
System Design Document
for Macleod: A CLIF Parser, designed for Torsten Hahmann and Jake Emerson

Designed by Reading Club Development:
Matthew Brown, Gunnar Eastman, Jesiah Harris, Shea Keegan, Eli Story

Version 1.1
Dec 13, 2022



1

System Design Document:
Table of Contents

1. Introduction 3

1.1 Purpose of This Document 3

1.2 References 3

2. System Architecture 4

2.1 Architectural Design 4

2.2 Decomposition Description 6

3. Persistent Data Design 7

3.1 Database Descriptions 7

3.2 File Descriptions 8

4 Requirements Matrix 8

Appendix A 10

Appendix B 11

Appendix C 12

Date Reason for Change Version

11/9/2022 Initial Creation 1.0

12/13/2022 Updated based on feedback 1.1



2

1. Introduction
In this section of this System Design Document (SDD), the project will be introduced along
with the purpose of the SDD, the references used and compiled by Reading Club
Development (RCD), the purpose of the product, and the scope of the product.

This is a capstone project for Dr. Torsten Hahmann and Jake Emerson, in partial fulfillment
of the Computer Science BS degree for the University of Maine. This SRS will detail the
functional and nonfunctional requirements set forth for this project, the deliverables
necessary for completion, and document the consent of the team members and the client.

The field of biology is currently facing a “crisis of reproducibility” according to Jake
Emerson, one of our clients and an engineer at Jackson Laboratory in Bar Harbor, Maine.
The development of an ontological reader is, for him, paramount due to the congruity of
semantics within ontological statements. The CLIF Parser is to be a stepping stone in the
progress toward unified Common Logic, allowing for more properly defined variables, and
hopefully slightly mitigating this crisis of reproducibility.

On a smaller scale, the purpose of the CLIF Parser is primarily to parse CLIF files to ensure
they are syntactically correct according to CLIF standards. The library should also translate
from the CLIF syntax to TPTP, or other logic-based conventions. Another purpose of the
product is to build upon the previously developed Macleod IDE, so Common Logic can have
an IDE dedicated to supporting it.

1.1 Purpose of This Document
This SDD is meant to expand upon the design details for the Common Logic Interchange
Format (CLIF) Parser that RCD has been tasked with developing. The intended readership of
this document consists of the client and the RCD team so as to effectively develop the
proposed CLIF Parser.

1.2 References
Macleod, Dr. Torsten Hahmann, GitHub, 2022, https://github.com/thahmann/macleod.
Brown, M, et al., CLIF Parser System Requirement Specification, 2022,

https://github.com/Reading-Club-Development/macleod/blob/master/UMaine%
20Capstone%20Documents/RCD_SDD.pdf.

Colore, Semantic Technologies Laboratory, ​​http://stl.mie.utoronto.ca/colore/.

https://github.com/thahmann/macleod
https://github.com/Reading-Club-Development/macleod/blob/master/UMaine%20Capstone%20Documents/RCD_SDD.pdf
https://github.com/Reading-Club-Development/macleod/blob/master/UMaine%20Capstone%20Documents/RCD_SDD.pdf
http://stl.mie.utoronto.ca/colore/


3

2. System Architecture
Within this section are several design diagrams meant to illustrate in further detail the
inner workings of the system. Many of the diagrams may outline the Macleod system as it
currently exists, though this is to ensure that RCD does not deviate far from the current
implementation of the system. Differences between the current Macleod implementation
and the design diagrams highlight improvements that will be made by RCD, at the behest of
the client, and in line with previously outlined functional requirements.

2.1 Architectural Design
The basic design is a Pipe and Filter architecture model, wherein data is passed through a
series of steps to an eventual output. In Fig. 1, the data is fed to the Parser, which is the
beginning of the Macleod architecture. Specifically, using Macleod as a library allows for
the calling of the parser or parse_clif and possibly the translating of the CLIF file into
various formats. The parse_clif script generates an ontology object whether the translation
is required or not, and the ontology object prints itself to the terminal. If conversion is
necessary, then the specific language to be translated into is required, and the ontology
object is translated into the relevant language and the converted file is output.

Fig. 1: Data Pipeline of Macleod Library: This diagram documents the flow of data through the Macleod system,
from the parser to the eventual output.

Macleod is currently built on Python. All of the relevant scripts from Fig. 1 exist, though the
parser is presently incomplete. The work of RCD is twofold on the parser. Firstly is to
package up Macleod into a Python library via Poetry that is then downloadable by Pip.
Secondly is to ensure completeness of the parser.

Fig. 2 demonstrates how the Macleod plugin will interface with the Spyder IDE. The
Macleod plugin will have the same general functionality as the Macleod library. The parse



4

and parse and convert options will be handled via buttons displayed on the IDE. The parse
and convert then leads to a separate menu where the language can be specified. However,
if the parse fails at either button press, we will use Spyder’s error checking to display where
the error is in the CLIF file that caused the parse to fail. The user will then be able to edit
the file using Spyder’s normal editor.

Fig. 2: IDE

Architecture Diagram of Macleod: This diagram documents how the user input is processed by the system
depending on which button the user clicks.



5

2.2 Decomposition Description

Fig. 3: Outline of Macleod function call order: This diagram describes which functions call which other
functions in the parsing and translating processes.

Below are descriptions of the scripts the system makes available to users, the parameters of
each of these scripts, and the functions called by each of them.

Scripts:
● parse_clif [file or directory] [filepath] [format] [optional]

○ parse_clif will call either convert_file or convert_folder, which iterates
through the files and calls convert_file on each of them.

○ convert_file will create an Ontology object for the file if one does not already
exist, and call the parser to read the CLIF file.

○ Once the CLIF file has been read and exists in terms of formula, axiom, and
ontology objects, the convert_file function will simply call the proper
translation function, according to which format to put the output in, which
will be a method of the Ontology object.

○ The translation functions simply iterate through each axiom and have each
one translate themselves, adding them to an output at the end.

● check_consistency [filepath] [optional]
○ check_consistency will assemble an ontology object from the input, and then

call the check_consistency() method of that object.
○ The check_consistency method simply allows the ontology object to call a



6

theorem prover on itself.

Fig. 4: Class Diagram of Macleod Objects: Describes the fields and methods of the Ontology, Axiom, and Logical
Formula classes.

Three main classes are used in the system: Ontologies, Axioms, and Logical statements.

Each formula object contains an array of logical symbols, each represented by an object of
a different class, though each of those objects contains very little other than a name. Each
formula object is passed in as a field of an axiom object.

The axiom class will make use of its fields to keep far more detailed information about the
formulas and what is in it than the formula object itself, and will be able to translate itself
into different logical file formats.

Each Ontology object contains any number of these axiom objects, and will maintain a list
of predicates, constants, etc. contained within its axioms for convenience, as well as being
able to translate itself into different logical file formats, keep those translations should they
be needed again, call theorem provers upon itself, and print itself out in the terminal for
readability.



7

3. Persistent Data Design
This section is to display the data that our system will use to run or produce.

3.1 Database Descriptions
Databases are not applicable to the CLIF Parser.

3.2 File Descriptions
The system has some files that are persistent, including logging files and the outputs the
system produces. The system will produce a TPTP or vampire output, which can be sent to
COLORE, or the Common Logic Ontology Repository. This is done so the system can keep
track of what outputs are consistent.

4 Requirements Matrix
In this section each functional requirement of the system is matched with the system
component that will satisfy that requirement. The functional requirements are listed by
name, number, and use case of each requirement. The system components are listed by
either the script that is used in the system or the name of any tools that are accessed by
the system.

System Component Functional
Requirement

Number Use Case

parser.py Identify Quantified
Variables (and their
scope and use)

FR-1 The system will
identify variables in a
given logical
statement

parser.py Identify Predicates FR-2 The system will
identify predicates
and function symbols
in a inputted logical
statement



8

parser.py Identify Statements
from file

FR-3 The system can read
a file and identify
logical statements
written inside

parser.py Identify Syntactical
Errors

FR-4 The system will
identify syntax errors
in the input CLIF file
and open a debugger
so they can be
addressed.

clif_to_tptp.py Take CLIF and
output TPTP

FR-5 The system should
be able to take a CLIF
file as an input and
give a TPTP file as an
output

clif_to_ladr.py Take CLIF file and
produce LADR
output

FR-6 The system should
be able to take in a
CLIF file and produce
LADR output

clif_to_owl.py Extract OWL
approximation from
CLIF
ontology/module

FR-7 The system should
be able to extract an
OWL (Web Ontology
Language)
approximation from
a CLIF ontology or
module

check_consistency_
new.py

Verify the logical
consistency of a
CLIF ontology or
module

FR-8 The system shall be
able to verify the
logical consistency of
a CLIF
ontology/module



9

Theorem provers
accessed by system:
Prover9
Vampire

Prove theorems
that encode
intended
consequences (e.g.
properties of
concepts and
relations) of
ontologies/modules

FR-9 The system should
have theorem
proving capabilities
that can encode the
intended
consequences of
ontologies/modules
given to the system.
Examples of intended
consequences are
properties of
concepts and
relations or
competency
questions.

Table 1: Requirement Matrix of CLIF Parser: In this matrix, functional requirements are enumerated and the
components responsible for completion of the requirements are described.



10

Appendix A
This appendix details the expectations that RCD shall uphold to the client upon completion
of this document, and how future changes to this document shall be made.

RCD and the client, upon the signing of the document, are agreeing that this SDD contains
a compilation of the architecture necessary for the CLIF Parser. RCD and the client agree
that this architecture is to be developed over the course of the Fall 2022 and Spring 2023
University of Maine semesters. The team, RCD, agrees that this architecture is meant to be
agile and flexible in nature, so if the need arises, the requirements may change in
accordance with the client’s wishes.

Any changes made to this document must be approved by all members of RCD and the
client via signatures to an additional appendix wherein the changes are enumerated and
detailed. Changes to this document include, but are not limited to, the shifting of
architectural design as to be in accordance with the Capstone requirements for the
University of Maine course this project is managed through. The signing of this appendix
consents all members of RCD and the client that this structure of implementing changes is
acceptable.

Name: Signature: Date:

Torsten Hahmann ________________ __/__/__

Jake Emerson ________________ __/__/__

Matthew Brown ________________ __/__/__

Gunnar Eastman ________________ __/__/__

Jesiah Harris ________________ __/__/__

Shea Keegan ________________ __/__/__

Eli Story ________________ __/__/__

Customer Comments:



11

Appendix B
This appendix will contain the agreement that all members of RCD have read and consent
to the document in its entirety.

Through signing this appendix, we, as the members of RCD, agree that we have reviewed
this document fully, we agree to the formatting of this document, and agree to the content
that is located within this SDD. Each member of RCD may have minor disagreements with
certain parts of this document, though by signing below, we agree that there are not any
major points of contention within this SRS. We have all agreed to these terms and placed
our signatures below.

Name: Signature: Date:

Matthew Brown ________________ 11/09/22
Comments:

Gunnar Eastman ________________ __/__/__
Comments:

Jesiah Harris ________________ __/__/__
Comments:

Shea Keegan ________________ __/__/__
Comments:

Eli Story ________________ __/__/__
Comments:



12

Appendix C
This appendix will outline the approximate contributions of each of the team members of
RCD to the completion of this SDD.

Matthew Brown
● Created the Architecture Design Diagram and wrote the description
● Formatted the document
● Worked on all sections
● Contributed 32.5% of the document

Gunnar Eastman
● Created the document
● Created the Decomposition Diagram and wrote the description
● Worked on the entire document
● Contributed 32.5% of the document

Jesiah Harris
● Wrote the requirement matrix
● Worked on §4
● Contributed 20% of the document

Shea Keegan
● Wrote the Persistent Data Description
● Worked on §3
● Contributed 10% of the document

Eli Story
● Sister team review
● Formatted the document
● Contributed 5% of the document


