Coverage for pygeodesy/ellipsoids.py: 97%

750 statements  

« prev     ^ index     » next       coverage.py v7.6.0, created at 2024-08-02 18:24 -0400

1 

2# -*- coding: utf-8 -*- 

3 

4u'''Ellipsoidal and spherical earth models. 

5 

6Classes L{a_f2Tuple}, L{Ellipsoid} and L{Ellipsoid2}, an L{Ellipsoids} registry and 

72 dozen functions to convert I{equatorial} radius, I{polar} radius, I{eccentricities}, 

8I{flattenings} and I{inverse flattening}. 

9 

10See module L{datums} for L{Datum} and L{Transform} information and other details. 

11 

12Following is the list of predefined L{Ellipsoid}s, all instantiated lazily. 

13 

14@var Ellipsoids.Airy1830: Ellipsoid(name='Airy1830', a=6377563.396, f=0.00334085, f_=299.3249646, b=6356256.90923729) 

15@var Ellipsoids.AiryModified: Ellipsoid(name='AiryModified', a=6377340.189, f=0.00334085, f_=299.3249646, b=6356034.44793853) 

16@var Ellipsoids.ATS1977: Ellipsoid(name='ATS1977', a=6378135, f=0.00335281, f_=298.257, b=6356750.30492159) 

17@var Ellipsoids.Australia1966: Ellipsoid(name='Australia1966', a=6378160, f=0.00335289, f_=298.25, b=6356774.71919531) 

18@var Ellipsoids.Bessel1841: Ellipsoid(name='Bessel1841', a=6377397.155, f=0.00334277, f_=299.1528128, b=6356078.962818) 

19@var Ellipsoids.BesselModified: Ellipsoid(name='BesselModified', a=6377492.018, f=0.00334277, f_=299.1528128, b=6356173.5087127) 

20@var Ellipsoids.CGCS2000: Ellipsoid(name='CGCS2000', a=6378137, f=0.00335281, f_=298.2572221, b=6356752.31414036) 

21@var Ellipsoids.Clarke1866: Ellipsoid(name='Clarke1866', a=6378206.4, f=0.00339008, f_=294.97869821, b=6356583.8) 

22@var Ellipsoids.Clarke1880: Ellipsoid(name='Clarke1880', a=6378249.145, f=0.00340756, f_=293.465, b=6356514.86954978) 

23@var Ellipsoids.Clarke1880IGN: Ellipsoid(name='Clarke1880IGN', a=6378249.2, f=0.00340755, f_=293.46602129, b=6356515) 

24@var Ellipsoids.Clarke1880Mod: Ellipsoid(name='Clarke1880Mod', a=6378249.145, f=0.00340755, f_=293.46630766, b=6356514.96639549) 

25@var Ellipsoids.CPM1799: Ellipsoid(name='CPM1799', a=6375738.7, f=0.00299052, f_=334.39, b=6356671.92557493) 

26@var Ellipsoids.Delambre1810: Ellipsoid(name='Delambre1810', a=6376428, f=0.00321027, f_=311.5, b=6355957.92616372) 

27@var Ellipsoids.Engelis1985: Ellipsoid(name='Engelis1985', a=6378136.05, f=0.00335282, f_=298.2566, b=6356751.32272154) 

28@var Ellipsoids.Everest1969: Ellipsoid(name='Everest1969', a=6377295.664, f=0.00332445, f_=300.8017, b=6356094.667915) 

29@var Ellipsoids.Everest1975: Ellipsoid(name='Everest1975', a=6377299.151, f=0.00332445, f_=300.8017255, b=6356098.14512013) 

30@var Ellipsoids.Fisher1968: Ellipsoid(name='Fisher1968', a=6378150, f=0.00335233, f_=298.3, b=6356768.33724438) 

31@var Ellipsoids.GEM10C: Ellipsoid(name='GEM10C', a=6378137, f=0.00335281, f_=298.2572236, b=6356752.31424783) 

32@var Ellipsoids.GPES: Ellipsoid(name='GPES', a=6378135, f=0, f_=0, b=6378135) 

33@var Ellipsoids.GRS67: Ellipsoid(name='GRS67', a=6378160, f=0.00335292, f_=298.24716743, b=6356774.51609071) 

34@var Ellipsoids.GRS80: Ellipsoid(name='GRS80', a=6378137, f=0.00335281, f_=298.2572221, b=6356752.31414035) 

35@var Ellipsoids.Helmert1906: Ellipsoid(name='Helmert1906', a=6378200, f=0.00335233, f_=298.3, b=6356818.16962789) 

36@var Ellipsoids.IAU76: Ellipsoid(name='IAU76', a=6378140, f=0.00335281, f_=298.257, b=6356755.28815753) 

37@var Ellipsoids.IERS1989: Ellipsoid(name='IERS1989', a=6378136, f=0.00335281, f_=298.257, b=6356751.30156878) 

38@var Ellipsoids.IERS1992TOPEX: Ellipsoid(name='IERS1992TOPEX', a=6378136.3, f=0.00335281, f_=298.25722356, b=6356751.61659215) 

39@var Ellipsoids.IERS2003: Ellipsoid(name='IERS2003', a=6378136.6, f=0.00335282, f_=298.25642, b=6356751.85797165) 

40@var Ellipsoids.Intl1924: Ellipsoid(name='Intl1924', a=6378388, f=0.003367, f_=297, b=6356911.94612795) 

41@var Ellipsoids.Intl1967: Ellipsoid(name='Intl1967', a=6378157.5, f=0.0033529, f_=298.24961539, b=6356772.2) 

42@var Ellipsoids.Krassovski1940: Ellipsoid(name='Krassovski1940', a=6378245, f=0.00335233, f_=298.3, b=6356863.01877305) 

43@var Ellipsoids.Krassowsky1940: Ellipsoid(name='Krassowsky1940', a=6378245, f=0.00335233, f_=298.3, b=6356863.01877305) 

44@var Ellipsoids.Maupertuis1738: Ellipsoid(name='Maupertuis1738', a=6397300, f=0.0052356, f_=191, b=6363806.28272251) 

45@var Ellipsoids.Mercury1960: Ellipsoid(name='Mercury1960', a=6378166, f=0.00335233, f_=298.3, b=6356784.28360711) 

46@var Ellipsoids.Mercury1968Mod: Ellipsoid(name='Mercury1968Mod', a=6378150, f=0.00335233, f_=298.3, b=6356768.33724438) 

47@var Ellipsoids.NWL1965: Ellipsoid(name='NWL1965', a=6378145, f=0.00335289, f_=298.25, b=6356759.76948868) 

48@var Ellipsoids.OSU86F: Ellipsoid(name='OSU86F', a=6378136.2, f=0.00335281, f_=298.2572236, b=6356751.51693008) 

49@var Ellipsoids.OSU91A: Ellipsoid(name='OSU91A', a=6378136.3, f=0.00335281, f_=298.2572236, b=6356751.6165948) 

50@var Ellipsoids.Plessis1817: Ellipsoid(name='Plessis1817', a=6376523, f=0.00324002, f_=308.64, b=6355862.93325557) 

51@var Ellipsoids.PZ90: Ellipsoid(name='PZ90', a=6378136, f=0.0033528, f_=298.2578393, b=6356751.36174571) 

52@var Ellipsoids.SGS85: Ellipsoid(name='SGS85', a=6378136, f=0.00335281, f_=298.257, b=6356751.30156878) 

53@var Ellipsoids.SoAmerican1969: Ellipsoid(name='SoAmerican1969', a=6378160, f=0.00335289, f_=298.25, b=6356774.71919531) 

54@var Ellipsoids.Sphere: Ellipsoid(name='Sphere', a=6371008.771415, f=0, f_=0, b=6371008.771415) 

55@var Ellipsoids.SphereAuthalic: Ellipsoid(name='SphereAuthalic', a=6371000, f=0, f_=0, b=6371000) 

56@var Ellipsoids.SpherePopular: Ellipsoid(name='SpherePopular', a=6378137, f=0, f_=0, b=6378137) 

57@var Ellipsoids.Struve1860: Ellipsoid(name='Struve1860', a=6378298.3, f=0.00339294, f_=294.73, b=6356657.14266956) 

58@var Ellipsoids.WGS60: Ellipsoid(name='WGS60', a=6378165, f=0.00335233, f_=298.3, b=6356783.28695944) 

59@var Ellipsoids.WGS66: Ellipsoid(name='WGS66', a=6378145, f=0.00335289, f_=298.25, b=6356759.76948868) 

60@var Ellipsoids.WGS72: Ellipsoid(name='WGS72', a=6378135, f=0.00335278, f_=298.26, b=6356750.52001609) 

61@var Ellipsoids.WGS84: Ellipsoid(name='WGS84', a=6378137, f=0.00335281, f_=298.25722356, b=6356752.31424518) 

62@var Ellipsoids.WGS84_NGS: Ellipsoid(name='WGS84_NGS', a=6378137, f=0.00335281, f_=298.2572221, b=6356752.31414035) 

63''' 

64# make sure int/int division yields float quotient, see .basics 

65from __future__ import division as _; del _ # PYCHOK semicolon 

66 

67from pygeodesy.basics import copysign0, isbool, isint 

68from pygeodesy.constants import EPS, EPS0, EPS02, EPS1, INF, NINF, PI4, PI_2, PI_3, R_M, R_MA, R_FM, \ 

69 _EPSqrt, _EPStol as _TOL, _floatuple as _T, _isfinite, _SQRT2_2, \ 

70 _0_0s, _0_0, _0_5, _1_0, _1_EPS, _2_0, _4_0, _90_0, \ 

71 _0_25, _3_0 # PYCHOK used! 

72from pygeodesy.errors import _AssertionError, IntersectionError, _ValueError, _xattr, _xkwds_not 

73from pygeodesy.fmath import cbrt, cbrt2, fdot, Fhorner, fpowers, hypot, hypot_, \ 

74 hypot1, hypot2, sqrt3, Fsum 

75# from pygeodesy.fsums import Fsum # from .fmath 

76from pygeodesy.interns import NN, _a_, _Airy1830_, _AiryModified_, _b_, _Bessel1841_, _beta_, \ 

77 _Clarke1866_, _Clarke1880IGN_, _DOT_, _f_, _GRS80_, _height_, \ 

78 _Intl1924_, _incompatible_, _invalid_, _Krassovski1940_, \ 

79 _Krassowsky1940_, _lat_, _meridional_, _negative_, _not_finite_, \ 

80 _prime_vertical_, _radius_, _Sphere_, _SPACE_, _vs_, _WGS72_, _WGS84_ 

81# from pygeodesy.lazily import _ALL_LAZY, _ALL_MODS as _MODS # from .named 

82from pygeodesy.named import _lazyNamedEnumItem as _lazy, _name__, _NamedEnum, \ 

83 _NamedEnumItem, _NamedTuple, _Pass, _ALL_LAZY, _MODS 

84from pygeodesy.namedTuples import Distance2Tuple, Vector3Tuple, Vector4Tuple 

85from pygeodesy.props import deprecated_Property_RO, Property_RO, property_doc_, \ 

86 deprecated_property_RO, property_RO, property_ROver 

87from pygeodesy.streprs import Fmt, fstr, instr, strs, unstr 

88# from pygeodesy.triaxials import _hartzell3 # _MODS 

89from pygeodesy.units import Bearing_, Distance, Float, Float_, Height, Lamd, Lat, Meter, \ 

90 Meter2, Meter3, Phi, Phid, Radius, Radius_, Scalar 

91from pygeodesy.utily import atan1, atan1d, atan2b, degrees90, m2radians, radians2m, sincos2d 

92 

93from math import asinh, atan, atanh, cos, degrees, exp, fabs, radians, sin, sinh, sqrt, tan 

94 

95__all__ = _ALL_LAZY.ellipsoids 

96__version__ = '24.07.25' 

97 

98_f_0_0 = Float(f =_0_0) # zero flattening 

99_f__0_0 = Float(f_=_0_0) # zero inverse flattening 

100# see U{WGS84_f<https://GeographicLib.SourceForge.io/C++/doc/classGeographicLib_1_1Constants.html>} 

101_f__WGS84 = Float(f_=_1_0 / (1000000000 / 298257223563)) # 298.25722356299997 vs 298.257223563 

102 

103 

104def _aux(lat, inverse, auxLat, clip=90): 

105 '''Return a named auxiliary latitude in C{degrees}. 

106 ''' 

107 return Lat(lat, clip=clip, name=_lat_ if inverse else auxLat.__name__) 

108 

109 

110def _s2_c2(phi): 

111 '''(INTERNAL) Return 2-tuple C{(sin(B{phi})**2, cos(B{phi})**2)}. 

112 ''' 

113 if phi: 

114 s2 = sin(phi)**2 

115 if s2 > EPS: 

116 c2 = _1_0 - s2 

117 if c2 > EPS: 

118 if c2 < EPS1: 

119 return s2, c2 

120 else: 

121 return _1_0, _0_0 # phi == PI_2 

122 return _0_0, _1_0 # phi == 0 

123 

124 

125class a_f2Tuple(_NamedTuple): 

126 '''2-Tuple C{(a, f)} specifying an ellipsoid by I{equatorial} 

127 radius C{a} in C{meter} and scalar I{flattening} C{f}. 

128 

129 @see: Class L{Ellipsoid2}. 

130 ''' 

131 _Names_ = (_a_, _f_) # name 'f' not 'f_' 

132 _Units_ = (_Pass, _Pass) 

133 

134 def __new__(cls, a, f, **name): 

135 '''New L{a_f2Tuple} ellipsoid specification. 

136 

137 @arg a: Equatorial radius (C{scalar} > 0). 

138 @arg f: Flattening (C{scalar} < 1, negative for I{prolate}). 

139 @kwarg name: Optional C{B{name}=NN} (C{str}). 

140 

141 @return: An L{a_f2Tuple}C{(a, f)} instance. 

142 

143 @raise UnitError: Invalid B{C{a}} or B{C{f}}. 

144 

145 @note: C{abs(B{f}) < EPS} is forced to C{B{f}=0}, I{spherical}. 

146 Negative C{B{f}} produces a I{prolate} ellipsoid. 

147 ''' 

148 a = Radius_(a=a) # low=EPS, high=None 

149 f = Float_( f=f, low=None, high=EPS1) 

150 if fabs(f) < EPS: # force spherical 

151 f = _f_0_0 

152 return _NamedTuple.__new__(cls, a, f, **name) 

153 

154 @Property_RO 

155 def b(self): 

156 '''Get the I{polar} radius (C{meter}), M{a * (1 - f)}. 

157 ''' 

158 return a_f2b(self.a, self.f) # PYCHOK .a and .f 

159 

160 def ellipsoid(self, **name): 

161 '''Return an L{Ellipsoid} for this 2-tuple C{(a, f)}. 

162 

163 @kwarg name: Optional C{B{name}=NN} (C{str}). 

164 

165 @raise NameError: A registered C{ellipsoid} with the 

166 same B{C{name}} already exists. 

167 ''' 

168 return Ellipsoid(self.a, f=self.f, name=self._name__(name)) # PYCHOK .a and .f 

169 

170 @Property_RO 

171 def f_(self): 

172 '''Get the I{inverse} flattening (C{scalar}), M{1 / f} == M{a / (a - b)}. 

173 ''' 

174 return f2f_(self.f) # PYCHOK .f 

175 

176 

177class Circle4Tuple(_NamedTuple): 

178 '''4-Tuple C{(radius, height, lat, beta)} of the C{radius} and C{height}, 

179 both conventionally in C{meter} of a parallel I{circle of latitude} at 

180 (geodetic) latitude C{lat} and the I{parametric (or reduced) auxiliary 

181 latitude} C{beta}, both in C{degrees90}. 

182 

183 The C{height} is the (signed) distance along the z-axis between the 

184 parallel and the equator. At near-polar C{lat}s, the C{radius} is C{0}, 

185 the C{height} is the ellipsoid's (signed) polar radius and C{beta} 

186 equals C{lat}. 

187 ''' 

188 _Names_ = (_radius_, _height_, _lat_, _beta_) 

189 _Units_ = ( Radius, Height, Lat, Lat) 

190 

191 

192class Curvature2Tuple(_NamedTuple): 

193 '''2-Tuple C{(meridional, prime_vertical)} of radii of curvature, both in 

194 C{meter}, conventionally. 

195 ''' 

196 _Names_ = (_meridional_, _prime_vertical_) 

197 _Units_ = ( Meter, Meter) 

198 

199 @property_RO 

200 def transverse(self): 

201 '''Get this I{prime_vertical}, aka I{transverse} radius of curvature. 

202 ''' 

203 return self.prime_vertical 

204 

205 

206class Ellipsoid(_NamedEnumItem): 

207 '''Ellipsoid with I{equatorial} and I{polar} radii, I{flattening}, I{inverse 

208 flattening} and other, often used, I{cached} attributes, supporting 

209 I{oblate} and I{prolate} ellipsoidal and I{spherical} earth models. 

210 ''' 

211 _a = 0 # equatorial radius, semi-axis (C{meter}) 

212 _b = 0 # polar radius, semi-axis (C{meter}): a * (f - 1) / f 

213 _f = 0 # (1st) flattening: (a - b) / a 

214 _f_ = 0 # inverse flattening: 1 / f = a / (a - b) 

215 

216 _geodsolve = NN # means, use PYGEODESY_GEODSOLVE 

217 _KsOrder = 8 # Krüger series order (4, 6 or 8) 

218 _rhumbsolve = NN # means, use PYGEODESY_RHUMBSOLVE 

219 

220 def __init__(self, a, b=None, f_=None, f=None, **name): 

221 '''New L{Ellipsoid} from the I{equatorial} radius I{and} either 

222 the I{polar} radius or I{inverse flattening} or I{flattening}. 

223 

224 @arg a: Equatorial radius, semi-axis (C{meter}). 

225 @arg b: Optional polar radius, semi-axis (C{meter}). 

226 @arg f_: Inverse flattening: M{a / (a - b)} (C{float} >>> 1.0). 

227 @arg f: Flattening: M{(a - b) / a} (C{scalar}, near zero for 

228 spherical). 

229 @kwarg name: Optional, unique C{B{name}=NN} (C{str}). 

230 

231 @raise NameError: Ellipsoid with the same B{C{name}} already exists. 

232 

233 @raise ValueError: Invalid B{C{a}}, B{C{b}}, B{C{f_}} or B{C{f}} or 

234 B{C{f_}} and B{C{f}} are incompatible. 

235 

236 @note: M{abs(f_) > 1 / EPS} or M{abs(1 / f_) < EPS} is forced 

237 to M{1 / f_ = 0}, spherical. 

238 ''' 

239 ff_ = f, f_ # assertion below 

240 n = _name__(**name) if name else NN 

241 try: 

242 a = Radius_(a=a) # low=EPS 

243 if not _isfinite(a): 

244 raise ValueError(_SPACE_(_a_, _not_finite_)) 

245 

246 if b: # not in (_0_0, None) 

247 b = Radius_(b=b) # low=EPS 

248 f = a_b2f(a, b) if f is None else Float(f=f) 

249 f_ = f2f_(f) if f_ is None else Float(f_=f_) 

250 elif f is not None: 

251 f = Float(f=f) 

252 b = a_f2b(a, f) 

253 f_ = f2f_(f) if f_ is None else Float(f_=f_) 

254 elif f_: 

255 f_ = Float(f_=f_) 

256 b = a_f_2b(a, f_) # a * (f_ - 1) / f_ 

257 f = f_2f(f_) 

258 else: # only a, spherical 

259 f_ = f = 0 

260 b = a # superfluous 

261 

262 if not f < _1_0: # sanity check, see .ecef.Ecef.__init__ 

263 raise ValueError(_SPACE_(_f_, _invalid_)) 

264 if not _isfinite(b): 

265 raise ValueError(_SPACE_(_b_, _not_finite_)) 

266 

267 if fabs(f) < EPS or a == b or not f_: # spherical 

268 b = a 

269 f = _f_0_0 

270 f_ = _f__0_0 

271 

272 except (TypeError, ValueError) as x: 

273 d = _xkwds_not(None, b=b, f_=f_, f=f) 

274 t = instr(self, a=a, name=n, **d) 

275 raise _ValueError(t, cause=x) 

276 

277 self._a = a 

278 self._b = b 

279 self._f = f 

280 self._f_ = f_ 

281 

282 self._register(Ellipsoids, n) 

283 

284 if f and f_: # see .test/testEllipsoidal.py 

285 d = dict(eps=_TOL) 

286 if None in ff_: # both f_ and f given 

287 d.update(Error=_ValueError, txt=_incompatible_) 

288 self._assert(_1_0 / f, f_=f_, **d) 

289 self._assert(_1_0 / f_, f =f, **d) 

290 self._assert(self.b2_a2, e21=self.e21, eps=EPS) 

291 

292 def __eq__(self, other): 

293 '''Compare this and an other ellipsoid. 

294 

295 @arg other: The other ellipsoid (L{Ellipsoid} or L{Ellipsoid2}). 

296 

297 @return: C{True} if equal, C{False} otherwise. 

298 ''' 

299 return self is other or (isinstance(other, Ellipsoid) and 

300 self.a == other.a and 

301 (self.f == other.f or self.b == other.b)) 

302 

303 def __hash__(self): 

304 return self._hash # memoized 

305 

306 @Property_RO 

307 def a(self): 

308 '''Get the I{equatorial} radius, semi-axis (C{meter}). 

309 ''' 

310 return self._a 

311 

312 equatoradius = a # = Requatorial 

313 

314 @Property_RO 

315 def a2(self): 

316 '''Get the I{equatorial} radius I{squared} (C{meter} I{squared}), M{a**2}. 

317 ''' 

318 return Meter2(a2=self.a**2) 

319 

320 @Property_RO 

321 def a2_(self): 

322 '''Get the inverse of the I{equatorial} radius I{squared} (C{meter} I{squared}), M{1 / a**2}. 

323 ''' 

324 return Float(a2_=_1_0 / self.a2) 

325 

326 @Property_RO 

327 def a_b(self): 

328 '''Get the ratio I{equatorial} over I{polar} radius (C{float}), M{a / b} == M{1 / (1 - f)}. 

329 ''' 

330 return Float(a_b=self.a / self.b if self.f else _1_0) 

331 

332 @Property_RO 

333 def a2_b(self): 

334 '''Get the I{polar} meridional (or polar) radius of curvature (C{meter}), M{a**2 / b}. 

335 

336 @see: U{Radii of Curvature 

337 <https://WikiPedia.org/wiki/Earth_radius#Radii_of_curvature>} 

338 and U{Moritz, H. (1980), Geodetic Reference System 1980 

339 <https://WikiPedia.org/wiki/Earth_radius#cite_note-Moritz-2>}. 

340 

341 @note: Symbol C{c} is used by IUGG and IERS for the U{polar radius of curvature 

342 <https://WikiPedia.org/wiki/Earth_radius#Radii_of_curvature>}, see L{c2} 

343 and L{R2} or L{Rauthalic}. 

344 ''' 

345 return Radius(a2_b=self.a2 / self.b if self.f else self.a) # = rocPolar 

346 

347 @Property_RO 

348 def a2_b2(self): 

349 '''Get the ratio I{equatorial} over I{polar} radius I{squared} (C{float}), 

350 M{(a / b)**2} == M{1 / (1 - e**2)} == M{1 / (1 - e2)} == M{1 / e21}. 

351 ''' 

352 return Float(a2_b2=self.a_b**2 if self.f else _1_0) 

353 

354 @Property_RO 

355 def a_f(self): 

356 '''Get the I{equatorial} radius and I{flattening} (L{a_f2Tuple}), see method C{toEllipsoid2}. 

357 ''' 

358 return a_f2Tuple(self.a, self.f, name=self.name) 

359 

360 @Property_RO 

361 def A(self): 

362 '''Get the UTM I{meridional (or rectifying)} radius (C{meter}). 

363 

364 @see: I{Meridian arc unit} U{Q<https://StudyLib.net/doc/7443565/>}. 

365 ''' 

366 A, n = self.a, self.n 

367 if n: 

368 d = (n + _1_0) * 1048576 / A 

369 if d: # use 6 n**2 terms, half-way between the _KsOrder's 4, 6, 8 

370 # <https://GeographicLib.SourceForge.io/C++/doc/tmseries30.html> 

371 # <https://GeographicLib.SourceForge.io/C++/doc/transversemercator.html> and 

372 # <https://www.MyGeodesy.id.AU/documents/Karney-Krueger%20equations.pdf> (3) 

373 # A *= fhorner(n**2, 1048576, 262144, 16384, 4096, 1600, 784, 441) / 1048576) / (1 + n) 

374 A = Radius(A=Fhorner(n**2, 1048576, 262144, 16384, 4096, 1600, 784, 441).fover(d)) 

375 return A 

376 

377 @Property_RO 

378 def _albersCyl(self): 

379 '''(INTERNAL) Helper for C{auxAuthalic}. 

380 ''' 

381 return _MODS.albers.AlbersEqualAreaCylindrical(datum=self, name=self.name) 

382 

383 @Property_RO 

384 def AlphaKs(self): 

385 '''Get the I{Krüger} U{Alpha series coefficients<https://GeographicLib.SourceForge.io/C++/doc/tmseries30.html>} (C{KsOrder}C{-tuple}). 

386 ''' 

387 return self._Kseries( # XXX int/int quotients may require from __future__ import division as _; del _ # PYCHOK semicolon 

388 # n n**2 n**3 n**4 n**5 n**6 n**7 n**8 

389 _T(1/2, -2/3, 5/16, 41/180, -127/288, 7891/37800, 72161/387072, -18975107/50803200), 

390 _T(13/48, -3/5, 557/1440, 281/630, -1983433/1935360, 13769/28800, 148003883/174182400), # PYCHOK unaligned 

391 _T(61/240, -103/140, 15061/26880, 167603/181440, -67102379/29030400, 79682431/79833600), # PYCHOK unaligned 

392 _T(49561/161280, -179/168, 6601661/7257600, 97445/49896, -40176129013/7664025600), # PYCHOK unaligned 

393 _T(34729/80640, -3418889/1995840, 14644087/9123840, 2605413599/622702080), # PYCHOK unaligned 

394 _T(212378941/319334400, -30705481/10378368, 175214326799/58118860800), # PYCHOK unaligned 

395 _T(1522256789/1383782400, -16759934899/3113510400), # PYCHOK unaligned 

396 _T(1424729850961/743921418240)) # PYCHOK unaligned 

397 

398 @Property_RO 

399 def area(self): 

400 '''Get the ellipsoid's surface area (C{meter} I{squared}), M{4 * PI * c2}. 

401 

402 @see: Properties L{areax}, L{c2} and L{R2} and functions 

403 L{ellipsoidalExact.areaOf} and L{ellipsoidalKarney.areaOf}. 

404 ''' 

405 return Meter2(area=self.c2 * PI4) 

406 

407 @Property_RO 

408 def areax(self): 

409 '''Get the ellipsoid's surface area (C{meter} I{squared}), M{4 * PI * c2x}, more 

410 accurate for very I{oblate} ellipsoids. 

411 

412 @see: Properties L{area}, L{c2x} and L{R2x}, class L{GeodesicExact} and 

413 functions L{ellipsoidalExact.areaOf} and L{ellipsoidalKarney.areaOf}. 

414 ''' 

415 return Meter2(areax=self.c2x * PI4) 

416 

417 def _assert(self, val, eps=_TOL, f0=_0_0, Error=_AssertionError, txt=NN, **name_value): 

418 '''(INTERNAL) Assert a C{name=value} vs C{val}. 

419 ''' 

420 for n, v in name_value.items(): 

421 if fabs(v - val) > eps: # PYCHOK no cover 

422 t = (v, _vs_, val) 

423 t = _SPACE_.join(strs(t, prec=12, fmt=Fmt.g)) 

424 t = Fmt.EQUAL(self._DOT_(n), t) 

425 raise Error(t, txt=txt or Fmt.exceeds_eps(eps)) 

426 return Float(v if self.f else f0, name=n) 

427 raise Error(unstr(self._DOT_(self._assert.__name__), val, 

428 eps=eps, f0=f0, **name_value)) 

429 

430 def auxAuthalic(self, lat, inverse=False): 

431 '''Compute the I{authalic} auxiliary latitude or the I{inverse} thereof. 

432 

433 @arg lat: The geodetic (or I{authalic}) latitude (C{degrees90}). 

434 @kwarg inverse: If C{True}, B{C{lat}} is the I{authalic} and 

435 return the geodetic latitude (C{bool}). 

436 

437 @return: The I{authalic} (or geodetic) latitude in C{degrees90}. 

438 

439 @see: U{Inverse-/AuthalicLatitude<https://GeographicLib.SourceForge.io/ 

440 C++/doc/classGeographicLib_1_1Ellipsoid.html>}, U{Authalic latitude 

441 <https://WikiPedia.org/wiki/Latitude#Authalic_latitude>}, and 

442 U{Snyder<https://Pubs.USGS.gov/pp/1395/report.pdf>}, p 16. 

443 ''' 

444 if self.f: 

445 f = self._albersCyl._tanf if inverse else self._albersCyl._txif # PYCHOK attr 

446 lat = atan1d(f(tan(Phid(lat)))) # PYCHOK attr 

447 return _aux(lat, inverse, Ellipsoid.auxAuthalic) 

448 

449 def auxConformal(self, lat, inverse=False): 

450 '''Compute the I{conformal} auxiliary latitude or the I{inverse} thereof. 

451 

452 @arg lat: The geodetic (or I{conformal}) latitude (C{degrees90}). 

453 @kwarg inverse: If C{True}, B{C{lat}} is the I{conformal} and 

454 return the geodetic latitude (C{bool}). 

455 

456 @return: The I{conformal} (or geodetic) latitude in C{degrees90}. 

457 

458 @see: U{Inverse-/ConformalLatitude<https://GeographicLib.SourceForge.io/ 

459 C++/doc/classGeographicLib_1_1Ellipsoid.html>}, U{Conformal latitude 

460 <https://WikiPedia.org/wiki/Latitude#Conformal_latitude>}, and 

461 U{Snyder<https://Pubs.USGS.gov/pp/1395/report.pdf>}, pp 15-16. 

462 ''' 

463 if self.f: 

464 f = self.es_tauf if inverse else self.es_taupf # PYCHOK attr 

465 lat = atan1d(f(tan(Phid(lat)))) # PYCHOK attr 

466 return _aux(lat, inverse, Ellipsoid.auxConformal) 

467 

468 def auxGeocentric(self, lat, inverse=False): 

469 '''Compute the I{geocentric} auxiliary latitude or the I{inverse} thereof. 

470 

471 @arg lat: The geodetic (or I{geocentric}) latitude (C{degrees90}). 

472 @kwarg inverse: If C{True}, B{C{lat}} is the geocentric and 

473 return the I{geocentric} latitude (C{bool}). 

474 

475 @return: The I{geocentric} (or geodetic) latitude in C{degrees90}. 

476 

477 @see: U{Inverse-/GeocentricLatitude<https://GeographicLib.SourceForge.io/ 

478 C++/doc/classGeographicLib_1_1Ellipsoid.html>}, U{Geocentric latitude 

479 <https://WikiPedia.org/wiki/Latitude#Geocentric_latitude>}, and 

480 U{Snyder<https://Pubs.USGS.gov/pp/1395/report.pdf>}, pp 17-18. 

481 ''' 

482 if self.f: 

483 f = self.a2_b2 if inverse else self.b2_a2 

484 lat = atan1d(f * tan(Phid(lat))) 

485 return _aux(lat, inverse, Ellipsoid.auxGeocentric) 

486 

487 def auxIsometric(self, lat, inverse=False): 

488 '''Compute the I{isometric} auxiliary latitude or the I{inverse} thereof. 

489 

490 @arg lat: The geodetic (or I{isometric}) latitude (C{degrees}). 

491 @kwarg inverse: If C{True}, B{C{lat}} is the I{isometric} and 

492 return the geodetic latitude (C{bool}). 

493 

494 @return: The I{isometric} (or geodetic) latitude in C{degrees}. 

495 

496 @note: The I{isometric} latitude for geodetic C{+/-90} is far 

497 outside the C{[-90..+90]} range but the inverse 

498 thereof is the original geodetic latitude. 

499 

500 @see: U{Inverse-/IsometricLatitude<https://GeographicLib.SourceForge.io/ 

501 C++/doc/classGeographicLib_1_1Ellipsoid.html>}, U{Isometric latitude 

502 <https://WikiPedia.org/wiki/Latitude#Isometric_latitude>}, and 

503 U{Snyder<https://Pubs.USGS.gov/pp/1395/report.pdf>}, pp 15-16. 

504 ''' 

505 if self.f: 

506 r = Phid(lat, clip=0) 

507 lat = degrees(atan1(self.es_tauf(sinh(r))) if inverse else 

508 asinh(self.es_taupf(tan(r)))) 

509 # clip=0, since auxIsometric(+/-90) is far outside [-90..+90] 

510 return _aux(lat, inverse, Ellipsoid.auxIsometric, clip=0) 

511 

512 def auxParametric(self, lat, inverse=False): 

513 '''Compute the I{parametric} auxiliary latitude or the I{inverse} thereof. 

514 

515 @arg lat: The geodetic (or I{parametric}) latitude (C{degrees90}). 

516 @kwarg inverse: If C{True}, B{C{lat}} is the I{parametric} and 

517 return the geodetic latitude (C{bool}). 

518 

519 @return: The I{parametric} (or geodetic) latitude in C{degrees90}. 

520 

521 @see: U{Inverse-/ParametricLatitude<https://GeographicLib.SourceForge.io/ 

522 C++/doc/classGeographicLib_1_1Ellipsoid.html>}, U{Parametric latitude 

523 <https://WikiPedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude>}, 

524 and U{Snyder<https://Pubs.USGS.gov/pp/1395/report.pdf>}, p 18. 

525 ''' 

526 if self.f: 

527 lat = self._beta(Lat(lat), inverse=inverse) 

528 return _aux(lat, inverse, Ellipsoid.auxParametric) 

529 

530 auxReduced = auxParametric # synonymous 

531 

532 def auxRectifying(self, lat, inverse=False): 

533 '''Compute the I{rectifying} auxiliary latitude or the I{inverse} thereof. 

534 

535 @arg lat: The geodetic (or I{rectifying}) latitude (C{degrees90}). 

536 @kwarg inverse: If C{True}, B{C{lat}} is the I{rectifying} and 

537 return the geodetic latitude (C{bool}). 

538 

539 @return: The I{rectifying} (or geodetic) latitude in C{degrees90}. 

540 

541 @see: U{Inverse-/RectifyingLatitude<https://GeographicLib.SourceForge.io/ 

542 C++/doc/classGeographicLib_1_1Ellipsoid.html>}, U{Rectifying latitude 

543 <https://WikiPedia.org/wiki/Latitude#Rectifying_latitude>}, and 

544 U{Snyder<https://Pubs.USGS.gov/pp/1395/report.pdf>}, pp 16-17. 

545 ''' 

546 if self.f: 

547 lat = Lat(lat) 

548 if 0 < fabs(lat) < _90_0: 

549 if inverse: 

550 e = self._elliptic_e22 

551 d = degrees90(e.fEinv(e.cE * lat / _90_0)) 

552 lat = self.auxParametric(d, inverse=True) 

553 else: 

554 lat = _90_0 * self.Llat(lat) / self.L 

555 return _aux(lat, inverse, Ellipsoid.auxRectifying) 

556 

557 @Property_RO 

558 def b(self): 

559 '''Get the I{polar} radius, semi-axis (C{meter}). 

560 ''' 

561 return self._b 

562 

563 polaradius = b # = Rpolar 

564 

565 @Property_RO 

566 def b_a(self): 

567 '''Get the ratio I{polar} over I{equatorial} radius (C{float}), M{b / a == f1 == 1 - f}. 

568 

569 @see: Property L{f1}. 

570 ''' 

571 return self._assert(self.b / self.a, b_a=self.f1, f0=_1_0) 

572 

573 @Property_RO 

574 def b2(self): 

575 '''Get the I{polar} radius I{squared} (C{float}), M{b**2}. 

576 ''' 

577 return Meter2(b2=self.b**2) 

578 

579 @Property_RO 

580 def b2_a(self): 

581 '''Get the I{equatorial} meridional radius of curvature (C{meter}), M{b**2 / a}, see C{rocMeridional}C{(0)}. 

582 

583 @see: U{Radii of Curvature<https://WikiPedia.org/wiki/Earth_radius#Radii_of_curvature>}. 

584 ''' 

585 return Radius(b2_a=self.b2 / self.a if self.f else self.b) 

586 

587 @Property_RO 

588 def b2_a2(self): 

589 '''Get the ratio I{polar} over I{equatorial} radius I{squared} (C{float}), M{(b / a)**2} 

590 == M{(1 - f)**2} == M{1 - e**2} == C{e21}. 

591 ''' 

592 return Float(b2_a2=self.b_a**2 if self.f else _1_0) 

593 

594 def _beta(self, lat, inverse=False): 

595 '''(INTERNAL) Get the I{parametric (or reduced) auxiliary latitude} or inverse thereof. 

596 ''' 

597 s, c = sincos2d(lat) # like Karney's tand(lat) 

598 s *= self.a_b if inverse else self.b_a 

599 return atan1d(s, c) 

600 

601 @Property_RO 

602 def BetaKs(self): 

603 '''Get the I{Krüger} U{Beta series coefficients<https://GeographicLib.SourceForge.io/C++/doc/tmseries30.html>} (C{KsOrder}C{-tuple}). 

604 ''' 

605 return self._Kseries( # XXX int/int quotients may require from __future__ import division as _; del _ # PYCHOK semicolon 

606 # n n**2 n**3 n**4 n**5 n**6 n**7 n**8 

607 _T(1/2, -2/3, 37/96, -1/360, -81/512, 96199/604800, -5406467/38707200, 7944359/67737600), 

608 _T(1/48, 1/15, -437/1440, 46/105, -1118711/3870720, 51841/1209600, 24749483/348364800), # PYCHOK unaligned 

609 _T(17/480, -37/840, -209/4480, 5569/90720, 9261899/58060800, -6457463/17740800), # PYCHOK unaligned 

610 _T(4397/161280, -11/504, -830251/7257600, 466511/2494800, 324154477/7664025600), # PYCHOK unaligned 

611 _T(4583/161280, -108847/3991680, -8005831/63866880, 22894433/124540416), # PYCHOK unaligned 

612 _T(20648693/638668800, -16363163/518918400, -2204645983/12915302400), # PYCHOK unaligne 

613 _T(219941297/5535129600, -497323811/12454041600), # PYCHOK unaligned 

614 _T(191773887257/3719607091200)) # PYCHOK unaligned 

615 

616 @deprecated_Property_RO 

617 def c(self): # PYCHOK no cover 

618 '''DEPRECATED, use property C{R2} or C{Rauthalic}.''' 

619 return self.R2 

620 

621 @Property_RO 

622 def c2(self): 

623 '''Get the I{authalic} earth radius I{squared} (C{meter} I{squared}). 

624 

625 @see: Properties L{c2x}, L{area}, L{R2}, L{Rauthalic}, I{Karney's} U{equation (60) 

626 <https://Link.Springer.com/article/10.1007%2Fs00190-012-0578-z>} and C++ U{Ellipsoid.Area 

627 <https://GeographicLib.SourceForge.io/C++/doc/classGeographicLib_1_1Ellipsoid.html>}, 

628 U{Authalic radius<https://WikiPedia.org/wiki/Earth_radius#Authalic_radius>}, U{Surface area 

629 <https://WikiPedia.org/wiki/Ellipsoid>} and U{surface area 

630 <https://www.Numericana.com/answer/geometry.htm#oblate>}. 

631 ''' 

632 return self._c2f(False) 

633 

634 @Property_RO 

635 def c2x(self): 

636 '''Get the I{authalic} earth radius I{squared} (C{meter} I{squared}), more accurate for very I{oblate} 

637 ellipsoids. 

638 

639 @see: Properties L{c2}, L{areax}, L{R2x}, L{Rauthalicx}, class L{GeodesicExact} and I{Karney}'s comments at C++ 

640 attribute U{GeodesicExact._c2<https://GeographicLib.SourceForge.io/C++/doc/GeodesicExact_8cpp_source.html>}. 

641 ''' 

642 return self._c2f(True) 

643 

644 def _c2f(self, c2x): 

645 '''(INTERNAL) Helper for C{.c2} and C{.c2x}. 

646 ''' 

647 f, c2 = self.f, self.b2 

648 if f: 

649 e = self.e 

650 if e > EPS0: 

651 if f > 0: # .isOblate 

652 c2 *= (asinh(sqrt(self.e22abs)) if c2x else atanh(e)) / e 

653 elif f < 0: # .isProlate 

654 c2 *= atan1(e) / e # XXX asin? 

655 c2 = Meter2(c2=(self.a2 + c2) * _0_5) 

656 return c2 

657 

658 def circle4(self, lat): 

659 '''Get the equatorial or a parallel I{circle of latitude}. 

660 

661 @arg lat: Geodetic latitude (C{degrees90}, C{str}). 

662 

663 @return: A L{Circle4Tuple}C{(radius, height, lat, beta)} 

664 instance. 

665 

666 @raise RangeError: Latitude B{C{lat}} outside valid range and 

667 L{rangerrors<pygeodesy.rangerrors>} is C{True}. 

668 

669 @raise TypeError: Invalid B{C{lat}}. 

670 

671 @raise ValueError: Invalid B{C{lat}}. 

672 

673 @see: Definition of U{I{p} and I{z} under B{Parametric (or reduced) latitude} 

674 <https://WikiPedia.org/wiki/Latitude>}, I{Karney's} C++ U{CircleRadius and CircleHeight 

675 <https://GeographicLib.SourceForge.io/C++/doc/classGeographicLib_1_1Ellipsoid.html>} 

676 and method C{Rlat}. 

677 ''' 

678 lat = Lat(lat) 

679 if lat: 

680 b = lat 

681 if fabs(lat) < _90_0: 

682 if self.f: 

683 b = self._beta(lat) 

684 z, r = sincos2d(b) 

685 r *= self.a 

686 z *= self.b 

687 else: # near-polar 

688 r, z = _0_0, copysign0(self.b, lat) 

689 else: # equator 

690 r = self.a 

691 z = lat = b = _0_0 

692 return Circle4Tuple(r, z, lat, b) 

693 

694 def degrees2m(self, deg, lat=0): 

695 '''Convert an angle to the distance along the equator or 

696 along a parallel of (geodetic) latitude. 

697 

698 @arg deg: The angle (C{degrees}). 

699 @kwarg lat: Parallel latitude (C{degrees90}, C{str}). 

700 

701 @return: Distance (C{meter}, same units as the equatorial 

702 and polar radii) or C{0} for near-polar B{C{lat}}. 

703 

704 @raise RangeError: Latitude B{C{lat}} outside valid range and 

705 L{rangerrors<pygeodesy.rangerrors>} is C{True}. 

706 

707 @raise ValueError: Invalid B{C{deg}} or B{C{lat}}. 

708 ''' 

709 return self.radians2m(radians(deg), lat=lat) 

710 

711 def distance2(self, lat0, lon0, lat1, lon1): 

712 '''I{Approximate} the distance and (initial) bearing between 

713 two points based on the U{local, flat earth approximation 

714 <https://www.EdWilliams.org/avform.htm#flat>} aka U{Hubeny 

715 <https://www.OVG.AT/de/vgi/files/pdf/3781/>} formula. 

716 

717 I{Suitable only for distances of several hundred Km or Miles 

718 and only between points not near-polar}. 

719 

720 @arg lat0: From latitude (C{degrees}). 

721 @arg lon0: From longitude (C{degrees}). 

722 @arg lat1: To latitude (C{degrees}). 

723 @arg lon1: To longitude (C{degrees}). 

724 

725 @return: A L{Distance2Tuple}C{(distance, initial)} with C{distance} 

726 in same units as this ellipsoid's axes. 

727 

728 @note: The meridional and prime_vertical radii of curvature are 

729 taken and scaled I{at the initial latitude}, see C{roc2}. 

730 

731 @see: Function L{pygeodesy.flatLocal}/L{pygeodesy.hubeny}. 

732 ''' 

733 phi0 = Phid(lat0=lat0) 

734 m, n = self.roc2_(phi0, scaled=True) 

735 m *= Phid(lat1=lat1) - phi0 

736 n *= Lamd(lon1=lon1) - Lamd(lon0=lon0) 

737 return Distance2Tuple(hypot(m, n), atan2b(n, m)) 

738 

739 @Property_RO 

740 def e(self): 

741 '''Get the I{unsigned, (1st) eccentricity} (C{float}), M{sqrt(1 - (b / a)**2))}, see C{a_b2e}. 

742 

743 @see: Property L{es}. 

744 ''' 

745 return Float(e=sqrt(self.e2abs) if self.e2 else _0_0) 

746 

747 @deprecated_Property_RO 

748 def e12(self): # see property ._e12 

749 '''DEPRECATED, use property C{e21}.''' 

750 return self.e21 

751 

752# @Property_RO 

753# def _e12(self): # see property ._elliptic_e12 

754# # (INTERNAL) until e12 above can be replaced with e21. 

755# return self.e2 / (_1_0 - self.e2) # see I{Karney}'s Ellipsoid._e12 = e2 / (1 - e2) 

756 

757 @Property_RO 

758 def e2(self): 

759 '''Get the I{signed, (1st) eccentricity squared} (C{float}), M{f * (2 - f) 

760 == 1 - (b / a)**2}, see C{a_b2e2}. 

761 ''' 

762 return self._assert(a_b2e2(self.a, self.b), e2=f2e2(self.f)) 

763 

764 @Property_RO 

765 def e2abs(self): 

766 '''Get the I{unsigned, (1st) eccentricity squared} (C{float}). 

767 ''' 

768 return fabs(self.e2) 

769 

770 @Property_RO 

771 def e21(self): 

772 '''Get 1 less I{1st eccentricity squared} (C{float}), M{1 - e**2} 

773 == M{1 - e2} == M{(1 - f)**2} == M{b**2 / a**2}, see C{b2_a2}. 

774 ''' 

775 return self._assert((_1_0 - self.f)**2, e21=_1_0 - self.e2, f0=_1_0) 

776 

777# _e2m = e21 # see I{Karney}'s Ellipsoid._e2m = 1 - _e2 

778 _1_e21 = a2_b2 # == M{1 / e21} == M{1 / (1 - e**2)} 

779 

780 @Property_RO 

781 def e22(self): 

782 '''Get the I{signed, 2nd eccentricity squared} (C{float}), M{e2 / (1 - e2) 

783 == e2 / (1 - f)**2 == (a / b)**2 - 1}, see C{a_b2e22}. 

784 ''' 

785 return self._assert(a_b2e22(self.a, self.b), e22=f2e22(self.f)) 

786 

787 @Property_RO 

788 def e22abs(self): 

789 '''Get the I{unsigned, 2nd eccentricity squared} (C{float}). 

790 ''' 

791 return fabs(self.e22) 

792 

793 @Property_RO 

794 def e32(self): 

795 '''Get the I{signed, 3rd eccentricity squared} (C{float}), M{e2 / (2 - e2) 

796 == (a**2 - b**2) / (a**2 + b**2)}, see C{a_b2e32}. 

797 ''' 

798 return self._assert(a_b2e32(self.a, self.b), e32=f2e32(self.f)) 

799 

800 @Property_RO 

801 def e32abs(self): 

802 '''Get the I{unsigned, 3rd eccentricity squared} (C{float}). 

803 ''' 

804 return fabs(self.e32) 

805 

806 @Property_RO 

807 def e4(self): 

808 '''Get the I{unsignd, (1st) eccentricity} to 4th power (C{float}), M{e**4 == e2**2}. 

809 ''' 

810 return Float(e4=self.e2**2 if self.e2 else _0_0) 

811 

812 eccentricity = e # eccentricity 

813# eccentricity2 = e2 # eccentricity squared 

814 eccentricity1st2 = e2 # first eccentricity squared 

815 eccentricity2nd2 = e22 # second eccentricity squared 

816 eccentricity3rd2 = e32 # third eccentricity squared 

817 

818 def ecef(self, Ecef=None): 

819 '''Return U{ECEF<https://WikiPedia.org/wiki/ECEF>} converter. 

820 

821 @kwarg Ecef: ECEF class to use, default L{EcefKarney}. 

822 

823 @return: An ECEF converter for this C{ellipsoid}. 

824 

825 @raise TypeError: Invalid B{C{Ecef}}. 

826 

827 @see: Module L{pygeodesy.ecef}. 

828 ''' 

829 return _MODS.ecef._4Ecef(self, Ecef) 

830 

831 @Property_RO 

832 def _elliptic_e12(self): # see I{Karney}'s Ellipsoid._e12 

833 '''(INTERNAL) Elliptic helper for C{Rhumb}. 

834 ''' 

835 e12 = self.e2 / (self.e2 - _1_0) # NOT DEPRECATED .e12! 

836 return _MODS.elliptic.Elliptic(e12) 

837 

838 @Property_RO 

839 def _elliptic_e22(self): # aka ._elliptic_ep2 

840 '''(INTERNAL) Elliptic helper for C{auxRectifying}, C{L}, C{Llat}. 

841 ''' 

842 return _MODS.elliptic.Elliptic(-self.e22abs) # complex 

843 

844 equatoradius = a # Requatorial 

845 

846 def e2s(self, s): 

847 '''Compute norm M{sqrt(1 - e2 * s**2)}. 

848 

849 @arg s: Sine value (C{scalar}). 

850 

851 @return: Norm (C{float}). 

852 

853 @raise ValueError: Invalid B{C{s}}. 

854 ''' 

855 return sqrt(self.e2s2(s)) if self.e2 else _1_0 

856 

857 def e2s2(self, s): 

858 '''Compute M{1 - e2 * s**2}. 

859 

860 @arg s: Sine value (C{scalar}). 

861 

862 @return: Result (C{float}). 

863 

864 @raise ValueError: Invalid B{C{s}}. 

865 ''' 

866 r = _1_0 

867 if self.e2: 

868 try: 

869 r -= self.e2 * Scalar(s=s)**2 

870 if r < 0: 

871 raise ValueError(_negative_) 

872 except (TypeError, ValueError) as x: 

873 t = self._DOT_(Ellipsoid.e2s2.__name__) 

874 raise _ValueError(t, s, cause=x) 

875 return r 

876 

877 @Property_RO 

878 def es(self): 

879 '''Get the I{signed (1st) eccentricity} (C{float}). 

880 

881 @see: Property L{e}. 

882 ''' 

883 # note, self.e is always non-negative 

884 return Float(es=copysign0(self.e, self.f)) # see .ups 

885 

886 def es_atanh(self, x): 

887 '''Compute M{es * atanh(es * x)} or M{-es * atan(es * x)} 

888 for I{oblate} respectively I{prolate} ellipsoids where 

889 I{es} is the I{signed} (1st) eccentricity. 

890 

891 @raise ValueError: Invalid B{C{x}}. 

892 

893 @see: Function U{Math::eatanhe<https://GeographicLib.SourceForge.io/ 

894 C++/doc/classGeographicLib_1_1Math.html>}. 

895 ''' 

896 return self._es_atanh(Scalar(x=x)) if self.f else _0_0 

897 

898 def _es_atanh(self, x): # see .albers._atanhee, .AuxLat._atanhee 

899 '''(INTERNAL) Helper for .es_atanh, ._es_taupf2 and ._exp_es_atanh. 

900 ''' 

901 es = self.es # signOf(es) == signOf(f) 

902 return es * (atanh(es * x) if es > 0 else # .isOblate 

903 (-atan(es * x) if es < 0 else # .isProlate 

904 _0_0)) # .isSpherical 

905 

906 @Property_RO 

907 def es_c(self): 

908 '''Get M{(1 - f) * exp(es_atanh(1))} (C{float}), M{b_a * exp(es_atanh(1))}. 

909 ''' 

910 return Float(es_c=(self._exp_es_atanh_1 * self.b_a) if self.f else _1_0) 

911 

912 def es_tauf(self, taup): 

913 '''Compute I{Karney}'s U{equations (19), (20) and (21) 

914 <https://ArXiv.org/abs/1002.1417>}. 

915 

916 @see: I{Karney}'s C++ method U{Math::tauf<https://GeographicLib. 

917 SourceForge.io/C++/doc/classGeographicLib_1_1Math.html>} and 

918 and I{Veness}' JavaScript method U{toLatLon<https://www. 

919 Movable-Type.co.UK/scripts/latlong-utm-mgrs.html>}. 

920 ''' 

921 t = Scalar(taup=taup) 

922 if self.f: # .isEllipsoidal 

923 a = fabs(t) 

924 T = t * (self._exp_es_atanh_1 if a > 70 else self._1_e21) 

925 if fabs(T * _EPSqrt) < _2_0: # handles +/- INF and NAN 

926 s = (a * _TOL) if a > _1_0 else _TOL 

927 for T, _, d in self._es_tauf3(t, T): # max 2 

928 if fabs(d) < s: 

929 break 

930 t = Scalar(tauf=T) 

931 return t 

932 

933 def _es_tauf3(self, taup, T, N=9): # in .utm.Utm._toLLEB 

934 '''(INTERNAL) Yield a 3-tuple C{(τi, iteration, delta)} for at most 

935 B{C{N}} Newton iterations, converging rapidly except when C{delta} 

936 toggles on +/-1.12e-16 or +/-4.47e-16, see C{.utm.Utm._toLLEB}. 

937 ''' 

938 e = self._1_e21 

939 _F2_ = Fsum(T).fsum2f_ # τ0 

940 _tf2 = self._es_taupf2 

941 for i in range(1, N + 1): 

942 a, h = _tf2(T) 

943 d = (taup - a) * (e + T**2) / (hypot1(a) * h) 

944 # = (taup - a) / hypot1(a) / ((e + T**2) / h) 

945 T, d = _F2_(d) # τi, (τi - τi-1) 

946 yield T, i, d 

947 

948 def es_taupf(self, tau): 

949 '''Compute I{Karney}'s U{equations (7), (8) and (9) 

950 <https://ArXiv.org/abs/1002.1417>}. 

951 

952 @see: I{Karney}'s C++ method U{Math::taupf<https://GeographicLib. 

953 SourceForge.io/C++/doc/classGeographicLib_1_1Math.html>}. 

954 ''' 

955 t = Scalar(tau=tau) 

956 if self.f: # .isEllipsoidal 

957 t, _ = self._es_taupf2(t) 

958 t = Scalar(taupf=t) 

959 return t 

960 

961 def _es_taupf2(self, tau): 

962 '''(INTERNAL) Return 2-tuple C{(es_taupf(tau), hypot1(tau))}. 

963 ''' 

964 if _isfinite(tau): 

965 h = hypot1(tau) 

966 s = sinh(self._es_atanh(tau / h)) 

967 a = hypot1(s) * tau - h * s 

968 else: 

969 a, h = tau, INF 

970 return a, h 

971 

972 @Property_RO 

973 def _exp_es_atanh_1(self): 

974 '''(INTERNAL) Helper for .es_c and .es_tauf. 

975 ''' 

976 return exp(self._es_atanh(_1_0)) if self.es else _1_0 

977 

978 @Property_RO 

979 def f(self): 

980 '''Get the I{flattening} (C{scalar}), M{(a - b) / a}, C{0} for spherical, negative for prolate. 

981 ''' 

982 return self._f 

983 

984 @Property_RO 

985 def f_(self): 

986 '''Get the I{inverse flattening} (C{scalar}), M{1 / f} == M{a / (a - b)}, C{0} for spherical, see C{a_b2f_}. 

987 ''' 

988 return self._f_ 

989 

990 @Property_RO 

991 def f1(self): 

992 '''Get the I{1 - flattening} (C{float}), M{f1 == 1 - f == b / a}. 

993 

994 @see: Property L{b_a}. 

995 ''' 

996 return Float(f1=_1_0 - self.f) 

997 

998 @Property_RO 

999 def f2(self): 

1000 '''Get the I{2nd flattening} (C{float}), M{(a - b) / b == f / (1 - f)}, C{0} for spherical, see C{a_b2f2}. 

1001 ''' 

1002 return self._assert(self.a_b - _1_0, f2=f2f2(self.f)) 

1003 

1004 @deprecated_Property_RO 

1005 def geodesic(self): 

1006 '''DEPRECATED, use property C{geodesicw}.''' 

1007 return self.geodesicw 

1008 

1009 def geodesic_(self, exact=True): 

1010 '''Get the an I{exact} C{Geodesic...} instance for this ellipsoid. 

1011 

1012 @kwarg exact: If C{bool} return L{GeodesicExact}C{(exact=B{exact}, ...)}, 

1013 otherwise a L{Geodesic}, L{GeodesicExact} or L{GeodesicSolve} 

1014 instance for I{this} ellipsoid. 

1015 

1016 @return: The C{exact} geodesic (C{Geodesic...}). 

1017 

1018 @raise TypeError: Invalid B{C{exact}}. 

1019 

1020 @raise ValueError: Incompatible B{C{exact}} ellipsoid. 

1021 ''' 

1022 if isbool(exact): # for consistenccy with C{.rhumb_} 

1023 g = _MODS.geodesicx.GeodesicExact(self, C4order=30 if exact else 24, 

1024 name=self.name) 

1025 else: 

1026 g = exact 

1027 E = _xattr(g, ellipsoid=None) 

1028 if not (E is self and isinstance(g, self._Geodesics)): 

1029 raise _ValueError(exact=g, ellipsoid=E, txt_not_=self.name) 

1030 return g 

1031 

1032 @property_ROver 

1033 def _Geodesics(self): 

1034 '''(INTERNAL) Get all C{Geodesic...} classes, I{once}. 

1035 ''' 

1036 t = (_MODS.geodesicx.GeodesicExact, 

1037 _MODS.geodsolve.GeodesicSolve) 

1038 try: 

1039 t += (_MODS.geodesicw.Geodesic, 

1040 _MODS.geodesicw._wrapped.Geodesic) 

1041 except ImportError: 

1042 pass 

1043 return t # overwrite property_ROver 

1044 

1045 @property_RO 

1046 def geodesicw(self): 

1047 '''Get this ellipsoid's I{wrapped} U{geodesicw.Geodesic 

1048 <https://GeographicLib.SourceForge.io/Python/doc/code.html>}, provided 

1049 I{Karney}'s U{geographiclib<https://PyPI.org/project/geographiclib>} 

1050 package is installed. 

1051 ''' 

1052 # if not self.isEllipsoidal: 

1053 # raise _IsnotError(_ellipsoidal_, ellipsoid=self) 

1054 return _MODS.geodesicw.Geodesic(self) 

1055 

1056 @property_RO 

1057 def geodesicx(self): 

1058 '''Get this ellipsoid's I{exact} L{GeodesicExact}. 

1059 ''' 

1060 # if not self.isEllipsoidal: 

1061 # raise _IsnotError(_ellipsoidal_, ellipsoid=self) 

1062 return _MODS.geodesicx.GeodesicExact(self, name=self.name) 

1063 

1064 @property 

1065 def geodsolve(self): 

1066 '''Get this ellipsoid's L{GeodesicSolve}, the I{wrapper} around utility 

1067 U{GeodSolve<https://GeographicLib.SourceForge.io/C++/doc/GeodSolve.1.html>}, 

1068 provided the path to the C{GeodSolve} executable is specified with env 

1069 variable C{PYGEODESY_GEODSOLVE} or re-/set with this property.. 

1070 ''' 

1071 # if not self.isEllipsoidal: 

1072 # raise _IsnotError(_ellipsoidal_, ellipsoid=self) 

1073 return _MODS.geodsolve.GeodesicSolve(self, path=self._geodsolve, name=self.name) 

1074 

1075 @geodsolve.setter # PYCHOK setter! 

1076 def geodsolve(self, path): 

1077 '''Re-/set the (fully qualified) path to the U{GeodSolve 

1078 <https://GeographicLib.SourceForge.io/C++/doc/GeodSolve.1.html>} executable, 

1079 overriding env variable C{PYGEODESY_GEODSOLVE} (C{str}). 

1080 ''' 

1081 self._geodsolve = path 

1082 

1083 def hartzell4(self, pov, los=None): 

1084 '''Compute the intersection of this ellipsoid's surface and a Line-Of-Sight 

1085 from a Point-Of-View in space. 

1086 

1087 @arg pov: Point-Of-View outside this ellipsoid (C{Cartesian}, L{Ecef9Tuple} 

1088 or L{Vector3d}). 

1089 @kwarg los: Line-Of-Sight, I{direction} to this ellipsoid (L{Vector3d}) or 

1090 C{None} to point to this ellipsoid's center. 

1091 

1092 @return: L{Vector4Tuple}C{(x, y, z, h)} with the cartesian coordinates C{x}, 

1093 C{y} and C{z} of the projection on or the intersection with this 

1094 ellipsoid and the I{distance} C{h} from B{C{pov}} to C{(x, y, z)} 

1095 along B{C{los}}, all in C{meter}, conventionally. 

1096 

1097 @raise IntersectionError: Null B{C{pov}} or B{C{los}} vector, or B{C{pov}} 

1098 is inside this ellipsoid or B{C{los}} points 

1099 outside this ellipsoid or points in an opposite 

1100 direction. 

1101 

1102 @raise TypeError: Invalid B{C{pov}} or B{C{los}}. 

1103 

1104 @see: U{I{Satellite Line-of-Sight Intersection with Earth}<https://StephenHartzell. 

1105 Medium.com/satellite-line-of-sight-intersection-with-earth-d786b4a6a9b6>} and 

1106 methods L{Ellipsoid.height4} and L{Triaxial.hartzell4}. 

1107 ''' 

1108 try: 

1109 v, d, _ = _MODS.triaxials._hartzell3(pov, los, self._triaxial) 

1110 except Exception as x: 

1111 raise IntersectionError(pov=pov, los=los, cause=x) 

1112 return Vector4Tuple(v.x, v.y, v.z, d, name__=self.hartzell4) 

1113 

1114 @Property_RO 

1115 def _hash(self): 

1116 return hash((self.a, self.f)) 

1117 

1118 def height4(self, xyz, normal=True): 

1119 '''Compute the projection on and the height of a cartesian above or below 

1120 this ellipsoid's surface. 

1121 

1122 @arg xyz: The cartesian (C{Cartesian}, L{Ecef9Tuple}, L{Vector3d}, 

1123 L{Vector3Tuple} or L{Vector4Tuple}). 

1124 @kwarg normal: If C{True}, the projection is perpendicular to (the nearest 

1125 point on) this ellipsoid's surface, otherwise the C{radial} 

1126 line to this ellipsoid's center (C{bool}). 

1127 

1128 @return: L{Vector4Tuple}C{(x, y, z, h)} with the cartesian coordinates C{x}, 

1129 C{y} and C{z} of the projection on and the height C{h} above or 

1130 below this ellipsoid's surface, all in C{meter}, conventionally. 

1131 

1132 @raise ValueError: Null B{C{xyz}}. 

1133 

1134 @raise TypeError: Non-cartesian B{C{xyz}}. 

1135 

1136 @see: U{Distance to<https://StackOverflow.com/questions/22959698/distance-from-given-point-to-given-ellipse>} 

1137 and U{intersection with<https://MathWorld.wolfram.com/Ellipse-LineIntersection.html>} an ellipse and 

1138 methods L{Ellipsoid.hartzell4} and L{Triaxial.height4}. 

1139 ''' 

1140 v = _MODS.vector3d._otherV3d(xyz=xyz) 

1141 r = v.length 

1142 

1143 a, b, i = self.a, self.b, None 

1144 if r < EPS0: # EPS 

1145 v = v.times(_0_0) 

1146 h = -a 

1147 

1148 elif self.isSpherical: 

1149 v = v.times(a / r) 

1150 h = r - a 

1151 

1152 elif normal: # perpendicular to ellipsoid 

1153 x, y = hypot(v.x, v.y), fabs(v.z) 

1154 if x < EPS0: # PYCHOK no cover 

1155 z = copysign0(b, v.z) 

1156 v = Vector3Tuple(v.x, v.y, z) 

1157 h = y - b # polar 

1158 elif y < EPS0: # PYCHOK no cover 

1159 t = a / r 

1160 v = v.times_(t, t, 0) # force z=0.0 

1161 h = x - a # equatorial 

1162 else: # normal in 1st quadrant 

1163 x, y, i = _plumbTo3(x, y, self) 

1164 t, v = v, v.times_(x, x, y) 

1165 h = t.minus(v).length 

1166 

1167 else: # radial to ellipsoid's center 

1168 h = hypot_(a * v.z, b * v.x, b * v.y) 

1169 t = (a * b / h) if h > EPS0 else _0_0 # EPS 

1170 v = v.times(t) 

1171 h = r * (_1_0 - t) 

1172 

1173 return Vector4Tuple(v.x, v.y, v.z, h, iteration=i, name__=self.height4) 

1174 

1175 def _hubeny_2(self, phi2, phi1, lam21, scaled=True, squared=True): 

1176 '''(INTERNAL) like function C{pygeodesy.flatLocal_}/C{pygeodesy.hubeny_}, 

1177 returning the I{angular} distance in C{radians squared} or C{radians} 

1178 ''' 

1179 m, n = self.roc2_((phi2 + phi1) * _0_5, scaled=scaled) 

1180 h, r = (hypot2, self.a2_) if squared else (hypot, _1_0 / self.a) 

1181 return h(m * (phi2 - phi1), n * lam21) * r 

1182 

1183 @Property_RO 

1184 def isEllipsoidal(self): 

1185 '''Is this model I{ellipsoidal} (C{bool})? 

1186 ''' 

1187 return self.f != 0 

1188 

1189 @Property_RO 

1190 def isOblate(self): 

1191 '''Is this ellipsoid I{oblate} (C{bool})? I{Prolate} or 

1192 spherical otherwise. 

1193 ''' 

1194 return self.f > 0 

1195 

1196 @Property_RO 

1197 def isProlate(self): 

1198 '''Is this ellipsoid I{prolate} (C{bool})? I{Oblate} or 

1199 spherical otherwise. 

1200 ''' 

1201 return self.f < 0 

1202 

1203 @Property_RO 

1204 def isSpherical(self): 

1205 '''Is this ellipsoid I{spherical} (C{bool})? 

1206 ''' 

1207 return self.f == 0 

1208 

1209 def _Kseries(self, *AB8Ks): 

1210 '''(INTERNAL) Compute the 4-, 6- or 8-th order I{Krüger} Alpha 

1211 or Beta series coefficients per I{Karney}'s U{equations (35) 

1212 and (36)<https://ArXiv.org/pdf/1002.1417v3.pdf>}. 

1213 

1214 @arg AB8Ks: 8-Tuple of 8-th order I{Krüger} Alpha or Beta series 

1215 coefficient tuples. 

1216 

1217 @return: I{Krüger} series coefficients (L{KsOrder}C{-tuple}). 

1218 

1219 @see: I{Karney}'s 30-th order U{TMseries30 

1220 <https://GeographicLib.SourceForge.io/C++/doc/tmseries30.html>}. 

1221 ''' 

1222 k = self.KsOrder 

1223 if self.n: 

1224 ns = fpowers(self.n, k) 

1225 ks = tuple(fdot(AB8Ks[i][:k-i], *ns[i:]) for i in range(k)) 

1226 else: 

1227 ks = _0_0s(k) 

1228 return ks 

1229 

1230 @property_doc_(''' the I{Krüger} series' order (C{int}), see properties C{AlphaKs}, C{BetaKs}.''') 

1231 def KsOrder(self): 

1232 '''Get the I{Krüger} series' order (C{int} 4, 6 or 8). 

1233 ''' 

1234 return self._KsOrder 

1235 

1236 @KsOrder.setter # PYCHOK setter! 

1237 def KsOrder(self, order): 

1238 '''Set the I{Krüger} series' order (C{int} 4, 6 or 8). 

1239 

1240 @raise ValueError: Invalid B{C{order}}. 

1241 ''' 

1242 if not (isint(order) and order in (4, 6, 8)): 

1243 raise _ValueError(order=order) 

1244 if self._KsOrder != order: 

1245 Ellipsoid.AlphaKs._update(self) 

1246 Ellipsoid.BetaKs._update(self) 

1247 self._KsOrder = order 

1248 

1249 @Property_RO 

1250 def L(self): 

1251 '''Get the I{quarter meridian} C{L}, aka the C{polar distance} 

1252 along a meridian between the equator and a pole (C{meter}), 

1253 M{b * Elliptic(-e2 / (1 - e2)).cE} or M{b * PI / 2}. 

1254 ''' 

1255 r = self._elliptic_e22.cE if self.f else PI_2 

1256 return Distance(L=self.b * r) 

1257 

1258 def Llat(self, lat): 

1259 '''Return the I{meridional length}, the distance along a meridian 

1260 between the equator and a (geodetic) latitude, see C{L}. 

1261 

1262 @arg lat: Geodetic latitude (C{degrees90}). 

1263 

1264 @return: The meridional length at B{C{lat}}, negative on southern 

1265 hemisphere (C{meter}). 

1266 ''' 

1267 r = self._elliptic_e22.fEd(self.auxParametric(lat)) if self.f else Phid(lat) 

1268 return Distance(Llat=self.b * r) 

1269 

1270 Lmeridian = Llat # meridional distance 

1271 

1272 @property_RO 

1273 def _Lpd(self): 

1274 '''Get the I{quarter meridian} per degree (C{meter}), M{self.L / 90}. 

1275 ''' 

1276 return Meter(_Lpd=self.L / _90_0) 

1277 

1278 @property_RO 

1279 def _Lpr(self): 

1280 '''Get the I{quarter meridian} per radian (C{meter}), M{self.L / PI_2}. 

1281 ''' 

1282 return Meter(_Lpr=self.L / PI_2) 

1283 

1284 @deprecated_Property_RO 

1285 def majoradius(self): # PYCHOK no cover 

1286 '''DEPRECATED, use property C{a} or C{Requatorial}.''' 

1287 return self.a 

1288 

1289 def m2degrees(self, distance, lat=0): 

1290 '''Convert a distance to an angle along the equator or along 

1291 a parallel of (geodetic) latitude. 

1292 

1293 @arg distance: Distance (C{meter}). 

1294 @kwarg lat: Parallel latitude (C{degrees90}, C{str}). 

1295 

1296 @return: Angle (C{degrees}) or C{INF} for near-polar B{C{lat}}. 

1297 

1298 @raise RangeError: Latitude B{C{lat}} outside valid range and 

1299 L{rangerrors<pygeodesy.rangerrors>} is C{True}. 

1300 

1301 @raise ValueError: Invalid B{C{distance}} or B{C{lat}}. 

1302 ''' 

1303 return degrees(self.m2radians(distance, lat=lat)) 

1304 

1305 def m2radians(self, distance, lat=0): 

1306 '''Convert a distance to an angle along the equator or 

1307 along a parallel of (geodetic) latitude. 

1308 

1309 @arg distance: Distance (C{meter}). 

1310 @kwarg lat: Parallel latitude (C{degrees90}, C{str}). 

1311 

1312 @return: Angle (C{radians}) or C{INF} for near-polar B{C{lat}}. 

1313 

1314 @raise RangeError: Latitude B{C{lat}} outside valid range and 

1315 L{rangerrors<pygeodesy.rangerrors>} is C{True}. 

1316 

1317 @raise ValueError: Invalid B{C{distance}} or B{C{lat}}. 

1318 ''' 

1319 r = self.circle4(lat).radius if lat else self.a 

1320 return m2radians(distance, radius=r, lat=0) 

1321 

1322 @deprecated_Property_RO 

1323 def minoradius(self): # PYCHOK no cover 

1324 '''DEPRECATED, use property C{b}, C{polaradius} or C{Rpolar}.''' 

1325 return self.b 

1326 

1327 @Property_RO 

1328 def n(self): 

1329 '''Get the I{3rd flattening} (C{float}), M{f / (2 - f) == (a - b) / (a + b)}, see C{a_b2n}. 

1330 ''' 

1331 return self._assert(a_b2n(self.a, self.b), n=f2n(self.f)) 

1332 

1333 flattening = f 

1334 flattening1st = f 

1335 flattening2nd = f2 

1336 flattening3rd = n 

1337 

1338 polaradius = b # Rpolar 

1339 

1340# @Property_RO 

1341# def Q(self): 

1342# '''Get the I{meridian arc unit} C{Q}, the mean, meridional length I{per radian} C({float}). 

1343# 

1344# @note: C{Q * PI / 2} ≈ C{L}, the I{quarter meridian}. 

1345# 

1346# @see: Property C{A} and U{Engsager, K., Poder, K.<https://StudyLib.net/doc/7443565/ 

1347# a-highly-accurate-world-wide-algorithm-for-the-transverse...>}. 

1348# ''' 

1349# n = self.n 

1350# d = (n + _1_0) / self.a 

1351# return Float(Q=Fhorner(n**2, _1_0, _0_25, _1_16th, _0_25).fover(d) if d else self.b) 

1352 

1353# # Moritz, H. <https://Geodesy.Geology.Ohio-State.EDU/course/refpapers/00740128.pdf> 

1354# # Q = (1 - 3/4 * e'2 + 45/64 * e'4 - 175/256 * e'6 + 11025/16384 * e'8) * rocPolar 

1355# # = (4 + e'2 * (-3 + e'2 * (45/16 + e'2 * (-175/64 + e'2 * 11025/4096)))) * rocPolar / 4 

1356# return Fhorner(self.e22, 4, -3, 45 / 16, -175 / 64, 11025 / 4096).fover(4 / self.rocPolar) 

1357 

1358 @deprecated_Property_RO 

1359 def quarteradius(self): # PYCHOK no cover 

1360 '''DEPRECATED, use property C{L} or method C{Llat}.''' 

1361 return self.L 

1362 

1363 @Property_RO 

1364 def R1(self): 

1365 '''Get the I{mean} earth radius per I{IUGG} (C{meter}), M{(2 * a + b) / 3 == a * (1 - f / 3)}. 

1366 

1367 @see: U{Earth radius<https://WikiPedia.org/wiki/Earth_radius>} 

1368 and method C{Rgeometric}. 

1369 ''' 

1370 r = Fsum(self.a, self.a, self.b).fover(_3_0) if self.f else self.a 

1371 return Radius(R1=r) 

1372 

1373 Rmean = R1 

1374 

1375 @Property_RO 

1376 def R2(self): 

1377 '''Get the I{authalic} earth radius (C{meter}), M{sqrt(c2)}. 

1378 

1379 @see: C{R2x}, C{c2}, C{area} and U{Earth radius 

1380 <https://WikiPedia.org/wiki/Earth_radius>}. 

1381 ''' 

1382 return Radius(R2=sqrt(self.c2) if self.f else self.a) 

1383 

1384 Rauthalic = R2 

1385 

1386# @Property_RO 

1387# def R2(self): 

1388# # Moritz, H. <https://Geodesy.Geology.Ohio-State.EDU/course/refpapers/00740128.pdf> 

1389# # R2 = (1 - 2/3 * e'2 + 26/45 * e'4 - 100/189 * e'6 + 7034/14175 * e'8) * rocPolar 

1390# # = (3 + e'2 * (-2 + e'2 * (26/15 + e'2 * (-100/63 + e'2 * 7034/4725)))) * rocPolar / 3 

1391# return Fhorner(self.e22, 3, -2, 26 / 15, -100 / 63, 7034 / 4725).fover(3 / self.rocPolar) 

1392 

1393 @Property_RO 

1394 def R2x(self): 

1395 '''Get the I{authalic} earth radius (C{meter}), M{sqrt(c2x)}. 

1396 

1397 @see: C{R2}, C{c2x} and C{areax}. 

1398 ''' 

1399 return Radius(R2x=sqrt(self.c2x) if self.f else self.a) 

1400 

1401 Rauthalicx = R2x 

1402 

1403 @Property_RO 

1404 def R3(self): 

1405 '''Get the I{volumetric} earth radius (C{meter}), M{(a * a * b)**(1/3)}. 

1406 

1407 @see: U{Earth radius<https://WikiPedia.org/wiki/Earth_radius>} and C{volume}. 

1408 ''' 

1409 r = (cbrt(self.b_a) * self.a) if self.f else self.a 

1410 return Radius(R3=r) 

1411 

1412 Rvolumetric = R3 

1413 

1414 def radians2m(self, rad, lat=0): 

1415 '''Convert an angle to the distance along the equator or along 

1416 a parallel of (geodetic) latitude. 

1417 

1418 @arg rad: The angle (C{radians}). 

1419 @kwarg lat: Parallel latitude (C{degrees90}, C{str}). 

1420 

1421 @return: Distance (C{meter}, same units as the equatorial 

1422 and polar radii) or C{0} for near-polar B{C{lat}}. 

1423 

1424 @raise RangeError: Latitude B{C{lat}} outside valid range and 

1425 L{rangerrors<pygeodesy.rangerrors>} is C{True}. 

1426 

1427 @raise ValueError: Invalid B{C{rad}} or B{C{lat}}. 

1428 ''' 

1429 r = self.circle4(lat).radius if lat else self.a 

1430 return radians2m(rad, radius=r, lat=0) 

1431 

1432 @Property_RO 

1433 def Rbiaxial(self): 

1434 '''Get the I{biaxial, quadratic} mean earth radius (C{meter}), M{sqrt((a**2 + b**2) / 2)}. 

1435 

1436 @see: C{Rtriaxial} 

1437 ''' 

1438 a, b = self.a, self.b 

1439 if b < a: 

1440 b = sqrt(_0_5 + self.b2_a2 * _0_5) * a 

1441 elif b > a: 

1442 b *= sqrt(_0_5 + self.a2_b2 * _0_5) 

1443 return Radius(Rbiaxial=b) 

1444 

1445 Requatorial = a # for consistent naming 

1446 

1447 def Rgeocentric(self, lat): 

1448 '''Compute the I{geocentric} earth radius of (geodetic) latitude. 

1449 

1450 @arg lat: Latitude (C{degrees90}). 

1451 

1452 @return: Geocentric earth radius (C{meter}). 

1453 

1454 @raise ValueError: Invalid B{C{lat}}. 

1455 

1456 @see: U{Geocentric Radius 

1457 <https://WikiPedia.org/wiki/Earth_radius#Geocentric_radius>} 

1458 ''' 

1459 r, a = self.a, Phid(lat) 

1460 if a and self.f: 

1461 if fabs(a) < PI_2: 

1462 s2, c2 = _s2_c2(a) 

1463 b2_a2_s2 = self.b2_a2 * s2 

1464 # R == sqrt((a2**2 * c2 + b2**2 * s2) / (a2 * c2 + b2 * s2)) 

1465 # == sqrt(a2**2 * (c2 + (b2 / a2)**2 * s2) / (a2 * (c2 + b2 / a2 * s2))) 

1466 # == sqrt(a2 * (c2 + (b2 / a2)**2 * s2) / (c2 + (b2 / a2) * s2)) 

1467 # == a * sqrt((c2 + b2_a2 * b2_a2 * s2) / (c2 + b2_a2 * s2)) 

1468 # == a * sqrt((c2 + b2_a2 * b2_a2_s2) / (c2 + b2_a2_s2)) 

1469 r *= sqrt((c2 + b2_a2_s2 * self.b2_a2) / (c2 + b2_a2_s2)) 

1470 else: 

1471 r = self.b 

1472 return Radius(Rgeocentric=r) 

1473 

1474 @Property_RO 

1475 def Rgeometric(self): 

1476 '''Get the I{geometric} mean earth radius (C{meter}), M{sqrt(a * b)}. 

1477 

1478 @see: C{R1}. 

1479 ''' 

1480 g = sqrt(self.a * self.b) if self.f else self.a 

1481 return Radius(Rgeometric=g) 

1482 

1483 def rhumb_(self, exact=True): 

1484 '''Get the an I{exact} C{Rhumb...} instance for this ellipsoid. 

1485 

1486 @kwarg exact: If C{bool} or C{None} return L{Rhumb}C{(exact=B{exact}, ...)}, 

1487 otherwise a L{Rhumb}, L{RhumbAux} or L{RhumbSolve} instance 

1488 for I{this} ellipsoid. 

1489 

1490 @return: The C{exact} rhumb (C{Rhumb...}). 

1491 

1492 @raise TypeError: Invalid B{C{exact}}. 

1493 

1494 @raise ValueError: Incompatible B{C{exact}} ellipsoid. 

1495 ''' 

1496 if isbool(exact): # use Rhumb for backward compatibility 

1497 r = _MODS.rhumb.ekx.Rhumb(self, exact=exact, name=self.name) 

1498 else: 

1499 r = exact 

1500 E = _xattr(r, ellipsoid=None) 

1501 if not (E is self and isinstance(r, self._Rhumbs)): 

1502 raise _ValueError(exact=r, ellipsosid=E, txt_not_=self.name) 

1503 return r 

1504 

1505 @property_RO 

1506 def rhumbaux(self): 

1507 '''Get this ellipsoid's I{Auxiliary} C{rhumb.RhumbAux}. 

1508 ''' 

1509 # if not self.isEllipsoidal: 

1510 # raise _IsnotError(_ellipsoidal_, ellipsoid=self) 

1511 return _MODS.rhumb.aux_.RhumbAux(self, name=self.name) 

1512 

1513 @property_RO 

1514 def rhumbekx(self): 

1515 '''Get this ellipsoid's I{Elliptic, Krüger} C{rhumb.Rhumb}. 

1516 ''' 

1517 # if not self.isEllipsoidal: 

1518 # raise _IsnotError(_ellipsoidal_, ellipsoid=self) 

1519 return _MODS.rhumb.ekx.Rhumb(self, name=self.name) 

1520 

1521 @property_ROver 

1522 def _Rhumbs(self): 

1523 '''(INTERNAL) Get all C{Rhumb...} classes, I{once}. 

1524 ''' 

1525 p = _MODS.rhumb 

1526 return (p.aux_.RhumbAux, # overwrite property_ROver 

1527 p.ekx.Rhumb, p.solve.RhumbSolve) 

1528 

1529 @property 

1530 def rhumbsolve(self): 

1531 '''Get this ellipsoid's L{RhumbSolve}, the I{wrapper} around utility 

1532 U{RhumbSolve<https://GeographicLib.SourceForge.io/C++/doc/GeodSolve.1.html>}, 

1533 provided the path to the C{RhumbSolve} executable is specified with env 

1534 variable C{PYGEODESY_RHUMBSOLVE} or re-/set with this property. 

1535 ''' 

1536 # if not self.isEllipsoidal: 

1537 # raise _IsnotError(_ellipsoidal_, ellipsoid=self) 

1538 return _MODS.rhumb.solve.RhumbSolve(self, path=self._rhumbsolve, name=self.name) 

1539 

1540 @rhumbsolve.setter # PYCHOK setter! 

1541 def rhumbsolve(self, path): 

1542 '''Re-/set the (fully qualified) path to the U{RhumbSolve 

1543 <https://GeographicLib.SourceForge.io/C++/doc/GeodSolve.1.html>} executable, 

1544 overriding env variable C{PYGEODESY_RHUMBSOLVE} (C{str}). 

1545 ''' 

1546 self._rhumbsolve = path 

1547 

1548 @deprecated_property_RO 

1549 def rhumbx(self): 

1550 '''DEPRECATED on 2023.11.28, use property C{rhumbekx}. ''' 

1551 return self.rhumbekx 

1552 

1553 def Rlat(self, lat): 

1554 '''I{Approximate} the earth radius of (geodetic) latitude. 

1555 

1556 @arg lat: Latitude (C{degrees90}). 

1557 

1558 @return: Approximate earth radius (C{meter}). 

1559 

1560 @raise RangeError: Latitude B{C{lat}} outside valid range and 

1561 L{rangerrors<pygeodesy.rangerrors>} is C{True}. 

1562 

1563 @raise TypeError: Invalid B{C{lat}}. 

1564 

1565 @raise ValueError: Invalid B{C{lat}}. 

1566 

1567 @note: C{Rlat(B{90})} equals C{Rpolar}. 

1568 

1569 @see: Method C{circle4}. 

1570 ''' 

1571 # r = a - (a - b) * |lat| / 90 

1572 r = self.a 

1573 if self.f and lat: # .isEllipsoidal 

1574 r -= (r - self.b) * fabs(Lat(lat)) / _90_0 

1575 r = Radius(Rlat=r) 

1576 return r 

1577 

1578 Rpolar = b # for consistent naming 

1579 

1580 def roc1_(self, sa, ca=None): 

1581 '''Compute the I{prime-vertical}, I{normal} radius of curvature 

1582 of (geodetic) latitude, I{unscaled}. 

1583 

1584 @arg sa: Sine of the latitude (C{float}, [-1.0..+1.0]). 

1585 @kwarg ca: Optional cosine of the latitude (C{float}, [-1.0..+1.0]) 

1586 to use an alternate formula. 

1587 

1588 @return: The prime-vertical radius of curvature (C{float}). 

1589 

1590 @note: The delta between both formulae with C{Ellipsoids.WGS84} 

1591 is less than 2 nanometer over the entire latitude range. 

1592 

1593 @see: Method L{roc2_} and class L{EcefYou}. 

1594 ''' 

1595 if not self.f: # .isSpherical 

1596 n = self.a 

1597 elif ca is None: 

1598 r = self.e2s2(sa) # see .roc2_ and _EcefBase._forward 

1599 n = sqrt(self.a2 / r) if r > EPS02 else _0_0 

1600 elif ca: # derived from EcefYou.forward 

1601 h = hypot(ca, self.b_a * sa) if sa else fabs(ca) 

1602 n = self.a / h 

1603 elif sa: 

1604 n = self.a2_b / fabs(sa) 

1605 else: 

1606 n = self.a 

1607 return n 

1608 

1609 def roc2(self, lat, scaled=False): 

1610 '''Compute the I{meridional} and I{prime-vertical}, I{normal} 

1611 radii of curvature of (geodetic) latitude. 

1612 

1613 @arg lat: Latitude (C{degrees90}). 

1614 @kwarg scaled: Scale prime_vertical by C{cos(radians(B{lat}))} (C{bool}). 

1615 

1616 @return: An L{Curvature2Tuple}C{(meridional, prime_vertical)} with 

1617 the radii of curvature. 

1618 

1619 @raise ValueError: Invalid B{C{lat}}. 

1620 

1621 @see: Methods L{roc2_} and L{roc1_}, U{Local, flat earth approximation 

1622 <https://www.EdWilliams.org/avform.htm#flat>} and meridional and 

1623 prime vertical U{Radii of Curvature<https://WikiPedia.org/wiki/ 

1624 Earth_radius#Radii_of_curvature>}. 

1625 ''' 

1626 return self.roc2_(Phid(lat), scaled=scaled) 

1627 

1628 def roc2_(self, phi, scaled=False): 

1629 '''Compute the I{meridional} and I{prime-vertical}, I{normal} radii of 

1630 curvature of (geodetic) latitude. 

1631 

1632 @arg phi: Latitude (C{radians}). 

1633 @kwarg scaled: Scale prime_vertical by C{cos(B{phi})} (C{bool}). 

1634 

1635 @return: An L{Curvature2Tuple}C{(meridional, prime_vertical)} with the 

1636 radii of curvature. 

1637 

1638 @raise ValueError: Invalid B{C{phi}}. 

1639 

1640 @see: Methods L{roc2} and L{roc1_}, property L{rocEquatorial2}, U{Local, 

1641 flat earth approximation<https://www.EdWilliams.org/avform.htm#flat>} 

1642 and the meridional and prime vertical U{Radii of Curvature 

1643 <https://WikiPedia.org/wiki/Earth_radius#Radii_of_curvature>}. 

1644 ''' 

1645 a = fabs(Phi(phi)) 

1646 if self.f: 

1647 r = self.e2s2(sin(a)) 

1648 if r > EPS02: 

1649 n = self.a / sqrt(r) 

1650 m = n * self.e21 / r 

1651 else: 

1652 m = n = _0_0 

1653 else: 

1654 m = n = self.a 

1655 if scaled and a: 

1656 n *= cos(a) if a < PI_2 else _0_0 

1657 return Curvature2Tuple(Radius(rocMeridional=m), 

1658 Radius(rocPrimeVertical=n)) 

1659 

1660 def rocBearing(self, lat, bearing): 

1661 '''Compute the I{directional} radius of curvature of (geodetic) 

1662 latitude and compass direction. 

1663 

1664 @arg lat: Latitude (C{degrees90}). 

1665 @arg bearing: Direction (compass C{degrees360}). 

1666 

1667 @return: Directional radius of curvature (C{meter}). 

1668 

1669 @raise RangeError: Latitude B{C{lat}} outside valid range and 

1670 L{rangerrors<pygeodesy.rangerrors>} is C{True}. 

1671 

1672 @raise ValueError: Invalid B{C{lat}} or B{C{bearing}}. 

1673 

1674 @see: U{Radii of Curvature<https://WikiPedia.org/wiki/Earth_radius#Radii_of_curvature>} 

1675 ''' 

1676 if self.f: 

1677 s2, c2 = _s2_c2(Bearing_(bearing)) 

1678 m, n = self.roc2_(Phid(lat)) 

1679 if n < m: # == n / (c2 * n / m + s2) 

1680 c2 *= n / m 

1681 elif m < n: # == m / (c2 + s2 * m / n) 

1682 s2 *= m / n 

1683 n = m 

1684 b = n / (c2 + s2) # == 1 / (c2 / m + s2 / n) 

1685 else: 

1686 b = self.b # == self.a 

1687 return Radius(rocBearing=b) 

1688 

1689 @Property_RO 

1690 def rocEquatorial2(self): 

1691 '''Get the I{meridional} and I{prime-vertical}, I{normal} radii of curvature 

1692 at the equator as L{Curvature2Tuple}C{(meridional, prime_vertical)}. 

1693 

1694 @see: Methods L{rocMeridional} and L{rocPrimeVertical}, properties L{b2_a}, 

1695 L{a2_b}, C{rocPolar} and polar and equatorial U{Radii of Curvature 

1696 <https://WikiPedia.org/wiki/Earth_radius#Radii_of_curvature>}. 

1697 ''' 

1698 return Curvature2Tuple(Radius(rocMeridional0=self.b2_a if self.f else self.a), 

1699 Radius(rocPrimeVertical0=self.a)) 

1700 

1701 def rocGauss(self, lat): 

1702 '''Compute the I{Gaussian} radius of curvature of (geodetic) latitude. 

1703 

1704 @arg lat: Latitude (C{degrees90}). 

1705 

1706 @return: Gaussian radius of curvature (C{meter}). 

1707 

1708 @raise ValueError: Invalid B{C{lat}}. 

1709 

1710 @see: Non-directional U{Radii of Curvature<https://WikiPedia.org/wiki/ 

1711 Earth_radius#Radii_of_curvature>} 

1712 ''' 

1713 # using ... 

1714 # m, n = self.roc2_(Phid(lat)) 

1715 # return sqrt(m * n) 

1716 # ... requires 1 or 2 sqrt 

1717 g = self.b 

1718 if self.f: 

1719 s2, c2 = _s2_c2(Phid(lat)) 

1720 g = g / (c2 + self.b2_a2 * s2) 

1721 return Radius(rocGauss=g) 

1722 

1723 def rocMean(self, lat): 

1724 '''Compute the I{mean} radius of curvature of (geodetic) latitude. 

1725 

1726 @arg lat: Latitude (C{degrees90}). 

1727 

1728 @return: Mean radius of curvature (C{meter}). 

1729 

1730 @raise ValueError: Invalid B{C{lat}}. 

1731 

1732 @see: Non-directional U{Radii of Curvature<https://WikiPedia.org/wiki/ 

1733 Earth_radius#Radii_of_curvature>} 

1734 ''' 

1735 if self.f: 

1736 m, n = self.roc2_(Phid(lat)) 

1737 m *= n * _2_0 / (m + n) # == 2 / (1 / m + 1 / n) 

1738 else: 

1739 m = self.a 

1740 return Radius(rocMean=m) 

1741 

1742 def rocMeridional(self, lat): 

1743 '''Compute the I{meridional} radius of curvature of (geodetic) latitude. 

1744 

1745 @arg lat: Latitude (C{degrees90}). 

1746 

1747 @return: Meridional radius of curvature (C{meter}). 

1748 

1749 @raise ValueError: Invalid B{C{lat}}. 

1750 

1751 @see: Methods L{roc2} and L{roc2_}, U{Local, flat earth approximation 

1752 <https://www.EdWilliams.org/avform.htm#flat>} and U{Radii of 

1753 Curvature<https://WikiPedia.org/wiki/Earth_radius#Radii_of_curvature>}. 

1754 ''' 

1755 return self.roc2_(Phid(lat)).meridional if lat else \ 

1756 self.rocEquatorial2.meridional 

1757 

1758 rocPolar = a2_b # synonymous 

1759 

1760 def rocPrimeVertical(self, lat): 

1761 '''Compute the I{prime-vertical}, I{normal} radius of curvature of 

1762 (geodetic) latitude, aka the I{transverse} radius of curvature. 

1763 

1764 @arg lat: Latitude (C{degrees90}). 

1765 

1766 @return: Prime-vertical radius of curvature (C{meter}). 

1767 

1768 @raise ValueError: Invalid B{C{lat}}. 

1769 

1770 @see: Methods L{roc2}, L{roc2_} and L{roc1_}, U{Local, flat earth 

1771 approximation<https://www.EdWilliams.org/avform.htm#flat>} and 

1772 U{Radii of Curvature<https://WikiPedia.org/wiki/ 

1773 Earth_radius#Radii_of_curvature>}. 

1774 ''' 

1775 return self.roc2_(Phid(lat)).prime_vertical if lat else \ 

1776 self.rocEquatorial2.prime_vertical 

1777 

1778 rocTransverse = rocPrimeVertical # synonymous 

1779 

1780 @deprecated_Property_RO 

1781 def Rquadratic(self): # PYCHOK no cover 

1782 '''DEPRECATED, use property C{Rbiaxial} or C{Rtriaxial}.''' 

1783 return self.Rbiaxial 

1784 

1785 @deprecated_Property_RO 

1786 def Rr(self): # PYCHOK no cover 

1787 '''DEPRECATED, use property C{Rrectifying}.''' 

1788 return self.Rrectifying 

1789 

1790 @Property_RO 

1791 def Rrectifying(self): 

1792 '''Get the I{rectifying} earth radius (C{meter}), M{((a**(3/2) + b**(3/2)) / 2)**(2/3)}. 

1793 

1794 @see: U{Earth radius<https://WikiPedia.org/wiki/Earth_radius>}. 

1795 ''' 

1796 r = (cbrt2((_1_0 + sqrt3(self.b_a)) * _0_5) * self.a) if self.f else self.a 

1797 return Radius(Rrectifying=r) 

1798 

1799 @deprecated_Property_RO 

1800 def Rs(self): # PYCHOK no cover 

1801 '''DEPRECATED, use property C{Rgeometric}.''' 

1802 return self.Rgeometric 

1803 

1804 @Property_RO 

1805 def Rtriaxial(self): 

1806 '''Get the I{triaxial, quadratic} mean earth radius (C{meter}), M{sqrt((3 * a**2 + b**2) / 4)}. 

1807 

1808 @see: C{Rbiaxial} 

1809 ''' 

1810 a, b = self.a, self.b 

1811 q = (sqrt((_3_0 + self.b2_a2) * _0_25) * a) if a > b else ( 

1812 (sqrt((_3_0 * self.a2_b2 + _1_0) * _0_25) * b) if a < b else a) 

1813 return Radius(Rtriaxial=q) 

1814 

1815 def toEllipsoid2(self, **name): 

1816 '''Get a copy of this ellipsoid as an L{Ellipsoid2}. 

1817 

1818 @kwarg name: Optional, unique C{B{name}=NN} (C{str}). 

1819 

1820 @see: Property C{a_f}. 

1821 ''' 

1822 return Ellipsoid2(self, None, **name) 

1823 

1824 def toStr(self, prec=8, terse=4, **sep_name): # PYCHOK expected 

1825 '''Return this ellipsoid as a text string. 

1826 

1827 @kwarg prec: Number of decimal digits, unstripped (C{int}). 

1828 @kwarg terse: Limit the number of items (C{int}, 0...18), 

1829 use C{B{terse}=0} or C{=None} for all. 

1830 @kwarg sep_name: Optional C{B{name}=NN} (C{str}) or C{None} 

1831 to exclude this ellipsoid's name and separator 

1832 C{B{sep}=", "} to join the items (C{str}). 

1833 

1834 @return: This C{Ellipsoid}'s attributes (C{str}). 

1835 ''' 

1836 E = Ellipsoid 

1837 t = (E.a, E.f, E.f_, E.b, E.f2, E.n, E.e, 

1838 E.e2, E.e21, E.e22, E.e32, 

1839 E.A, E.L, E.R1, E.R2, E.R3, 

1840 E.Rbiaxial, E.Rtriaxial) 

1841 if terse: 

1842 t = t[:terse] 

1843 return self._instr(prec=prec, props=t, **sep_name) 

1844 

1845 def toTriaxial(self, **name): 

1846 '''Convert this ellipsoid to a L{Triaxial_}. 

1847 

1848 @kwarg name: Optional C{B{name}=NN} (C{str}). 

1849 

1850 @return: A L{Triaxial_} or L{Triaxial} with the C{X} axis 

1851 pointing east and C{Z} pointing north. 

1852 

1853 @see: Method L{Triaxial_.toEllipsoid}. 

1854 ''' 

1855 T = self._triaxial 

1856 return T.copy(**name) if name else T 

1857 

1858 @property_RO 

1859 def _triaxial(self): 

1860 '''(INTERNAL) Get this ellipsoid's un-/ordered C{Triaxial/_}. 

1861 ''' 

1862 a, b, m = self.a, self.b, _MODS.triaxials 

1863 T = m.Triaxial if a > b else m.Triaxial_ 

1864 return T(a, a, b, name=self.name) 

1865 

1866 @Property_RO 

1867 def volume(self): 

1868 '''Get the ellipsoid's I{volume} (C{meter**3}), M{4 / 3 * PI * R3**3}. 

1869 

1870 @see: C{R3}. 

1871 ''' 

1872 return Meter3(volume=self.a2 * self.b * PI_3 * _4_0) 

1873 

1874 

1875class Ellipsoid2(Ellipsoid): 

1876 '''An L{Ellipsoid} specified by I{equatorial} radius and I{flattening}. 

1877 ''' 

1878 def __init__(self, a, f=None, **name): 

1879 '''New L{Ellipsoid2}. 

1880 

1881 @arg a: Equatorial radius, semi-axis (C{meter}) or a previous 

1882 L{Ellipsoid} instance. 

1883 @arg f: Flattening: (C{float} < 1.0, negative for I{prolate}), 

1884 if B{C{a}} is in C{meter}. 

1885 @kwarg name: Optional, unique C{B{name}=NN} (C{str}). 

1886 

1887 @raise NameError: Ellipsoid with that B{C{name}} already exists. 

1888 

1889 @raise ValueError: Invalid B{C{a}} or B{C{f}}. 

1890 

1891 @note: C{abs(B{f}) < EPS} is forced to C{B{f}=0}, I{spherical}. 

1892 Negative C{B{f}} produces a I{prolate} ellipsoid. 

1893 ''' 

1894 if f is None and isinstance(a, Ellipsoid): 

1895 Ellipsoid.__init__(self, a.a, f =a.f, 

1896 b=a.b, f_=a.f_, **name) 

1897 else: 

1898 Ellipsoid.__init__(self, a, f=f, **name) 

1899 

1900 

1901def _spherical_a_b(a, b): 

1902 '''(INTERNAL) C{True} for spherical or invalid C{a} or C{b}. 

1903 ''' 

1904 return a < EPS0 or b < EPS0 or fabs(a - b) < EPS0 

1905 

1906 

1907def _spherical_f(f): 

1908 '''(INTERNAL) C{True} for spherical or invalid C{f}. 

1909 ''' 

1910 return fabs(f) < EPS or f > EPS1 

1911 

1912 

1913def _spherical_f_(f_): 

1914 '''(INTERNAL) C{True} for spherical or invalid C{f_}. 

1915 ''' 

1916 return fabs(f_) < EPS or fabs(f_) > _1_EPS 

1917 

1918 

1919def a_b2e(a, b): 

1920 '''Return C{e}, the I{1st eccentricity} for a given I{equatorial} and I{polar} radius. 

1921 

1922 @arg a: Equatorial radius (C{scalar} > 0). 

1923 @arg b: Polar radius (C{scalar} > 0). 

1924 

1925 @return: The I{unsigned}, (1st) eccentricity (C{float} or C{0}), 

1926 M{sqrt(1 - (b / a)**2)}. 

1927 

1928 @note: The result is always I{non-negative} and C{0} for I{near-spherical} ellipsoids. 

1929 ''' 

1930 return Float(e=sqrt(fabs(a_b2e2(a, b)))) # == sqrt(fabs(a - b) * (a + b)) / a) 

1931 

1932 

1933def a_b2e2(a, b): 

1934 '''Return C{e2}, the I{1st eccentricity squared} for a given I{equatorial} and I{polar} radius. 

1935 

1936 @arg a: Equatorial radius (C{scalar} > 0). 

1937 @arg b: Polar radius (C{scalar} > 0). 

1938 

1939 @return: The I{signed}, (1st) eccentricity I{squared} (C{float} or C{0}), 

1940 M{1 - (b / a)**2}. 

1941 

1942 @note: The result is positive for I{oblate}, negative for I{prolate} 

1943 or C{0} for I{near-spherical} ellipsoids. 

1944 ''' 

1945 return Float(e2=_0_0 if _spherical_a_b(a, b) else ((a - b) * (a + b) / a**2)) 

1946 

1947 

1948def a_b2e22(a, b): 

1949 '''Return C{e22}, the I{2nd eccentricity squared} for a given I{equatorial} and I{polar} radius. 

1950 

1951 @arg a: Equatorial radius (C{scalar} > 0). 

1952 @arg b: Polar radius (C{scalar} > 0). 

1953 

1954 @return: The I{signed}, 2nd eccentricity I{squared} (C{float} or C{0}), 

1955 M{(a / b)**2 - 1}. 

1956 

1957 @note: The result is positive for I{oblate}, negative for I{prolate} 

1958 or C{0} for I{near-spherical} ellipsoids. 

1959 ''' 

1960 return Float(e22=_0_0 if _spherical_a_b(a, b) else ((a - b) * (a + b) / b**2)) 

1961 

1962 

1963def a_b2e32(a, b): 

1964 '''Return C{e32}, the I{3rd eccentricity squared} for a given I{equatorial} and I{polar} radius. 

1965 

1966 @arg a: Equatorial radius (C{scalar} > 0). 

1967 @arg b: Polar radius (C{scalar} > 0). 

1968 

1969 @return: The I{signed}, 3rd eccentricity I{squared} (C{float} or C{0}), 

1970 M{(a**2 - b**2) / (a**2 + b**2)}. 

1971 

1972 @note: The result is positive for I{oblate}, negative for I{prolate} 

1973 or C{0} for I{near-spherical} ellipsoids. 

1974 ''' 

1975 a2, b2 = a**2, b**2 

1976 return Float(e32=_0_0 if _spherical_a_b(a2, b2) else ((a2 - b2) / (a2 + b2))) 

1977 

1978 

1979def a_b2f(a, b): 

1980 '''Return C{f}, the I{flattening} for a given I{equatorial} and I{polar} radius. 

1981 

1982 @arg a: Equatorial radius (C{scalar} > 0). 

1983 @arg b: Polar radius (C{scalar} > 0). 

1984 

1985 @return: The flattening (C{scalar} or C{0}), M{(a - b) / a}. 

1986 

1987 @note: The result is positive for I{oblate}, negative for I{prolate} or C{0} 

1988 for I{near-spherical} ellipsoids. 

1989 ''' 

1990 f = 0 if _spherical_a_b(a, b) else ((a - b) / a) 

1991 return _f_0_0 if _spherical_f(f) else Float(f=f) 

1992 

1993 

1994def a_b2f_(a, b): 

1995 '''Return C{f_}, the I{inverse flattening} for a given I{equatorial} and I{polar} radius. 

1996 

1997 @arg a: Equatorial radius (C{scalar} > 0). 

1998 @arg b: Polar radius (C{scalar} > 0). 

1999 

2000 @return: The inverse flattening (C{scalar} or C{0}), M{a / (a - b)}. 

2001 

2002 @note: The result is positive for I{oblate}, negative for I{prolate} or C{0} 

2003 for I{near-spherical} ellipsoids. 

2004 ''' 

2005 f_ = 0 if _spherical_a_b(a, b) else (a / float(a - b)) 

2006 return _f__0_0 if _spherical_f_(f_) else Float(f_=f_) 

2007 

2008 

2009def a_b2f2(a, b): 

2010 '''Return C{f2}, the I{2nd flattening} for a given I{equatorial} and I{polar} radius. 

2011 

2012 @arg a: Equatorial radius (C{scalar} > 0). 

2013 @arg b: Polar radius (C{scalar} > 0). 

2014 

2015 @return: The I{signed}, 2nd flattening (C{scalar} or C{0}), M{(a - b) / b}. 

2016 

2017 @note: The result is positive for I{oblate}, negative for I{prolate} or C{0} 

2018 for I{near-spherical} ellipsoids. 

2019 ''' 

2020 t = 0 if _spherical_a_b(a, b) else float(a - b) 

2021 return Float(f2=_0_0 if fabs(t) < EPS0 else (t / b)) 

2022 

2023 

2024def a_b2n(a, b): 

2025 '''Return C{n}, the I{3rd flattening} for a given I{equatorial} and I{polar} radius. 

2026 

2027 @arg a: Equatorial radius (C{scalar} > 0). 

2028 @arg b: Polar radius (C{scalar} > 0). 

2029 

2030 @return: The I{signed}, 3rd flattening (C{scalar} or C{0}), M{(a - b) / (a + b)}. 

2031 

2032 @note: The result is positive for I{oblate}, negative for I{prolate} 

2033 or C{0} for I{near-spherical} ellipsoids. 

2034 ''' 

2035 t = 0 if _spherical_a_b(a, b) else float(a - b) 

2036 return Float(n=_0_0 if fabs(t) < EPS0 else (t / (a + b))) 

2037 

2038 

2039def a_f2b(a, f): 

2040 '''Return C{b}, the I{polar} radius for a given I{equatorial} radius and I{flattening}. 

2041 

2042 @arg a: Equatorial radius (C{scalar} > 0). 

2043 @arg f: Flattening (C{scalar} < 1, negative for I{prolate}). 

2044 

2045 @return: The polar radius (C{float}), M{a * (1 - f)}. 

2046 ''' 

2047 b = a if _spherical_f(f) else (a * (_1_0 - f)) 

2048 return Radius_(b=a if _spherical_a_b(a, b) else b) 

2049 

2050 

2051def a_f_2b(a, f_): 

2052 '''Return C{b}, the I{polar} radius for a given I{equatorial} radius and I{inverse flattening}. 

2053 

2054 @arg a: Equatorial radius (C{scalar} > 0). 

2055 @arg f_: Inverse flattening (C{scalar} >>> 1). 

2056 

2057 @return: The polar radius (C{float}), M{a * (f_ - 1) / f_}. 

2058 ''' 

2059 b = a if _spherical_f_(f_) else (a * (f_ - _1_0) / f_) 

2060 return Radius_(b=a if _spherical_a_b(a, b) else b) 

2061 

2062 

2063def b_f2a(b, f): 

2064 '''Return C{a}, the I{equatorial} radius for a given I{polar} radius and I{flattening}. 

2065 

2066 @arg b: Polar radius (C{scalar} > 0). 

2067 @arg f: Flattening (C{scalar} < 1, negative for I{prolate}). 

2068 

2069 @return: The equatorial radius (C{float}), M{b / (1 - f)}. 

2070 ''' 

2071 t = _1_0 - f 

2072 a = b if fabs(t) < EPS0 else (b / t) 

2073 return Radius_(a=b if _spherical_a_b(a, b) else a) 

2074 

2075 

2076def b_f_2a(b, f_): 

2077 '''Return C{a}, the I{equatorial} radius for a given I{polar} radius and I{inverse flattening}. 

2078 

2079 @arg b: Polar radius (C{scalar} > 0). 

2080 @arg f_: Inverse flattening (C{scalar} >>> 1). 

2081 

2082 @return: The equatorial radius (C{float}), M{b * f_ / (f_ - 1)}. 

2083 ''' 

2084 t = f_ - _1_0 

2085 a = b if _spherical_f_(f_) or fabs(t - f_) < EPS0 \ 

2086 or fabs(t) < EPS0 else (b * f_ / t) 

2087 return Radius_(a=b if _spherical_a_b(a, b) else a) 

2088 

2089 

2090def e2f(e): 

2091 '''Return C{f}, the I{flattening} for a given I{1st eccentricity}. 

2092 

2093 @arg e: The (1st) eccentricity (0 <= C{float} < 1) 

2094 

2095 @return: The flattening (C{scalar} or C{0}). 

2096 

2097 @see: Function L{e22f}. 

2098 ''' 

2099 return e22f(e**2) 

2100 

2101 

2102def e22f(e2): 

2103 '''Return C{f}, the I{flattening} for a given I{1st eccentricity squared}. 

2104 

2105 @arg e2: The (1st) eccentricity I{squared}, I{signed} (L{NINF} < C{float} < 1) 

2106 

2107 @return: The flattening (C{float} or C{0}), M{e2 / (sqrt(e2 - 1) + 1)}. 

2108 ''' 

2109 return Float(f=e2 / (sqrt(_1_0 - e2) + _1_0)) if e2 else _f_0_0 

2110 

2111 

2112def f2e2(f): 

2113 '''Return C{e2}, the I{1st eccentricity squared} for a given I{flattening}. 

2114 

2115 @arg f: Flattening (C{scalar} < 1, negative for I{prolate}). 

2116 

2117 @return: The I{signed}, (1st) eccentricity I{squared} (C{float} < 1), 

2118 M{f * (2 - f)}. 

2119 

2120 @note: The result is positive for I{oblate}, negative for I{prolate} 

2121 or C{0} for I{near-spherical} ellipsoids. 

2122 

2123 @see: U{Eccentricity conversions<https://GeographicLib.SourceForge.io/ 

2124 C++/doc/classGeographicLib_1_1Ellipsoid.html>} and U{Flattening 

2125 <https://WikiPedia.org/wiki/Flattening>}. 

2126 ''' 

2127 return Float(e2=_0_0 if _spherical_f(f) else (f * (_2_0 - f))) 

2128 

2129 

2130def f2e22(f): 

2131 '''Return C{e22}, the I{2nd eccentricity squared} for a given I{flattening}. 

2132 

2133 @arg f: Flattening (C{scalar} < 1, negative for I{prolate}). 

2134 

2135 @return: The I{signed}, 2nd eccentricity I{squared} (C{float} > -1 or 

2136 C{INF}), M{f * (2 - f) / (1 - f)**2}. 

2137 

2138 @note: The result is positive for I{oblate}, negative for I{prolate} 

2139 or C{0} for near-spherical ellipsoids. 

2140 

2141 @see: U{Eccentricity conversions<https://GeographicLib.SourceForge.io/ 

2142 C++/doc/classGeographicLib_1_1Ellipsoid.html>}. 

2143 ''' 

2144 # e2 / (1 - e2) == f * (2 - f) / (1 - f)**2 

2145 t = (_1_0 - f)**2 

2146 return Float(e22=INF if t < EPS0 else (f2e2(f) / t)) # PYCHOK type 

2147 

2148 

2149def f2e32(f): 

2150 '''Return C{e32}, the I{3rd eccentricity squared} for a given I{flattening}. 

2151 

2152 @arg f: Flattening (C{scalar} < 1, negative for I{prolate}). 

2153 

2154 @return: The I{signed}, 3rd eccentricity I{squared} (C{float}), 

2155 M{f * (2 - f) / (1 + (1 - f)**2)}. 

2156 

2157 @note: The result is positive for I{oblate}, negative for I{prolate} 

2158 or C{0} for I{near-spherical} ellipsoids. 

2159 

2160 @see: U{Eccentricity conversions<https://GeographicLib.SourceForge.io/ 

2161 C++/doc/classGeographicLib_1_1Ellipsoid.html>}. 

2162 ''' 

2163 # e2 / (2 - e2) == f * (2 - f) / (1 + (1 - f)**2) 

2164 e2 = f2e2(f) 

2165 return Float(e32=e2 / (_2_0 - e2)) 

2166 

2167 

2168def f_2f(f_): 

2169 '''Return C{f}, the I{flattening} for a given I{inverse flattening}. 

2170 

2171 @arg f_: Inverse flattening (C{scalar} >>> 1). 

2172 

2173 @return: The flattening (C{scalar} or C{0}), M{1 / f_}. 

2174 

2175 @note: The result is positive for I{oblate}, negative for I{prolate} 

2176 or C{0} for I{near-spherical} ellipsoids. 

2177 ''' 

2178 f = 0 if _spherical_f_(f_) else _1_0 / f_ 

2179 return _f_0_0 if _spherical_f(f) else Float(f=f) # PYCHOK type 

2180 

2181 

2182def f2f_(f): 

2183 '''Return C{f_}, the I{inverse flattening} for a given I{flattening}. 

2184 

2185 @arg f: Flattening (C{scalar} < 1, negative for I{prolate}). 

2186 

2187 @return: The inverse flattening (C{scalar} or C{0}), M{1 / f}. 

2188 

2189 @note: The result is positive for I{oblate}, negative for I{prolate} 

2190 or C{0} for I{near-spherical} ellipsoids. 

2191 ''' 

2192 f_ = 0 if _spherical_f(f) else _1_0 / f 

2193 return _f__0_0 if _spherical_f_(f_) else Float(f_=f_) # PYCHOK type 

2194 

2195 

2196def f2f2(f): 

2197 '''Return C{f2}, the I{2nd flattening} for a given I{flattening}. 

2198 

2199 @arg f: Flattening (C{scalar} < 1, negative for I{prolate}). 

2200 

2201 @return: The I{signed}, 2nd flattening (C{scalar} or C{INF}), M{f / (1 - f)}. 

2202 

2203 @note: The result is positive for I{oblate}, negative for I{prolate} 

2204 or C{0} for I{near-spherical} ellipsoids. 

2205 

2206 @see: U{Eccentricity conversions<https://GeographicLib.SourceForge.io/ 

2207 C++/doc/classGeographicLib_1_1Ellipsoid.html>} and U{Flattening 

2208 <https://WikiPedia.org/wiki/Flattening>}. 

2209 ''' 

2210 t = _1_0 - f 

2211 return Float(f2=_0_0 if _spherical_f(f) else (INF if fabs(t) < EPS 

2212 else (f / t))) # PYCHOK type 

2213 

2214 

2215def f2n(f): 

2216 '''Return C{n}, the I{3rd flattening} for a given I{flattening}. 

2217 

2218 @arg f: Flattening (C{scalar} < 1, negative for I{prolate}). 

2219 

2220 @return: The I{signed}, 3rd flattening (-1 <= C{float} < 1), 

2221 M{f / (2 - f)}. 

2222 

2223 @note: The result is positive for I{oblate}, negative for I{prolate} 

2224 or C{0} for I{near-spherical} ellipsoids. 

2225 

2226 @see: U{Eccentricity conversions<https://GeographicLib.SourceForge.io/ 

2227 C++/doc/classGeographicLib_1_1Ellipsoid.html>} and U{Flattening 

2228 <https://WikiPedia.org/wiki/Flattening>}. 

2229 ''' 

2230 return Float(n=_0_0 if _spherical_f(f) else (f / float(_2_0 - f))) 

2231 

2232 

2233def n2e2(n): 

2234 '''Return C{e2}, the I{1st eccentricity squared} for a given I{3rd flattening}. 

2235 

2236 @arg n: The 3rd flattening (-1 <= C{scalar} < 1). 

2237 

2238 @return: The I{signed}, (1st) eccentricity I{squared} (C{float} or NINF), 

2239 M{4 * n / (1 + n)**2}. 

2240 

2241 @note: The result is positive for I{oblate}, negative for I{prolate} 

2242 or C{0} for I{near-spherical} ellipsoids. 

2243 

2244 @see: U{Flattening<https://WikiPedia.org/wiki/Flattening>}. 

2245 ''' 

2246 t = (n + _1_0)**2 

2247 return Float(e2=_0_0 if fabs(n) < EPS0 else 

2248 (NINF if t < EPS0 else (_4_0 * n / t))) 

2249 

2250 

2251def n2f(n): 

2252 '''Return C{f}, the I{flattening} for a given I{3rd flattening}. 

2253 

2254 @arg n: The 3rd flattening (-1 <= C{scalar} < 1). 

2255 

2256 @return: The flattening (C{scalar} or NINF), M{2 * n / (1 + n)}. 

2257 

2258 @see: U{Eccentricity conversions<https://GeographicLib.SourceForge.io/ 

2259 C++/doc/classGeographicLib_1_1Ellipsoid.html>} and U{Flattening 

2260 <https://WikiPedia.org/wiki/Flattening>}. 

2261 ''' 

2262 t = n + _1_0 

2263 f = 0 if fabs(n) < EPS0 else (NINF if t < EPS0 else (_2_0 * n / t)) 

2264 return _f_0_0 if _spherical_f(f) else Float(f=f) 

2265 

2266 

2267def n2f_(n): 

2268 '''Return C{f_}, the I{inverse flattening} for a given I{3rd flattening}. 

2269 

2270 @arg n: The 3rd flattening (-1 <= C{scalar} < 1). 

2271 

2272 @return: The inverse flattening (C{scalar} or C{0}), M{1 / f}. 

2273 

2274 @see: L{n2f} and L{f2f_}. 

2275 ''' 

2276 return f2f_(n2f(n)) 

2277 

2278 

2279def _plumbTo3(px, py, E, eps=EPS): # in .height4 above 

2280 '''(INTERNAL) Nearest point on a 2-D ellipse in 1st quadrant. 

2281 

2282 @see: Functions C{pygeodesy.triaxial._plumbTo4} and C{-._plumbTo5}. 

2283 ''' 

2284 a, b, e0 = E.a, E.b, EPS0 

2285 if min(px, py, a, b) < e0: 

2286 raise _AssertionError(px=px, py=py, a=a, b=b, E=E) 

2287 

2288 a2 = a - b * E.b_a 

2289 b2 = b - a * E.a_b 

2290 tx = ty = _SQRT2_2 

2291 _a, _h = fabs, hypot 

2292 for i in range(16): # max 5 

2293 ex = a2 * tx**3 

2294 ey = b2 * ty**3 

2295 

2296 qx = px - ex 

2297 qy = py - ey 

2298 q = _h(qx, qy) 

2299 if q < e0: # PYCHOK no cover 

2300 break 

2301 r = _h(ex - tx * a, 

2302 ey - ty * b) / q 

2303 

2304 sx, tx = tx, min(_1_0, max(0, (ex + qx * r) / a)) 

2305 sy, ty = ty, min(_1_0, max(0, (ey + qy * r) / b)) 

2306 t = _h(ty, tx) 

2307 if t < e0: # PYCHOK no cover 

2308 break 

2309 tx = tx / t # /= chokes PyChecker 

2310 ty = ty / t 

2311 if _a(sx - tx) < eps and \ 

2312 _a(sy - ty) < eps: 

2313 break 

2314 

2315 tx *= a / px 

2316 ty *= b / py 

2317 return tx, ty, i # x and y as fractions 

2318 

2319 

2320class Ellipsoids(_NamedEnum): 

2321 '''(INTERNAL) L{Ellipsoid} registry, I{must} be a sub-class 

2322 to accommodate the L{_LazyNamedEnumItem} properties. 

2323 ''' 

2324 def _Lazy(self, a, b, f_, **kwds): 

2325 '''(INTERNAL) Instantiate the L{Ellipsoid}. 

2326 ''' 

2327 return Ellipsoid(a, b=b, f_=f_, **kwds) 

2328 

2329Ellipsoids = Ellipsoids(Ellipsoid) # PYCHOK singleton 

2330'''Some pre-defined L{Ellipsoid}s, all I{lazily} instantiated.''' 

2331# <https://www.GNU.org/software/gama/manual/html_node/Supported-ellipsoids.html> 

2332# <https://GSSC.ESA.int/navipedia/index.php/Reference_Frames_in_GNSS> 

2333# <https://kb.OSU.edu/dspace/handle/1811/77986> 

2334# <https://www.IBM.com/docs/en/db2/11.5?topic=systems-supported-spheroids> 

2335# <https://w3.Energistics.org/archive/Epicentre/Epicentre_v3.0/DataModel/LogicalDictionary/StandardValues/ellipsoid.html> 

2336# <https://GitHub.com/locationtech/proj4j/blob/master/src/main/java/org/locationtech/proj4j/datum/Ellipsoid.java> 

2337Ellipsoids._assert( # <https://WikiPedia.org/wiki/Earth_ellipsoid> 

2338 Airy1830 = _lazy(_Airy1830_, *_T(6377563.396, _0_0, 299.3249646)), # b=6356256.909 

2339 AiryModified = _lazy(_AiryModified_, *_T(6377340.189, _0_0, 299.3249646)), # b=6356034.448 

2340# APL4_9 = _lazy('APL4_9', *_T(6378137.0, _0_0, 298.24985392)), # Appl. Phys. Lab. 1965 

2341# ANS = _lazy('ANS', *_T(6378160.0, _0_0, 298.25)), # Australian Nat. Spheroid 

2342# AN_SA96 = _lazy('AN_SA96', *_T(6378160.0, _0_0, 298.24985392)), # Australian Nat. South America 

2343 Australia1966 = _lazy('Australia1966', *_T(6378160.0, _0_0, 298.25)), # b=6356774.7192 

2344 ATS1977 = _lazy('ATS1977', *_T(6378135.0, _0_0, 298.257)), # "Average Terrestrial System" 

2345 Bessel1841 = _lazy(_Bessel1841_, *_T(6377397.155, 6356078.962818, 299.152812797)), 

2346 BesselModified = _lazy('BesselModified', *_T(6377492.018, _0_0, 299.1528128)), 

2347# BesselNamibia = _lazy('BesselNamibia', *_T(6377483.865, _0_0, 299.1528128)), 

2348 CGCS2000 = _lazy('CGCS2000', *_T(R_MA, _0_0, 298.257222101)), # BeiDou Coord System (BDC) 

2349# Clarke1858 = _lazy('Clarke1858', *_T(6378293.639, _0_0, 294.260676369)), 

2350 Clarke1866 = _lazy(_Clarke1866_, *_T(6378206.4, 6356583.8, 294.978698214)), 

2351 Clarke1880 = _lazy('Clarke1880', *_T(6378249.145, 6356514.86954978, 293.465)), 

2352 Clarke1880IGN = _lazy(_Clarke1880IGN_, *_T(6378249.2, 6356515.0, 293.466021294)), 

2353 Clarke1880Mod = _lazy('Clarke1880Mod', *_T(6378249.145, 6356514.96639549, 293.466307656)), # aka Clarke1880Arc 

2354 CPM1799 = _lazy('CPM1799', *_T(6375738.7, 6356671.92557493, 334.39)), # Comm. des Poids et Mesures 

2355 Delambre1810 = _lazy('Delambre1810', *_T(6376428.0, 6355957.92616372, 311.5)), # Belgium 

2356 Engelis1985 = _lazy('Engelis1985', *_T(6378136.05, 6356751.32272154, 298.2566)), 

2357# Everest1830 = _lazy('Everest1830', *_T(6377276.345, _0_0, 300.801699997)), 

2358# Everest1948 = _lazy('Everest1948', *_T(6377304.063, _0_0, 300.801699997)), 

2359# Everest1956 = _lazy('Everest1956', *_T(6377301.243, _0_0, 300.801699997)), 

2360 Everest1969 = _lazy('Everest1969', *_T(6377295.664, 6356094.667915, 300.801699997)), 

2361 Everest1975 = _lazy('Everest1975', *_T(6377299.151, 6356098.14512013, 300.8017255)), 

2362 Fisher1968 = _lazy('Fisher1968', *_T(6378150.0, 6356768.33724438, 298.3)), 

2363# Fisher1968Mod = _lazy('Fisher1968Mod', *_T(6378155.0, _0_0, 298.3)), 

2364 GEM10C = _lazy('GEM10C', *_T(R_MA, 6356752.31424783, 298.2572236)), 

2365 GPES = _lazy('GPES', *_T(6378135.0, 6356750.0, _0_0)), # "Gen. Purpose Earth Spheroid" 

2366 GRS67 = _lazy('GRS67', *_T(6378160.0, _0_0, 298.247167427)), # Lucerne b=6356774.516 

2367# GRS67Truncated = _lazy('GRS67Truncated', *_T(6378160.0, _0_0, 298.25)), 

2368 GRS80 = _lazy(_GRS80_, *_T(R_MA, 6356752.314140347, 298.25722210088)), # IUGG, ITRS, ETRS89 

2369# Hayford1924 = _lazy('Hayford1924', *_T(6378388.0, 6356911.94612795, None)), # aka Intl1924 f_=297 

2370 Helmert1906 = _lazy('Helmert1906', *_T(6378200.0, 6356818.16962789, 298.3)), 

2371# Hough1960 = _lazy('Hough1960', *_T(6378270.0, _0_0, 297.0)), 

2372 IAU76 = _lazy('IAU76', *_T(6378140.0, _0_0, 298.257)), # Int'l Astronomical Union 

2373 IERS1989 = _lazy('IERS1989', *_T(6378136.0, _0_0, 298.257)), # b=6356751.302 

2374 IERS1992TOPEX = _lazy('IERS1992TOPEX', *_T(6378136.3, 6356751.61659215, 298.257223563)), # IERS/TOPEX/Poseidon/McCarthy 

2375 IERS2003 = _lazy('IERS2003', *_T(6378136.6, 6356751.85797165, 298.25642)), 

2376 Intl1924 = _lazy(_Intl1924_, *_T(6378388.0, _0_0, 297.0)), # aka Hayford b=6356911.9462795 

2377 Intl1967 = _lazy('Intl1967', *_T(6378157.5, 6356772.2, 298.24961539)), # New Int'l 

2378 Krassovski1940 = _lazy(_Krassovski1940_, *_T(6378245.0, 6356863.01877305, 298.3)), # spelling 

2379 Krassowsky1940 = _lazy(_Krassowsky1940_, *_T(6378245.0, 6356863.01877305, 298.3)), # spelling 

2380# Kaula = _lazy('Kaula', *_T(6378163.0, _0_0, 298.24)), # Kaula 1961 

2381# Lerch = _lazy('Lerch', *_T(6378139.0, _0_0, 298.257)), # Lerch 1979 

2382 Maupertuis1738 = _lazy('Maupertuis1738', *_T(6397300.0, 6363806.28272251, 191.0)), # France 

2383 Mercury1960 = _lazy('Mercury1960', *_T(6378166.0, 6356784.28360711, 298.3)), 

2384 Mercury1968Mod = _lazy('Mercury1968Mod', *_T(6378150.0, 6356768.33724438, 298.3)), 

2385# MERIT = _lazy('MERIT', *_T(6378137.0, _0_0, 298.257)), # MERIT 1983 

2386# NWL10D = _lazy('NWL10D', *_T(6378135.0, _0_0, 298.26)), # Naval Weapons Lab. 

2387 NWL1965 = _lazy('NWL1965', *_T(6378145.0, 6356759.76948868, 298.25)), # Naval Weapons Lab. 

2388# NWL9D = _lazy('NWL9D', *_T(6378145.0, 6356759.76948868, 298.25)), # NWL1965 

2389 OSU86F = _lazy('OSU86F', *_T(6378136.2, 6356751.51693008, 298.2572236)), 

2390 OSU91A = _lazy('OSU91A', *_T(6378136.3, 6356751.6165948, 298.2572236)), 

2391# Plessis1817 = _lazy('Plessis1817', *_T(6397523.0, 6355863.0, 153.56512242)), # XXX incorrect? 

2392 Plessis1817 = _lazy('Plessis1817', *_T(6376523.0, 6355862.93325557, 308.64)), # XXX IGN France 1972 

2393# Prolate = _lazy('Prolate', *_T(6356752.3, R_MA, _0_0)), 

2394 PZ90 = _lazy('PZ90', *_T(6378136.0, _0_0, 298.257839303)), # GLOSNASS PZ-90 and PZ-90.11 

2395# SEAsia = _lazy('SEAsia', *_T(6378155.0, _0_0, 298.3)), # SouthEast Asia 

2396 SGS85 = _lazy('SGS85', *_T(6378136.0, 6356751.30156878, 298.257)), # Soviet Geodetic System 

2397 SoAmerican1969 = _lazy('SoAmerican1969', *_T(6378160.0, 6356774.71919531, 298.25)), # South American 

2398 Sphere = _lazy(_Sphere_, *_T(R_M, R_M, _0_0)), # pseudo 

2399 SphereAuthalic = _lazy('SphereAuthalic', *_T(R_FM, R_FM, _0_0)), # pseudo 

2400 SpherePopular = _lazy('SpherePopular', *_T(R_MA, R_MA, _0_0)), # EPSG:3857 Spheroid 

2401 Struve1860 = _lazy('Struve1860', *_T(6378298.3, 6356657.14266956, 294.73)), 

2402# Walbeck = _lazy('Walbeck', *_T(6376896.0, _0_0, 302.78)), 

2403# WarOffice = _lazy('WarOffice', *_T(6378300.0, _0_0, 296.0)), 

2404 WGS60 = _lazy('WGS60', *_T(6378165.0, 6356783.28695944, 298.3)), 

2405 WGS66 = _lazy('WGS66', *_T(6378145.0, 6356759.76948868, 298.25)), 

2406 WGS72 = _lazy(_WGS72_, *_T(6378135.0, _0_0, 298.26)), # b=6356750.52 

2407 WGS84 = _lazy(_WGS84_, *_T(R_MA, _0_0, _f__WGS84)), # GPS b=6356752.3142451793 

2408# U{NOAA/NOS/NGS/inverse<https://GitHub.com/noaa-ngs/inverse/blob/main/invers3d.f>} 

2409 WGS84_NGS = _lazy('WGS84_NGS', *_T(R_MA, _0_0, 298.257222100882711243162836600094)) 

2410) 

2411 

2412_EWGS84 = Ellipsoids.WGS84 # (INTERNAL) shared 

2413 

2414if __name__ == '__main__': 

2415 

2416 from pygeodesy.interns import _COMMA_, _NL_, _NLATvar_ 

2417 from pygeodesy import nameof, printf 

2418 

2419 for E in (_EWGS84, Ellipsoids.GRS80, # NAD83, 

2420 Ellipsoids.Sphere, Ellipsoids.SpherePopular, 

2421 Ellipsoid(_EWGS84.b, _EWGS84.a, name='_Prolate')): 

2422 e = f2n(E.f) - E.n 

2423 printf('# %s: %s', _DOT_('Ellipsoids', E.name), E.toStr(prec=10, terse=0), nl=1) 

2424 printf('# e=%s, f_=%s, f=%s, n=%s (%s)', fstr(E.e, prec=13, fmt=Fmt.e), 

2425 fstr(E.f_, prec=13, fmt=Fmt.e), 

2426 fstr(E.f, prec=13, fmt=Fmt.e), 

2427 fstr(E.n, prec=13, fmt=Fmt.e), 

2428 fstr(e, prec=9, fmt=Fmt.e)) 

2429 printf('# %s %s', Ellipsoid.AlphaKs.name, fstr(E.AlphaKs, prec=20)) 

2430 printf('# %s %s', Ellipsoid.BetaKs.name, fstr(E.BetaKs, prec=20)) 

2431 printf('# %s %s', nameof(Ellipsoid.KsOrder), E.KsOrder) # property 

2432 

2433 # __doc__ of this file, force all into registry 

2434 t = [NN] + Ellipsoids.toRepr(all=True, asorted=True).split(_NL_) 

2435 printf(_NLATvar_.join(i.strip(_COMMA_) for i in t)) 

2436 

2437# % python3 -m pygeodesy.ellipsoids 

2438 

2439# Ellipsoids.WGS84: name='WGS84', a=6378137, f=0.0033528107, f_=298.257223563, b=6356752.3142451793, f2=0.0033640898, n=0.0016792204, e=0.0818191908, e2=0.00669438, e21=0.99330562, e22=0.0067394967, e32=0.0033584313, A=6367449.1458234144, L=10001965.7293127235, R1=6371008.7714150595, R2=6371007.1809184738, R3=6371000.7900091587, Rbiaxial=6367453.6345163295, Rtriaxial=6372797.5559594007 

2440# e=8.1819190842622e-02, f_=2.98257223563e+02, f=3.3528106647475e-03, n=1.6792203863837e-03 (0.0e+00) 

2441# AlphaKs 0.00083773182062446994, 0.00000076085277735725, 0.00000000119764550324, 0.00000000000242917068, 0.00000000000000571182, 0.0000000000000000148, 0.00000000000000000004, 0.0 

2442# BetaKs 0.00083773216405794875, 0.0000000590587015222, 0.00000000016734826653, 0.00000000000021647981, 0.00000000000000037879, 0.00000000000000000072, 0.0, 0.0 

2443# KsOrder 8 

2444 

2445# Ellipsoids.GRS80: name='GRS80', a=6378137, f=0.0033528107, f_=298.2572221009, b=6356752.3141403468, f2=0.0033640898, n=0.0016792204, e=0.081819191, e2=0.00669438, e21=0.99330562, e22=0.0067394968, e32=0.0033584313, A=6367449.1457710434, L=10001965.7292304561, R1=6371008.7713801153, R2=6371007.1808835147, R3=6371000.7899741363, Rbiaxial=6367453.6344640013, Rtriaxial=6372797.5559332585 

2446# e=8.1819191042833e-02, f_=2.9825722210088e+02, f=3.3528106811837e-03, n=1.6792203946295e-03 (0.0e+00) 

2447# AlphaKs 0.00083773182472890429, 0.00000076085278481561, 0.00000000119764552086, 0.00000000000242917073, 0.00000000000000571182, 0.0000000000000000148, 0.00000000000000000004, 0.0 

2448# BetaKs 0.0008377321681623882, 0.00000005905870210374, 0.000000000167348269, 0.00000000000021647982, 0.00000000000000037879, 0.00000000000000000072, 0.0, 0.0 

2449# KsOrder 8 

2450 

2451# Ellipsoids.Sphere: name='Sphere', a=6371008.7714149999, f=0, f_=0, b=6371008.7714149999, f2=0, n=0, e=0, e2=0, e21=1, e22=0, e32=0, A=6371008.7714149999, L=10007557.1761167478, R1=6371008.7714149999, R2=6371008.7714149999, R3=6371008.7714149999, Rbiaxial=6371008.7714149999, Rtriaxial=6371008.7714149999 

2452# e=0.0e+00, f_=0.0e+00, f=0.0e+00, n=0.0e+00 (0.0e+00) 

2453# AlphaKs 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 

2454# BetaKs 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 

2455# KsOrder 8 

2456 

2457# Ellipsoids.SpherePopular: name='SpherePopular', a=6378137, f=0, f_=0, b=6378137, f2=0, n=0, e=0, e2=0, e21=1, e22=0, e32=0, A=6378137, L=10018754.171394622, R1=6378137, R2=6378137, R3=6378137, Rbiaxial=6378137, Rtriaxial=6378137 

2458# e=0.0e+00, f_=0.0e+00, f=0.0e+00, n=0.0e+00 (0.0e+00) 

2459# AlphaKs 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 

2460# BetaKs 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 

2461# KsOrder 8 

2462 

2463# Ellipsoids._Prolate: name='_Prolate', a=6356752.3142451793, f=-0.0033640898, f_=-297.257223563, b=6378137, f2=-0.0033528107, n=-0.0016792204, e=0.0820944379, e2=-0.0067394967, e21=1.0067394967, e22=-0.00669438, e32=-0.0033584313, A=6367449.1458234144, L=10035500.5204500314, R1=6363880.5428301189, R2=6363878.9413582645, R3=6363872.5644020075, Rbiaxial=6367453.6345163295, Rtriaxial=6362105.2243882557 

2464# e=8.2094437949696e-02, f_=-2.97257223563e+02, f=-3.3640898209765e-03, n=-1.6792203863837e-03 (0.0e+00) 

2465# AlphaKs -0.00084149152514366627, 0.00000076653480614871, -0.00000000120934503389, 0.0000000000024576225, -0.00000000000000578863, 0.00000000000000001502, -0.00000000000000000004, 0.0 

2466# BetaKs -0.00084149187224351817, 0.00000005842735196773, -0.0000000001680487236, 0.00000000000021706261, -0.00000000000000038002, 0.00000000000000000073, -0.0, 0.0 

2467# KsOrder 8 

2468 

2469# **) MIT License 

2470# 

2471# Copyright (C) 2016-2024 -- mrJean1 at Gmail -- All Rights Reserved. 

2472# 

2473# Permission is hereby granted, free of charge, to any person obtaining a 

2474# copy of this software and associated documentation files (the "Software"), 

2475# to deal in the Software without restriction, including without limitation 

2476# the rights to use, copy, modify, merge, publish, distribute, sublicense, 

2477# and/or sell copies of the Software, and to permit persons to whom the 

2478# Software is furnished to do so, subject to the following conditions: 

2479# 

2480# The above copyright notice and this permission notice shall be included 

2481# in all copies or substantial portions of the Software. 

2482# 

2483# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 

2484# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

2485# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 

2486# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

2487# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

2488# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 

2489# OTHER DEALINGS IN THE SOFTWARE.