Python ARM Radar Toolkit (Py-ART) Roadmap

Scott Collis, Cory Weber, Jonathan Helmus and Zachary Sherman

1 Introduction and Aims

Radar software is key for producing scientific insight from radar data. There are several platforms for
interacting with radar data; the open source variants are well documented in (Heistermann et al 2014). The
Python ARM Radar Toolkit (Py-ART, Helmus and Collis, 2016) is one of these. This document is a
guiding roadmap for development for Py-ART. It sets priorities for ARM funded work and it advises the
community which contributions are desired and will receive the most assistance from ARM funded
software engineers.

1.1 The Python ARM Radar Toolkit

Py-ART grew out of a collection of radar algorithms generated to support the new radar capability in the
ARM program (Mather and Voyles, 2012). The two original features were a Linear Programming (LP)
technique for polarimetric phase processing (Giangrande el at, 2013) and mapping radar data onto a
cartesian grid.

Shortly after, development on Py-ART began in earnest. ARM provided support specifically to release
Py-ART open source. In September of 2012, Py-ART was uploaded to the social coding platform GitHub at
https://github.com/ARM-DOE/pyart. Py-ART was unofficially bumped to version 1.0.0-Dev in May of 2013
and publicly released. The first "stable" release was 1.2.0 in February of 2015 and the most recent release
was 1.7.0 in September of 2016. Release notes can be found here:
https://github.com/ARM-DOE/pyart/releases.

Lines by Author Over Time Commits by Author Over Time
6 4
10 10 = Jonathan J. Helm
== Scott Collis
5 = Kirk North
10 Anderson Gam:
103 Gama Anders
. — = Nick Guy
o 10 == Joseph C. Hardin
‘g " = Timothy Lang
o = Cory € Weber
%5 10° £ 102} ~ Steve Nesbitt
o g [Jordi Figueras
c o |
= 10? /
10"
10*
10 v v N N v v v 10 v 5 x v 5 v v
a,\“"’\e 3\““\e W 5\“"’\0 ‘,\““\Q o 3\“"’\0 3\““\° W@ e® c,\“""e 5\“9‘6 0
ke ke I i B> B> o> ke R ki kN B> B> o>
Date Date

Figure 1: Lines of code by Contributor as a function of time. Note, some lines are automatically
generated by Cython to C complilation.

Figure 1 shows the growth of the project as a function of time broken down by contributor. Note that some
of the code is C which has been generated by Cython which inflates the number slightly.

Py-ART has benefited from code from 22 individual contributors. This has been enabled by careful
implementation of unit tests and continuous integration. Every time a pull request is submitted against the
Py-ART codebase a set of tests run and a report is generated so the developers know if a contribution
causes any unit tests to fail.

1.2 Value of Py-ART to ARM

Making Py-ART open source and accepting community contributions requires financial support for funding
developers to review code and implement automated systems like continuous integration and document
generation. Py-ART receives vital support for accepting pull requests, bug fixing, documentation, outreach
and education through the ARM program which is part of the Climate and Environmental Sciences
Division of the Office of Science in the Department of Energy.

https://github.com/ARM-DOE/pyart
https://github.com/ARM-DOE/pyart/releases

The demonstratable value of Py-ART to ARM is that any code that is contributed to Py-ART can be easily
be used by ARM in engineering and operations. Since Py-ART carefully conserves radar metadata
including data pertinent to ARM new code can be inserted into Value Added Product (VAP)
implimentations preserving data pertinent to discovery and dissemination.

Py-ART is used in all VAPs applied to the Precipitation Scanning Radars and could easily be applied to all
ARM radars. Curently the Corrected Moments in Antenna Coordinates (CMAC) VAP uses Py-ART
including several hundred lines of code that was contributed by non-DoE funded research. Having
Py-ART in the community allows ARM to seamlessly incorporate new research from DoE and non-DoE
sources into VAPs without the laborious task of transcribing from papers or other languages. In addition
Py-ART gives PIs of DoE funded programs and activities a convenient way of answering question
pertaining to the openness of thier science and their contributions to ARM and DoE.

1.3 Need for a Roadmap for Py-ART

As the collection of algorithms and radars grew it became clear that, while well meaning, third party
contributions would subsume other ARM funded efforts by the Py-ART development team. Due to this,
and to ensure the toolkit has maximal impact, a roadmap to chart development priorities for the next five
years is needed and is the subject of this document.

In summary, the roadmap will prioritize development over the next five years in five years in the following
areas:

1. Improved Quality Control (QC) algorithms that can be used to create workflows for building more
user accessible radar data.

2. Full support for the emerging Cartopy mapping engine ensuring sustainability of Py-ARTs geospatial
visualization tools.

3. Better Documentation, examples and a set of tutorials and courses to allow easy delivery of learning
using Py-ART.

4. An ingest of WRF produced NetCDF thus allowing efficient comparison between model and radar
produced fields.

5. Work with a third party application to produce cell tracks. Support this effort with visualizations.

The details of these features is expanded on in sections 4 and 5. The roadmap document is broken down
into:

. This introduction

. The results of the Py-ART roadmap survey and targeted reviews
. Proposed governance for accepting pull requests

. Overarching goals for the next five years

. Specific features that will be a priority for development

. Measuring impact and the success of the project

We also include a list of papers that have been accepted or are in process that have made use of Py-ART
as a reference at the end of this document.

O »v 0 A W N P

2 The Py-ART Roadmap Survey and Reviews.
2.1 The Survey

In order to produce a development roadmap, we first needed to get the views of users and stakeholders
as to what should be in the toolkit. To this end, we designed the Py-ART Roadmap survey. The survey
was hosted on SurveyMonkey and we recieved some much appreciated assistance from the ARM
outreach office in editing some questions for clarity. The Survey asked users to self identify as either a
Py-ART user or not and then asked if they would identify as:

1. A person who mainly works with observational data.
2. A person who uses a mix of modelling and observational data.

3. A person who mainly works with model data.

Unfortunately, we did not get a statistically significant enough sample to discriminate between these
groups, so for this document all user groups will be combined effectively giving two groups: those that do
and do not use Py-ART.

The survey had 35 respondents which were solicited by the ARM and Py-ART mailing lists, Facebook and
Twitter. Of those 11 had never used Py-ART and 24 had.

Py-ART User Survey Results Organization Belonging to

University

68.57% (24)

Non-User Government contractor, Non-USA

Organization Role

i (lab/non-teaching role)
Graduate student

Scientist/p
4.55% (1)
None of the above
Postdoctoral
18.18% (4) 13.64% (3)

Tenure track or Tenured Proffessor

I 4.55% (1)
Self employed or unemployed

Private Industry

[User US Government Employee
[Non-User
Government contractor, USA (eg National Lab, NCAR)
Employ of a Government but not the US

Research assistant

Figure 2: Pie charts showing the split between Py-ART user and non-user respondants and aggregated
(user/non-user) self identification of organization and role within that organization.

Respondents were presented with a list of possible additions to Py-ART's suite of algorithms consisting of:

1) Ingest of WRF data to the Py-ART grid model. The ability to ingest WRF out NetCDF files into the
Py-ART Grid data model.

2) Cell/Object Tracking. The implementation of TITAN's cell tracking (Dixon and Wiener, 1993) or similar
to create cell tracks.

3) Multi-Doppler wind retrievals. Variational or other retrievals of meridional, zonal, and vertical wind
velocities from Doppler velocity measurements.

4) More bulk statistics of grid or radar contents (CFAD, echo top heights etc..). Functions that reduce
radar volumes and grids down to descriptive parameters that could be visualized as a time series.

5) Easier "one step" rainfall retrievals. Making it easier to simply go from a radar volume to a rainfall
map.

6) More output formats. More formats to write to.

7) More input formats. More ingests.

8) Quasi-Vertical Profile reconstruction from a list of radars. A specific case of item 4 along the lines
of (Ryzhkov et al, 2016).

9) More data quality code (eg clutter rejection, biological masks..). Code to create gatefilters to
remove non-meteorological echoes.

10) Add the option of Cartopy map backend to the existing basemap in RadarMapDisplay. The
ability to use the UK Metoffice developed Cartopy backend for map based displays. Cartopy is newer than
the existing basemap backend but is likely to have a longer shelf life due to basemap not being supported
beyond 2020.

11) Ability to handle Radar Spectra and perform retrievals on. Extension of the Py-ART data model to
handle each gate having a spectra consisting of power as a function of velocity or phase. This will allow for
an extension into spectra based retrievals such as clutter removal by interpolating over the "zero peak".

12) More high level retrievals from the literature (Eg DSD, Particle ID..). Systematic inclusion of
various retrievals dealing with particle size retrieval and rain/snow/hail/ice retrievals.

13) Velocity Azimuth Display wind retrievals. Ability to retrieve flow vectors as a function of height.
Could include advanced techniques such as DVAD (Lee et al, 2014).

Respondents were only presented with the bolded text, the extra information would have been excessive,
but it could be assumed that familiarity may have played some role in voting.

METHODOLOGY OF THE RANKING:

A selector drop-down ranks each feature between one and number of options. A count of the responses
are multiplied against their ranked rank and summed. An example score would be 3 responses for rank 1
would be 3 points, 4 responses for rank 3 means 12 points, then added together for 15 points. That sum is
divided by the total number of responses to that feature giving the feature a weighted ranked score.
Having the highest score means that feature is the most important to the users. The example would yield
a rank score of 2.14

2.1.1 Non Py-ART Users

Those who identified as non-users of Py-ART were asked "What feature would make you more likely to
use Py-ART." In advertising the survey we made a particular effort to get respondents who do not use
Py-ART so we did not suffer from an "echo-chamber" effect. Figure 3 shows the results of this question.
The most popular weighted rank for new feature from non-users was "More high level retrievals.” The item
relating to the mapping back-end Cartopy was the least popular, unsurprisingly, since a fair assumption is
many of the non-users are also non-Python users and would not even know what Cartopy is. There is no
real sudden decrease anywhere along the rankings.

Non-User Rank of Possible New Features

More high level retrievals from
the literature (Eg DSD, Particle 1D.)

Multi-Doppler Winds B

CelljObject Tracking B

Velocity Azimuth Display wind retrievals B

Easier "One step” rainfall retrievals g

Ability to handle Radar Spectra and
perform retrievals on that

Quasi-Vertical Profile reconstruction
from a list of radars

More Bulk statistics of grid or radar
contents (CFAD, echo top heights etc.)

Answer Options

More gutput formats B

More input formats B

More data quality code
(eg clutter rejection, biological masks..)

Ingest of WRF data inte the Py-ART Grid Model g

Add the opticn of Cartopy map backend
to the existing basemap in RadarMapDisplay

0 2 4 3 B 10 f¥]
Rating Average

Figure 3: Average ratings for the question "How likely would these added features be to get you to use
Py-ART?" aimed at non-users

The survey also asked about barriers that non-users faced to using Py-ART. Figure 4 shows the weighted
responses, surprisingly, the number one barrier was "Difficulty to install" followed by "Most of my analysis
is done by others in our group." The least popular barrier was "I am not a python user," which is pleasing
as it is indicative of a large uptake of Python in the community.

Non-User Barriers to Using Py-ART

Difficulty to install

Most of my analysis is done by others in our group

| have my own software | am very happy using

Radars are just not my thing and Py-ART is all about radars

Answer Options

Honestly, | had never heard of it until | saw this survey

| am not a Python User

0.0 0.5 1.0 15 2.0 2.5 3.0
Rating Average

Figure 4: Average ratings for the question "What is preventing you using Py-ART?"

2.1.2 Py-ART Users

With Py-ART users, in addition to asking what feature they desired, the survey also asked them to identify
their favourite feature. Figure 5 shows the weighted rankings for the responses. Plotting/visualization was
the most popular feature closely followed by an appreciation for the wide variety of formats that Py-ART
can read. While unsurprising, this is in-line with the development priorities of Py-ART to-date as the team
sees the two biggest barriers to new users of radar data being the reading of exotically formatted files and
working out what those files contain. Rankings decreased gradually with a notable break when it came to
"Knowing VAPS will work with ADI/ARM systems." Even though this is one of Py-ART's primary aims (to
enable PI developed data to integrate easily with ARM systems), this is not surprising. If anything, the
development team is a victim of their own success in marketing Py-ART to the wider community. It does
show, however, we have some work to do in helping DoE funded PIs in using the toolkit and advocating
that funded retrievals be implemented in Py-ART.

User Rank of Favorite Features

Plotting/visualization

So many formats ‘

Dealiasing |- ‘

Gridding including gridding
multiple radars [

As a dependency for C5U Tools |
or ARTView or other

Answer Options

Polarimetric phase processing |
processing (LP)

Attenuation Correction ‘

Polarimetric phase processing |
processing (other)

Knowing VAPS developed easily |
integrate with ADI/ARM systems

o 1 2 3

3 5 G 7 B
Rating Average

Figure 5: Average rating for the question to users "What is your favourite feature of Py-ART?"

Figure 6 shows the weighted ranks for desired new features for existing Py-ART users. Figure 6 shows
several key differences to figure 3. Multi-Doppler retrievals is how the most popular feature, very closely
followed by Cell Tracking. And notably, more literature based techniques is the lowest desire by existing
users. Perhaps because many of them, using Py-ART's easy to use data model, have implemented many
of these techniques at their home institutions.

Multi-Doppler Winds

Cell/Object Tracking

More Bulk statistics of grid or radar
contents {CFAD, echo top heights etc_)

More gutput formats

More input formats

Velocity Azimuth Display wind retrievals

Quasi-Vertical Profile reconstruction
from a list of radars

More data quality code
(eg clutter rejection, biological masks..)

Answer Options

Ingest of WRF data inte the Py-ART Grid Model

Add the opticn of Cartopy map backend

to the existing basemap in RadarMapDisplay [

Easier "One step” rainfall retrievals

Ability to handle Radar Spectra and [

perform retrievals on that

More high level retrievals from

the literature (Eg DSD, Particle 1D..) |

User Rank of Possible New Features

3
Rating Average

10

12

Figure 6: Average rating for the question to users "What features would you like to see added to

As well as having users pick from feature lists designed by the survey, developers' free-form answers
were solicited with the questions "what would be Py-ART's Killer app." Users were allowed to enter three
items each so they will not all be documented here and are available in Appendix 1. The key take aways

are:

Py-ART?"

» Multi-Doppler retrievals are in high demand from the community.

* A functionality that allows cross-sections through a radar volume between two points is desired.

* Further desires for better dealiasing.

We took the opportunity to ask users about contributing. There were 18 responses to the question "Have
you ever contributed to Py-ART?" Of the 18, 22.2%(4) said Yes via pull request through Github, 5.6%(1)
said yes, by intellectual property implemented by someone else, 44.4%(8) said no, but they wanted to and

27%(5) said no and they were not interested in doing so.

Finally, we asked those who have not contributed what the barrier was to contributing.

User Barriers to contributing to Py-ART

Just not enough time f

| do not think | have done anything worth contributing |

| feel | need to clean the code and add unit tests |

| do not understand Git or GitHub f

Answer Options

Institutional policies (ie IP issues) |

00 05 10 15 20 25 30 35 40 45
Rating Average

Figure 7: Average ratings for the question "What is preventing you contributing to Py-ART?"

Figure 7 shows the average ranking with the most common barrier being "Just not enough time." This is
not surprising, as many researchers would not be judged by open source contributions and would not
value such in advancing their careers. The second most common is "I do not think | have done anything
worth contributing." This is more than likely a misunderstanding as even things as simple as correcting
typographical errors in the documentation is a welcome contribution and small changes are much easier
to accept than more substantial changes. The lowest ranking issue is to do with intellectual property
issues. This is pleasing, as it means there are few institutional roadblocks to our users contributing.

2.2 Targeted Reviews

Once the general community was polled and the first draft of this roadmap was produced it was circulated
to several key science users using two pathways: a review coordinated by the chair of the ASR Radar
Science group and a review coordinated by the Py-ART Science lead. The former is a closed review the
latter is open although anonymous.

2.2.1 Feedback from the Radar Science Group

There were several key points raised in the collected responses from the Radar Science Group:

* Py-ART is difficult to install for those not familiar with Python.

» There are existing retrieval algorithms for multi-Doppler. Since the methodology is non-trivial those
wishing to peform this technique should work with the groups that designed these codes.

* Py-ART should do a better job at engaging the cloud radar community.

In addition we recieved feedback from the ARM Radar Engineering group on some retrieval code that had
been accepted as a pull request which did not accurately implement what existed in the literature. To
assuage concerns the group had we have added responsibilities to the Science Lead pertaining to
reviewing pull requests for scientific validity in Section 3.

2.2.2 Feedback from ASR funded Pls

The Py-ART science lead contacted four ASR funded Pls who actively use Py-ART in thier institutions.
These reviews were anonymous but the reviewers allowed the reviews to be published openly ! The
results can be summarized as:

* Py-ART is time saving and a worthwhile activity by ARM.
» The Py-ART roadmap is generally on-point. With a few modifications.

* The ability to ingest WRF and other data into Py-ART's grid data model is desired.

» There should be a focus on basic corrections and QC. For example improving Doppler velocity
Dealiasing and Phase Processing.

» Updating Py-ART to work with the new python mapping backend, Cartopy is both needed and a
worthwhile effort.

» Multi-Doppler retrievals are desired by the community however Py-ART's strength of making the use
of such retrievals so easy could lead to misuse of the technique. Such an endeavour would need to
be done carefully.

* Both reviewers one and two believe Py-ART is not the place for simple grid statistics (CFADs) and
retrievals (rainfall rate, particle ID). They should either be done by Pls or be in other open source
toolkits such as CSU_radartools [4]. Reviewer four did not discuss this point much while reviewer
three was in disagreement with reviewers one and two by stating it would be good to have Py-ART
as a "one stop shop".

2.2.3 How the roadmap changed as a result of feedback

As a result of feedback from the reviewers the current version of the roadmap differers from the version
that went out for review in the following ways:

» Work in QVPs, CFADs, et al ws de-emphasised.

» Work on Multi-Doppler retrievals was significantly de-emphasised.

» A new item was added to the roadmap enabling ingest from WRF files to Py-ART's grid data model.
» The section on QC was expanded and highlighted as as a key priority.

* Note the support of Cartopy as a back end is a priority (2nd behind QC).

* Restrict development on handling radar spectra to the development of a data model.

» Added items regarding outreach, teaching and documentation. Specific focus on developing
examples aimed at the cloud radar community.

3 Proposed Governance Structure

The motivation of this roadmap is to ensure that the effort funded by the ARM program is responsive to
the needs of the stakeholders of the program. A large task of the lead developer has been in assisting
contributors in modifying pull requests (contributions) so that they can be accepted into Py-ART. While it is
important to have a consistent standard across the codebase, many of the tasks associated with
accepting pull requests can be delegated to others in the community. Currently, there are two ad-hoc
defined roles in the Py-ART project: Science Lead and Lead Developer. This roadmap proposes the
introduction of a third role: Associate Developer. The roles will be:

Science Lead: Provides high level leadership for the project, organizes outreach and education, and
coordinates contributor and stakeholder input to form a long term vision for the project. The Science Lead
will also coordinate reviews of the science behind a pull request where some claim has been made. There
has been several pull requests accepted in the past which did not accurately implement the methodology
from the literature. While it is difficult to catch all inconsistencies the Science Lead will make a judgement
on if a pull request requires more review or (in the case of simple fixes) can be accepted as is.

Lead Developer: Responsible for overall architecture of the project. Final arbiter in what pull requests to
accept. Develops the required style guidelines and coordinates the associate developers. Coordinates
contributions from associated developers to a Contributors Guide (and contributes as well).

Associate Developers: Responsible, as time allows, for doing an initial check of pull requests for
suitability and adherence to the Contributors Guide. Contributes to the Contributors Guide.

In seeking Associate Developers, it will be important to seek diversity to ensure there is no single point of
failure in providing support to Py-ART. Ideally, the project would have 2-3 Associate Developers. It will be
expected that the associate developers will be recognized as key members of the project and are
acknowledged accordingly in future publications and presentations.

4 Overarching Goals for Next Five Years

The aim of Py-ART is to lower barriers to doing science with radar data, in particular for Department of
Energy stakeholders. From the survey results it is clear that there is a large demand for Multi-Doppler
winds. However, on review it was decided that due to the complexities of the retrievals this is better left to
a third party. Fortunately during the time of constructing the roadmap a new package, Multi-Dop 2 was
released. Therefore the addition of multi-Doppler capabilities will not be a priority in the roadmap.

The addition of Cartopy support polled well and was received well by the reviewers. Fortuitously we
recently accepted a pull request that enabled Cartopy use with radial data. Therefore the addition of
Cartopy support for gridded data and the improving of support for radial data will be a priority. Pull
requests adding this capability will receive help from ARM developers. In five years we expect to
deprecate Basemap support and have fully functional Cartopy based geospatial visualization capabilities.

In the survey we asked the community about the addition of summary statistics functions like CFADs
(Yueter and Houze 1995) and QVPs (Ryzhkov et al, 2016). There was enough demand for it to be
included in the first draft of the roadmap. On review it was pointed out by multiple reviewers that these are
very easy to implement in Python by the users themselves and Py-ART would better serve the community
focusing on other areas. Therefore pull requests dealing with summary statistics will be treated as
low priority. These contributions will only recieve limited support from ARM funded developers.

Cell tracking is an area that also polled well however on review it was decided cell tracking is outside the
scope of Py-ART. However there is an activity to make cell tracking available within Python 3 Therefore
ARM support for cell tracking as it relates to Py-ART will be limited to accepting pull requests to
integrate cell tracking *data* into Py-ART routines. An example may be a viewer allowing a moving
frame of reference.

The addition of a data model for radar spectra received moderate support from polled stakeholders.
However it reviewed very well with the Radar Science group as a key way to engage the cloud radar
community. Therefore ARM developers will prioritize helping a pull request submitted adding this
capability. If resources are available ARM support may be made available to develop this ourselves.

The addition of an ingest of WRF data into Py-ART's grid model was not in the stakeholder poll but was
mentioned by multiple reviewers. This would be a nice feature add for comparision between radar and
model produced data. However it sits right on the boundary of Py-ART's scope. Therefore pull requests
that are nicely documented and require minimal developer time will be accepted.

Improving and expanding QC capabilities (dealiasing etc..) was not well defined in the poll. However on
review of the draft roadmap several users stated better QC routines would save significant time in the
reaching of scientific conclusions from radar data. Therefore pull requests improving or adding to
Py-ART's suite of QC routines will recieve the highest priority by ARM developers. This includes but
is not limited to:

» The Linear Programming based phase retrieval technique (Giangrande et al 2013) which has seen
several improvements (Huang et al, 2017) and needs further automation

» The attenuation correction code (Gu et al, 2011) also needs to be improved or replaced.

» Py-ART would benefit from contributions dealing more with basic polarimetric quality control such as
(Cao et al, 2016).

Finally, in an oversight, the initial polling did not include a question on documentation, examples and
outreach. However this was strongly pointed out on review. Furthermore discussions with maintainers of
other major packages yield the same information: Many users would prefer to see more examples, and
use cases of existing features over new features. Therefore pull requests with documentation,
examples (cookbooks) recieve priority support from ARM developers. A specific focus will be on
engaging the cloud radar community. Furthermore the Py-ART development team will continue to
engage the community by making training available at DoE and societal (AMS, AGU, ERAD, EGU
meetings. Work will also be undertaken to construct a new repository located on ARM's GitHub page
containing coursework and cookbooks. The Py-ART team will engage with the cloud radar community to
better understand their workflows and replicate in Py-ART (with appropriate acknowledgement) as
examples.

5 Priority features summary

The Development team will prioritize the acceptance of Pull requests and perform targeted strategic
development that adds the features outlined in the following sub-sections. As alluded to in the descriptions
from previous sections "Highest priority" means that ARM will accept pull requests that need significant
(more than a few days) work or even perform some ARM funded work ourselves. "Moderate priority"
means we will accept pull requests that may require some clean up and minor development. "Lower
priority" are items where we will only advise the requester on changes required.

5.1 Highest priority

1. Enhanced quality control features: Clean up and improvement of existing phase processing and
attenuation correction code. New procedures for polarimetric QC. Improved velocity dealiasing and
the detection of when this fails.

2. Improved documentation, examples and training: Better in-code documentation. Create a new
repository with cookbooks that have "shovel ready" examples users can cut and paste. Continue to
provide training at meetings and, where appropriate and cost effective, at institutions. A specific focus
will be placed on engaging and increasing uptake amongst users of cloud radars.

3. Cartopy backend: Extend the cartopy backend to the allow display of grid data. Improve radial data
display.

5.2 Moderate priority

4. Support for radar spectra: A new data model and class pyart.core.radar_spectra that allows the
storage of spectra as a function of time and range gate.

5.3 Lower priority (would be nice to have)

5. Support for visualization of cell tracks: Code that can accept a data frame of lat/lon data of storm
cell location and plot these on Py-ART's display systems. An animated viewer that works in a moving
frame of reference.

6. Summary statistics: Accept well documented, tested (ie very little effort from ARM) code that
summarizes radar volumes and gridded data (eg Statistical Coverage Product, May and Lane, 2009).

7. WRF ingest: Accept well documented, tested (ie very little effort from ARM) code that ingests WRF
produced NetCDF into Py-ART's grid data model.

6 Measuring Impact

As a Department of Energy Supported project it is important but not sufficient to have a roadmap. It is
important to monitor impact in order to justify investment and measure the success of the roadmap. The
impact of Py-ART can be measured three ways:

1) Growing the number of users and installs: While it is difficult to get exact statistics, several Py-ART
distribution channels provide information of how wide spread the usage of the toolkit is. For example,
figure 8 shows that the main repository is viewed by over 100 unique visitors every week and installed 9
times. Success would mean growing this number. Truly metricing this aspect will require periodic surveys.
We recommend that surveys are carried out in at the end of the 1st, 3rd, and 5th years of the roadmap.

Git clones

.
.

| .
AN

18 17

Clones Unique cloners

AN

NS

Tt

\

Visitors

—

1,389 238
Views Unigue visitors

Figure 8: Number of page views and clones (installs) of the main GitHub repository in a two week
period. As the survey showed that the majority of installs are using Annaconda this graph represents a
small fraction of the userbase.

2) Number and success of dependant projects: Appendix 2 shows projects that require Py-ART as a
dependency. In order to be sustainable, Py-ART needs to have a clearly defined scope and the needs of
the community outside of this scope are better served with new packages. Therefore, an increasing
number and increasing popularity of packages that depend on Py-ART are a measure of success.

3) Papers and presentations using Py-ART: Publications are treated by many user facilities as a metric
of scientific impact. To date, in just over three years since it was first publicly released, Py-ART has been
used in 10 publications. A rate of just over three per year. A metric of success will be to grow this number.
Py-ART includes a message on start up encouraging users to acknowledge the ARM program and cite
(Helmus and Collis, 2016). We will track and record instances of this appearing in major journals and
encourage (via the Py-ART email list, Facebook page, and Twitter feed) users to self report so we can
build a Py-ART publications database.

Over the next five years, the success of this roadmap will be judged by more users, a richer ecosystem of
applications, and a large body of literature that made use of the Python ARM Radar Toolkit.

References

(Heistermann et al, 2104) Heistermann, M., Collis, S., Dixon, M.J., Giangrande, S., Helmus, J.J., Kelley,
B., Koistinen, J., Michelson, D.B., Peura, M., Pfaff, T., Wolff, D.B., 2014. The Emergence of Open Source
Software for the Weather Radar Community. Bull. Amer. Meteor. Soc. doi:10.1175/BAMS-D-13-00240.1

(Helmus and Collis, 2016) Helmus, J.J. & Collis, S.M., (2016). The Python ARM Radar Toolkit (Py-ART), a
Library for Working with Weather Radar Data in the Python Programming Language. Journal of Open
Research Software. 4(1), p.e25. DOI: http://doi.org/10.5334/jors.119

(Mather and Voyles, 2012) Mather, J.H., Voyles, JW., 2012. The Arm Climate Research Facility: A
Review of Structure and Capabilities. Bull. ~ Amer. Meteor. Soc. 94, 377-392.
doi:10.1175/BAMS-D-11-00218.1

(Giangrande et al, 2013) Giangrande, S.E., McGraw, R., Lei, L., 2013. An Application of Linear
Programming to Polarimetric Radar Differential Phase Processing. Journal of Atmospheric and Oceanic
Technology 30, 1716-1729. doi:10.1175/JTECH-D-12-00147.1

http://doi.org/10.5334/jors.119

(Huang et al, 2017) Huang, H., Zhang, G., Zhao, K., Giangrande, S.E., 2017. A Hybrid Method to Estimate
Specific Differential Phase and Rainfall With Linear Programming and Physics Constraints. IEEE
Transactions on Geoscience and Remote Sensing 55, 96—-111. doi:10.1109/TGRS.2016.2596295

(Dixon and Wiener, 1993) Dixon, M., Wiener, G., 1993. TITAN: Thunderstorm Identification, Tracking,
Analysis, and Nowecasting—A Radar-based Methodology. Journal of Atmospheric and Oceanic
Technology 10, 785-797. doi:10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2

(Ryzhkov et al, 2016) Alexander Ryzhkov, Pengfei Zhang, Heather Reeves, Matthew Kumijian, Timo
Tschallener, Silke Tromel, and Clemens Simmer, 2016: Quasi-Vertical Profiles—A New Way to Look at
Polarimetric Radar Data. J. Atmos. Oceanic Technol., 33, 551-562, doi: 10.1175/JTECH-D-15-0020.1.

(Lee et al, 2014) Wen-Chau Lee, Xiaowen Tang, and Ben J.-D. Jou, 2014: Distance Velocity—Azimuth
Display (DVAD)—New Interpretation and Analysis of Doppler Velocity. Mon. Wea. Rev., 142, 573-589,
doi: 10.1175/MWR-D-13-00196.1.

(Yuter and Houze, 1995) Yuter, S.E., Houze, R.A., 1995. Three-Dimensional Kinematic and Microphysical
Evolution of Florida Cumulonimbus. Part II: Frequency Distributions of Vertical Velocity, Reflectivity, and
Differential Reflectivity. Monthly Weather Review 123, 1941-1963.
doi:10.1175/1520-0493(1995)123<1941: TDKAME>2.0.CO;2

(May and Lane, 2009) May, P.T., Lane, T.P., 2009. A method for using weather radar data to test cloud
resolving models. Met. Apps 16, 425-432. doi:10.1002/met.150

(Gu et al 2011) Gu, J.-Y., Ryzhkov, A., Zhang, P., Neilley, P., Knight, M., Wolf, B., Lee, D.-l., 2011.
Polarimetric Attenuation Correction in Heavy Rain at C Band. J. Appl. Meteor. Climatol. 50, 39-58.
doi:10.1175/2010JAMC2258.1

(Cao et al, 2016) Cao, Q., Knight, M., Ryzhkov, A.V., Zhang, P., lll, N.E.L., 2016. Differential Phase
Calibration of Linearly Polarized Weather Radars With Simultaneous Transmission/Reception for
Estimation of Circular Depolarization Ratio. IEEE Transactions on Geoscience and Remote Sensing PP,
1-11. doi:10.1109/TGRS.2016.2609421

Appendix 1: Free form responses to "Killer App"

These comments have no order to them so they are listed below for reference:
Feature 1 (11 responses):
Easier installation
Dual-Doppler Wind Calculations
More advanced feature with Cross-section cut, based on any two single points, similar to iris
Dual-Doppler Winds
Treat variable like this variable
cross sections between any two points
RadarCollection
Advection correction

More precise data model - e.g in Nexrad Level 3 the width of azimuth gates are not always uniform
and in the data format the rays are described with "azimuth of the beginning of the ray" and width of
the ray. See relevant ICDs on Level 3.

Multi-Doppler wind retrievals

Additional weighting function options when gridding radar data, besides the Barnes and Cressman
schemes

Feature 2: (6 responses)

Dealiasing X-Band Vertical Profiling Radar

More advanced algorithm, like ZDR column detection or NCAR PID algorithms
Easier Geotiff compatibility
Carry along a map image/background to help speed up multiple plotting instances of same radar
Improved dealiasing algorithms
Hydro 1D
Feature 3: (3 responses)
Collaboration with SingleDop
Improved dealiasing

Improvements to ARTview to make it replace solo3

Appendix 2: Packages that make use of Py-ART

ARTView https://github.com/nguy/artview ARTview is an interactive GUI viewer that is built on top of
the Py-ART toolkit. It allows one to easily scroll through a directory of weather radar data files and
visualize the data. All file types available in Py-ART can be opened with the ARTview browser.

You can interact with data files through "Plugins". Many functions from the Py-ART package can be
selected. In addition, ARTview plugins allow querying data by selecting regions or points visually.

SingleDop https://github.com/nasa/SingleDop SingleDop is a software module, written in the Python
programming language, that will retrieve two-dimensional low-level winds from either real or simulated
Doppler radar data. It mimics the functionality of the algorithm described in the following reference: - Xu et
al., 2006: Background error covariance functions for vector wind analyses using Doppler-radar
radial-velocity observations. Q. J. R. Meteorol. Soc., 132, 2887-2904.

The interface is simplified to a single line of code in the end user's Python scripts, making implementation
of the algorithm in their research analyses very easy. The software package also interfaces well with other
open source radar packages, such as the [Python ARM Radar Toolkit
(Py-ART)](https://github.com/ARM-DOE/pyart). Simple visualization (including vector and contour plots)
and save/load routines (to preserve analysis results) are also provided.

PyTDA https:/igithub.com/nasa/PyTDA software providing Python functions that will estimate turbulence
from Doppler radar data. It is tested and working under Python 2.7 and 3.4.

DualPol https://github.com/nasa/DualPol This is an object-oriented Python module that facilitates
precipitation retrievals (e.g., hydrometeor type, precipitation rate, precipitation mass, particle size
distribution information) from polarimetric radar data. It leverages existing open source radar software
packages to perform all-in-one QC and retrievals that are then easily visualized or saved using existing
software.

CSU Radar Tools https://github.com/CSU-Radarmet/CSU_RadarTools Python tools for polarimetric
radar retrievals.

This codebase was developed at Colorado State University by numerous people, including Brenda Dolan,
Brody Fuchs, Kyle Wiens, Rob Cifelli, Larry Carey, Timothy Lang, and others.

Currently, fuzzy-logic-based hydrometeor identification, blended rainfall, DSD retrievals, and liquid/ice
mass calculations are supported. There is also an algorithm that uses a finite impulse response (FIR) filter
to process differential phase and calculate specific differential phase. Finally, there are some tools to do
rudimentary QC on the data.

https://github.com/ARM-DOE/pyart

Appendix 3: Papers in press that used Py-ART

[1] Shuyi S. Chen, Brandon W. Kerns, Nick Guy, David P. Jorgensen, Julien Delanoé&, Nicolas Viltard,
Christopher J. Zappa, Falko Judt, Chia-Ying Lee, and Ajda Savarin. Aircraft observations of dry air, the
itcz, convective cloud systems, and cold pools in mjo during dynamo. Bulletin of the American
Meteorological Society, 97(3):405-423, 2016. URL: http://dx.doi.org/10.1175/BAMS-D-13-00196.1,
arXiv:http://dx.doi.org/10.1175/BAMS-D-13-00196.1, doi:10.1175/BAMS-D-13-00196.1.

[2] Scott E. Giangrande, Scott Collis, Adam K. Theisen, and Ali Tokay. Precipitation estimation from the
arm distributed radar network during the mc3e campaign. Journal of Applied Meteorology and Climatology,
53(9):2130-2147, 2014. URL: http://dx.doi.org/10.1175/JAMC-D-13-0321.1,
arXiv:http://dx.doi.org/10.1175/JAMC-D-13-0321.1, do0i:10.1175/JAMC-D-13-0321.1.

[3] M. Heistermann, S. Collis, M. J. Dixon, S. Giangrande, J. J. Helmus, B. Kelley, J. Koistinen, D. B.
Michelson, M. Peura, T. Pfaff, and D. B. Wolff. The emergence of open-source software for the weather
radar community. Bulletin of the American Meteorological Society, 96(1):117-128, 2015. URL:
http://dx.doi.org/10.1175/BAMS-D-13-00240.1, arXiv:http://dx.doi.org/10.1175/BAMS-D-13-00240.1,
doi:10.1175/BAMS-D-13-00240.1.

[4] M. Heistermann, S. Collis, M. J. Dixon, J. J. Helmus, A. Henja, D. B. Michelson, and Thomas Pfaff. An
open virtual machine for cross-platform weather radar science. Bulletin of the American Meteorological
Society, 96(10):1641-1645, 2015. URL: http://dx.doi.org/10.1175/BAMS-D-14-00220.1,
arXiv:http://dx.doi.org/10.1175/BAMS-D-14-00220.1, doi:10.1175/BAMS-D-14-00220.1.

[5] J. J. Helmus and S. M. Collis. The python arm radar toolkit (py-art), a library for working with weather
radar data in the python programming language. Journal of Open Research Software, 4(1):e25, 2016.
doi:10.5334/jors.119.

[6] M. P. Jensen, W. A. Petersen, A. Bansemer, N. Bharadwaj, L. D. Carey, D. J. Cecil, S. M. Caollis, A. D.
Del Genio, B. Dolan, J. Gerlach, S. E. Giangrande, A. Heymsfield, G. Heymsfield, P. Kollias, T. J. Lang, S.
W. Nesbitt, A. Neumann, M. Poellot, S. A. Rutledge, M. Schwaller, A. Tokay, C. R. Williams, D. B. Wolff, S.
Xie, and E. J. Zipser. The midlatitude continental convective clouds experiment (mc3e). Bulletin of the
American Meteorological Society, 0(0):null, 0. URL: http://dx.doi.org/10.1175/BAMS-D-14-00228.1,
arXiv:http://dx.doi.org/10.1175/BAMS-D-14-00228.1, doi:10.1175/BAMS-D-14-00228.1.

[7] Timothy J. Lang, Walter A. Lyons, Steven A. Cummer, Brody R. Fuchs, Brenda Dolan, Steven A.
Rutledge, Paul Krehbiel, William Rison, Mark Stanley, and Thomas Ashcraft. Observations of two
sprite-producing storms in colorado. Journal of Geophysical Research: Atmospheres, pages n/a-n/a, 2016.
URL: http://dx.doi.org/10.1002/2016JD025299, doi:10.1002/2016JD025299.

[8] Harald Richter, Justin Peter, and Scott Collis. Analysis of a destructive wind storm on 16 november
2008 in brisbane, australia. Monthly Weather Review, 142(9):3038-3060, 2014. URL:
http://dx.doi.org/10.1175/MWR-D-13-00405.1, arXiv:http://dx.doi.org/10.1175/MWR-D-13-00405.1,
doi:10.1175/MWR-D-13-00405.1.

[9] Jingyin Tang and Corene J. Matyas. Fast playback framework for analysis of ground-based doppler
radar observations using mapreduce technology. Journal of Atmospheric and Oceanic Technology,
33(4):621-634, 2016. URL: http://dx.doi.org/10.1175/JTECH-D-15-0118.1,
arXiv:http://dx.doi.org/10.1175/JTECH-D-15-0118.1, doi:10.1175/JTECH-D-15-0118.1.

[10] Marcus van Lier-Walqui, Ann M. Fridlind, Andrew S. Ackerman, Scott Collis, Jonathan Helmus,
Donald R. MacGorman, Kirk North, Pavlos Kollias, and Derek J. Posselt. On polarimetric radar signatures
of deep convection for model evaluation: columns of specific differential phase observed during mc3e.
Monthly Weather Review, 144(2):737-758, 2016. URL: http://dx.doi.org/10.1175/MWR-D-15-0100.1,
arXiv:http://dx.doi.org/10.1175/MWR-D-15-0100.1, d0i:10.1175/MWR-D-15-0100.1.

[11] Michael Hankey, Marc Fries, Rob Matson, Jeff Fries, AMSNEXRAD-Automated detection of meteorite
strewnfields in doppler weather radar, Planetary and Space Science, Volume 143, 2017, Pages 199-202,
ISSN 0032-0633, http://dx.doi.org/10.1016/j.pss.2017.02.008.

http://dx.doi.org/10.1175/BAMS-D-13-00196.1
http://dx.doi.org/10.1175/JAMC-D-13-0321.1
http://dx.doi.org/10.1175/BAMS-D-13-00240.1
http://dx.doi.org/10.1175/BAMS-D-14-00220.1
http://dx.doi.org/10.1175/BAMS-D-14-00228.1
http://dx.doi.org/10.1002/2016JD025299
http://dx.doi.org/10.1175/MWR-D-13-00405.1
http://dx.doi.org/10.1175/JTECH-D-15-0118.1
http://dx.doi.org/10.1175/MWR-D-15-0100.1
http://dx.doi.org/10.1016/j.pss.2017.02.008

[12] Soderholm, J.S., H.A. McGowan, H.X. Richter, K. Walsh, T. Wedd, and T.M. Weckwerth, 0: Diurnal
preconditioning of subtropical coastal convective storm environments. Mon. Wea. Rev., 0,
https://doi.org/10.1175/MWR-D-16-0330.1

[13] Altube P, J Bech, O Argemi, T Rigo, N Pineda, S Collis, and J Helmus. 2017. "Correction of
Dual-PRF Doppler Velocity Outliers in the Presence of Aliasing.” Journal of Atmospheric and Oceanic
Technology, , 10.1175/JTECH-D-16-0065.1.

[14] Hoban NP. 2016. Observed Characteristics of Mesoscale Banding in Coastal Northeast U.S. Snow
Storms. Ed. Masters Thesis. by Sandra Yuter (advisor), Raleigh, NC: North Carolina State University.

[15] Berkseth SM. 2016. Quantitative Analysis of the Turbulent Structure of Convection [Thesis]. Lubbock,
TX: Texas Tech University.

[16] Mroz K, A Battaglia, TJ Lang, DJ Cecil, S Tanelli, and F Tridon. 2017. "Hail-Detection Algorithm for
the GPM Core Satellite Sensors." Journal of Applied Meteorology and Climatology, |,
10.1175/JAMC-D-16-0368.1.

[17] North, K. W., Oue, M., Kollias, P., Giangrande, S. E., Collis, S. M., and Potvin, C. K.: Vertical air
motion retrievals in deep convective clouds using the ARM scanning radar network in Oklahoma during
MC3E, Atmos. Meas. Tech., 10, 2785-2806, https://doi.org/10.5194/amt-10-2785-2017, 2017.

https://github.com/ARM-DOE/pyart-roadmap/blob/master/reviews/concatinated_reviews.md
2 https://github.com/nasa/MultiDop
https://github.com/openradar/TINT (under development)
4 https://github.com/ARM-DOE/

w

https://doi.org/10.1175/MWR-D-16-0330.1
https://doi.org/10.5194/amt-10-2785-2017
https://github.com/ARM-DOE/pyart-roadmap/blob/master/reviews/concatinated_reviews.md
https://github.com/nasa/MultiDop
https://github.com/openradar/TINT
https://github.com/ARM-DOE/

	1 Introduction and Aims
	1.1 The Python ARM Radar Toolkit
	1.2 Value of Py-ART to ARM
	1.3 Need for a Roadmap for Py-ART

	2 The Py-ART Roadmap Survey and Reviews.
	2.1 The Survey
	2.1.1 Non Py-ART Users
	2.1.2 Py-ART Users
	2.2 Targeted Reviews
	2.2.1 Feedback from the Radar Science Group
	2.2.2 Feedback from ASR funded PIs
	2.2.3 How the roadmap changed as a result of feedback

	3 Proposed Governance Structure
	4 Overarching Goals for Next Five Years
	5 Priority features summary
	5.1 Highest priority
	5.2 Moderate priority
	5.3 Lower priority (would be nice to have)

	6 Measuring Impact
	References
	Appendix 1: Free form responses to "Killer App"
	Appendix 2: Packages that make use of Py-ART
	Appendix 3: Papers in press that used Py-ART

