Macleod: A Common Logic Environment for Ontology Development

— Installation Instructions —

Torsten Hahmann

March 27, 2015

1 The COLORE tools

The Macleod tools have been developed to assist with ontology design, exploration, and verification by offering a set of
scripts and associated tools that read ontologies specified in Common Logic, aggregate imported ontologies, translate
them to the TPTP format (now the de-facto standard input format for automated theorem provers specified by the
problem library “Thousand Problems for Theorem Provers ” accessible at tptp.org) and the LADR format (used mainly
by the automated theorem prover Prover9-Mace4), check their consistency and nontrivial consistency, and prove desired
properties. Consistency checking and proving on properties relies on using existing theorem provers (currently Vampire
and Prover9) and model finders (currently Paradox and Maced4) in parallel, looking for both a positive (“found a proof”
or “found a model”) and negative answers (“found a counterexample”, “proved inconsistency”).

The toolset’s functionality can be easily extended by adding new scripts that build on existing functionality (such
as translation and aggregation of modules) but also by plugging in additional theorem provers and model finders in a
configuration file. All scripts can be run using either Windows and Linux.

The purpose of this document is to provide step-by-step installation instructions and give a brief overview of the use
of the configuration options and how to run scripts.

2 Setup

Follow these instructions to install Macleod on a Windows machine (tested with Windows 7 and 8). For installation on
Linux, follow the same instructions but skip the Windows specific steps and replace all paths by appropriate Linux paths.

Step 1: Install Python 2.7 and Python for Windows You will need a local installation of Python 2.x (tested
with 2.7.1 and 2.7.8; the scripts rely on libraries that will not work with Python 3.x). If you do not have Python 2
already installed, download and follow the instructions from http://www.python.org/download/releases/2.7/. For
later reference, we assume that you install Python to the directory C:\Python27.

You will also need the “Python for Windows extension” (called pywin32) from http://sourceforge.net/projects/
pywin32/files/. If your Python installation is 64-bit, choose the 64-bit version of pywin, otherwise use the 32-bit version
of pywin.

Finally, you will need to install the “WMI module”, a wrapper for the Python for Windows extension (pywin32), from
http://timgolden.me.uk/python/wmi/index.html.

Step 2: Install Theorem Provers and Model Finders You will need to locally install the theorem provers and model
finders you which to use. While some functionality of Macleod works without them, proving properties or consistency relies
on them. So far, Macleod has successfully utilized Prover9-Mace4, Paradox, and Vampire. Due to licencing restrictions,
the theorem provers and model finders cannot be distributed as part of Macleod and must be installed individually by
the user.

For simplicity, we assume that the executables are placed in the common folder C:\Reasoning. This includes
paradox3.exe, vampire win.exe, and the bin folder from Prover9-Mace4, subsequently called prover9-bin.

You can download Prover9-Mace4, see http://www.cs.unm.edu/~mccune/mace4/download/ and Vampire from http:
//www.vprover.org/download.cgi. The sources for Paradox are available from http://www.cse.chalmers.se/~koen/
code/. If you need the Windows binary, contact the author of Macleod.

Step 3: Install Macleod Download the Macleod sources from https://github.com/thahmann/macleod and copy
the folders conf, pyparsing, src, and tasks to the directory C:\Reasoning\macleod.

Depending on where you placed your Macleod installation and the theorem provers and model finders, you may need
to edit the files

e C:\Reasoning\macleod\conf\macleod win.conf
e C:\Reasoning\macleod\conf\logging.conf
e C:\Reasoning\macleod\src\filemgt.py

in the following way.
Edit the following entries in C:\Reasoning\macleod\conf\macleod win.conf:

e path, subprocess_log in the section system;
e prover9, maced, vampire, paradox in the section command;

e ensure that only the theorem provers and model finders that you installed locally are listed in the entries provers
and modelfinders in the section active.

In C:\Reasoning\macleod\conf\logging.conf, you may need to edit the entries:
e args in the section handler_fHandler,
e file in the section subprocess_logging.

In C:\Reasoning\macleod\src\filemgt .py, you may need to edit the variable assignment config dir = ‘C:\Reasoning
\macleod \conf’ on line 15.

Step 4: Add directories to local PATH environment variable Add the directories where the Python executable
resides (C:\Python27) as well as the tasks subdirectory of macleod (C:\Reasoning\macleod\tasks) to the PATH vari-
able. In Windows, open My Computer (or This PC) -> Properties -> Advanced System Settings -> Environment
Variables and add the path C:\Python27 to the variable Path either in User variables or System variables. If the
variable already exists, add the directory to the end, using a semicolon as separator, otherwise create a new variable with
that name.

Use the command “echo %PATH%” in the command line to ensure your edits are correct.

Step 5: Add directories to local PYTHONPATH environment variables In the same way as in the previous
step, edit or create a variable called PYTHONPATH. You need to include the paths C:\Python27 and C:\Reasoning\macleod
in PYTHONPATH.

Again, use the command “echo %PYTHONPATH%” in the command line to ensure your edits are correct.

Having the PYTHONPATH variable point to the folder of the Macleod installation will allow you to call scripts by their
name, omitting the full path. For example, we can use (in Windows)

check_consistency.py input_file -simple

or (in Linux)

python -m check_consistency input_file -simple

instead of

python C:\Reasoning\macleod\scripts\check_consistency input_file -simple

<

Here “-simple” is an option that can be added to the execution. This option should be used by default.

Editing your environment variables in Linux If you are using the TC shell (tcsh) as your default shell in Linux, you
can change the environment variables by the following to your configuration file .tcshrc located in your home directory.
Make sure that you keep all other directories that were previously in the PATH variable.

setenv PATH /usr/bin:/usr/local/bin/:/torsten/macleod/
setenv PYTHONPATH /torsten/macleod

3 Configuration options

The following settings are configured in the main configuration file C:\Reasoning\macleod\conf\macleod win.conf.

3.1 Input Common Logic ontologies and ontology modules

The section cl contains the following entries:

prefix the namespace that all ontologies are used and that is ignored when resolving imports in the ontology. For exam-
ple, the default setting of http://colore.oor.net means when the ontology http://colore.oor.net/multidim\
_space_codi/codi.clif is processed, the imported module http://colore.oor.net/multidim_space_codi/
codi_basic.clif is expected to be located in the same directory as the importing file codi.clif, while the
imported module http://colore.oor.net/multidim_space_cont/definitions/c.clif) is expected to be lo-
cated in the directory ..\multidim space_cont\multidim space_cont relative to codi.clif’s location.

ending the file name ending that all ontology files are expected to have (default: .clif)

definitions_subfolder the subfolder (relative to an ontology) that contains ontology modules whose only purpose is to
define a new symbol. This information is only used to distinguish primitive from defined symbols in the ontologies.

theorems_subfolder the subfolder (relative to an ontology) where each ontology module contains one or multiple
properties that we would like to prove about an ontology. Those modules most import the ontology that the belong
to.

interpretations_subfolder the subfolder (relative to an ontology) where relative interpretations relationships to other
ontologies are located Currently not in use

consistency_subfolder the subfolder (relative to an ontology) where logical extensions that test for nontrivial consis-
tency will be placed.

mappings_subfolder the subfolder (relative to an ontology) where mappings of all its symbols in terms of another
ontology’s symbols are located Currently not in use.

3.2 Translations

For the translations to LADR and TPTP syntax, the sections ladr and tptp specify the folder where all translations are
placed (relative to the original Common Logic file’s location, conversions by default) and the ending that is automatically
assigned (by default .p9 and .tptp. The entry all_ending specifies the additional name that is added to a cumulative
translation of a Common Logic ontology. Such a cumulative translation contains the axioms of all imported ontology
modules as well. Setting this configuration to .all as by default results in the file ontology.clif to be translated to
conversions\ontology.all.tptp.

3.3 Symbol Replacements

While Common Logic is very flexible in the use of non-alphanumeric names for relations, functions, and constants, TPTP
is not. For this reason, all relation, function, and constants with non-alphanumeric names are substituted automati-
cally with names of the form clifsymX where X is a numeric identifier. Often, this makes the translations much less
accessible to humans. For this reason, one can specify more meaningful replacements in src\clif.py using the variable
SYMBOL_TRANSLATIONS starting on line 55. The variables is a set of pairs, the first element indicated the symbol to be
replaced and the second element its alphanumeric replacement symbol.

4 Tasks

4.1 Translating a Common Logic theory to Prover9 syntax

Use the script c1if _to_ladr.py to translate an ontology to the LADR syntax. All imported modules are also translated,
each module is located in a subdirectory (as specified by the entry folder in the ladr section of the configuration, the
subdirectory is called “conversions” by default) from where the original Common Logic file is located.

The available options restrict the translation to a single ontology and its imports (-single) or to a single ontology
module (-module). If all translations are to be cumulated into a single output file, use the option -cumulate.

If one wants to translate all ontologies within a folder (and, recursively, all its subfolders), the script c1if to_ladr_all.py
can be used. All options (currently -single, -module, —cumulate) available for c1if to_ladr.py can be used.

4.2 Translating a Common Logic theory to TPTP syntax

Use the scripts c1if _to_tptp.py and clif to_tptp_all.py to translate an ontology or a set of ontologies to the TPTP
syntax. The same options as for clif to_ladr.py are available.

