag with cookies, cookie by cookie, because in switching between
these tasks, you could easily lose track of the proper counts. A programmer would say you cannot multitask
very well with the control freak approach.

2. Even doing one thing at a time, you would still have to remember how many chocolates are already in the
box, also if you see your partner kissing your best friend through the shop window. A programmer would say
you'd have to keep track of the state of the box. That's error prone, the shopkeeper has other options, he can
e.g. measure the total weight of the box, which doesn't require remembering anything.

3. The chocolates are put into the box one by one, a time consuming process. The shopkeeper cannot work in
parallel with his assistant, each putting �fty cookies in the box, being ready twice as fast.

In principle the Functional Programming approach is suitable to alleviate this problems. It allows for:

1. Multi-tasking, that is switching between multiple tasks on one processor without confusion, since you only
have to specify the end result.

2. Stateless programming, which helps avoiding errors that emerge when at any point program state is not what
you assume it to be.

3. Multi-processing, that is performing multiple tasks in parallel on multiple processors.

While standard Python does currently not fully bene�t from these advantages, learning this way of programming
is a good investment in the future, since having multiple processors in a computer is rapidly becoming the norm.
Apart from that, once you get used to things like list comprehensions, they are very handy to work with and result
in compact but clear code.

3.2 Transforming all elements of a list

Suppose we �ll a list with numbers and from that want to obtain a list with the squares of these numbers. The
functional way to do this is:

1 even_numbers = [2 * (index + 1) for index in range (10)] # Create [2, 4, ..., 20]
2 print (’Even numbers:’, even_numbers)
3

4 squared_numbers = [number * number for number in even_numbers] # Compute list of squared numbers
5 print (’Squared numbers:’, squared_numbers)

Listing 3.2: prog/func_square.py

The non-functional way requires more code than the functional way. Still the beginning you may prefer the non-
functional way, since it shows what's happening step by step. But that will probably shift, once you gain experience.

CHAPTER 3. A PINCH OF FUNCTIONAL PROGRAMMING 12

1 even_numbers = []
2 for index in range (10):
3 even_numbers.append (2 * (index + 1))
4 print (’Even numbers:’, even_numbers)
5

6 squared_numbers = []
7 for even_number in even_numbers:
8 squared_numbers.append (even_number * even_number)
9 print (’Squared numbers:’, squared_numbers)

Listing 3.3: prog/nonfunc_square.py

3.3 Selecting certain elements from a list

Suppose we have a list with names and from that want to obtain a list with only those names starting with a 'B'.
The functional way to do this is:

1 all_names = [’Mick’, ’Bonny’, ’Herbie’, ’Bono’, ’Ella’, ’Ray’, ’Barbara’] # Create name list
2 print (’All names:’, all_names)
3

4 filtered_names = [name for name in all_names if name [0] == ’B’] # Select names starting with B
5 print (’Filtered names:’, filtered_names)

Listing 3.4: prog/func_select.py

The non functional way again needs more words:

1 all_names = [’Mick’, ’Bonny’, ’Herbie’, ’Bono’, ’Ella’, ’Ray’, ’Barbara’]
2 print (’All names:’, all_names)
3

4 filtered_names = []
5 for name in all_names:
6 if name [0] == ’B’:
7 filtered_names.append (name)
8 print (’Filtered names:’, filtered_names)

Listing 3.5: prog/nonfunc_select.py

3.4 Computing sum from a list

Suppose we have a list with numbers and from that want to obtain the sum of that numbers. The functional way
to do this is:

1 even_numbers = [2 * (index + 1) for index in range (10)] # Create [2, 4, 6, ..., 20]
2 print (’Even numbers:’, even_numbers)
3

4 total = sum (even_numbers) # Compute sum
5 print (’Total:’, total)

Listing 3.6: prog/func_sum.py

The non functional way is:

1 even_numbers = []
2 for index in range (10):
3 even_numbers.append (2 * (index + 1))
4 print (’Even numbers:’, even_numbers)
5

6 total = 0
7 for even_number in even_numbers:

CHAPTER 3. A PINCH OF FUNCTIONAL PROGRAMMING 13

8 total += even_number
9 print (’Total:’, total)

Listing 3.7: prog/nonfunc_sum.py

3.5 Free functions and lambda expressions

Whereas methods are part of a class, free functions can be de�ned anywhere. They don't have a self parameter,
and are not preceded by an object and a dot, when called.

1 def add (x, y): # Free function, defined outside any class, no self parameter
2 return x + y # It may return a result, but a method could do that also
3

4 def multiply (x, y):
5 return x * y
6

7 sum = add (3, 4) # Call the first free function
8

9 print (’3 + 4 =’, sum)
10 print (’3 * 4 =’, multiply (3, 4)) # Call the second free function

Listing 3.8: prog/free_functions.py

It is also possible to de�ne free functions that don't have a name. These are called lambda functions, and are
written in a shorthand way, as can be seen in the following program:

1 functions = [
2 lambda x, y: x + y, # Shorthand for anonymous add function
3 lambda x, y: x * y # Shorthand for anonymous multiply function
4]
5

6

7 sum = functions [0] (3, 4) # Call the first lambda function
8

9 print (’3 + 4 =’, sum)
10 print (’3 * 4 =’, functions [1] (3, 4)) # Call the second lambda function

Listing 3.9: prog/lambdas.py

The following program makes use of several free functions to compute the area of squares and the volume of cubes
from a list of side lengths:

1 def power (x, n): # Define free function, outside any class, no self parameter
2 result = x
3 for i in range (n - 1): # Note that i runs from 0 to n - 2
4 result *= x # so this is performed n - 1 times
5 return result
6

7 test = power (2, 8) # Call free function, no object before the dot
8 print (’test:’, test)
9

10 def area (side): # Define free function, computes area of square
11 return power (side, 2) # Call power function to do the job
12

13 def volume (side): # Define free function, computes volume of cube
14 return power (side, 3) # Call power function to do the job
15

16 def apply (compute, numbers): # Define free function that applies compute to numbers
17 return [compute (number) for number in numbers] # Return list of computed numbers
18

19 sides = [1, 2, 3] # List of side lengths

CHAPTER 3. A PINCH OF FUNCTIONAL PROGRAMMING 14

20 areas = apply (area, sides) # Let apply compute areas by supplying area function
21 volumes = apply (volume, sides) # Let apply compute volumes by supplying volume function
22

23 print (’sides:’, sides)
24 print (’areas:’, areas)
25 print (’volumes:’, volumes)

Listing 3.10: prog/free_functions2.py

Take a good look at the apply function. Its �rst formal parameter, compute, is a free function, that will then be
applied to each element of the second formal parameter, numbers, that is a list. Since the area and volume functions
are only used as actual parameter to apply, they can also be anonymous, as is demonstrated in the program below.

1 def power (x, n): # Define free function, outside any class, no self parameter
2 result = x
3 for i in range (n - 1): # Note that i runs from 0 to n - 2
4 result *= x # so this is performed n - 1 times
5 return result
6

7 test = power (2, 8) # Call free function, no object before the dot
8 print (’test:’, test)
9

10 def apply (operation, numbers): # Define free function that applies compute to numbers
11 return [operation (number) for number in numbers] # Return list of computed numbers
12

13 sides = [1, 2, 3]
14

15 areas = apply (lambda side: power (side, 2), sides) # Define area function and pass it to apply
16 volumes = apply (lambda side: power (side, 3), sides) # Define volume function and pass it to apply
17

18 print (’sides:’, sides)
19 print (’areas:’, areas)
20 print (’volumes:’, volumes)

Listing 3.11: prog/lambdas2.py

It is quite possible to give a lambda function a name, like this:

1 add = lambda x, y: x + y # Name add now referes to the lambda function
2 print (add (7, 8)) # and you can call it via that name

Listing 3.12: prog/named_lambda.py

Chapter 4

Inheritance

4.1 Implementation inheritance

Classes can inherit methods and attributes from other classes. The class that inherits is called descendant class or
derived class. The class that it inherits from is called ancestor class or base class. Look at the following example:

1 class Radio:
2 def __init__ (self, sound):
3 self.sound = sound
4

5 def play (self):
6 print (’Saying:’, self.sound)
7 print ()
8

9 class Television (Radio):
10 def __init__ (self, sound, picture):
11 Radio.__init__ (self, sound)
12 self.picture = picture
13

14 def play (self):
15 self._show ()
16 Radio.play (self)
17

18 def _show (self):
19 print (’Showing:’, self.picture)
20

21 tuner = Radio (’Good evening, dear listeners’)
22 carradio = Radio (’Doowopadoodoo doowopadoodoo’)
23 television = Television (’Here is the latest news’, ’Newsreader’)
24

25 print (’TUNER’)
26 tuner.play ()
27

28 print (’CARRRADIO’)
29 carradio.play ()
30

31 print (’TELEVISION’)
32 television.play ()

Listing 4.1: prog/radio_vision.py

In line 15 the play method of class Television calls the show method of the same class. In line 16 it calls the play
method of class Radio. Compare 15 to 16. In line 15 self is placed before the dot. Since in line 16 the Radio class
occupies the place before the dot, self is passed as �rst parameter there. The same holds for line 11, where the

15

CHAPTER 4. INHERITANCE 16

constructor of Television calls the constructor of Radio. Although this class hierarchy is allowed, an experienced
designer would not program it like this.

1. A television is not merely some special type of radio with a screen glued on. It has become a totally di�erent
device altogether.

2. A radio may have facilities that a television hasn't, e.g. an analog tuning dial. Televisions would inherit that,
but it would serve no purpose and just be confusing.

3. It would probably be more �exible to have class Radio and class Television both inherit from an abstract
class: Microelectronics. Abstract classes are classes that serve as a general category, but of which there are
no objects. The objects themselves are always specialized, so either of class Radio or of class Television.
Abstract base classes are handy to specify an interface without making early choices about how that interface
is implemented.

4.2 Interface inheritance

An example of a class hierarchy with an abstract class at the top is given in the following program:

1 import time
2

3 class HumanBeing:
4 def __init__ (self, name):
5 self.description = name + ’ the ’ + self.__class__.__name__.lower ()
6

7 def walk (self):
8 self._begin_walk ()
9 for i in range (5):

10 print (self.description, ’is counting’, i + 1)
11 self._end_walk ()
12 print ()
13

14 class NatureLover (HumanBeing):
15 def _begin_walk (self):
16 print (self.description, ’goes to the park’)
17

18 def _end_walk (self):
19 print (self.description, ’returns from the park’)
20

21

22 class CouchPotato (HumanBeing):
23 def _begin_walk (self):
24 print (self.description, ’lets the dino escape’)
25

26 def _end_walk (self):
27 print (self.description, ’catches the dino’)
28

29 class OutdoorSleeper (NatureLover, CouchPotato):
30 def _begin_walk (self):
31 NatureLover._begin_walk (self)
32 CouchPotato._begin_walk (self)
33 print (self.description, ’lies on the park bench’)
34

35 def _end_walk (self):
36 print (self.description, ’gets up from the park bench’)
37 CouchPotato._end_walk (self)
38 NatureLover._end_walk (self)
39

40 for human_being in (NatureLover (’Wilma’), CouchPotato (’Fred’), OutdoorSleeper (’Barney’)):

CHAPTER 4. INHERITANCE 17

41 human_being.walk ()

Listing 4.2: prog/nature_sleeper.py

Class HumanBeing is abstract, since it don't have the methods begin_walk and end_walk, that are called in walk
in line 8 and 11. So it's no use creating objects of that class, since they don't know how to walk. All other classes
inherit the walk method, so they don't have to de�ne a walk method of their own. Since they all inherit walk,
they are guaranteed to support the it in their interface. But they de�ne their own specialized implementation of
begin_walk and end_walk. Note that the begin_walk and end_walk of OutdoorSleeper call upon the begin_walk
and end_walk of NatureLover and CouchPotato to do their job.

Be sure to follow every step of the example program above, since it contains important clues to an Object Oriented
programming style called �Fill in the blanks� programming: Specify as much as you can high up in the class hierarchy
(method walk), and only �ll in speci�c things (methods begin_walk and end_walk) in the descendant classes. It is
with �Fill in the blanks� programming that true Object Orientation starts to deliver. While this isn't visible in a
small example, �Fill in the blanks� programming makes the source code of your class hierarchy shrink while gaining
clarity, a sure sign that you're on the right track. �Fill in the blanks� programming is one place where the DRY
principle of programming pays of: Don't Repeat Yourself. If you can specify behaviour in an ancestor class, why
specify it over and over again in the descendant classes. If you follow the DRY principle, your code becomes more
�exible, because changes in behaviour only have to be made in one single place, avoiding the risk of inconsistent
code.

Apart from following the DRY principle, the fact that interface methods de�ned higher up in the class hierarchy are
automatically there in derived classes, is in itself one of the most powerful features of inheritance: Having objects
of di�erent subclasses all inherit the same standard interface contributes to design �exibility, since these objects
become highly interchangeable, even though their behaviour is di�erent.

As a bonus the size of the code using these objects also shrinks, since it only has to deal with one type of interface.
When switching from Procedural to Object Oriented programming, it is not uncommon to see the source code
shrink with a factor �ve. While briefness never is a goal in itself, it is a very important contribution to clarity:
What isn't there doesn't have to be understood. The di�erence between having to get your head around twenty
pages of source code as opposed to a hundred may very well be crucial in successfully understanding the work of a
colleague, or your own work of several years back, for that matter.

4.3 Inheriting from library classes

In section 4.2 the concept of modules was explained. There are many ready-made modules available for Python.
Some are distributed with Python itself. Others are part of so called libraries. A library is a collection of modules
that together enable you to make a speci�c category of programs without coding all the details yourself. For Python
there are lots of libraries available to help you build almost any type of computer program. The majority of these
libraries are available on https://pypi.python.org/pypi. An important part of the power of Python lies in the fact
that so many libraries are available for it, most of them for free. We will be using a game engine library called
Pandas3D. Although you'll �nd a link to it on pypi, the download itself comes from https://www.panda3d.org/.

https://pypi.python.org/pypi
https://www.panda3d.org/

Chapter 5

Objects and the real world

5.1 Domain Modeling

One way or another, most computer programs represent something in the real world. Example programs in tutorials
are often about administration, the objects representing real world things like companies, departments, employees
and contracts. But writing administrative software is just one way to capture reality and put it into a computer.
Dynamic modeling of physics, like applied in simulations and games, is another way. An employee would not be
modeled by its name, address and salary, but rather by a moving on-screen avatar (stylized image of a person)
controlled by a game paddle. Simulations and games are what we'll use as examples in this text. Having objects
represent things in the real world, either in an administrative way or by means of simulation is called Domain
Modeling, and your eventual computer program is said to be a 'model' of some aspect of the real world ('application
domain').

In short, domain modeling consists of the following steps:

1. Analysis: Find out which type of things play a role in the part of the real world that your program is about
(the 'application domain') and what their relation is.

2. Design: De�ne a class for each type of thing, try to come up with a sensible inheritance hierarchy, e.g. looking
for common interfaces. Also de�ne relations between objects of these classes, by having objects refer to and
manipulate other objects.

3. Programming: Elaborate your code to put whole thing to work, in our case in Python. Adjust your class
hierarchy as your understanding of the problem at hand grows.

Step 2 and 3 usually overlap: It is very e�cient to design a class hierarchy using Python syntax right from the
start, adding permanent comments to document why you took certain design decisions. Some people like to view
the relations between e.g. classes in a graphical way. There exist several tools that generate diagrams from Python
source code. Don't go the opposite way: generating source code from diagrams. This only works in the simplest of
situations and is too restrictive in the long run. Some people limit the use of the term 'Domain Modeling' to step
1. In my view the resulting computer program itself is the model we're eventually after.

5.2 Pong

Let's look at the humblest of all computer games: Pong.

1. Analysis: The application domain is the real world game of tennis. Things that play an important role in
that application domain are paddles, a ball, a scoreboard and the notion of a game. To play the game, can
bounce against the peddles, which changes its direction as dictated by physics. Whenever the ball goes out,
the score is adapted

18

CHAPTER 5. OBJECTS AND THE REAL WORLD 19

2. Design: We'll probably need one object of class Ball and two objects of class Paddle an object of class
Scoreboard, and, less obvious since you can not touch or eat it: an object of class Game. And we'll have to
establish relations between the classes (none in this case) or the objects (see source code).

3. Programming: We need to elaborate those classes to make the program work rather than sit there.

While this all may sound overly simple, it is the right way to start. The result of step 2 is the following Python
program:

1 class Paddle:
2 def __init__ (self, game, index):
3 self.game = game # A paddle knows which game object it’s part of
4 self.index = index # A paddle knows its index, 0 (left) or 1 (right)
5

6 class Ball:
7 def __init__ (self, game):
8 self.game = game # A ball knows which game object it’s part of
9

10 class Scoreboard:
11 def __init__ (self, game):
12 self.game = game # A scoreboard knows which game object it’s part of
13

14 class Game:
15 def __init__ (self):
16 self.paddles = [Paddle (self, index) for index in range (2)] # Pass game as parameter self
17 self.ball = Ball (self)
18 self.scoreboard = Scoreboard (self)
19

20 game = Game () # Create game, which will in turn create its paddles, ball and scoreboard

Listing 5.1: pong/pong1py

Remark: You need to install Pyglet from PyPi to run this. Lots of explanation and little steps

to come here!

So our �nal game looks like this:

1 import pyglet
2 from pyglet.gl import *
3

4 import math
5 import random
6

7 orthoWidth = 1000
8 orthoHeight = 750
9 fieldHeight = 650

10

11 class Attribute: # Attribute in the gaming sense of the word, rather than of an object
12 def __init__ (self, game):
13 self.game = game # Attribute knows game it’s part of
14 self.game.attributes.append (self) # Game knows all its attributes
15 self.install () # Put in place graphical representation of attribute
16 self.reset () # Reset attribute to start position
17

18 def reset (self, vX = 0, vY = 0, x = orthoWidth // 2, y = fieldHeight // 2):
19 self.vX = vX # Speed
20 self.vY = vY
21

22 self.x = x # Predicted position, can be commit, no bouncing initially
23 self.y = y
24

25 self.commit ()
26

CHAPTER 5. OBJECTS AND THE REAL WORLD 20

27 def predict (self): # Predict position, do not yet commit, bouncing may alter it
28 self.x += self.vX * self.game.deltaT
29 self.y += self.vY * self.game.deltaT
30

31 def interact (self): # Bounce from walls or other attributes
32 pass
33

34 def commit (self): # Update pygletSprite for asynch draw
35 self.pygletSprite.x = self.x
36 self.pygletSprite.y = self.y
37

38 class Sprite (Attribute): # Here, a sprite is an attribute that can move
39 def __init__ (self, game, width, height):
40 self.width = width
41 self.height = height
42 Attribute.__init__ (self, game)
43

44 def install (self): # The sprite holds a pygletSprite, that pyglet can display
45 image = pyglet.image.create (
46 self.width,
47 self.height,
48 pyglet.image.SolidColorImagePattern ((255, 255, 255, 255)) # RGBA
49)
50

51 image.anchor_x = self.width // 2 # Middle of image is reference point
52 image.anchor_y = self.height // 2
53

54 self.pygletSprite = pyglet.sprite.Sprite (image, 0, 0, batch = self.game.batch)
55

56 class Paddle (Sprite):
57 margin = 30 # Distance of paddles from walls
58 width = 10
59 height = 100
60 speed = 400 # Pixels / s
61

62 def __init__ (self, game, index):
63 self.index = index # Paddle knows its player index, 0 == left, 1 == right
64 Sprite.__init__ (self, game, self.width, self.height)
65

66 def reset (self): # Put paddle in rest position, dependent on player index
67 Sprite.reset (
68 self,
69 x = orthoWidth - self.margin if self.index else self.margin,
70 y = fieldHeight // 2
71)
72

73 def predict (self): # Let paddle react on keys
74 self.vY = 0
75

76 if self.index: # Right player
77 if self.game.keymap [pyglet.window.key.K]: # Letter K pressed
78 self.vY = self.speed
79 elif self.game.keymap [pyglet.window.key.M]:
80 self.vY = -self.speed
81 else: # Left player
82 if self.game.keymap [pyglet.window.key.A]:
83 self.vY = self.speed
84 elif self.game.keymap [pyglet.window.key.Z]:
85 self.vY = -self.speed
86

87 Attribute.predict (self) # Do not yet commit, paddle may bounce with walls
88

CHAPTER 5. OBJECTS AND THE REAL WORLD 21

89 def interact (self): # Paddles and ball assumed infinitely thin
90 if (
91 (self.y - self.height // 2) < self.game.ball.y < (self.y + self.height // 2)
92 and (
93 (self.index == 0 and self.game.ball.x < self.x) # On or behind left paddle
94 or
95 (self.index == 1 and self.game.ball.x > self.x) # On or behind right paddle
96)
97):
98 self.game.ball.x = self.x # Ball may have gone too far already
99 self.game.ball.vX = -self.game.ball.vX # Bounce on paddle

100

101 speedUp = 1 + 0.5 * (1 - abs (self.game.ball.y - self.y) / (self.height // 2)) ** 2
102 self.game.ball.vX *= speedUp # Speed will increase more if paddle near centre
103 self.game.ball.vY *= speedUp
104

105

106 class Ball (Sprite):
107 side = 8
108 speed = 300 # Pixels / s
109

110 def __init__ (self, game):
111 Sprite.__init__ (self, game, self.side, self.side)
112

113 def reset (self): # Launch according to service direction with random angle offset from horizontal
114 angle = (
115 self.game.serviceIndex * math.pi # Service direction
116 +
117 random.choice ((-1, 1)) * random.random () * math.atan (fieldHeight / orthoWidth)
118)
119

120 Sprite.reset (
121 self,
122 vX = self.speed * math.cos (angle),
123 vY = self.speed * math.sin (angle)
124)
125

126 def predict (self):
127 Attribute.predict (self) # Integrate velocity to position
128

129 if self.x < 0: # If out on left side
130 self.game.scored (1) # Right player scored
131 elif self.x > orthoWidth:
132 self.game.scored (0)
133

134 if self.y > fieldHeight: # If it hit top wall
135 self.y = fieldHeight # It may have gone too far already
136 self.vY = -self.vY # Bounce
137 elif self.y < 0:
138 self.y = 0
139 self.vY = -self.vY
140

141 class Scoreboard (Attribute):
142 nameShift = 75
143 scoreShift = 25
144

145 def install (self): # Graphical representation of scoreboard are four labels and a separator line
146 def defineLabel (text, x, y):
147 return pyglet.text.Label (
148 text,
149 font_name = ’Arial’, font_size = 24,
150 x = x, y = y,

CHAPTER 5. OBJECTS AND THE REAL WORLD 22

151 anchor_x = ’center’, anchor_y = ’center’,
152 batch = self.game.batch
153)
154

155 defineLabel (’Player AZ’, 1 * orthoWidth // 4, fieldHeight + self.nameShift) # Player name
156 defineLabel (’Player KM’, 3 * orthoWidth // 4, fieldHeight + self.nameShift)
157

158 self.playerLabels = (
159 defineLabel (’000’, 1 * orthoWidth // 4, fieldHeight + self.scoreShift), # Player score
160 defineLabel (’000’, 3 * orthoWidth // 4, fieldHeight + self.scoreShift)
161)
162

163 self.game.batch.add (2, GL_LINES, None, (’v2i’, (0, fieldHeight, orthoWidth, fieldHeight))) # Line
164

165 def increment (self, playerIndex):
166 self.scores [playerIndex] += 1
167

168 def reset (self):
169 self.scores = [0, 0]
170 Attribute.reset (self) # Only does a commit here
171

172 def commit (self): # Committing labels is adapting their texts
173 for playerLabel, score in zip (self.playerLabels, self.scores):
174 playerLabel.text = ’{}’.format (score)
175

176 class Game:
177 def __init__ (self):
178 self.batch = pyglet.graphics.Batch () # Graphical reprentations insert themselves for batch drawing
179

180 self.deltaT = 0 # Elementary timestep of simulation
181 self.serviceIndex = random.choice ((0, 1)) # Index of player that has initial service
182 self.pause = True # Start game in paused state
183

184 self.attributes = [] # All attributes will insert themselves here
185 self.paddles = [Paddle (self, index) for index in range (2)] # Pass game as parameter self
186 self.ball = Ball (self)
187 self.scoreboard = Scoreboard (self)
188

189 self.window = pyglet.window.Window (640, 480, visible = False, caption = "Pong") # Main window
190

191 self.keymap = pyglet.window.key.KeyStateHandler () # Create keymap
192 self.window.push_handlers (self.keymap) # Install it as a handler
193

194 self.window.on_draw = self.draw # Install draw callback, will be called asynch
195 self.window.on_resize = self.resize # Install resize callback, will be called if resized
196

197 self.window.set_location (# Middle of the screen that it happens to be on
198 (self.window.screen.width - self.window.width) // 2,
199 (self.window.screen.height - self.window.height) // 2
200)
201

202 self.window.clear ()
203 self.window.flip () # Copy drawing buffer to window
204 self.window.set_visible (True) # Show window once its contents are OK
205

206 pyglet.clock.schedule_interval (self.update, 1/60.) # Install update callback to be called 60 times per s
207 pyglet.app.run () # Start pyglet engine
208

209 def update (self, deltaT): # Note that update and draw are not synchronized
210 self.deltaT = deltaT # Actual deltaT may vary, depending on processor load
211

212 if self.pause: # If in paused state

CHAPTER 5. OBJECTS AND THE REAL WORLD 23

213 if self.keymap [pyglet.window.key.SPACE]: # If SPACEBAR hit
214 self.pause = False # Start playing
215 elif self.keymap [pyglet.window.key.ENTER]: # Else if ENTER hit
216 self.scoreboard.reset () # Reset score
217 elif self.keymap [pyglet.window.key.ESCAPE]: # Else if ESC hit
218 self.exit () # End game
219

220 else: # Else, so if in active state
221 for attribute in self.attributes: # Compute predicted values
222 attribute.predict ()
223

224 for attribute in self.attributes: # Correct values for bouncing and scoring
225 attribute.interact ()
226

227 for attribute in self.attributes: # Commit them to pyglet for display
228 attribute.commit ()
229

230 def scored (self, playerIndex): # Player has scored
231 self.scoreboard.increment (playerIndex) # Increment player’s points
232 self.serviceIndex = 1 - playerIndex # Grant service to the unlucky player
233

234 for paddle in self.paddles: # Put paddles in rest position
235 paddle.reset ()
236

237 self.ball.reset () # Put ball in rest position
238 self.pause = True # Wait for next round
239

240 def draw (self):
241 self.window.clear ()
242 self.batch.draw () # All attributes added their graphical representation to the batch
243

244 def resize (self, width, height):
245 glViewport (0, 0, width, height) # Tell openGL window size
246

247 glMatrixMode (GL_PROJECTION) # Work with projecten matrix
248 glLoadIdentity () # Start with identity matrix
249 glOrtho (0, orthoWidth, 0, orthoHeight, -1, 1) # Adapt it to orthographic projection
250

251 glMatrixMode (GL_MODELVIEW) # Work with model matrix
252 glLoadIdentity () # No transforms
253

254 return pyglet.event.EVENT_HANDLED # Block default event handler
255

256 game = Game () # Create and run game

Listing 5.2: pong/pong.py

	Objects
	Introduction
	Your first program
	Specifying your own classes
	Indentation, capitals and the use of _

	Encapsulation
	Interfaces
	Modules
	Polymorphism

	A pinch of functional programming
	List comprehensions
	Transforming all elements of a list
	Selecting certain elements from a list
	Computing sum from a list
	Free functions and lambda expressions

	Inheritance
	Implementation inheritance
	Interface inheritance
	Inheriting from library classes

	Objects and the real world
	Domain Modeling
	Pong

