
Critical Design Review Document
for Macleod: A CLIF Parser, designed for Torsten Hahmann and Jake Emerson

Designed by Reading Club Development:
Matthew Brown, Gunnar Eastman, Jesiah Harris, Shea Keegan, Eli Story

Version 1.0
Dec 15, 2022

1

Executive Summary
The project set forth is to create a Python library of Macleod, using the Poetry package
manager that can be installable via pip and be used to parse CLIF files, and to create a
plugin for an existing IDE, Spyder, in which CLIF files can be easily opened, edited, and
managed. This plugin is also to be called Macleod. Macleod stands for “Macleod - A
Common Logic Environment for Ontology Development.” RCD is to accomplish these two
tasks within the Fall 2022 and Spring 2023 semesters of the University of Maine’s academic
year in correspondence with Dr. Torsten Hahmann and Jake Emerson. Thus far, RCD is
prototyping the IDE through making mock-ups using framer and TKinter, though the third
prototype used QT and met RCD’s clients’ approvals. The next steps are to learn about
plugins, specifically how to write and manipulate them, and to begin work on increasing
the accuracy of the currently out-of-date and slightly inaccurate parsing scripts. This
Critical Design Review Document is to record the steps the RCD team has taken thus far,
and to outline the next steps for the RCD team to complete in the near future.

Foreword
“Human knowledge is built incrementally and shared infrequently. In science we represent
knowledge as models. These can be simple relationships between things, like the
mechanics of a swinging pendulum, or highly complex, like the replication of DNA. Ongoing
work in projects like COLORE, BFO, DOLCE, and many other scientific data models aim to
unify how we communicate about data, information, and knowledge.

“An established specification for this kind of communication is called the Common Logic
Interchange Format. However, there are obstacles to adoption. One significant obstacle in
the path of this communication effort is the lack of a robust programming environment,
such as an integrated development environment (IDE), that supports writing, debugging
and otherwise working with complex logical statements in Common Logic. The project
underway by R. C. Development is building the next step toward better scientific
communication by updating the Common Logic text parser and IDE.”

- Jake Emerson, The Jackson Laboratory

Preface
The goals of the project are to expand upon the existing CLIF parser, add a user interface
for parsing and debugging, and make macleod available as a python library, which is to be
done by the Reading Club Development (RCD) team during the Fall 2022 and Spring 2023
semesters of the University of Maine in partial fulfillment of the Computer Science BS
degree for the University of Maine. There is thus limited development time, but the hope is

2

to produce a product which will satisfy the requirements set forth by the clients, Jake
Emerson and Torsten Hahmann.

In preparation for this project, the RCD team has proven themselves to understand both
the V-Shaped Development Process and Agile Development Process. The requirements of
the system were set forth in the System Requirements Specification document (SRS), the
design requirements enumerated in the System Design Document (SDD), and the user
interface standards were set within the User Interface Design Document (UIDD). Each of
these documents have been created under and with the express guidance of the clients via
biweekly check-in meetings.

The planned updates to the Macleod software will allow for a more robust system of
ontology writing, which will speed up the development and debugging of Common Logic
ontologies. Specific use will primarily be in sciences, where reproducibility is difficult due
to ambiguous data. An example given by Jake Emerson is that of the Mouse Genome
Informatics team at Jackson Laboratory. This team currently uses Web Ontology Language
(OWL) as their specification language. However, OWL is not as expressive as CLIF, so the
team would use Macleod and the CLIF Parser to write ontologies to better represent the
data they collect and the experiments they run.

3

Critical Design Review Document:
Table of Contents

Executive Summary 1

Foreword 1

Preface 1

Summary 7

1. Introduction 8
1.1 Purpose of This Document 8

2. Purpose 8

3. Method 9

4. Design 9
4.1 Design Parameters 9
4.2 Design Approach 9
4.3 Design Problems 11
4.4 Design Details 12

5. Equipment 12

6. Test 12
6.1 Test Conditions 13
6.2 Test Procedures 13
6.3 Test Results 13

7. Data 13

8. Conclusions 15

9. Recommendations 16

References 17

Bibliography 18

4

Acknowledgement 19

Appendix A - SRS 20

Appendix B - SDD 44

Appendix C - UIDD 57

List of Figures
Fig. 1 : Data Pipeline of Macleod Library 10
Fig. 2 : IDE Architecture Diagram of Macleod: 11
Fig. 3: Test file text.clif 12

List of Tables
Table 1: 12

Symbols (Nomenclature)
RCD: Reading Club Development
SPR: System Proposal Review
SRR: System Requirements Review
SRS: System Requirements Specification
SDR: System Definition Review
SDD: System Design Document
SSR: Software Specification Review
UIDD: User Interface Design Document
CLIF: Common Logic Interchange Format
OWL: Web Ontology Language
TPTP: Thousand Problem Theorem Prover
LADR: Library for Automated Deduction Research
FR: Functional Requirement
NFR: Non-Functional Requirement

5

Summary
Macleod was originally created by Dr. Torsten Hahmann, and later re-engineered by Robert
Powell. This initial project set the groundwork for the general structural flow of the
Macleod system: the user inputs a CLIF file to be parsed, which the system does; then the
file can be translated to TPTP, OWL, or LADR formats; these new formats are then passed
through a consistency checker, with the output eventually being whether the translations
are consistent.

In the years since its inception, Macleod has had an ontology visualization interface,
though this has since fallen into disuse and disrepair, and is currently nonfunctional. The
parser itself is, in its current state, only covers about 90% of the CLIF language constructs,
and the standards for CLIF have since been updated as well, meaning that the parser has
even less complete coverage now. Thus lie the two chief development matters of RCD:
create an IDE to be used for editing and debugging CLIF files by interacting with the
existing Macleod backend, and expand the CLIF parser to cover more of the current CLIF
standard. RCD will not interact with the conversions to the other file formats, nor the
consistency checking.

The requirements were discussed via a System Requirement Review, which ultimately led to
the production of the aforementioned SRS. These requirements that were covered were
higher level in nature, discussing the functions of the system that is to be created, and
lower-level requirements, such as what the system is to perform on, how the system is to
be accessed, and the usual response times of the system.

Following the specifications of the system came the design requirements of the system.
The System Definition Review was where the design requirements were gathered and
discussed. These requirements allowed for the creation of the SRS, wherein the design
elements of the project are set forth, and the full goals of the project are written.

Next came the user interface design, with the requirements elicited via a Software
Specification Review with the clients. This review led to the production of the UIDD, where
the user interface of the system was prototyped. In the UIDD, the requirements for the
user interface were also produced, which the RCD team plans on following through to the
end of the project.

The goals of this project have thus been laid out in the previously mentioned documents,
with two ultimate goals. The first goal is to create a Python library via Poetry to allow for
the easy and accurate parsing, conversion, and consistency checking of CLIF files. The

6

second goal is to create a plug-in for a pre-existing IDE (likely Spyder) which will allow for
the convenient modification, parsing, and translation of CLIF files.

7

1. Introduction
The Common Logic Interchange Format (CLIF) Parser is a capstone project for Dr. Torsten
Hahmann and Jake Emerson, in partial fulfillment of the Computer Science BS degree for
the University of Maine, completed by the Reading Club Development (RCD) team. Dr.
Hahmann is a professor at the University of Maine with affiliation to the Spatial Data
Science Institute and research interests in knowledge representation, logic, and automated
reasoning. Jake Emerson works for Jackson Laboratories in Bar Harbor, Maine, where he
would implement this parser into the workflow of projects he is involved with. RCD
consists of five seniors from the University of Maine: Matthew Brown, Gunnar Eastman,
Jesiah Harris, Shea Keegan, and Eli Story.

1.1 Purpose of This Document
This CDRD is meant to illustrate the current state of the CLIF Parser and plugin that RCD
has been tasked with developing. This SRS will also describe the work that RCD has
completed on the project in the course of the first semester of the two-semester long
Capstone class at the University of Maine. The intended readership of this document
consists of the client and the RCD team so as to effectively document the progress on the
CLIF Parser and IDE. The CLIF Parser is to be used by researchers so as to better document
their methods for experiments so as to allow for more repeatability in their experiments.

2. Purpose
The field of biology is currently facing a “crisis of reproducibility” according to Jake
Emerson, one of our clients and an engineer at Jackson Laboratory in Bar Harbor, Maine.
The development of an ontological reader is, for him, paramount due to the congruity of
semantics within ontological statements. The CLIF Parser is to be a stepping stone in the
progress toward wider uptake of Common Logic, allowing for specifying more detailed
semantics, and hopefully slightly mitigating this crisis of reproducibility.

On a smaller scale, the purpose of the CLIF Parser is primarily to parse CLIF files to ensure
they are syntactically correct according to CLIF standards. The library should also translate
from the CLIF syntax to TPTP, or other logic-based conventions. Another purpose of the
product is to build an IDE for easier use of the previously developed Macleod, so Common
Logic can have an IDE dedicated to supporting it.

3. Method
The RCD development team will use an agile approach, ensuring that the pre-existing
product remains usable during the entire process. Efforts will be split between making

8

improvements to the functionality of the software itself, packaging the software as a
python library, and designing an IDE based on the Spyder platform to provide some level of
GUI for interacting with Macleod and make the product easier to use.

4. Design
This section will review the overall design of the product. It should look similar to how the
product currently functions, this is to help ensure that RCD does not cause the product to
stop working.

4.1 Design Parameters
For the project we are constrained to the limitations of Common Logic while building the
parser, specifically the Common Logic Interchange Format (CLIF), as created by the
International Organization for Standardization (ISO). This is to ensure that the files that are
created align with the syntactic standards that have been set in place by the ISO. The
purpose of this is to allow for ontologies to be consistent when translated into various
other logical languages such as TPTP or LADR.

For the GUI we will be limited by the functionality of Spyder and its capabilities.

4.2 Design Approach
The basic design is a Pipe and Filter architecture model, wherein data is passed through a
series of steps to an eventual output. In Fig. 1, the data is fed to the parser.py (the Parser),
which is the beginning of the Macleod architecture. Specifically, using Macleod as a library
allows for the calling of the Parser via the parse_clif function, and possibly the translating
of the CLIF file into various formats. The parse_clif script generates an ontology object
whether the translation is required or not, and the ontology object prints itself to the
terminal. If conversion is necessary, then the specific language to be translated into is
required, and the ontology object is translated into the relevant language and the
converted file is output.

9

Fig. 1: Data Pipeline of Macleod Library: This diagram documents the flow of data through the Macleod system,
from the parser to the eventual output.

Macleod is currently built on Python. All of the relevant scripts from Fig. 1 exist, though the
parser is presently incomplete. The work of RCD is twofold on the parser: firstly is to
package up Macleod into a Python library via Poetry that is then downloadable by Pip;
secondly is to ensure full coverage of the CLIF standard.

Fig. 2 demonstrates how the Macleod plugin will interface with the Spyder IDE. The
Macleod plugin will have the same general functionality as the Macleod library. The “parse”
and “convert” options will be handled via buttons displayed on the IDE. One button will
simply parse the file, and an array of buttons will be available to convert the file into
different formats. However, if the parse fails at either button press, we will use Spyder’s
error checking to display where the error is in the CLIF file that caused the parse to fail.
The user will then be able to edit the file using Spyder’s normal editor.

10

Fig. 2: IDE Architecture Diagram of Macleod: This diagram documents how the user input is processed by the
system depending on which button the user clicks.

4.3 Design Problems
The largest issues facing RCD are whether we should make the IDE from scratch, how the
library fits into the Macleod architecture, and how the parser truly operates.

The idea behind creating an IDE from scratch is that it would be entirely customizable to
the needs of the clients. There would also only need to be an executable that is downloaded
in order for the IDE to be able to be used seamlessly. However, the full construction of an
IDE requires an extensive knowledge of how to use the tools provided through TKinter or
Qt for Python. Essentially, it would have been quite an undertaking in order to fully
construct a fully-featured IDE from scratch, more than we could likely accomplish, let
alone accomplish in parallel with the parser expansion. Instead, we are choosing to create a
Spyder plugin to accomplish similar purposes.

11

As for how the library fits into the Macleod architecture, we had a hard time distinguishing
how to include the library into the system. The Python library will be installable via Pip and
importable into a .py file, wherein the parse_clif script can be called with the file location
specified. The library is to be utilized when parsing and/or translating is important to a
python script, but the Macleod plugin will be utilized when a user is creating or curating
CLIF files.

How the parser operates eluded the RCD team for a few months. The process of how to
download and get the parser going required an extensive use of file organization and file
manipulation. The user had to modify configuration files in two separate spots with quirks
riddled throughout. Currently, only two members of the RCD team even have the ability to
parse CLIF files by using the supplied Macleod parser. However, we have now written out
steps that, though not universally applicable, are a good starting point on making Macleod
more accessible.

4.4 Design Details
The fine details of the design have been discussed in UIDD §2. To summarize, the GUI will
have five sections each with their own functionalities. The sections include; file navigation,
file editor, console, error list, toolbar. Each section will interact with the parser by either
calling functions in the parser or by displaying data that the parser generates.

For the Parser, we intend to follow the coding structure that already exists. Following this
structure we will enhance the capabilities of the parser to accommodate parts of the
common logic language that was not previously covered.

5. Equipment
No physical equipment is being used other than the personal computers of the RCD team.
The team is running the current parser and plans on running the future library and plugin
on Ubuntu Linux, Windows 10 and 11, and Mac Ventura.

6. Test
This section will contain our testing information. This will include the file types and
formats that will be accepted, along with some tests that were run inorder to isolate syntax
that isn’t accepted, and their results.

12

6.1 Test Conditions
The one constant among tests is that inputs will be CLIF files. We will test translation into
each of TPTP, LADR, and OWL formats.

6.2 Test Procedures
We were given three test files, all but one of them in the modern CLIF format, which does
not currently work with the parser. Then, we ran them through the parser, and recorded
our results. We are now working to isolate which conventions do not work, specifically
starting with ensuring the preservation of comments. We are working to create new test
files to isolate syntactic elements to ensure they are working, starting with a basic
“text.clif” file.

Fig. 3: Test File text.clif: RCD’s first original test file, isolating the syntactic elements of forall, if, not, iff, compl,
and ntpp.

6.3 Test Results
We tested on four files, rcc_basic_old.clif, rcc_basic.clif, rcc.clif, and text.clif. We expected
rcc_basic.clif and rcc.clif to fail due to them containing the updated comment syntax. Both
rcc_basic.clif and rcc.clif failed due to the incorrect parsing of the comments because of the
updated syntax, which is expected. The two files expected to parse successfully, text.clif
and rcc_basic_old.clif, both did parse successfully. This means that we have isolated our
first syntactic element to fix: comments.

7. Data
Unfortunately, there is not very much data to analyze currently. Of the four CLIF files that
we have to test the parser on, two succeed and two fail. The two that fail, fail for the same
reason, because the comment structure of CLIF was updated after the conception of

13

Macleod, and thus the parser has not been updated since the comment structure was
updated. As for the two that succeed, rcc_basic_old.clif contains valuable insight into the
conventions that do work, due to the fact that this file parses with several ontologies
contained within it. As for text.clif, the file is too small to be of much use besides ensuring
that the parser is set up correctly to parse.

File Name Results Output

rcc_basic_old.clif Success (base) matthewbrown@Matthews-MBP macleod %
parse_clif -f
/Users/matthewbrown/Documents/macleod/test_onto
logies/rcc_basic_old.clif
2022-12-13 17:04:41,316 macleod.Filemgt INFO
Config file read:
/Users/matthewbrown/macleod/macleod_mac.conf
2022-12-13 17:04:41,316 macleod.Filemgt INFO
Logging configuration file read:
/Users/matthewbrown/macleod/logging.conf
2022-12-13 17:04:41,316 macleod.Filemgt DEBUG
Started logging with MacleodConfigParser
2022-12-13 17:04:41,316 macleod.scripts.parser INFO
Called script parse_clif
ELIMINATING CONDITIONALS False
2022-12-13 17:04:41,322 macleod.scripts.parser INFO
Starting to parse
/Users/matthewbrown/Documents/macleod/test_onto
logies/rcc_basic_old.clif

rcc_basic.clif failure Unexpected Token:
'h̲t̲t̲p̲:̲/̲/̲c̲o̲l̲o̲r̲e̲.̲o̲o̲r̲.̲n̲e̲t̲/̲m̲e̲r̲e̲o̲t̲o̲p̲o̲l̲o̲g̲y̲/̲r̲c̲c̲_̲b̲a̲s̲i̲c̲.̲c̲l̲i̲f̲' ::
"h̲t̲t̲p̲:̲/̲/̲c̲o̲l̲o̲r̲e̲.̲o̲o̲r̲.̲n̲e̲t̲/̲m̲e̲r̲e̲o̲t̲o̲p̲o̲l̲o̲g̲y̲/̲r̲c̲c̲_̲b̲a̲s̲i̲c̲.̲c̲l̲i̲f̲ "
COMMENT LPAREN NONLOGICAL nonlogicals LPAREN
NONLOGICAL NONLOGICAL
…
TypeError: Error in function: bad nested term

rcc.clif failure Unexpected Token: 'h̲t̲t̲p̲:̲/̲/̲c̲o̲l̲o̲r̲e̲.̲o̲o̲r̲.̲n̲e̲t̲/̲m̲e̲r̲e̲o̲t̲o̲p̲o̲l̲o̲g̲y̲/̲r̲c̲c̲.̲c̲l̲i̲f̲'
:: "h̲t̲t̲p̲:̲/̲/̲c̲o̲l̲o̲r̲e̲.̲o̲o̲r̲.̲n̲e̲t̲/̲m̲e̲r̲e̲o̲t̲o̲p̲o̲l̲o̲g̲y̲/̲r̲c̲c̲.̲c̲l̲i̲f̲ "
COMMENT LPAREN NONLOGICAL nonlogicals LPAREN
NONLOGICAL NONLOGICAL

14

…
TypeError: Error in function: bad nested term

text.clif success (base) matthewbrown@Matthews-MBP macleod %
parse_clif -f
/Users/matthewbrown/Documents/macleod/test_onto
logies/text.clif
2022-12-13 17:10:38,575 macleod.Filemgt INFO
Config file read:
/Users/matthewbrown/macleod/macleod_mac.conf
2022-12-13 17:10:38,575 macleod.Filemgt INFO
Logging configuration file read:
/Users/matthewbrown/macleod/logging.conf
2022-12-13 17:10:38,575 macleod.Filemgt DEBUG
Started logging with MacleodConfigParser
2022-12-13 17:10:38,575 macleod.scripts.parser INFO
Called script parse_clif
ELIMINATING CONDITIONALS False
2022-12-13 17:10:38,581 macleod.scripts.parser INFO
Starting to parse
/Users/matthewbrown/Documents/macleod/test_onto
logies/text.clif

Table 1: Results from Test Files: This table depicts that two of the test files succeeded and two of them failed,
along with the output of the parse.

8. Conclusions
Throughout the semester, we have come to three conclusions. Firstly, according to the
clients, the parser is approximately 90% correct already. Secondly, we have cemented the
tools we have used in Spyder and Poetry. Thirdly, documentation is hard and time
consuming.

As for the completeness of the parser, the parser being as complete as it is is enormously
helpful because it means the RCD team has to do less work. Our work going forward is to
isolate the syntactic elements that do not work, so that we can improve the parser. We have
decided the first element to address is altering the parser to comments present in the
documents it translates, ensuring that those comments are also present in the translation.

Isolating the tools to use to complete the client’s proposal was more difficult than initially
thought. In our SPR, there were a few packaging methods discussed, such as pyproject or

15

Poetry. We now know that we are to use Poetry to package Macleod. We also began by
thinking we would be building the IDE off of Macleod’s pre-existing native GUI. We were
wrong, and any IDE version of Macleod needed to be developed by us. We initially believed
that we would be writing our own IDE using TKinter or Qt, though now we know that we
are to be building a plugin off the Spyder IDE that utilizes Macleod.

Thirdly, documentation is important, time-consuming, and difficult at times. Even through
this difficulty, complying with client standards is paramount, and we need to develop in
conjunction with writing documentation. The RCD team plans on developing more in the
spring semester, but also plans on keeping the quality of documentation consistent.

9. Recommendations
On future projects, we will be more probing when it comes to requirements and overall
system design to ensure that we are building the correct system from the outset. It felt as
though most times we attempted to validate that we were understanding the project
correctly, our understanding came up short and led us to numerous setbacks. We
ultimately did not get as much as we expected to do this semester due to
misunderstandings, mostly stemming from poor elicitation of requirements.

We need to be more communicative. Going forward, we would recommend involving the
clients on the action items and open issues, thus giving them a line into what we plan on
accomplishing on any given sprint. Our clients were expecting more code to be written and
less documentation, due to a lack of communication by us, which could have been
remedied easily.

16

References
Brown, M, et al., CLIF Parser System Requirement Specification, 2022,

https://github.com/Reading-Club-Development/macleod/blob/master/UMaine%
20Capstone%20Documents/RCD_SRS.pdf.

Brown, M, et al., CLIF Parser System Design Document, 2022,
https://github.com/Reading-Club-Development/macleod/blob/master/UMaine%
20Capstone%20Documents/RCD_SDD.pdf.

Brown, M, et al., CLIF Parser User Interface Design Document, 2022,
https://github.com/Reading-Club-Development/macleod/blob/master/UMaine%
20Capstone%20Documents/RCD_UIDD.pdf.

https://github.com/Reading-Club-Development/macleod/blob/master/UMaine%20Capstone%20Documents/RCD_SDD.pdf
https://github.com/Reading-Club-Development/macleod/blob/master/UMaine%20Capstone%20Documents/RCD_SDD.pdf
https://github.com/Reading-Club-Development/macleod/blob/master/UMaine%20Capstone%20Documents/RCD_SDD.pdf
https://github.com/Reading-Club-Development/macleod/blob/master/UMaine%20Capstone%20Documents/RCD_SDD.pdf
https://github.com/Reading-Club-Development/macleod/blob/master/UMaine%20Capstone%20Documents/RCD_UIDD.pdf
https://github.com/Reading-Club-Development/macleod/blob/master/UMaine%20Capstone%20Documents/RCD_UIDD.pdf

17

Bibliography
Colore, Semantic Technologies Laboratory, ​​http://stl.mie.utoronto.ca/colore/.

Hahmann, Torsten, Macleod, GitHub, 2022, https://github.com/thahmann/macleod.

http://stl.mie.utoronto.ca/colore/
https://github.com/thahmann/macleod

18

Acknowledgement
We want to express our thanks to Jake Emerson. Every step of the way, Jake has been
asking to aid us in development, in testing, even in writing documentation. Jake also wrote
the foreword for this document, which was incredibly helpful, and for that we are very
grateful.

We also want to express our thanks to Dr. Torsten Hahmann for the opportunity to work on
this project under his wisdom and tutelage. He is patient with us, and always insightful in
his opinions.

We would also like to thank our Sister Team, Sled Dogs, for reviewing and performing
quality assurance on our documentation.

19

Appendix A - SRS

System Requirements Specification Document
for Macleod: A CLIF Parser, designed for Torsten Hahmann and Jake Emerson

Designed by Reading Club Development:
Matthew Brown, Gunnar Eastman, Jesiah Harris, Shea Keegan, Eli Story

Version 1.3
Dec. 13, 2022

20

System Requirements Specification:
Table of Contents

1. Introduction 2
1.1 Purpose of This Document 2
1.2 References 2
1.3 Purpose of the Product 2
1.4 Product Scope 3

2. Functional Requirements 4

3. Non-Functional Requirements 15

4. User Interface 18

5. Deliverables 19

6. Open Issues 20

Appendix A 21

Appendix B 22

Appendix C 23

Date Reason for Change Version

10/18/2022 Initial Creation 1.0

10/27/2022 Specified when the Unit
Testing Phase occurs.

1.1

12/01/2022 Updated and color-coded
requirements

1.2

12/13/2022 Updated based on feedback 1.3

https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.74hk8n3sg2c2
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.74hk8n3sg2c2
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.cf9lmtup78nb
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.cf9lmtup78nb
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.fz09oa903bmd
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.fz09oa903bmd
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.b6jhx0ct07nk
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.b6jhx0ct07nk
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.qrg8q9bm6dbu
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.qrg8q9bm6dbu
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.7viyzd29nt31
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.7viyzd29nt31
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.iajujersgunf
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.iajujersgunf
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.7yxzoxtc77dq
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.7yxzoxtc77dq
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.72pl41rrxnux
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.72pl41rrxnux
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.ceori3dypgwb
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.ceori3dypgwb
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.g8vrkkc2k8st
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.g8vrkkc2k8st
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.1wi254pg97e9
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.1wi254pg97e9
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.n6xqgjd9515t
https://docs.google.com/document/d/16A3IwtsZUbLh9yd9H0JWkv-Z0oPPKJssXT0aXoAl9d0/edit#heading=h.n6xqgjd9515t

21

1. Introduction
The Common Logic Interchange Format (CLIF) Parser is a capstone project for Dr. Torsten
Hahmann and Jake Emerson, in partial fulfillment of the Computer Science BS degree for
the University of Maine, completed by the Reading Club Development (RCD) team. Dr.
Hahmann is a professor at the University of Maine with affiliation to the Spatial Data
Science Institute and research interests in knowledge representation, logic, and automated
reasoning. Jake Emerson works for Jackson Laboratories in Bar Harbor, Maine, where he
would implement this parser into the workflow of projects he is involved with. RCD
consists of five seniors from the University of Maine: Matthew Brown, Gunnar Eastman,
Jesiah Harris, Shea Keegan, and Eli Story.

This SRS will detail the functional and nonfunctional requirements set forth for this project,
the deliverables necessary for completion, and document the consent of the team members
and the client. The CLIF Parser is to be used by researchers so as to better document their
methods for experiments so as to allow for more repeatability in their experiments.

1.1 Purpose of This Document
This SRS is meant to enumerate the functional and nonfunctional requirements set forth
for the CLIF Parser that RCD has been tasked with developing. This SRS will also describe
the work that RCD is to complete in the course of this project and the two-semester long
Capstone class at the University of Maine. The intended readership of this document
consists of the client and the RCD team so as to serve as an agreement between RCD and
the clients on how to effectively develop the proposed CLIF Parser.

1.2 References
Macleod, Dr. Torsten Hahmann, GitHub, 2022, https://github.com/thahmann/macleod.

1.3 Purpose of the Product
The field of biology is currently facing a “crisis of reproducibility” according to Mr.
Emerson. The development of an ontological reader is, for him, paramount due to the
congruity of semantics within ontological statements. The CLIF Parser is to be a stepping
stone in the progress toward unified Common Logic, allowing for more properly defined
variables, and hopefully slightly mitigating this crisis of reproducibility.

On a smaller scale, the purpose of the CLIF Parser is primarily to parse CLIF files to ensure
they are syntactically correct according to CLIF standards. The library should also translate
from the CLIF syntax to TPTP, or other logic-based conventions. Another purpose of the
product is to build upon the previously developed Macleod IDE, so Common Logic can have
an IDE dedicated to supporting it.

22

1.4 Product Scope
The scope of the project is twofold. Firstly there is the parser. At the moment there is an
existing parser that works, but is outdated and is missing some parsing capabilities. At the
moment the installation of the parser is very complicated and time consuming. During the
scope of this project, we hope to repair and further the development of the parser as well
as turn it into a python library via Poetry. This will allow an easy installation for users.

The second part of this project is the IDE. Again there is an existing IDE, however it is slow
and cumbersome. The goal to solve this problem is to create a Spyder plugin. This will allow
the user to interact with the parser in an environment with many tools to their disposal.

Overall the project will include a parser for managing CLIF files and an IDE to help that
management. The two systems will be separate. The parser can be used through the
command line separate to the IDE. The IDE will rely on the parser to parse the files,
therefore it can not be used as a standalone system.

Fig. 1: Primary Use Case Diagram: This diagram depicts how Macleod is to be used as a parser and as an IDE.

This diagram briefly depicts the anticipated interactions between Macleod and the user.
The scope of the system is intended to be that the system will translate CLIF files to other
file formats and verify the syntactic and logical consistency of pre-existing CLIF files. The
ability to edit the CLIF file will be granted if an error has been located.

23

2. Functional Requirements
In this section, we outline the requirements that detail the functionality of the system.
Priority is measured on a scale from 1 to 5, with 5 being the most critical.

Blue = Already done, should work when project is finished
Pink = Needs to be completed
Green = New

1. The system shall identify Quantified Variables (and their scope and use).
2. The system shall identify Predicates.
3. The system shall identify Statements from file.
4. The system shall take CLIF and output TPTP.
5. The system shall take CLIF file and produce LADR output.
6. The system shall extract OWL approximation from CLIF ontology/module.
7. The system shall verify the logical consistency of a CLIF ontology or module.
8. The system shall prove theorems that encode intended consequences (e.g.

properties of concepts and relations) of ontologies/modules.
9. The system shall preserve all comments.
10. The system shall bringing up an editor to fix syntax errors.
11. The system shall, identify Instructions from file.
12. The system shall provide a button to parse a CLIF file.
13. The system shall provide a button to parse and convert a file.

Number FR-1

Name The system shall identify Quantified
Variables (and their scope and use).

Summary The system shall identify variables in a
provided logical statement

Priority 5

Preconditions An input has been entered

Postconditions Variables would have been identified

Primary Actor

24

Secondary Actors

Trigger A logical statement is given as an input

Steps The system shall examine each individual
string of symbols separated by white space,
and each string that is not defined by the
file format shall be identified as a variable.
(examples of non-variables include “for all”
symbols, “for each”, punctuation, etc.)

Open Issues

Tests FR-1 will be tested during the Unit Testing
phase (early 2023) by providing logical
statements and asserting that the variables
identified by the system are the same as
those identified by the developers.

Number FR-2

Name The system shall identify Predicates.

Summary The system will identify predicates and
function symbols in a inputted logical
statement

Priority 5

Preconditions An input has been entered

Postconditions Predicates would have been identified

Primary Actor

Secondary Actors

Trigger A logical statement is given as an input

Steps The system shall examine each
symbol/word in the input, and each one

25

that matches a list of predicate symbols
that will be extracted from the file, shall be
identified as a predicate.

Open Issues

Tests FR-2 will be tested during the Unit Testing
phase by providing logical statements and
asserting that the predicates identified by
the system are the same as those identified
by the developers.

Number FR-3

Name The system shall identify Statements from
file.

Summary The system can read a file and identify
logical statements written inside

Priority 5

Preconditions A file must be given

Postconditions Statements are identified

Primary Actor

Secondary Actors

Trigger A file location is given to read

Steps

Open Issues

Tests FR-3 will be tested during the Unit Testing
phase by providing a CLIF file and asserting
that the logical statements identified by the
system are the same as those identified by
the developers.

26

Number FR-4

Name The system shall take CLIF and output
TPTP.

Summary The system should be able to take a CLIF
file as an input and give a TPTP file as an
output

Priority 5

Preconditions The system is not currently working on
another task.

Postconditions A TPTP file is produced as output

Primary Actor

Secondary Actors

Trigger A CLIF file is given as input

Steps

Open Issues

Tests FR-4 will be tested during the Integration
Testing phase, by providing the system
with CLIF files of varying length and
complexity and asserting that the system
translates them to TPTP correctly.

Number FR-5

Name The system shall take CLIF file and produce
LADR output.

Summary The system should be able to take in a CLIF
file and produce LADR output

27

Priority 4

Preconditions CLIF file must be given and accepted by
system

Postconditions The system will produce LADR out from a
given CLIF file

Primary Actor

Secondary Actors

Trigger A CLIF file is given to the system

Steps

Open Issues

Tests FR-5 will be tested during the Integration
Testing phase, by providing the system
with CLIF files of varying length and
complexity and asserting that the system
translates them to LADR correctly.

Number FR-6

Name The system shall extract OWL
approximation from CLIF
ontology/module.

Summary The system should be able to extract an
OWL (Web Ontology Language)
approximation from a CLIF ontology or
module

Priority 4

Preconditions A CLIF ontology or module must be given
to the system. The system must have the
ability to translate CLIF ontologies to
approximate OWL ontologies

28

Postconditions An OWL approximation will be
created/extracted by the system

Primary Actor

Secondary Actors

Trigger A CLIF ontology/module is given to the
system

Steps

Open Issues FR-6 will be tested during the Integration
Testing phase, by providing the system
with CLIF files of varying length and
complexity and asserting that the system
translates them to OWL correctly.

Number FR-7

Name The system shall verify the logical
consistency of a CLIF ontology or module.

Summary The system shall be able to verify the
logical consistency of a CLIF
ontology/module

Priority 5

Preconditions The system must have access to theorem
provers and an inputted CLIF file.

Postconditions A logical CLIF ontology/module will be
identified and ready for processing by the
system

Primary Actor

Secondary Actors

Trigger A CLIF ontology/module is given to the

29

system

Steps

Open Issues

Tests FR-7 will be tested during the Integration
Testing phase, by providing the system
with CLIF files of varying length and
complexity, and correctness, and asserting
that the system confirms correctly whether
or not the files are logically consistent.

Number FR-8

Name The system shall prove theorems that
encode intended consequences (e.g.
properties of concepts and relations) of
ontologies/modules.

Summary The system should have theorem proving
capabilities that can encode the intended
consequences of ontologies/modules given
to the system. Examples of intended
consequences are properties of concepts
and relations or competency questions.

Priority 3

Preconditions The system must have a theorem prover or
theorem proving capabilities that can
process given ontologies/modules.

Postconditions Intended consequences of an ontology or
module will be proven and reported by the
system

Primary Actor

30

Secondary Actors

Trigger

Steps

Open Issues

Tests FR-8 will be tested during the Integration
Testing phase, by providing the system
with CLIF files of varying length and
complexity and asserting that the system
translates them to TPTP correctly.

Number FR-9

Name The system shall preserve all comments

Summary The system shall maintain any comments
present in input CLIF files, and make them
present in the associated output files.

Priority 3

Preconditions A CLIF file with comments has been
submitted as input.

Postconditions The comments are still present in the
translated output.

Primary Actor User

Secondary Actors

Trigger

Steps

Open Issues

Tests FR-9 will be tested during the Integration

31

Phase by providing the system with CLIF
files that have comments in various places
and of various lengths, and ensuring those
comments are intact in the output.

Number FR-10

Name The system shall bringing up an editor to
fix syntax errors.

Summary The system shall open CLIF files and point
out errors.

Priority 3

Preconditions The system is reading through a CLIF file

Postconditions A CLIF editor has been opened to the
location of the error so that it can be fixed.

Primary Actor User

Secondary Actors

Trigger The system finds a syntax error

Steps The system marks the location of the error,
opens a CLIF editor, and scrolls to the
location of the error.

Open Issues

Tests FR-10 shall be tested during the Integration
Testing phase, by providing the system
with CLIF files that have various syntactical
errors in various places.

Number FR-11

Name The system shall, identify Instructions from

32

file.

Summary The system shall be able to identify
instructions outside of the logic of the
ontology, such as import statements and
module declarations

Priority 5

Preconditions A file must be given

Postconditions Instructions are identified

Primary Actor User

Secondary Actors

Trigger A file location is given to read

Steps

Open Issues

Tests FR-11 will be tested during the Unit Testing
phase by providing CLIF files with import
statements, module declarations, and both,
and assuring that those identified by the
system match those identified by the
developers.

Number FR-12

Name The system shall provide a button to parse
a CLIF file.

Summary The system shall provide one button that
will parse a CLIF file and ensure that it is
syntactically correct.

Priority 5

33

Preconditions A CLIF file is open in spyder.

Postconditions The file has been ensured to be
syntactically correct or errors have been
raised.

Primary Actor User

Secondary Actors

Trigger The button is pressed

Steps

Open Issues

Tests FR-12 will be tested during the Integration
Testing phase by providing CLIF files with
and without issues and testing them in
spyder.

Number FR-13

Name The system shall provide a button to parse
and convert a file.

Summary The system shall provide one button that
will parse a CLIF file and ensure that it is
syntactically correct and translate it to an
indicated other language.

Priority 5

Preconditions A CLIF file is open in spyder.

Postconditions The file has been translated or errors have
been raised.

Primary Actor User

Secondary Actors

34

Trigger The button is pressed

Steps

Open Issues

Tests FR-13 will be tested during the Integration
Testing phase by providing CLIF files with
and without issues and testing them in
spyder to see that they are translated
correctly.

Table 1: Functional Requirements of Macleod: This table outlines the core functionalities that the system shall
have upon completion.

3. Non-Functional Requirements
In this section, we will outline the requirements that do not directly involve the
functionality of the system.

Blue = Already done, should work when project is finished
Pink = Needs to be completed
White = Should just work
Green = New

1. The system shall work on Linux, Mac, and Windows.
2. The system shall be installable via pip as a python library.
3. The GUI will respond to all inputs with at least a “loading” message within 2 seconds

90% of the time.
4. The system shall correctly translate at least 95% of input content.
5. The system shall translate an individual logical statement within 1 second 95% of the

time, to ensure that the translation of a document does not take a prohibitive
amount of time.

6. The system shall parse a CLIF file within 3 seconds 90% of the time.
7. The system shall be accompanied by a User Guide, which should allow users to use

the system within 30 minutes.
8. The system itself shall not keep a record of any files it translates.
9. The system shall be installable as a spyder plugin.

Number NFR-1

35

Description The system shall work on Linux, Mac, and
Windows.

Priority 5

Tests All tests shall be performed on a Linux,
Mac, and Windows system.

Number NFR-2

Description The system shall be installable via pip as a
python library.

Priority 5

Tests Test NFR-2: Once completed, we shall
attempt to install the system using pip.

Number NFR-3

Description The GUI will respond to all inputs with at
least a “loading” message within 2 seconds
90% of the time.

Priority 4

Tests Test NFR-3: Measure the time it takes for
the GUI to respond to various requests.

Number NFR-4

Description The system shall correctly translate at least
95% of input content.

Priority 4

Tests Test NFR-4: Have the system translate

36

small and large files and ensure that there
are no errors within at least 95% of the
resulting files.

Number NFR-5

Description The system shall translate an individual
logical statement within 1 second 95% of
the time, to ensure that the translation of a
document does not take a prohibitive
amount of time.

Priority 4

Tests Test NFR-5: Have the system translate the
same files as in Test NFR-4, and record how
long it takes for the system to translate
those files.

Number NFR-6

Description The system shall parse a CLIF file within 3
seconds 90% of the time.

Priority 4

Tests Test NFR-6: Have the system parse files
with similar variation as in Test NFR-4, and
record how long it takes for the system to
parse those files.

Number NFR-7

Description The system shall be accompanied by a User
Guide, which should allow users to use the
system within 30 minutes.

37

Priority 5

Tests Test NFR-7: Our sister team in the
Capstone class will be given access to the
system and the User Guide, and we will
determine whether they are able to make
use of the system after 30 minutes.

Number NFR-8

Description The system itself shall not keep a record of
any files it translates.

Priority 2

Tests Test NFR-8

Number NFR-9

Description The system shall be installable as a spyder
plugin

Priority 5

Tests Test NFR-2: Once completed, we shall
attempt to install the system as a spyder
plugin

Table 2: Non-Functional Requirements of Macleod: This table outlines the requirements that do not involve the
functionality of the system.

4. User Interface
This section briefly outlines any user interface technicalities that will need to be completed
for this project.

See “User Interface Design Document for CLIF Parser.”

38

5. Deliverables
This section will enumerate the deliverables RCD is to produce throughout the Fall 2022
and Spring 2023 University of Maine semesters in accordance with the requirements set
forth both by the Capstone class and the client’s desired outcome.

The following deliverables shall be produced and given to the client:

Electronic files containing the following:
● Systems Requirement Specification

○ This will be shared via Google Docs.
○ We will send the SRS to the client digitally October 18, 2022.

● System Design Document
○ This will be shared via Google Docs.
○ We will send the SDD to the client digitally November 8, 2022.

● User Interface Design Document
○ This will be shared via Google Docs.
○ We will send the UIDD to the client digitally November 21, 2022.

● Code Inspection Report
○ This will be shared via Google Docs.
○ We will send the CIR to the client digitally in the spring, on approximately

February 16, 2023
● User Manual

○ This will be shared via Google Docs.
○ We will send the UM to the client digitally in the spring, on approximately

March 1, 2023
● Administrator Manual

○ This will be shared via Google Docs.
○ We will send the AM to the client digitally in the spring, on approximately

March 14, 2023
● All source code

○ This will be stored on a GitHub repository which the client will have
permanent access to.

● Macleod Verion 1.1
○ We will send the CIR to the client digitally in the spring, on approximately

May 1, 2023
● Any other software required for installation and execution of the delivered program.

○ This will be stored on a GitHub repository which the client will have
permanent access to.

39

6. Open Issues

This section will enumerate issues that have been raised, but are as of yet lacking a
solution. These issues will be addressed later in development.

Open Issue Approximate
Resolution Date

1. Download and get Macleod up and running on our machines. 10/21/22
2. Isolate the first conventions of CLIF syntax we are to parse. 10/21/22
3. Make a Python library with Poetry release 4/1/23
4. Simplify configuration after install 5/1/23
5. Need to update CLIF BNF grammar 3/1/23
6. Cleanup GUI 5/1/23
7. Remove pyparsing dependency 2/1/23
8. Parser.py doesn't use prefix when importing 3/1/23
9. Parser doesn't like the /** <comment> **/ comments 2/1/23
10. Fix/Test setup.py 2/1/23

40

Appendix A-1
This appendix details the expectations that RCD shall uphold to the client upon completion
of this document, and how future changes to this document shall be made.

RCD and the client, upon the signing of the document, are agreeing that this SRS contains a
compilation of the nonfunctional and functional requirements necessary for the CLIF
Parser. RCD and the client agree that these requirements are to be developed, tested, and
integrated over the course of the Fall 2022 and Spring 2023 University of Maine semesters.
The client, in signing this SRS, agrees that these requirements are sufficient for completion
of this project. The team, RCD, agrees that these requirements are meant to be agile and
flexible in nature, so if the need arises, the requirements may change in accordance with
the client’s wishes.

Any changes made to this document must be approved by all members of RCD and the
client via signatures to an additional appendix wherein the changes are enumerated and
detailed. Changes to this document include, but are not limited to, updating requirements,
removing requirements, adding requirements, and changing structure as to be in
accordance with the Capstone requirements for the University of Maine course this project
is managed through. The signing of this appendix consents all members of RCD and the
client that this structure of implementing changes is acceptable.

Name: Signature: Date:

Torsten Hahmann ________________ __/__/__

Jake Emerson ________________ __/__/__

Matthew Brown ________________ __/__/__

Gunnar Eastman ________________ __/__/__

Jesiah Harris ________________ __/__/__

Shea Keegan ________________ __/__/__

Eli Story ________________ __/__/__

41

Appendix A-2
This appendix will contain the agreement that all members of RCD have read and consent
to the document in its entirety.

Through signing this appendix, we, as the members of RCD, agree that we have reviewed
this document fully, we agree to the formatting of this document, and agree to the content
that is located within this SRS. Each member of RCD may have minor disagreements with
certain parts of this document, though by signing below, we agree that there are not any
major points of contention within this SRS. We have all agreed to these terms and placed
our signatures below.

Name: Signature: Date:

Matthew Brown ________________ __/__/__
Comments:

Gunnar Eastman ________________ __/__/__
Comments:

Jesiah Harris ________________ __/__/__
Comments:

Shea Keegan ________________ __/__/__
Comments:

Eli Story ________________ __/__/__
Comments:

42

Appendix A-3
This appendix will outline the approximate contributions of each of the team members of
RCD to the completion of this SRS.

Matthew Brown
● Formatted the document.
● Wrote all that was required from the template except the functional and

nonfunctional requirements.
● Conducted review for RCD team on whole SRS.
● Attended client approval meeting.
● Edited the entire SRS.
● Worked on all sections.
● Contributed about 30% of the work.

Gunnar Eastman
● Created the document
● Co-authored the functional requirements.
● Authored the nonfunctional requirements.
● Conducted initial grammatical review.
● Edited the entire SRS.
● Worked on all sections.
● Contributed about 30% of the work.

Jesiah Harris
● Co-authored the functional requirements
● Attended the client approval meeting.
● Worked on §2
● Contributed about 15% of the work.

Shea Keegan
● Co-authored the functional requirements.
● Worked on §2
● Contributed about 15% of the work.

Eli Story
● Co-authored the functional and nonfunctional requirements.
● Constructed the context diagram.
● Worked on §1,2
● Contributed about 10% of the work.

43

Appendix B - SDD

System Design Document
for Macleod: A CLIF Parser, designed for Torsten Hahmann and Jake Emerson

Designed by Reading Club Development:
Matthew Brown, Gunnar Eastman, Jesiah Harris, Shea Keegan, Eli Story

Version 1.1
Dec 13, 2022

44

System Design Document:
Table of Contents

1. Introduction 3

1.1 Purpose of This Document 3

1.2 References 3

2. System Architecture 4

2.1 Architectural Design 4

2.2 Decomposition Description 6

3. Persistent Data Design 7

3.1 Database Descriptions 7

3.2 File Descriptions 8

4 Requirements Matrix 8

Appendix A 10

Appendix B 11

Appendix C 12

Date Reason for Change Version

11/9/2022 Initial Creation 1.0

12/13/2022 Updated based on feedback 1.1

45

1. Introduction
In this section of this System Design Document (SDD), the project will be introduced along
with the purpose of the SDD, the references used and compiled by Reading Club
Development (RCD), the purpose of the product, and the scope of the product.

This is a capstone project for Dr. Torsten Hahmann and Jake Emerson, in partial fulfillment
of the Computer Science BS degree for the University of Maine. This SRS will detail the
functional and nonfunctional requirements set forth for this project, the deliverables
necessary for completion, and document the consent of the team members and the client.

The field of biology is currently facing a “crisis of reproducibility” according to Jake
Emerson, one of our clients and an engineer at Jackson Laboratory in Bar Harbor, Maine.
The development of an ontological reader is, for him, paramount due to the congruity of
semantics within ontological statements. The CLIF Parser is to be a stepping stone in the
progress toward unified Common Logic, allowing for more properly defined variables, and
hopefully slightly mitigating this crisis of reproducibility.

On a smaller scale, the purpose of the CLIF Parser is primarily to parse CLIF files to ensure
they are syntactically correct according to CLIF standards. The library should also translate
from the CLIF syntax to TPTP, or other logic-based conventions. Another purpose of the
product is to build upon the previously developed Macleod IDE, so Common Logic can have
an IDE dedicated to supporting it.

1.1 Purpose of This Document
This SDD is meant to expand upon the design details for the Common Logic Interchange
Format (CLIF) Parser that RCD has been tasked with developing. The intended readership of
this document consists of the client and the RCD team so as to effectively develop the
proposed CLIF Parser.

1.2 References
Macleod, Dr. Torsten Hahmann, GitHub, 2022, https://github.com/thahmann/macleod.
Brown, M, et al., CLIF Parser System Requirement Specification, 2022,

https://github.com/Reading-Club-Development/macleod/blob/master/UMaine%
20Capstone%20Documents/RCD_SDD.pdf.

Colore, Semantic Technologies Laboratory, ​​http://stl.mie.utoronto.ca/colore/.

https://github.com/thahmann/macleod
https://github.com/Reading-Club-Development/macleod/blob/master/UMaine%20Capstone%20Documents/RCD_SDD.pdf
https://github.com/Reading-Club-Development/macleod/blob/master/UMaine%20Capstone%20Documents/RCD_SDD.pdf
http://stl.mie.utoronto.ca/colore/

46

2. System Architecture
Within this section are several design diagrams meant to illustrate in further detail the
inner workings of the system. Many of the diagrams may outline the Macleod system as it
currently exists, though this is to ensure that RCD does not deviate far from the current
implementation of the system. Differences between the current Macleod implementation
and the design diagrams highlight improvements that will be made by RCD, at the behest of
the client, and in line with previously outlined functional requirements.

2.1 Architectural Design
The basic design is a Pipe and Filter architecture model, wherein data is passed through a
series of steps to an eventual output. In Fig. 1, the data is fed to the Parser, which is the
beginning of the Macleod architecture. Specifically, using Macleod as a library allows for
the calling of the parser or parse_clif and possibly the translating of the CLIF file into
various formats. The parse_clif script generates an ontology object whether the translation
is required or not, and the ontology object prints itself to the terminal. If conversion is
necessary, then the specific language to be translated into is required, and the ontology
object is translated into the relevant language and the converted file is output.

Fig. 1: Data Pipeline of Macleod Library: This diagram documents the flow of data through the Macleod system,
from the parser to the eventual output.

Macleod is currently built on Python. All of the relevant scripts from Fig. 1 exist, though the
parser is presently incomplete. The work of RCD is twofold on the parser. Firstly is to
package up Macleod into a Python library via Poetry that is then downloadable by Pip.
Secondly is to ensure completeness of the parser.

Fig. 2 demonstrates how the Macleod plugin will interface with the Spyder IDE. The
Macleod plugin will have the same general functionality as the Macleod library. The parse
and parse and convert options will be handled via buttons displayed on the IDE. The parse

47

and convert then leads to a separate menu where the language can be specified. However,
if the parse fails at either button press, we will use Spyder’s error checking to display where
the error is in the CLIF file that caused the parse to fail. The user will then be able to edit
the file using Spyder’s normal editor.

Fig. 2: IDE

Architecture Diagram of Macleod: This diagram documents how the user input is processed by the system
depending on which button the user clicks.

48

2.2 Decomposition Description

Fig. 3: Outline of Macleod function call order: This diagram describes which functions call which other
functions in the parsing and translating processes.

Below are descriptions of the scripts the system makes available to users, the parameters of
each of these scripts, and the functions called by each of them.

Scripts:
● parse_clif [file or directory] [filepath] [format] [optional]

○ parse_clif will call either convert_file or convert_folder, which iterates
through the files and calls convert_file on each of them.

○ convert_file will create an Ontology object for the file if one does not already
exist, and call the parser to read the CLIF file.

○ Once the CLIF file has been read and exists in terms of formula, axiom, and
ontology objects, the convert_file function will simply call the proper
translation function, according to which format to put the output in, which
will be a method of the Ontology object.

○ The translation functions simply iterate through each axiom and have each
one translate themselves, adding them to an output at the end.

● check_consistency [filepath] [optional]
○ check_consistency will assemble an ontology object from the input, and then

call the check_consistency() method of that object.
○ The check_consistency method simply allows the ontology object to call a

theorem prover on itself.

49

Fig. 4: Class Diagram of Macleod Objects: Describes the fields and methods of the Ontology, Axiom, and Logical
Formula classes.

Three main classes are used in the system: Ontologies, Axioms, and Logical statements.

Each formula object contains an array of logical symbols, each represented by an object of
a different class, though each of those objects contains very little other than a name. Each
formula object is passed in as a field of an axiom object.

The axiom class will make use of its fields to keep far more detailed information about the
formulas and what is in it than the formula object itself, and will be able to translate itself
into different logical file formats.

Each Ontology object contains any number of these axiom objects, and will maintain a list
of predicates, constants, etc. contained within its axioms for convenience, as well as being
able to translate itself into different logical file formats, keep those translations should they
be needed again, call theorem provers upon itself, and print itself out in the terminal for
readability.

50

3. Persistent Data Design
This section is to display the data that our system will use to run or produce.

3.1 Database Descriptions
Databases are not applicable to the CLIF Parser.

3.2 File Descriptions
The system has some files that are persistent, including logging files and the outputs the
system produces. The system will produce a TPTP or vampire output, which can be sent to
COLORE, or the Common Logic Ontology Repository. This is done so the system can keep
track of what outputs are consistent.

4 Requirements Matrix
In this section each functional requirement of the system is matched with the system
component that will satisfy that requirement. The functional requirements are listed by
name, number, and use case of each requirement. The system components are listed by
either the script that is used in the system or the name of any tools that are accessed by
the system.

System Component Functional
Requirement

Number Use Case

parser.py Identify Quantified
Variables (and their
scope and use)

FR-1 The system will
identify variables in a
given logical
statement

parser.py Identify Predicates FR-2 The system will
identify predicates
and function symbols
in a inputted logical
statement

parser.py Identify Statements
from file

FR-3 The system can read
a file and identify
logical statements
written inside

51

parser.py Identify Syntactical
Errors

FR-4 The system will
identify syntax errors
in the input CLIF file
and open a debugger
so they can be
addressed.

clif_to_tptp.py Take CLIF and
output TPTP

FR-5 The system should
be able to take a CLIF
file as an input and
give a TPTP file as an
output

clif_to_ladr.py Take CLIF file and
produce LADR
output

FR-6 The system should
be able to take in a
CLIF file and produce
LADR output

clif_to_owl.py Extract OWL
approximation from
CLIF
ontology/module

FR-7 The system should
be able to extract an
OWL (Web Ontology
Language)
approximation from
a CLIF ontology or
module

check_consistency_
new.py

Verify the logical
consistency of a
CLIF ontology or
module

FR-8 The system shall be
able to verify the
logical consistency of
a CLIF
ontology/module

52

Theorem provers
accessed by system:
Prover9
Vampire

Prove theorems
that encode
intended
consequences (e.g.
properties of
concepts and
relations) of
ontologies/modules

FR-9 The system should
have theorem
proving capabilities
that can encode the
intended
consequences of
ontologies/modules
given to the system.
Examples of intended
consequences are
properties of
concepts and
relations or
competency
questions.

Table 1: Requirement Matrix of CLIF Parser: In this matrix, functional requirements are enumerated and the
components responsible for completion of the requirements are described.

53

Appendix B-1
This appendix details the expectations that RCD shall uphold to the client upon completion
of this document, and how future changes to this document shall be made.

RCD and the client, upon the signing of the document, are agreeing that this SDD contains
a compilation of the architecture necessary for the CLIF Parser. RCD and the client agree
that this architecture is to be developed over the course of the Fall 2022 and Spring 2023
University of Maine semesters. The team, RCD, agrees that this architecture is meant to be
agile and flexible in nature, so if the need arises, the requirements may change in
accordance with the client’s wishes.

Any changes made to this document must be approved by all members of RCD and the
client via signatures to an additional appendix wherein the changes are enumerated and
detailed. Changes to this document include, but are not limited to, the shifting of
architectural design as to be in accordance with the Capstone requirements for the
University of Maine course this project is managed through. The signing of this appendix
consents all members of RCD and the client that this structure of implementing changes is
acceptable.

Name: Signature: Date:

Torsten Hahmann ________________ __/__/__

Jake Emerson ________________ __/__/__

Matthew Brown ________________ __/__/__

Gunnar Eastman ________________ __/__/__

Jesiah Harris ________________ __/__/__

Shea Keegan ________________ __/__/__

Eli Story ________________ __/__/__

Customer Comments:

54

Appendix B-2
This appendix will contain the agreement that all members of RCD have read and consent
to the document in its entirety.

Through signing this appendix, we, as the members of RCD, agree that we have reviewed
this document fully, we agree to the formatting of this document, and agree to the content
that is located within this SDD. Each member of RCD may have minor disagreements with
certain parts of this document, though by signing below, we agree that there are not any
major points of contention within this SRS. We have all agreed to these terms and placed
our signatures below.

Name: Signature: Date:

Matthew Brown ________________ 11/09/22
Comments:

Gunnar Eastman ________________ __/__/__
Comments:

Jesiah Harris ________________ __/__/__
Comments:

Shea Keegan ________________ __/__/__
Comments:

Eli Story ________________ __/__/__
Comments:

55

Appendix B-3
This appendix will outline the approximate contributions of each of the team members of
RCD to the completion of this SDD.

Matthew Brown
● Created the Architecture Design Diagram and wrote the description
● Formatted the document
● Worked on all sections
● Contributed 32.5% of the document

Gunnar Eastman
● Created the document
● Created the Decomposition Diagram and wrote the description
● Worked on the entire document
● Contributed 32.5% of the document

Jesiah Harris
● Wrote the requirement matrix
● Worked on §4
● Contributed 20% of the document

Shea Keegan
● Wrote the Persistent Data Description
● Worked on §3
● Contributed 10% of the document

Eli Story
● Sister team review
● Formatted the document
● Contributed 5% of the document

56

Appendix C - UIDD

User Interface Design Document
CLIF Parser, designed for Torsten Hahmann and Jake Emerson

Designed by Reading Club Development:
Matthew Brown, Gunnar Eastman, Jesiah Harris, Shea Keegan, Eli Story

Version 1.0
Nov. 29, 2022

57

Table of Contents

1. Introduction 2

1.1 Purpose of This Document 2

1.2 References 2

2. User Interface Standards 2

2.1 File Navigation 3

2.2 File Editor 3

2.3 Console 3

2.4 Error List 3

2.5 Toolbar 3

3. User Interface Walkthrough 4

3.1 Navigation Diagram 4

3.2 Remaining Windows 7

4. Data Validation 8

4.1 Input via GUI 8

4.2 Input via Terminal 8

Appendix C-1 10

Appendix C-2 11

Appendix C-3 12

58

1. Introduction
In this section of this User Interface Design Document (UIDD), the project will be
introduced along with the purpose of the UIDD, the references used and compiled by
Reading Club Development (RCD), the purpose of the product, and the scope of the
product.

This is a capstone project for Dr. Torsten Hahmann and Jake Emerson, in partial fulfillment
of the Computer Science BS degree for the University of Maine. This UIDD will detail the
user interface that will be produced to interact with the product and document the
consent of the team members and the client.

1.1 Purpose of This Document

This UIDD is meant to expand upon the user interface details for the Common Logic
Interchange Format (CLIF) Parser that RCD has been tasked with developing. The intended
readership of this document consists of the client and the RCD team so as to effectively
develop the proposed CLIF Parser.

1.2 References

Macleod, Dr. Torsten Hahmann, GitHub, 2022, https://github.com/thahmann/macleod.

SDD, Reading Club Development, 2022. https://docs.google.com/document/d/1H77pV
pVR7mhu8ciDFAjY1WjnKQC3SNy9Po1MRIDwRcE/edit

SRS, Reading Club Development, 2022. https://docs.google.com/document/d/1vr3CD5g3a
zf6OBhu2w5QEy9lcAv1LxDzvFqTvZ7-CwI/edit

2. User Interface Standards

This section will outline the standards used when developing the user interface, to ensure
consistency. It will describe what information will be available to the user, in which
windows, and how users will interact with the system. This section will also outline how
errors will be presented to the user.

The user interface will be composed of 5 sections: file navigation, file editor, console, error

https://github.com/thahmann/macleod
https://docs.google.com/document/d/1H77pVpVR7mhu8ciDFAjY1WjnKQC3SNy9Po1MRIDwRcE/edit
https://docs.google.com/document/d/1H77pVpVR7mhu8ciDFAjY1WjnKQC3SNy9Po1MRIDwRcE/edit
https://docs.google.com/document/d/1vr3CD5g3azf6OBhu2w5QEy9lcAv1LxDzvFqTvZ7-CwI/edit
https://docs.google.com/document/d/1vr3CD5g3azf6OBhu2w5QEy9lcAv1LxDzvFqTvZ7-CwI/edit

59

list, and toolbar. Each section will be available to the user at all times while using the
program even if a certain section is not being utilized at a given time.

2.1 File Navigation

On the left side of the screen there will be a pane the height of the program window that
will contain the file navigation hierarchy. The user will be able to navigate through the
hierarchy by clicking a folder to see its contents. Clicking on a file will open that file in the
file editor window so long as the file type is supported. Consistency checks will be run on a
file as it is being opened.

2.2 File Editor

In the middle of the program window, there will be a pane that will display a file that was
chosen from the file navigation pane. In this editor pane, the user will be able to make edits
to the file directly. If Macleod encounters a syntactical error while parsing a CLIF file, it will
open that file in this pane so that the error may be fixed.

2.3 Console

At the bottom of the program window, there will be a pane that will contain a console. This
console will be a place where the logs that may be printed during the runtime of a program
will be displayed.

2.4 Error List

On the left side of the program window there will be a pane that contains a list of parsing
errors that the program occurred during run time. This list will allow the user to quickly
navigate to the location in the file where the error occurred. Each error will list the line it
was encountered on and any other information Macleod was able to discern.

2.5 Toolbar

At the top of the program window, running the length of the program window, there will be
a toolbar. In this toolbar the user will be able to select the language they would like the file
currently open in the file editing pane to be parsed in. There will also be the option to run
the parser on said file. In the toolbar there will be a button which will allow the user to save
the edits made to the file that is actively open in the file editor. There will also be a button

60

present to run consistency checks on a currently open file. The toolbar will also be a place
where the other actions will be placed as development continues and user actions are
created.

3. User Interface Walkthrough

Present in this section is a navigation diagram, illustrating how, from beginning to end, a
user would translate a CLIF file using the system’s user interface. Afterwards, all other
windows will be illustrated and described.

3.1 Navigation Diagram

Users will be able to begin a project and open a CLIF file into the editor through the “File”
tool in the toolbar. Once a project has been opened, the project will be displayed in a
tree-like structure in the project window on the left of the editor.

CLIF files that have been opened by a user will be available for editing and debugging in the
text editor as is pictured here:

61

Users will be able to run various commands such as parse, translate, etc through both the
“Run” function on the toolbar (to be expanded upon later in development) as well as by
running Macleod scripts/commands in the console.

62

The user interface will have the option for users to use the console to run scripts and view
output, and a second tab will be available to view an error list that contains a list of parsing
errors that the program occurred during run time.

63

3.2 Remaining Windows

An example of the combined user interface can be seen below:

64

4. Data Validation
This section will detail what types of data Macleod will and will not accept as input.

4.1 Input via GUI

The File Editor will be able to open text-like files, including .clif, .cl, and .txt.

When using the GUI to parse a file, the GUI will request a filepath, which will be a plaintext
string that must end in either a slash, to indicate a folder, or “.clif”, to indicate an individual
file. In the case of a CLIF file, Macleod will parse that file and all files it imports, though in
the case of a folder, Macleod will parse all CLIF files in that folder.

The GUI will ask for an output filename, though if none is provided, it shall make its own
based on the input filename. The output filename must be a string that does not end in a
slash or a file extension, as Macleod will automatically add the file extension to the end of
the filename. If no output name is provided, Macleod will create a folder called
“conversions” in the same folder as the input and put the output into the conversions
folder.

The GUI will also provide selectable options to translate the file into TPTP, OWL, LaTeX,
and LADR formats. These options will not be mutually exclusive, should a user wish to
translate a file to all of the previously listed formats.

Finally, the GUI will provide an option to include axioms in the import closure of the CLIF
file. This will simply be a checkbox which will be checked by default where, if checked, the
parsing will be performed as though the –resolve parameter was included. The user may
uncheck it if they wish to not include the –resolve parameter.

4.2 Input via Terminal

Given that using Macleod via the terminal mostly works at the time of writing, it will remain
largely unchanged.

65

The parse_clif command will still be the main function used to translate CLIF files, and will
require only a filename, either ending in .clif to signify a single CLIF file, or in a slash, to
signify a folder. Ideally we will be able to remove the -f parameter and be able to detect the
.clif at the end of the filename to identify an input of one file.

Optional parameters for this command will be a language parameter: either –tptp, –owl, or
–ladr, to signify the format to translate the CLIF file into. If the language parameter is not
provided, Macleod will simply parse and print the CLIF file as it currently does.

The final optional parameter will be the –resolve parameter, whose functionality will
remain unchanged.

66

Appendix C-1

This appendix details the expectations that RCD shall uphold to the client upon completion
of this document, and how future changes to this document shall be made.

RCD and the client, upon the signing of the document, are agreeing that this UIDD contains
a compilation of the user interface (UI) necessary for the CLIF Parser. RCD and the client
agree that this UI is to be developed over the course of the Fall 2022 and Spring 2023
University of Maine semesters. The team, RCD, agrees that this UI is meant to be agile and
flexible in nature, so if the need arises, the requirements may change in accordance with
the client’s wishes.

Any changes made to this document must be approved by all members of RCD and the
client via signatures to an additional appendix wherein the changes are enumerated and
detailed. Changes to this document include, but are not limited to, the shifting of
architectural design as to be in accordance with the Capstone requirements for the
University of Maine course this project is managed through. The signing of this appendix
consents all members of RCD and the client that this structure of implementing changes is
acceptable.

Name: Signature: Date:

Torsten Hahmann ________________ __/__/__

Jake Emerson ________________ __/__/__

Matthew Brown ________________ __/__/__

Gunnar Eastman ________________ __/__/__

Jesiah Harris ________________ __/__/__

Shea Keegan ________________ __/__/__

Eli Story ________________ __/__/__

Customer Comments:

67

Appendix C-2

This appendix will contain the agreement that all members of RCD have read and consent
to the document in its entirety.

Through signing this appendix, we, as the members of RCD, agree that we have reviewed
this document fully, we agree to the formatting of this document, and agree to the content
that is located within this UIDD. Each member of RCD may have minor disagreements with
certain parts of this document, though by signing below, we agree that there are not any
major points of contention within this SRS. We have all agreed to these terms and placed
our signatures below.

Name: Signature: Date:

Matthew Brown ________________ __/__/__
Comments:

Gunnar Eastman ________________ __/__/__
Comments:

Jesiah Harris ________________ __/__/__
Comments:

Shea Keegan ________________ __/__/__
Comments:

Eli Story ________________ __/__/__
Comments:

68

Appendix C-3

This appendix will outline the approximate contributions of each of the team members of
RCD to the completion of this SDD.

Matthew Brown
● Conducted sister team review
● Edited and formatted document
● Contributed 20% of the document

Gunnar Eastman
● Wrote Section 1: Introduction
● Wrote Section 4: Data Validation.
● Wrote the introduction for Section 2: User Interface Standards, edited the rest of

the section.
● Contributed 30% of the document

Jesiah Harris
● Wrote the User Interface Walkthrough
● Contributed 22.5% of the document

Shea Keegan
● Wrote the User Interface Standards
● Contributed 5% of the document

Eli Story
● Aided in management
● Wrote Section 2
● Contributed 22.5% of the document

