gen_ai_hub.proxy.langchain
index
/home/jenkins/agent/workspace/ation_generative-ai-hub-sdk_main/gen_ai_hub/proxy/langchain/__init__.py

 
Package Contents
       
amazon
base
google_gemini
init_models
openai

 
Classes
       
gen_ai_hub.proxy.langchain.amazon.AICoreBedrockBaseModel(pydantic.v1.main.BaseModel)
gen_ai_hub.proxy.langchain.amazon.ChatBedrock(gen_ai_hub.proxy.langchain.amazon.AICoreBedrockBaseModel, langchain_aws.chat_models.bedrock.ChatBedrock)
gen_ai_hub.proxy.langchain.openai.ProxyOpenAI(gen_ai_hub.proxy.langchain.base.BaseAuth)
gen_ai_hub.proxy.langchain.openai.ChatOpenAI(gen_ai_hub.proxy.langchain.openai.ProxyOpenAI, langchain_openai.chat_models.base.ChatOpenAI)
gen_ai_hub.proxy.langchain.openai.OpenAI(gen_ai_hub.proxy.langchain.openai.ProxyOpenAI, langchain_openai.llms.base.OpenAI)
gen_ai_hub.proxy.langchain.openai.OpenAIEmbeddings(gen_ai_hub.proxy.langchain.openai.ProxyOpenAI, langchain_openai.embeddings.base.OpenAIEmbeddings)
langchain_aws.chat_models.bedrock.ChatBedrock(langchain_core.language_models.chat_models.BaseChatModel, langchain_aws.llms.bedrock.BedrockBase)
gen_ai_hub.proxy.langchain.amazon.ChatBedrock(gen_ai_hub.proxy.langchain.amazon.AICoreBedrockBaseModel, langchain_aws.chat_models.bedrock.ChatBedrock)
langchain_google_genai.chat_models.ChatGoogleGenerativeAI(langchain_google_genai.llms._BaseGoogleGenerativeAI, langchain_core.language_models.chat_models.BaseChatModel)
gen_ai_hub.proxy.langchain.google_gemini.ChatGoogleGenerativeAI
langchain_openai.chat_models.base.ChatOpenAI(langchain_openai.chat_models.base.BaseChatOpenAI)
gen_ai_hub.proxy.langchain.openai.ChatOpenAI(gen_ai_hub.proxy.langchain.openai.ProxyOpenAI, langchain_openai.chat_models.base.ChatOpenAI)
langchain_openai.embeddings.base.OpenAIEmbeddings(pydantic.v1.main.BaseModel, langchain_core.embeddings.embeddings.Embeddings)
gen_ai_hub.proxy.langchain.openai.OpenAIEmbeddings(gen_ai_hub.proxy.langchain.openai.ProxyOpenAI, langchain_openai.embeddings.base.OpenAIEmbeddings)
langchain_openai.llms.base.OpenAI(langchain_openai.llms.base.BaseOpenAI)
gen_ai_hub.proxy.langchain.openai.OpenAI(gen_ai_hub.proxy.langchain.openai.ProxyOpenAI, langchain_openai.llms.base.OpenAI)

 
class ChatBedrock(AICoreBedrockBaseModel, langchain_aws.chat_models.bedrock.ChatBedrock)
    ChatBedrock(*args, name: Optional[str] = None, cache: ForwardRef('Union[BaseCache, bool, None]') = None, verbose: bool = None, callbacks: ForwardRef('Callbacks') = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, custom_get_token_ids: Optional[Callable[[str], List[int]]] = None, client: Any = None, region_name: Optional[str] = None, credentials_profile_name: Optional[str] = None, config: Any = None, provider: Optional[str] = None, model_id: str, model_kwargs: Optional[Dict[str, Any]] = None, endpoint_url: Optional[str] = None, streaming: bool = False, provider_stop_sequence_key_name_map: Mapping[str, str] = {'anthropic': 'stop_sequences', 'amazon': 'stopSequences', 'ai21': 'stop_sequences', 'cohere': 'stop_sequences', 'mistral': 'stop_sequences'}, provider_stop_reason_key_map: Mapping[str, str] = {'anthropic': 'stop_reason', 'amazon': 'completionReason', 'ai21': 'finishReason', 'cohere': 'finish_reason', 'mistral': 'stop_reason'}, guardrails: Optional[Mapping[str, Any]] = {'trace': None, 'guardrailIdentifier': None, 'guardrailVersion': None}, callback_manager: Optional[langchain_core.callbacks.base.BaseCallbackManager] = None, rate_limiter: Optional[langchain_core.rate_limiters.BaseRateLimiter] = None, system_prompt_with_tools: str = '') -> None
 
Drop-in replacement for LangChain ChatBedrock.
 
 
Method resolution order:
ChatBedrock
AICoreBedrockBaseModel
langchain_aws.chat_models.bedrock.ChatBedrock
langchain_core.language_models.chat_models.BaseChatModel
langchain_aws.llms.bedrock.BedrockBase
langchain_core.language_models.base.BaseLanguageModel
langchain_core.runnables.base.RunnableSerializable
langchain_core.load.serializable.Serializable
pydantic.v1.main.BaseModel
pydantic.v1.utils.Representation
langchain_core.runnables.base.Runnable
typing.Generic
abc.ABC
builtins.object

Methods defined here:
__init__(self, *args, **kwargs)
Extends the constructor of the base class with aicore specific parameters.

Static methods defined here:
__json_encoder__ = pydantic_encoder(obj: Any) -> Any

Data descriptors defined here:
__weakref__
list of weak references to the object (if defined)

Data and other attributes defined here:
__abstractmethods__ = frozenset()
__class_vars__ = set()
__config__ = <class 'pydantic.v1.config.Config'>
__custom_root_type__ = False
__exclude_fields__ = {'callback_manager': True, 'callbacks': True, 'client': True, 'credentials_profile_name': True, 'custom_get_token_ids': True, 'metadata': True, 'rate_limiter': True, 'tags': True}
__fields__ = {'cache': ModelField(name='cache', type=Union[BaseCache, bool, NoneType], required=False, default=None), 'callback_manager': ModelField(name='callback_manager', type=Optiona...seCallbackManager], required=False, default=None), 'callbacks': ModelField(name='callbacks', type=Union[List[lan...Manager, NoneType], required=False, default=None), 'client': ModelField(name='client', type=Optional[Any], required=False, default=None), 'config': ModelField(name='config', type=Optional[Any], required=False, default=None), 'credentials_profile_name': ModelField(name='credentials_profile_name', type=Optional[str], required=False, default=None), 'custom_get_token_ids': ModelField(name='custom_get_token_ids', type=Opt...[str], List[int]]], required=False, default=None), 'endpoint_url': ModelField(name='endpoint_url', type=Optional[str], required=False, default=None), 'guardrails': ModelField(name='guardrails', type=Optional[Mapp...railIdentifier': None, 'guardrailVersion': None}), 'metadata': ModelField(name='metadata', type=Optional[Mapping[str, Any]], required=False, default=None), ...}
__hash__ = None
__include_fields__ = None
__parameters__ = ()
__post_root_validators__ = [(False, <function AICoreBedrockBaseModel.validate_environment>)]
__pre_root_validators__ = [<function BaseChatModel.raise_deprecation>]
__private_attributes__ = {}
__schema_cache__ = {}
__signature__ = <Signature (*args, name: Optional[str] = None, c...one, system_prompt_with_tools: str = '') -> None>
__validators__ = {'verbose': [<pydantic.v1.class_validators.Validator object>, <pydantic.v1.class_validators.Validator object>]}

Class methods inherited from AICoreBedrockBaseModel:
get_corresponding_model_id(model_name) from pydantic.v1.main.ModelMetaclass
validate_environment(values: Dict) -> Dict from pydantic.v1.main.ModelMetaclass
Validate that AWS credentials to and python package exists in environment.

Methods inherited from langchain_aws.chat_models.bedrock.ChatBedrock:
bind_tools(self, tools: Sequence[Union[Dict[str, Any], Type[pydantic.v1.main.BaseModel], Callable, langchain_core.tools.BaseTool]], *, tool_choice: Union[dict, str, Literal['auto', 'none'], bool, NoneType] = None, **kwargs: Any) -> langchain_core.runnables.base.Runnable[typing.Union[langchain_core.prompt_values.PromptValue, str, typing.Sequence[typing.Union[langchain_core.messages.base.BaseMessage, typing.List[str], typing.Tuple[str, str], str, typing.Dict[str, typing.Any]]]], langchain_core.messages.base.BaseMessage]
Bind tool-like objects to this chat model.
 
Assumes model has a tool calling API.
 
Args:
    tools: A list of tool definitions to bind to this chat model.
        Can be  a dictionary, pydantic model, callable, or BaseTool. Pydantic
        models, callables, and BaseTools will be automatically converted to
        their schema dictionary representation.
    tool_choice: Which tool to require the model to call.
        Must be the name of the single provided function or
        "auto" to automatically determine which function to call
        (if any), or a dict of the form:
        {"type": "function", "function": {"name": <<tool_name>>}}.
    **kwargs: Any additional parameters to pass to the
        :class:`~langchain.runnable.Runnable` constructor.
get_num_tokens(self, text: str) -> int
Get the number of tokens present in the text.
 
Useful for checking if an input fits in a model's context window.
 
Args:
    text: The string input to tokenize.
 
Returns:
    The integer number of tokens in the text.
get_token_ids(self, text: str) -> List[int]
Return the ordered ids of the tokens in a text.
 
Args:
    text: The string input to tokenize.
 
Returns:
    A list of ids corresponding to the tokens in the text, in order they occur
        in the text.
set_system_prompt_with_tools(self, xml_tools_system_prompt: str) -> None
Workaround to bind. Sets the system prompt with tools

Class methods inherited from langchain_aws.chat_models.bedrock.ChatBedrock:
get_lc_namespace() -> List[str] from pydantic.v1.main.ModelMetaclass
Get the namespace of the langchain object.
is_lc_serializable() -> bool from pydantic.v1.main.ModelMetaclass
Return whether this model can be serialized by Langchain.

Readonly properties inherited from langchain_aws.chat_models.bedrock.ChatBedrock:
lc_attributes
List of attribute names that should be included in the serialized kwargs.
 
These attributes must be accepted by the constructor.
Default is an empty dictionary.

Data and other attributes inherited from langchain_aws.chat_models.bedrock.ChatBedrock:
Config = <class 'langchain_aws.chat_models.bedrock.ChatBedrock.Config'>
Configuration for this pydantic object.
__annotations__ = {'system_prompt_with_tools': <class 'str'>}

Methods inherited from langchain_core.language_models.chat_models.BaseChatModel:
__call__(self, messages: 'List[BaseMessage]', stop: 'Optional[List[str]]' = None, callbacks: 'Callbacks' = None, **kwargs: 'Any') -> 'BaseMessage'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use invoke instead.
async agenerate(self, messages: 'List[List[BaseMessage]]', stop: 'Optional[List[str]]' = None, callbacks: 'Callbacks' = None, *, tags: 'Optional[List[str]]' = None, metadata: 'Optional[Dict[str, Any]]' = None, run_name: 'Optional[str]' = None, run_id: 'Optional[uuid.UUID]' = None, **kwargs: 'Any') -> 'LLMResult'
Asynchronously pass a sequence of prompts to a model and return generations.
 
This method should make use of batched calls for models that expose a batched
API.
 
Use this method when you want to:
    1. take advantage of batched calls,
    2. need more output from the model than just the top generated value,
    3. are building chains that are agnostic to the underlying language model
        type (e.g., pure text completion models vs chat models).
 
Args:
    messages: List of list of messages.
    stop: Stop words to use when generating. Model output is cut off at the
        first occurrence of any of these substrings.
    callbacks: Callbacks to pass through. Used for executing additional
        functionality, such as logging or streaming, throughout generation.
    **kwargs: Arbitrary additional keyword arguments. These are usually passed
        to the model provider API call.
 
Returns:
    An LLMResult, which contains a list of candidate Generations for each input
        prompt and additional model provider-specific output.
async agenerate_prompt(self, prompts: 'List[PromptValue]', stop: 'Optional[List[str]]' = None, callbacks: 'Callbacks' = None, **kwargs: 'Any') -> 'LLMResult'
Asynchronously pass a sequence of prompts and return model generations.
 
This method should make use of batched calls for models that expose a batched
API.
 
Use this method when you want to:
    1. take advantage of batched calls,
    2. need more output from the model than just the top generated value,
    3. are building chains that are agnostic to the underlying language model
        type (e.g., pure text completion models vs chat models).
 
Args:
    prompts: List of PromptValues. A PromptValue is an object that can be
        converted to match the format of any language model (string for pure
        text generation models and BaseMessages for chat models).
    stop: Stop words to use when generating. Model output is cut off at the
        first occurrence of any of these substrings.
    callbacks: Callbacks to pass through. Used for executing additional
        functionality, such as logging or streaming, throughout generation.
    **kwargs: Arbitrary additional keyword arguments. These are usually passed
        to the model provider API call.
 
Returns:
    An LLMResult, which contains a list of candidate Generations for each input
        prompt and additional model provider-specific output.
async ainvoke(self, input: 'LanguageModelInput', config: 'Optional[RunnableConfig]' = None, *, stop: 'Optional[List[str]]' = None, **kwargs: 'Any') -> 'BaseMessage'
Default implementation of ainvoke, calls invoke from a thread.
 
The default implementation allows usage of async code even if
the Runnable did not implement a native async version of invoke.
 
Subclasses should override this method if they can run asynchronously.
async apredict(self, text: 'str', *, stop: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'str'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use ainvoke instead.
async apredict_messages(self, messages: 'List[BaseMessage]', *, stop: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'BaseMessage'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use ainvoke instead.
async astream(self, input: 'LanguageModelInput', config: 'Optional[RunnableConfig]' = None, *, stop: 'Optional[List[str]]' = None, **kwargs: 'Any') -> 'AsyncIterator[BaseMessageChunk]'
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
 
Args:
    input: The input to the Runnable.
    config: The config to use for the Runnable. Defaults to None.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    The output of the Runnable.
call_as_llm(self, message: 'str', stop: 'Optional[List[str]]' = None, **kwargs: 'Any') -> 'str'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use invoke instead.
dict(self, **kwargs: 'Any') -> 'Dict'
Return a dictionary of the LLM.
generate(self, messages: 'List[List[BaseMessage]]', stop: 'Optional[List[str]]' = None, callbacks: 'Callbacks' = None, *, tags: 'Optional[List[str]]' = None, metadata: 'Optional[Dict[str, Any]]' = None, run_name: 'Optional[str]' = None, run_id: 'Optional[uuid.UUID]' = None, **kwargs: 'Any') -> 'LLMResult'
Pass a sequence of prompts to the model and return model generations.
 
This method should make use of batched calls for models that expose a batched
API.
 
Use this method when you want to:
    1. take advantage of batched calls,
    2. need more output from the model than just the top generated value,
    3. are building chains that are agnostic to the underlying language model
        type (e.g., pure text completion models vs chat models).
 
Args:
    messages: List of list of messages.
    stop: Stop words to use when generating. Model output is cut off at the
        first occurrence of any of these substrings.
    callbacks: Callbacks to pass through. Used for executing additional
        functionality, such as logging or streaming, throughout generation.
    **kwargs: Arbitrary additional keyword arguments. These are usually passed
        to the model provider API call.
 
Returns:
    An LLMResult, which contains a list of candidate Generations for each input
        prompt and additional model provider-specific output.
generate_prompt(self, prompts: 'List[PromptValue]', stop: 'Optional[List[str]]' = None, callbacks: 'Callbacks' = None, **kwargs: 'Any') -> 'LLMResult'
Pass a sequence of prompts to the model and return model generations.
 
This method should make use of batched calls for models that expose a batched
API.
 
Use this method when you want to:
    1. take advantage of batched calls,
    2. need more output from the model than just the top generated value,
    3. are building chains that are agnostic to the underlying language model
        type (e.g., pure text completion models vs chat models).
 
Args:
    prompts: List of PromptValues. A PromptValue is an object that can be
        converted to match the format of any language model (string for pure
        text generation models and BaseMessages for chat models).
    stop: Stop words to use when generating. Model output is cut off at the
        first occurrence of any of these substrings.
    callbacks: Callbacks to pass through. Used for executing additional
        functionality, such as logging or streaming, throughout generation.
    **kwargs: Arbitrary additional keyword arguments. These are usually passed
        to the model provider API call.
 
Returns:
    An LLMResult, which contains a list of candidate Generations for each input
        prompt and additional model provider-specific output.
invoke(self, input: 'LanguageModelInput', config: 'Optional[RunnableConfig]' = None, *, stop: 'Optional[List[str]]' = None, **kwargs: 'Any') -> 'BaseMessage'
Transform a single input into an output. Override to implement.
 
Args:
    input: The input to the Runnable.
    config: A config to use when invoking the Runnable.
       The config supports standard keys like 'tags', 'metadata' for tracing
       purposes, 'max_concurrency' for controlling how much work to do
       in parallel, and other keys. Please refer to the RunnableConfig
       for more details.
 
Returns:
    The output of the Runnable.
predict(self, text: 'str', *, stop: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'str'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use invoke instead.
predict_messages(self, messages: 'List[BaseMessage]', *, stop: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'BaseMessage'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use invoke instead.
stream(self, input: 'LanguageModelInput', config: 'Optional[RunnableConfig]' = None, *, stop: 'Optional[List[str]]' = None, **kwargs: 'Any') -> 'Iterator[BaseMessageChunk]'
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
 
Args:
    input: The input to the Runnable.
    config: The config to use for the Runnable. Defaults to None.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    The output of the Runnable.
with_structured_output(self, schema: 'Union[Dict, Type]', *, include_raw: 'bool' = False, **kwargs: 'Any') -> 'Runnable[LanguageModelInput, Union[Dict, BaseModel]]'
Model wrapper that returns outputs formatted to match the given schema.
 
Args:
    schema:
        The output schema. Can be passed in as:
            - an OpenAI function/tool schema,
            - a JSON Schema,
            - a TypedDict class (support added in 0.2.26),
            - or a Pydantic class.
        If ``schema`` is a Pydantic class then the model output will be a
        Pydantic instance of that class, and the model-generated fields will be
        validated by the Pydantic class. Otherwise the model output will be a
        dict and will not be validated. See :meth:`langchain_core.utils.function_calling.convert_to_openai_tool`
        for more on how to properly specify types and descriptions of
        schema fields when specifying a Pydantic or TypedDict class.
 
        .. versionchanged:: 0.2.26
 
                Added support for TypedDict class.
 
    include_raw:
        If False then only the parsed structured output is returned. If
        an error occurs during model output parsing it will be raised. If True
        then both the raw model response (a BaseMessage) and the parsed model
        response will be returned. If an error occurs during output parsing it
        will be caught and returned as well. The final output is always a dict
        with keys "raw", "parsed", and "parsing_error".
 
Returns:
    A Runnable that takes same inputs as a :class:`langchain_core.language_models.chat.BaseChatModel`.
 
    If ``include_raw`` is False and ``schema`` is a Pydantic class, Runnable outputs
    an instance of ``schema`` (i.e., a Pydantic object).
 
    Otherwise, if ``include_raw`` is False then Runnable outputs a dict.
 
    If ``include_raw`` is True, then Runnable outputs a dict with keys:
        - ``"raw"``: BaseMessage
        - ``"parsed"``: None if there was a parsing error, otherwise the type depends on the ``schema`` as described above.
        - ``"parsing_error"``: Optional[BaseException]
 
Example: Pydantic schema (include_raw=False):
    .. code-block:: python
 
        from langchain_core.pydantic_v1 import BaseModel
 
        class AnswerWithJustification(BaseModel):
            '''An answer to the user question along with justification for the answer.'''
            answer: str
            justification: str
 
        llm = ChatModel(model="model-name", temperature=0)
        structured_llm = llm.with_structured_output(AnswerWithJustification)
 
        structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
 
        # -> AnswerWithJustification(
        #     answer='They weigh the same',
        #     justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
        # )
 
Example: Pydantic schema (include_raw=True):
    .. code-block:: python
 
        from langchain_core.pydantic_v1 import BaseModel
 
        class AnswerWithJustification(BaseModel):
            '''An answer to the user question along with justification for the answer.'''
            answer: str
            justification: str
 
        llm = ChatModel(model="model-name", temperature=0)
        structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)
 
        structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
        # -> {
        #     'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
        #     'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
        #     'parsing_error': None
        # }
 
Example: Dict schema (include_raw=False):
    .. code-block:: python
 
        from langchain_core.pydantic_v1 import BaseModel
        from langchain_core.utils.function_calling import convert_to_openai_tool
 
        class AnswerWithJustification(BaseModel):
            '''An answer to the user question along with justification for the answer.'''
            answer: str
            justification: str
 
        dict_schema = convert_to_openai_tool(AnswerWithJustification)
        llm = ChatModel(model="model-name", temperature=0)
        structured_llm = llm.with_structured_output(dict_schema)
 
        structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
        # -> {
        #     'answer': 'They weigh the same',
        #     'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
        # }

Class methods inherited from langchain_core.language_models.chat_models.BaseChatModel:
raise_deprecation(values: 'Dict') -> 'Dict' from pydantic.v1.main.ModelMetaclass
Raise deprecation warning if callback_manager is used.
 
Args:
    values (Dict): Values to validate.
 
Returns:
    Dict: Validated values.
 
Raises:
    DeprecationWarning: If callback_manager is used.

Readonly properties inherited from langchain_core.language_models.chat_models.BaseChatModel:
OutputType
Get the output type for this runnable.

Data and other attributes inherited from langchain_core.language_models.chat_models.BaseChatModel:
__orig_bases__ = (langchain_core.language_models.base.BaseLanguageModel[langchain_core.messages.base.BaseMessage], <class 'abc.ABC'>)

Methods inherited from langchain_core.language_models.base.BaseLanguageModel:
get_num_tokens_from_messages(self, messages: 'List[BaseMessage]') -> 'int'
Get the number of tokens in the messages.
 
Useful for checking if an input fits in a model's context window.
 
Args:
    messages: The message inputs to tokenize.
 
Returns:
    The sum of the number of tokens across the messages.

Class methods inherited from langchain_core.language_models.base.BaseLanguageModel:
set_verbose(verbose: 'Optional[bool]') -> 'bool' from pydantic.v1.main.ModelMetaclass
If verbose is None, set it.
 
This allows users to pass in None as verbose to access the global setting.
 
Args:
    verbose: The verbosity setting to use.
 
Returns:
    The verbosity setting to use.

Readonly properties inherited from langchain_core.language_models.base.BaseLanguageModel:
InputType
Get the input type for this runnable.

Methods inherited from langchain_core.runnables.base.RunnableSerializable:
configurable_alternatives(self, which: 'ConfigurableField', *, default_key: 'str' = 'default', prefix_keys: 'bool' = False, **kwargs: 'Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]') -> 'RunnableSerializable[Input, Output]'
Configure alternatives for Runnables that can be set at runtime.
 
Args:
    which: The ConfigurableField instance that will be used to select the
        alternative.
    default_key: The default key to use if no alternative is selected.
        Defaults to "default".
    prefix_keys: Whether to prefix the keys with the ConfigurableField id.
        Defaults to False.
    **kwargs: A dictionary of keys to Runnable instances or callables that
        return Runnable instances.
 
Returns:
    A new Runnable with the alternatives configured.
 
.. code-block:: python
 
    from langchain_anthropic import ChatAnthropic
    from langchain_core.runnables.utils import ConfigurableField
    from langchain_openai import ChatOpenAI
 
    model = ChatAnthropic(
        model_name="claude-3-sonnet-20240229"
    ).configurable_alternatives(
        ConfigurableField(id="llm"),
        default_key="anthropic",
        openai=ChatOpenAI()
    )
 
    # uses the default model ChatAnthropic
    print(model.invoke("which organization created you?").content)
 
    # uses ChatOpenAI
    print(
        model.with_config(
            configurable={"llm": "openai"}
        ).invoke("which organization created you?").content
    )
configurable_fields(self, **kwargs: 'AnyConfigurableField') -> 'RunnableSerializable[Input, Output]'
Configure particular Runnable fields at runtime.
 
Args:
    **kwargs: A dictionary of ConfigurableField instances to configure.
 
Returns:
    A new Runnable with the fields configured.
 
.. code-block:: python
 
    from langchain_core.runnables import ConfigurableField
    from langchain_openai import ChatOpenAI
 
    model = ChatOpenAI(max_tokens=20).configurable_fields(
        max_tokens=ConfigurableField(
            id="output_token_number",
            name="Max tokens in the output",
            description="The maximum number of tokens in the output",
        )
    )
 
    # max_tokens = 20
    print(
        "max_tokens_20: ",
        model.invoke("tell me something about chess").content
    )
 
    # max_tokens = 200
    print("max_tokens_200: ", model.with_config(
        configurable={"output_token_number": 200}
        ).invoke("tell me something about chess").content
    )
to_json(self) -> 'Union[SerializedConstructor, SerializedNotImplemented]'
Serialize the Runnable to JSON.
 
Returns:
    A JSON-serializable representation of the Runnable.

Methods inherited from langchain_core.load.serializable.Serializable:
__repr_args__(self) -> Any
Returns the attributes to show in __str__, __repr__, and __pretty__ this is generally overridden.
 
Can either return:
* name - value pairs, e.g.: `[('foo_name', 'foo'), ('bar_name', ['b', 'a', 'r'])]`
* or, just values, e.g.: `[(None, 'foo'), (None, ['b', 'a', 'r'])]`
to_json_not_implemented(self) -> langchain_core.load.serializable.SerializedNotImplemented

Class methods inherited from langchain_core.load.serializable.Serializable:
lc_id() -> List[str] from pydantic.v1.main.ModelMetaclass
A unique identifier for this class for serialization purposes.
 
The unique identifier is a list of strings that describes the path
to the object.
For example, for the class `langchain.llms.openai.OpenAI`, the id is
["langchain", "llms", "openai", "OpenAI"].

Readonly properties inherited from langchain_core.load.serializable.Serializable:
lc_secrets
A map of constructor argument names to secret ids.
 
For example,
    {"openai_api_key": "OPENAI_API_KEY"}

Methods inherited from pydantic.v1.main.BaseModel:
__eq__(self, other: Any) -> bool
Return self==value.
__getstate__(self) -> 'DictAny'
__iter__(self) -> 'TupleGenerator'
so `dict(model)` works
__setattr__(self, name, value)
Implement setattr(self, name, value).
__setstate__(self, state: 'DictAny') -> None
copy(self: 'Model', *, include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, update: Optional[ForwardRef('DictStrAny')] = None, deep: bool = False) -> 'Model'
Duplicate a model, optionally choose which fields to include, exclude and change.
 
:param include: fields to include in new model
:param exclude: fields to exclude from new model, as with values this takes precedence over include
:param update: values to change/add in the new model. Note: the data is not validated before creating
    the new model: you should trust this data
:param deep: set to `True` to make a deep copy of the model
:return: new model instance
json(self, *, include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) -> str
Generate a JSON representation of the model, `include` and `exclude` arguments as per `dict()`.
 
`encoder` is an optional function to supply as `default` to json.dumps(), other arguments as per `json.dumps()`.

Class methods inherited from pydantic.v1.main.BaseModel:
__get_validators__() -> 'CallableGenerator' from pydantic.v1.main.ModelMetaclass
__try_update_forward_refs__(**localns: Any) -> None from pydantic.v1.main.ModelMetaclass
Same as update_forward_refs but will not raise exception
when forward references are not defined.
construct(_fields_set: Optional[ForwardRef('SetStr')] = None, **values: Any) -> 'Model' from pydantic.v1.main.ModelMetaclass
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if `Config.extra = 'allow'` was set since it adds all passed values
from_orm(obj: Any) -> 'Model' from pydantic.v1.main.ModelMetaclass
parse_file(path: Union[str, pathlib.Path], *, content_type: str = None, encoding: str = 'utf8', proto: pydantic.v1.parse.Protocol = None, allow_pickle: bool = False) -> 'Model' from pydantic.v1.main.ModelMetaclass
parse_obj(obj: Any) -> 'Model' from pydantic.v1.main.ModelMetaclass
parse_raw(b: Union[str, bytes], *, content_type: str = None, encoding: str = 'utf8', proto: pydantic.v1.parse.Protocol = None, allow_pickle: bool = False) -> 'Model' from pydantic.v1.main.ModelMetaclass
schema(by_alias: bool = True, ref_template: str = '#/definitions/{model}') -> 'DictStrAny' from pydantic.v1.main.ModelMetaclass
schema_json(*, by_alias: bool = True, ref_template: str = '#/definitions/{model}', **dumps_kwargs: Any) -> str from pydantic.v1.main.ModelMetaclass
update_forward_refs(**localns: Any) -> None from pydantic.v1.main.ModelMetaclass
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate(value: Any) -> 'Model' from pydantic.v1.main.ModelMetaclass

Data descriptors inherited from pydantic.v1.main.BaseModel:
__dict__
dictionary for instance variables (if defined)
__fields_set__

Methods inherited from pydantic.v1.utils.Representation:
__pretty__(self, fmt: Callable[[Any], Any], **kwargs: Any) -> Generator[Any, NoneType, NoneType]
Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects
__repr__(self) -> str
Return repr(self).
__repr_name__(self) -> str
Name of the instance's class, used in __repr__.
__repr_str__(self, join_str: str) -> str
__rich_repr__(self) -> 'RichReprResult'
Get fields for Rich library
__str__(self) -> str
Return str(self).

Methods inherited from langchain_core.runnables.base.Runnable:
__or__(self, other: 'Union[Runnable[Any, Other], Callable[[Any], Other], Callable[[Iterator[Any]], Iterator[Other]], Mapping[str, Union[Runnable[Any, Other], Callable[[Any], Other], Any]]]') -> 'RunnableSerializable[Input, Other]'
Compose this Runnable with another object to create a RunnableSequence.
__ror__(self, other: 'Union[Runnable[Other, Any], Callable[[Other], Any], Callable[[Iterator[Other]], Iterator[Any]], Mapping[str, Union[Runnable[Other, Any], Callable[[Other], Any], Any]]]') -> 'RunnableSerializable[Other, Output]'
Compose this Runnable with another object to create a RunnableSequence.
async abatch(self, inputs: 'List[Input]', config: 'Optional[Union[RunnableConfig, List[RunnableConfig]]]' = None, *, return_exceptions: 'bool' = False, **kwargs: 'Optional[Any]') -> 'List[Output]'
Default implementation runs ainvoke in parallel using asyncio.gather.
 
The default implementation of batch works well for IO bound runnables.
 
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying Runnable uses an API which supports a batch mode.
 
Args:
    inputs: A list of inputs to the Runnable.
    config: A config to use when invoking the Runnable.
       The config supports standard keys like 'tags', 'metadata' for tracing
       purposes, 'max_concurrency' for controlling how much work to do
       in parallel, and other keys. Please refer to the RunnableConfig
       for more details. Defaults to None.
    return_exceptions: Whether to return exceptions instead of raising them.
        Defaults to False.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Returns:
    A list of outputs from the Runnable.
async abatch_as_completed(self, inputs: 'Sequence[Input]', config: 'Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]' = None, *, return_exceptions: 'bool' = False, **kwargs: 'Optional[Any]') -> 'AsyncIterator[Tuple[int, Union[Output, Exception]]]'
Run ainvoke in parallel on a list of inputs,
yielding results as they complete.
 
Args:
    inputs: A list of inputs to the Runnable.
    config: A config to use when invoking the Runnable.
       The config supports standard keys like 'tags', 'metadata' for tracing
       purposes, 'max_concurrency' for controlling how much work to do
       in parallel, and other keys. Please refer to the RunnableConfig
       for more details. Defaults to None. Defaults to None.
    return_exceptions: Whether to return exceptions instead of raising them.
        Defaults to False.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    A tuple of the index of the input and the output from the Runnable.
as_tool(self, args_schema: 'Optional[Type[BaseModel]]' = None, *, name: 'Optional[str]' = None, description: 'Optional[str]' = None, arg_types: 'Optional[Dict[str, Type]]' = None) -> 'BaseTool'
[*Beta*] Create a BaseTool from a Runnable.
 
``as_tool`` will instantiate a BaseTool with a name, description, and
``args_schema`` from a Runnable. Where possible, schemas are inferred
from ``runnable.get_input_schema``. Alternatively (e.g., if the
Runnable takes a dict as input and the specific dict keys are not typed),
the schema can be specified directly with ``args_schema``. You can also
pass ``arg_types`` to just specify the required arguments and their types.
 
Args:
    args_schema: The schema for the tool. Defaults to None.
    name: The name of the tool. Defaults to None.
    description: The description of the tool. Defaults to None.
    arg_types: A dictionary of argument names to types. Defaults to None.
 
Returns:
    A BaseTool instance.
 
Typed dict input:
 
.. code-block:: python
 
    from typing import List
    from typing_extensions import TypedDict
    from langchain_core.runnables import RunnableLambda
 
    class Args(TypedDict):
        a: int
        b: List[int]
 
    def f(x: Args) -> str:
        return str(x["a"] * max(x["b"]))
 
    runnable = RunnableLambda(f)
    as_tool = runnable.as_tool()
    as_tool.invoke({"a": 3, "b": [1, 2]})
 
``dict`` input, specifying schema via ``args_schema``:
 
.. code-block:: python
 
    from typing import Any, Dict, List
    from langchain_core.pydantic_v1 import BaseModel, Field
    from langchain_core.runnables import RunnableLambda
 
    def f(x: Dict[str, Any]) -> str:
        return str(x["a"] * max(x["b"]))
 
    class FSchema(BaseModel):
        """Apply a function to an integer and list of integers."""
 
        a: int = Field(..., description="Integer")
        b: List[int] = Field(..., description="List of ints")
 
    runnable = RunnableLambda(f)
    as_tool = runnable.as_tool(FSchema)
    as_tool.invoke({"a": 3, "b": [1, 2]})
 
``dict`` input, specifying schema via ``arg_types``:
 
.. code-block:: python
 
    from typing import Any, Dict, List
    from langchain_core.runnables import RunnableLambda
 
    def f(x: Dict[str, Any]) -> str:
        return str(x["a"] * max(x["b"]))
 
    runnable = RunnableLambda(f)
    as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]})
    as_tool.invoke({"a": 3, "b": [1, 2]})
 
String input:
 
.. code-block:: python
 
    from langchain_core.runnables import RunnableLambda
 
    def f(x: str) -> str:
        return x + "a"
 
    def g(x: str) -> str:
        return x + "z"
 
    runnable = RunnableLambda(f) | g
    as_tool = runnable.as_tool()
    as_tool.invoke("b")
 
.. versionadded:: 0.2.14
 
Notes
-----
.. beta::
   This API is in beta and may change in the future.
assign(self, **kwargs: 'Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]') -> 'RunnableSerializable[Any, Any]'
Assigns new fields to the dict output of this Runnable.
Returns a new Runnable.
 
.. code-block:: python
 
    from langchain_community.llms.fake import FakeStreamingListLLM
    from langchain_core.output_parsers import StrOutputParser
    from langchain_core.prompts import SystemMessagePromptTemplate
    from langchain_core.runnables import Runnable
    from operator import itemgetter
 
    prompt = (
        SystemMessagePromptTemplate.from_template("You are a nice assistant.")
        + "{question}"
    )
    llm = FakeStreamingListLLM(responses=["foo-lish"])
 
    chain: Runnable = prompt | llm | {"str": StrOutputParser()}
 
    chain_with_assign = chain.assign(hello=itemgetter("str") | llm)
 
    print(chain_with_assign.input_schema.schema())
    # {'title': 'PromptInput', 'type': 'object', 'properties':
    {'question': {'title': 'Question', 'type': 'string'}}}
    print(chain_with_assign.output_schema.schema()) #
    {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
    {'str': {'title': 'Str',
    'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
astream_events(self, input: 'Any', config: 'Optional[RunnableConfig]' = None, *, version: "Literal['v1', 'v2']", include_names: 'Optional[Sequence[str]]' = None, include_types: 'Optional[Sequence[str]]' = None, include_tags: 'Optional[Sequence[str]]' = None, exclude_names: 'Optional[Sequence[str]]' = None, exclude_types: 'Optional[Sequence[str]]' = None, exclude_tags: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'AsyncIterator[StreamEvent]'
[*Beta*] Generate a stream of events.
 
Use to create an iterator over StreamEvents that provide real-time information
about the progress of the Runnable, including StreamEvents from intermediate
results.
 
A StreamEvent is a dictionary with the following schema:
 
- ``event``: **str** - Event names are of the
    format: on_[runnable_type]_(start|stream|end).
- ``name``: **str** - The name of the Runnable that generated the event.
- ``run_id``: **str** - randomly generated ID associated with the given execution of
    the Runnable that emitted the event.
    A child Runnable that gets invoked as part of the execution of a
    parent Runnable is assigned its own unique ID.
- ``parent_ids``: **List[str]** - The IDs of the parent runnables that
    generated the event. The root Runnable will have an empty list.
    The order of the parent IDs is from the root to the immediate parent.
    Only available for v2 version of the API. The v1 version of the API
    will return an empty list.
- ``tags``: **Optional[List[str]]** - The tags of the Runnable that generated
    the event.
- ``metadata``: **Optional[Dict[str, Any]]** - The metadata of the Runnable
    that generated the event.
- ``data``: **Dict[str, Any]**
 
 
Below is a table that illustrates some evens that might be emitted by various
chains. Metadata fields have been omitted from the table for brevity.
Chain definitions have been included after the table.
 
**ATTENTION** This reference table is for the V2 version of the schema.
 
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| event                | name             | chunk                           | input                                         | output                                          |
+======================+==================+=================================+===============================================+=================================================+
| on_chat_model_start  | [model name]     |                                 | {"messages": [[SystemMessage, HumanMessage]]} |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chat_model_stream | [model name]     | AIMessageChunk(content="hello") |                                               |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chat_model_end    | [model name]     |                                 | {"messages": [[SystemMessage, HumanMessage]]} | AIMessageChunk(content="hello world")           |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_llm_start         | [model name]     |                                 | {'input': 'hello'}                            |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_llm_stream        | [model name]     | 'Hello'                         |                                               |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_llm_end           | [model name]     |                                 | 'Hello human!'                                |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chain_start       | format_docs      |                                 |                                               |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chain_stream      | format_docs      | "hello world!, goodbye world!"  |                                               |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chain_end         | format_docs      |                                 | [Document(...)]                               | "hello world!, goodbye world!"                  |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_tool_start        | some_tool        |                                 | {"x": 1, "y": "2"}                            |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_tool_end          | some_tool        |                                 |                                               | {"x": 1, "y": "2"}                              |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_retriever_start   | [retriever name] |                                 | {"query": "hello"}                            |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_retriever_end     | [retriever name] |                                 | {"query": "hello"}                            | [Document(...), ..]                             |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_prompt_start      | [template_name]  |                                 | {"question": "hello"}                         |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_prompt_end        | [template_name]  |                                 | {"question": "hello"}                         | ChatPromptValue(messages: [SystemMessage, ...]) |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
 
In addition to the standard events, users can also dispatch custom events (see example below).
 
Custom events will be only be surfaced with in the `v2` version of the API!
 
A custom event has following format:
 
+-----------+------+-----------------------------------------------------------------------------------------------------------+
| Attribute | Type | Description                                                                                               |
+===========+======+===========================================================================================================+
| name      | str  | A user defined name for the event.                                                                        |
+-----------+------+-----------------------------------------------------------------------------------------------------------+
| data      | Any  | The data associated with the event. This can be anything, though we suggest making it JSON serializable.  |
+-----------+------+-----------------------------------------------------------------------------------------------------------+
 
Here are declarations associated with the standard events shown above:
 
`format_docs`:
 
.. code-block:: python
 
    def format_docs(docs: List[Document]) -> str:
        '''Format the docs.'''
        return ", ".join([doc.page_content for doc in docs])
 
    format_docs = RunnableLambda(format_docs)
 
`some_tool`:
 
.. code-block:: python
 
    @tool
    def some_tool(x: int, y: str) -> dict:
        '''Some_tool.'''
        return {"x": x, "y": y}
 
`prompt`:
 
.. code-block:: python
 
    template = ChatPromptTemplate.from_messages(
        [("system", "You are Cat Agent 007"), ("human", "{question}")]
    ).with_config({"run_name": "my_template", "tags": ["my_template"]})
 
 
Example:
 
.. code-block:: python
 
    from langchain_core.runnables import RunnableLambda
 
    async def reverse(s: str) -> str:
        return s[::-1]
 
    chain = RunnableLambda(func=reverse)
 
    events = [
        event async for event in chain.astream_events("hello", version="v2")
    ]
 
    # will produce the following events (run_id, and parent_ids
    # has been omitted for brevity):
    [
        {
            "data": {"input": "hello"},
            "event": "on_chain_start",
            "metadata": {},
            "name": "reverse",
            "tags": [],
        },
        {
            "data": {"chunk": "olleh"},
            "event": "on_chain_stream",
            "metadata": {},
            "name": "reverse",
            "tags": [],
        },
        {
            "data": {"output": "olleh"},
            "event": "on_chain_end",
            "metadata": {},
            "name": "reverse",
            "tags": [],
        },
    ]
 
 
Example: Dispatch Custom Event
 
.. code-block:: python
 
    from langchain_core.callbacks.manager import (
        adispatch_custom_event,
    )
    from langchain_core.runnables import RunnableLambda, RunnableConfig
    import asyncio
 
 
    async def slow_thing(some_input: str, config: RunnableConfig) -> str:
        """Do something that takes a long time."""
        await asyncio.sleep(1) # Placeholder for some slow operation
        await adispatch_custom_event(
            "progress_event",
            {"message": "Finished step 1 of 3"},
            config=config # Must be included for python < 3.10
        )
        await asyncio.sleep(1) # Placeholder for some slow operation
        await adispatch_custom_event(
            "progress_event",
            {"message": "Finished step 2 of 3"},
            config=config # Must be included for python < 3.10
        )
        await asyncio.sleep(1) # Placeholder for some slow operation
        return "Done"
 
    slow_thing = RunnableLambda(slow_thing)
 
    async for event in slow_thing.astream_events("some_input", version="v2"):
        print(event)
 
Args:
    input: The input to the Runnable.
    config: The config to use for the Runnable.
    version: The version of the schema to use either `v2` or `v1`.
             Users should use `v2`.
             `v1` is for backwards compatibility and will be deprecated
             in 0.4.0.
             No default will be assigned until the API is stabilized.
             custom events will only be surfaced in `v2`.
    include_names: Only include events from runnables with matching names.
    include_types: Only include events from runnables with matching types.
    include_tags: Only include events from runnables with matching tags.
    exclude_names: Exclude events from runnables with matching names.
    exclude_types: Exclude events from runnables with matching types.
    exclude_tags: Exclude events from runnables with matching tags.
    kwargs: Additional keyword arguments to pass to the Runnable.
        These will be passed to astream_log as this implementation
        of astream_events is built on top of astream_log.
 
Yields:
    An async stream of StreamEvents.
 
Raises:
    NotImplementedError: If the version is not `v1` or `v2`.
 
Notes
-----
.. beta::
   This API is in beta and may change in the future.
async astream_log(self, input: 'Any', config: 'Optional[RunnableConfig]' = None, *, diff: 'bool' = True, with_streamed_output_list: 'bool' = True, include_names: 'Optional[Sequence[str]]' = None, include_types: 'Optional[Sequence[str]]' = None, include_tags: 'Optional[Sequence[str]]' = None, exclude_names: 'Optional[Sequence[str]]' = None, exclude_types: 'Optional[Sequence[str]]' = None, exclude_tags: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]'
Stream all output from a Runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
 
Output is streamed as Log objects, which include a list of
Jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
 
The Jsonpatch ops can be applied in order to construct state.
 
Args:
    input: The input to the Runnable.
    config: The config to use for the Runnable.
    diff: Whether to yield diffs between each step or the current state.
    with_streamed_output_list: Whether to yield the streamed_output list.
    include_names: Only include logs with these names.
    include_types: Only include logs with these types.
    include_tags: Only include logs with these tags.
    exclude_names: Exclude logs with these names.
    exclude_types: Exclude logs with these types.
    exclude_tags: Exclude logs with these tags.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    A RunLogPatch or RunLog object.
async atransform(self, input: 'AsyncIterator[Input]', config: 'Optional[RunnableConfig]' = None, **kwargs: 'Optional[Any]') -> 'AsyncIterator[Output]'
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
 
Args:
    input: An async iterator of inputs to the Runnable.
    config: The config to use for the Runnable. Defaults to None.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    The output of the Runnable.
batch(self, inputs: 'List[Input]', config: 'Optional[Union[RunnableConfig, List[RunnableConfig]]]' = None, *, return_exceptions: 'bool' = False, **kwargs: 'Optional[Any]') -> 'List[Output]'
Default implementation runs invoke in parallel using a thread pool executor.
 
The default implementation of batch works well for IO bound runnables.
 
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying Runnable uses an API which supports a batch mode.
batch_as_completed(self, inputs: 'Sequence[Input]', config: 'Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]' = None, *, return_exceptions: 'bool' = False, **kwargs: 'Optional[Any]') -> 'Iterator[Tuple[int, Union[Output, Exception]]]'
Run invoke in parallel on a list of inputs,
yielding results as they complete.
bind(self, **kwargs: 'Any') -> 'Runnable[Input, Output]'
Bind arguments to a Runnable, returning a new Runnable.
 
Useful when a Runnable in a chain requires an argument that is not
in the output of the previous Runnable or included in the user input.
 
Args:
    kwargs: The arguments to bind to the Runnable.
 
Returns:
    A new Runnable with the arguments bound.
 
Example:
 
.. code-block:: python
 
    from langchain_community.chat_models import ChatOllama
    from langchain_core.output_parsers import StrOutputParser
 
    llm = ChatOllama(model='llama2')
 
    # Without bind.
    chain = (
        llm
        | StrOutputParser()
    )
 
    chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
    # Output is 'One two three four five.'
 
    # With bind.
    chain = (
        llm.bind(stop=["three"])
        | StrOutputParser()
    )
 
    chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
    # Output is 'One two'
config_schema(self, *, include: 'Optional[Sequence[str]]' = None) -> 'Type[BaseModel]'
The type of config this Runnable accepts specified as a pydantic model.
 
To mark a field as configurable, see the `configurable_fields`
and `configurable_alternatives` methods.
 
Args:
    include: A list of fields to include in the config schema.
 
Returns:
    A pydantic model that can be used to validate config.
get_graph(self, config: 'Optional[RunnableConfig]' = None) -> 'Graph'
Return a graph representation of this Runnable.
get_input_schema(self, config: 'Optional[RunnableConfig]' = None) -> 'Type[BaseModel]'
Get a pydantic model that can be used to validate input to the Runnable.
 
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the Runnable is invoked with.
 
This method allows to get an input schema for a specific configuration.
 
Args:
    config: A config to use when generating the schema.
 
Returns:
    A pydantic model that can be used to validate input.
get_name(self, suffix: 'Optional[str]' = None, *, name: 'Optional[str]' = None) -> 'str'
Get the name of the Runnable.
get_output_schema(self, config: 'Optional[RunnableConfig]' = None) -> 'Type[BaseModel]'
Get a pydantic model that can be used to validate output to the Runnable.
 
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the Runnable is invoked with.
 
This method allows to get an output schema for a specific configuration.
 
Args:
    config: A config to use when generating the schema.
 
Returns:
    A pydantic model that can be used to validate output.
get_prompts(self, config: 'Optional[RunnableConfig]' = None) -> 'List[BasePromptTemplate]'
Return a list of prompts used by this Runnable.
map(self) -> 'Runnable[List[Input], List[Output]]'
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
 
Returns:
    A new Runnable that maps a list of inputs to a list of outputs.
 
Example:
 
    .. code-block:: python
 
            from langchain_core.runnables import RunnableLambda
 
            def _lambda(x: int) -> int:
                return x + 1
 
            runnable = RunnableLambda(_lambda)
            print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4]
pick(self, keys: 'Union[str, List[str]]') -> 'RunnableSerializable[Any, Any]'
Pick keys from the dict output of this Runnable.
 
Pick single key:
    .. code-block:: python
 
        import json
 
        from langchain_core.runnables import RunnableLambda, RunnableMap
 
        as_str = RunnableLambda(str)
        as_json = RunnableLambda(json.loads)
        chain = RunnableMap(str=as_str, json=as_json)
 
        chain.invoke("[1, 2, 3]")
        # -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
 
        json_only_chain = chain.pick("json")
        json_only_chain.invoke("[1, 2, 3]")
        # -> [1, 2, 3]
 
Pick list of keys:
    .. code-block:: python
 
        from typing import Any
 
        import json
 
        from langchain_core.runnables import RunnableLambda, RunnableMap
 
        as_str = RunnableLambda(str)
        as_json = RunnableLambda(json.loads)
        def as_bytes(x: Any) -> bytes:
            return bytes(x, "utf-8")
 
        chain = RunnableMap(
            str=as_str,
            json=as_json,
            bytes=RunnableLambda(as_bytes)
        )
 
        chain.invoke("[1, 2, 3]")
        # -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
 
        json_and_bytes_chain = chain.pick(["json", "bytes"])
        json_and_bytes_chain.invoke("[1, 2, 3]")
        # -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
pipe(self, *others: 'Union[Runnable[Any, Other], Callable[[Any], Other]]', name: 'Optional[str]' = None) -> 'RunnableSerializable[Input, Other]'
Compose this Runnable with Runnable-like objects to make a RunnableSequence.
 
Equivalent to `RunnableSequence(self, *others)` or `self | others[0] | ...`
 
Example:
    .. code-block:: python
 
        from langchain_core.runnables import RunnableLambda
 
        def add_one(x: int) -> int:
            return x + 1
 
        def mul_two(x: int) -> int:
            return x * 2
 
        runnable_1 = RunnableLambda(add_one)
        runnable_2 = RunnableLambda(mul_two)
        sequence = runnable_1.pipe(runnable_2)
        # Or equivalently:
        # sequence = runnable_1 | runnable_2
        # sequence = RunnableSequence(first=runnable_1, last=runnable_2)
        sequence.invoke(1)
        await sequence.ainvoke(1)
        # -> 4
 
        sequence.batch([1, 2, 3])
        await sequence.abatch([1, 2, 3])
        # -> [4, 6, 8]
transform(self, input: 'Iterator[Input]', config: 'Optional[RunnableConfig]' = None, **kwargs: 'Optional[Any]') -> 'Iterator[Output]'
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
 
Args:
    input: An iterator of inputs to the Runnable.
    config: The config to use for the Runnable. Defaults to None.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    The output of the Runnable.
with_alisteners(self, *, on_start: 'Optional[AsyncListener]' = None, on_end: 'Optional[AsyncListener]' = None, on_error: 'Optional[AsyncListener]' = None) -> 'Runnable[Input, Output]'
Bind asynchronous lifecycle listeners to a Runnable, returning a new Runnable.
 
on_start: Asynchronously called before the Runnable starts running.
on_end: Asynchronously called after the Runnable finishes running.
on_error: Asynchronously called if the Runnable throws an error.
 
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
 
Args:
    on_start: Asynchronously called before the Runnable starts running.
        Defaults to None.
    on_end: Asynchronously called after the Runnable finishes running.
        Defaults to None.
    on_error: Asynchronously called if the Runnable throws an error.
        Defaults to None.
 
Returns:
    A new Runnable with the listeners bound.
 
Example:
 
.. code-block:: python
 
    from langchain_core.runnables import RunnableLambda
    import time
 
    async def test_runnable(time_to_sleep : int):
        print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
        await asyncio.sleep(time_to_sleep)
        print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")
 
    async def fn_start(run_obj : Runnable):
        print(f"on start callback starts at {format_t(time.time())}
        await asyncio.sleep(3)
        print(f"on start callback ends at {format_t(time.time())}")
 
    async def fn_end(run_obj : Runnable):
        print(f"on end callback starts at {format_t(time.time())}
        await asyncio.sleep(2)
        print(f"on end callback ends at {format_t(time.time())}")
 
    runnable = RunnableLambda(test_runnable).with_alisteners(
        on_start=fn_start,
        on_end=fn_end
    )
    async def concurrent_runs():
        await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))
 
    asyncio.run(concurrent_runs())
    Result:
    on start callback starts at 2024-05-16T14:20:29.637053+00:00
    on start callback starts at 2024-05-16T14:20:29.637150+00:00
    on start callback ends at 2024-05-16T14:20:32.638305+00:00
    on start callback ends at 2024-05-16T14:20:32.638383+00:00
    Runnable[3s]: starts at 2024-05-16T14:20:32.638849+00:00
    Runnable[5s]: starts at 2024-05-16T14:20:32.638999+00:00
    Runnable[3s]: ends at 2024-05-16T14:20:35.640016+00:00
    on end callback starts at 2024-05-16T14:20:35.640534+00:00
    Runnable[5s]: ends at 2024-05-16T14:20:37.640169+00:00
    on end callback starts at 2024-05-16T14:20:37.640574+00:00
    on end callback ends at 2024-05-16T14:20:37.640654+00:00
    on end callback ends at 2024-05-16T14:20:39.641751+00:00
with_config(self, config: 'Optional[RunnableConfig]' = None, **kwargs: 'Any') -> 'Runnable[Input, Output]'
Bind config to a Runnable, returning a new Runnable.
 
Args:
    config: The config to bind to the Runnable.
    kwargs: Additional keyword arguments to pass to the Runnable.
 
Returns:
    A new Runnable with the config bound.
with_fallbacks(self, fallbacks: 'Sequence[Runnable[Input, Output]]', *, exceptions_to_handle: 'Tuple[Type[BaseException], ...]' = (<class 'Exception'>,), exception_key: 'Optional[str]' = None) -> 'RunnableWithFallbacksT[Input, Output]'
Add fallbacks to a Runnable, returning a new Runnable.
 
The new Runnable will try the original Runnable, and then each fallback
in order, upon failures.
 
Args:
    fallbacks: A sequence of runnables to try if the original Runnable fails.
    exceptions_to_handle: A tuple of exception types to handle.
        Defaults to (Exception,).
    exception_key: If string is specified then handled exceptions will be passed
        to fallbacks as part of the input under the specified key. If None,
        exceptions will not be passed to fallbacks. If used, the base Runnable
        and its fallbacks must accept a dictionary as input. Defaults to None.
 
Returns:
    A new Runnable that will try the original Runnable, and then each
    fallback in order, upon failures.
 
Example:
 
    .. code-block:: python
 
        from typing import Iterator
 
        from langchain_core.runnables import RunnableGenerator
 
 
        def _generate_immediate_error(input: Iterator) -> Iterator[str]:
            raise ValueError()
            yield ""
 
 
        def _generate(input: Iterator) -> Iterator[str]:
            yield from "foo bar"
 
 
        runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
            [RunnableGenerator(_generate)]
            )
        print(''.join(runnable.stream({}))) #foo bar
 
Args:
    fallbacks: A sequence of runnables to try if the original Runnable fails.
    exceptions_to_handle: A tuple of exception types to handle.
    exception_key: If string is specified then handled exceptions will be passed
        to fallbacks as part of the input under the specified key. If None,
        exceptions will not be passed to fallbacks. If used, the base Runnable
        and its fallbacks must accept a dictionary as input.
 
Returns:
    A new Runnable that will try the original Runnable, and then each
    fallback in order, upon failures.
with_listeners(self, *, on_start: 'Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]' = None, on_end: 'Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]' = None, on_error: 'Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]' = None) -> 'Runnable[Input, Output]'
Bind lifecycle listeners to a Runnable, returning a new Runnable.
 
on_start: Called before the Runnable starts running, with the Run object.
on_end: Called after the Runnable finishes running, with the Run object.
on_error: Called if the Runnable throws an error, with the Run object.
 
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
 
Args:
    on_start: Called before the Runnable starts running. Defaults to None.
    on_end: Called after the Runnable finishes running. Defaults to None.
    on_error: Called if the Runnable throws an error. Defaults to None.
 
Returns:
    A new Runnable with the listeners bound.
 
Example:
 
.. code-block:: python
 
    from langchain_core.runnables import RunnableLambda
    from langchain_core.tracers.schemas import Run
 
    import time
 
    def test_runnable(time_to_sleep : int):
        time.sleep(time_to_sleep)
 
    def fn_start(run_obj: Run):
        print("start_time:", run_obj.start_time)
 
    def fn_end(run_obj: Run):
        print("end_time:", run_obj.end_time)
 
    chain = RunnableLambda(test_runnable).with_listeners(
        on_start=fn_start,
        on_end=fn_end
    )
    chain.invoke(2)
with_retry(self, *, retry_if_exception_type: 'Tuple[Type[BaseException], ...]' = (<class 'Exception'>,), wait_exponential_jitter: 'bool' = True, stop_after_attempt: 'int' = 3) -> 'Runnable[Input, Output]'
Create a new Runnable that retries the original Runnable on exceptions.
 
Args:
    retry_if_exception_type: A tuple of exception types to retry on.
        Defaults to (Exception,).
    wait_exponential_jitter: Whether to add jitter to the wait
        time between retries. Defaults to True.
    stop_after_attempt: The maximum number of attempts to make before
        giving up. Defaults to 3.
 
Returns:
    A new Runnable that retries the original Runnable on exceptions.
 
Example:
 
.. code-block:: python
 
    from langchain_core.runnables import RunnableLambda
 
    count = 0
 
 
    def _lambda(x: int) -> None:
        global count
        count = count + 1
        if x == 1:
            raise ValueError("x is 1")
        else:
             pass
 
 
    runnable = RunnableLambda(_lambda)
    try:
        runnable.with_retry(
            stop_after_attempt=2,
            retry_if_exception_type=(ValueError,),
        ).invoke(1)
    except ValueError:
        pass
 
    assert (count == 2)
 
 
Args:
    retry_if_exception_type: A tuple of exception types to retry on
    wait_exponential_jitter: Whether to add jitter to the wait time
                             between retries
    stop_after_attempt: The maximum number of attempts to make before giving up
 
Returns:
    A new Runnable that retries the original Runnable on exceptions.
with_types(self, *, input_type: 'Optional[Type[Input]]' = None, output_type: 'Optional[Type[Output]]' = None) -> 'Runnable[Input, Output]'
Bind input and output types to a Runnable, returning a new Runnable.
 
Args:
    input_type: The input type to bind to the Runnable. Defaults to None.
    output_type: The output type to bind to the Runnable. Defaults to None.
 
Returns:
    A new Runnable with the types bound.

Readonly properties inherited from langchain_core.runnables.base.Runnable:
config_specs
List configurable fields for this Runnable.
input_schema
The type of input this Runnable accepts specified as a pydantic model.
output_schema
The type of output this Runnable produces specified as a pydantic model.

Data and other attributes inherited from langchain_core.runnables.base.Runnable:
name = None

Class methods inherited from typing.Generic:
__class_getitem__(params) from pydantic.v1.main.ModelMetaclass
__init_subclass__(*args, **kwargs) from pydantic.v1.main.ModelMetaclass
This method is called when a class is subclassed.
 
The default implementation does nothing. It may be
overridden to extend subclasses.

 
class ChatGoogleGenerativeAI(langchain_google_genai.chat_models.ChatGoogleGenerativeAI)
    ChatGoogleGenerativeAI(*args, model: str = '', proxy_model_name: str = '', model_id: str = '', deployment_id: str = '', model_name: str = '', config_id: str = '', config_name: str = '', proxy_client: Optional[gen_ai_hub.proxy.core.base.BaseProxyClient] = None, name: Optional[str] = None, cache: ForwardRef('Union[BaseCache, bool, None]') = None, verbose: bool = None, callbacks: ForwardRef('Callbacks') = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, custom_get_token_ids: Optional[Callable[[str], List[int]]] = None, callback_manager: Optional[langchain_core.callbacks.base.BaseCallbackManager] = None, rate_limiter: Optional[langchain_core.rate_limiters.BaseRateLimiter] = None, google_api_key: Optional[pydantic.v1.types.SecretStr] = None, credentials: Any = None, temperature: float = 0.7, top_p: Optional[float] = None, top_k: Optional[int] = None, max_output_tokens: Optional[int] = None, n: int = 1, max_retries: int = 6, timeout: Optional[float] = None, client_options: Optional[Dict] = None, transport: Optional[str] = None, additional_headers: Optional[Dict[str, str]] = None, safety_settings: Optional[Dict[google.ai.generativelanguage_v1beta.types.safety.HarmCategory, google.ai.generativelanguage_v1beta.types.safety.SafetySetting.HarmBlockThreshold]] = None, client: Any = None, async_client: Any = None, default_metadata: Sequence[Tuple[str, str]] = None, convert_system_message_to_human: bool = False) -&gt; None
 
Drop-in replacement for langchain_google_genai.ChatGoogleGenerativeAI.
 
 
Method resolution order:
ChatGoogleGenerativeAI
langchain_google_genai.chat_models.ChatGoogleGenerativeAI
langchain_google_genai.llms._BaseGoogleGenerativeAI
langchain_core.language_models.chat_models.BaseChatModel
langchain_core.language_models.base.BaseLanguageModel
langchain_core.runnables.base.RunnableSerializable
langchain_core.load.serializable.Serializable
pydantic.v1.main.BaseModel
pydantic.v1.utils.Representation
langchain_core.runnables.base.Runnable
typing.Generic
abc.ABC
builtins.object

Methods defined here:
__init__(self, *args, model: str = '', proxy_model_name: str = '', model_id: str = '', deployment_id: str = '', model_name: str = '', config_id: str = '', config_name: str = '', proxy_client: Optional[gen_ai_hub.proxy.core.base.BaseProxyClient] = None, **kwargs)
Create a new model by parsing and validating input data from keyword arguments.
 
Raises ValidationError if the input data cannot be parsed to form a valid model.

Class methods defined here:
validate_environment(values: Dict) -> Dict from pydantic.v1.main.ModelMetaclass
Validates params and passes them to google-generativeai package.

Static methods defined here:
__json_encoder__ = pydantic_encoder(obj: Any) -> Any

Data and other attributes defined here:
__abstractmethods__ = frozenset()
__class_vars__ = set()
__config__ = <class 'pydantic.v1.config.Config'>
__custom_root_type__ = False
__exclude_fields__ = {'callback_manager': True, 'callbacks': True, 'custom_get_token_ids': True, 'metadata': True, 'rate_limiter': True, 'tags': True}
__fields__ = {'additional_headers': ModelField(name='additional_headers', type=Optio...Mapping[str, str]], required=False, default=None), 'async_client': ModelField(name='async_client', type=Optional[Any], required=False, default=None), 'cache': ModelField(name='cache', type=Union[BaseCache, bool, NoneType], required=False, default=None), 'callback_manager': ModelField(name='callback_manager', type=Optiona...seCallbackManager], required=False, default=None), 'callbacks': ModelField(name='callbacks', type=Union[List[lan...Manager, NoneType], required=False, default=None), 'client': ModelField(name='client', type=Optional[Any], required=False, default=None), 'client_options': ModelField(name='client_options', type=Optional[Mapping[Any, Any]], required=False, default=None), 'convert_system_message_to_human': ModelField(name='convert_system_message_to_human', type=bool, required=False, default=False), 'credentials': ModelField(name='credentials', type=Optional[Any], required=False, default=None), 'custom_get_token_ids': ModelField(name='custom_get_token_ids', type=Opt...[str], List[int]]], required=False, default=None), ...}
__hash__ = None
__include_fields__ = None
__parameters__ = ()
__post_root_validators__ = [(False, <function ChatGoogleGenerativeAI.validate_environment>)]
__pre_root_validators__ = [<function BaseChatModel.raise_deprecation>]
__private_attributes__ = {}
__schema_cache__ = {}
__signature__ = <Signature (*args, model: str = '', proxy_model_...t_system_message_to_human: bool = False) -> None>
__validators__ = {'verbose': [<pydantic.v1.class_validators.Validator object>]}

Methods inherited from langchain_google_genai.chat_models.ChatGoogleGenerativeAI:
bind_tools(self, tools: 'Sequence[Union[ToolDict, GoogleTool]]', tool_config: 'Optional[Union[Dict, _ToolConfigDict]]' = None, *, tool_choice: 'Optional[Union[_ToolChoiceType, bool]]' = None, **kwargs: 'Any') -> 'Runnable[LanguageModelInput, BaseMessage]'
Bind tool-like objects to this chat model.
 
Assumes model is compatible with google-generativeAI tool-calling API.
 
Args:
    tools: A list of tool definitions to bind to this chat model.
        Can be a pydantic model, callable, or BaseTool. Pydantic
        models, callables, and BaseTools will be automatically converted to
        their schema dictionary representation.
    **kwargs: Any additional parameters to pass to the
        :class:`~langchain.runnable.Runnable` constructor.
get_num_tokens(self, text: 'str') -> 'int'
Get the number of tokens present in the text.
 
Useful for checking if an input will fit in a model's context window.
 
Args:
    text: The string input to tokenize.
 
Returns:
    The integer number of tokens in the text.
with_structured_output(self, schema: 'Union[Dict, Type[BaseModel]]', *, include_raw: 'bool' = False, **kwargs: 'Any') -> 'Runnable[LanguageModelInput, Union[Dict, BaseModel]]'
Model wrapper that returns outputs formatted to match the given schema.
 
Args:
    schema:
        The output schema. Can be passed in as:
            - an OpenAI function/tool schema,
            - a JSON Schema,
            - a TypedDict class (support added in 0.2.26),
            - or a Pydantic class.
        If ``schema`` is a Pydantic class then the model output will be a
        Pydantic instance of that class, and the model-generated fields will be
        validated by the Pydantic class. Otherwise the model output will be a
        dict and will not be validated. See :meth:`langchain_core.utils.function_calling.convert_to_openai_tool`
        for more on how to properly specify types and descriptions of
        schema fields when specifying a Pydantic or TypedDict class.
 
        .. versionchanged:: 0.2.26
 
                Added support for TypedDict class.
 
    include_raw:
        If False then only the parsed structured output is returned. If
        an error occurs during model output parsing it will be raised. If True
        then both the raw model response (a BaseMessage) and the parsed model
        response will be returned. If an error occurs during output parsing it
        will be caught and returned as well. The final output is always a dict
        with keys "raw", "parsed", and "parsing_error".
 
Returns:
    A Runnable that takes same inputs as a :class:`langchain_core.language_models.chat.BaseChatModel`.
 
    If ``include_raw`` is False and ``schema`` is a Pydantic class, Runnable outputs
    an instance of ``schema`` (i.e., a Pydantic object).
 
    Otherwise, if ``include_raw`` is False then Runnable outputs a dict.
 
    If ``include_raw`` is True, then Runnable outputs a dict with keys:
        - ``"raw"``: BaseMessage
        - ``"parsed"``: None if there was a parsing error, otherwise the type depends on the ``schema`` as described above.
        - ``"parsing_error"``: Optional[BaseException]
 
Example: Pydantic schema (include_raw=False):
    .. code-block:: python
 
        from langchain_core.pydantic_v1 import BaseModel
 
        class AnswerWithJustification(BaseModel):
            '''An answer to the user question along with justification for the answer.'''
            answer: str
            justification: str
 
        llm = ChatModel(model="model-name", temperature=0)
        structured_llm = llm.with_structured_output(AnswerWithJustification)
 
        structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
 
        # -> AnswerWithJustification(
        #     answer='They weigh the same',
        #     justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
        # )
 
Example: Pydantic schema (include_raw=True):
    .. code-block:: python
 
        from langchain_core.pydantic_v1 import BaseModel
 
        class AnswerWithJustification(BaseModel):
            '''An answer to the user question along with justification for the answer.'''
            answer: str
            justification: str
 
        llm = ChatModel(model="model-name", temperature=0)
        structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)
 
        structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
        # -> {
        #     'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
        #     'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
        #     'parsing_error': None
        # }
 
Example: Dict schema (include_raw=False):
    .. code-block:: python
 
        from langchain_core.pydantic_v1 import BaseModel
        from langchain_core.utils.function_calling import convert_to_openai_tool
 
        class AnswerWithJustification(BaseModel):
            '''An answer to the user question along with justification for the answer.'''
            answer: str
            justification: str
 
        dict_schema = convert_to_openai_tool(AnswerWithJustification)
        llm = ChatModel(model="model-name", temperature=0)
        structured_llm = llm.with_structured_output(dict_schema)
 
        structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
        # -> {
        #     'answer': 'They weigh the same',
        #     'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
        # }

Class methods inherited from langchain_google_genai.chat_models.ChatGoogleGenerativeAI:
is_lc_serializable() -> 'bool' from pydantic.v1.main.ModelMetaclass
Is this class serializable?
 
By design, even if a class inherits from Serializable, it is not serializable by
default. This is to prevent accidental serialization of objects that should not
be serialized.
 
Returns:
    Whether the class is serializable. Default is False.

Readonly properties inherited from langchain_google_genai.chat_models.ChatGoogleGenerativeAI:
lc_secrets
A map of constructor argument names to secret ids.
 
For example,
    {"openai_api_key": "OPENAI_API_KEY"}

Data descriptors inherited from langchain_google_genai.chat_models.ChatGoogleGenerativeAI:
__weakref__
list of weak references to the object (if defined)

Data and other attributes inherited from langchain_google_genai.chat_models.ChatGoogleGenerativeAI:
Config = <class 'langchain_google_genai.chat_models.ChatGoogleGenerativeAI.Config'>
__annotations__ = {'async_client': 'Any', 'client': 'Any', 'convert_system_message_to_human': 'bool', 'default_metadata': 'Sequence[Tuple[str, str]]'}

Methods inherited from langchain_core.language_models.chat_models.BaseChatModel:
__call__(self, messages: 'List[BaseMessage]', stop: 'Optional[List[str]]' = None, callbacks: 'Callbacks' = None, **kwargs: 'Any') -> 'BaseMessage'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use invoke instead.
async agenerate(self, messages: 'List[List[BaseMessage]]', stop: 'Optional[List[str]]' = None, callbacks: 'Callbacks' = None, *, tags: 'Optional[List[str]]' = None, metadata: 'Optional[Dict[str, Any]]' = None, run_name: 'Optional[str]' = None, run_id: 'Optional[uuid.UUID]' = None, **kwargs: 'Any') -> 'LLMResult'
Asynchronously pass a sequence of prompts to a model and return generations.
 
This method should make use of batched calls for models that expose a batched
API.
 
Use this method when you want to:
    1. take advantage of batched calls,
    2. need more output from the model than just the top generated value,
    3. are building chains that are agnostic to the underlying language model
        type (e.g., pure text completion models vs chat models).
 
Args:
    messages: List of list of messages.
    stop: Stop words to use when generating. Model output is cut off at the
        first occurrence of any of these substrings.
    callbacks: Callbacks to pass through. Used for executing additional
        functionality, such as logging or streaming, throughout generation.
    **kwargs: Arbitrary additional keyword arguments. These are usually passed
        to the model provider API call.
 
Returns:
    An LLMResult, which contains a list of candidate Generations for each input
        prompt and additional model provider-specific output.
async agenerate_prompt(self, prompts: 'List[PromptValue]', stop: 'Optional[List[str]]' = None, callbacks: 'Callbacks' = None, **kwargs: 'Any') -> 'LLMResult'
Asynchronously pass a sequence of prompts and return model generations.
 
This method should make use of batched calls for models that expose a batched
API.
 
Use this method when you want to:
    1. take advantage of batched calls,
    2. need more output from the model than just the top generated value,
    3. are building chains that are agnostic to the underlying language model
        type (e.g., pure text completion models vs chat models).
 
Args:
    prompts: List of PromptValues. A PromptValue is an object that can be
        converted to match the format of any language model (string for pure
        text generation models and BaseMessages for chat models).
    stop: Stop words to use when generating. Model output is cut off at the
        first occurrence of any of these substrings.
    callbacks: Callbacks to pass through. Used for executing additional
        functionality, such as logging or streaming, throughout generation.
    **kwargs: Arbitrary additional keyword arguments. These are usually passed
        to the model provider API call.
 
Returns:
    An LLMResult, which contains a list of candidate Generations for each input
        prompt and additional model provider-specific output.
async ainvoke(self, input: 'LanguageModelInput', config: 'Optional[RunnableConfig]' = None, *, stop: 'Optional[List[str]]' = None, **kwargs: 'Any') -> 'BaseMessage'
Default implementation of ainvoke, calls invoke from a thread.
 
The default implementation allows usage of async code even if
the Runnable did not implement a native async version of invoke.
 
Subclasses should override this method if they can run asynchronously.
async apredict(self, text: 'str', *, stop: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'str'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use ainvoke instead.
async apredict_messages(self, messages: 'List[BaseMessage]', *, stop: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'BaseMessage'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use ainvoke instead.
async astream(self, input: 'LanguageModelInput', config: 'Optional[RunnableConfig]' = None, *, stop: 'Optional[List[str]]' = None, **kwargs: 'Any') -> 'AsyncIterator[BaseMessageChunk]'
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
 
Args:
    input: The input to the Runnable.
    config: The config to use for the Runnable. Defaults to None.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    The output of the Runnable.
call_as_llm(self, message: 'str', stop: 'Optional[List[str]]' = None, **kwargs: 'Any') -> 'str'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use invoke instead.
dict(self, **kwargs: 'Any') -> 'Dict'
Return a dictionary of the LLM.
generate(self, messages: 'List[List[BaseMessage]]', stop: 'Optional[List[str]]' = None, callbacks: 'Callbacks' = None, *, tags: 'Optional[List[str]]' = None, metadata: 'Optional[Dict[str, Any]]' = None, run_name: 'Optional[str]' = None, run_id: 'Optional[uuid.UUID]' = None, **kwargs: 'Any') -> 'LLMResult'
Pass a sequence of prompts to the model and return model generations.
 
This method should make use of batched calls for models that expose a batched
API.
 
Use this method when you want to:
    1. take advantage of batched calls,
    2. need more output from the model than just the top generated value,
    3. are building chains that are agnostic to the underlying language model
        type (e.g., pure text completion models vs chat models).
 
Args:
    messages: List of list of messages.
    stop: Stop words to use when generating. Model output is cut off at the
        first occurrence of any of these substrings.
    callbacks: Callbacks to pass through. Used for executing additional
        functionality, such as logging or streaming, throughout generation.
    **kwargs: Arbitrary additional keyword arguments. These are usually passed
        to the model provider API call.
 
Returns:
    An LLMResult, which contains a list of candidate Generations for each input
        prompt and additional model provider-specific output.
generate_prompt(self, prompts: 'List[PromptValue]', stop: 'Optional[List[str]]' = None, callbacks: 'Callbacks' = None, **kwargs: 'Any') -> 'LLMResult'
Pass a sequence of prompts to the model and return model generations.
 
This method should make use of batched calls for models that expose a batched
API.
 
Use this method when you want to:
    1. take advantage of batched calls,
    2. need more output from the model than just the top generated value,
    3. are building chains that are agnostic to the underlying language model
        type (e.g., pure text completion models vs chat models).
 
Args:
    prompts: List of PromptValues. A PromptValue is an object that can be
        converted to match the format of any language model (string for pure
        text generation models and BaseMessages for chat models).
    stop: Stop words to use when generating. Model output is cut off at the
        first occurrence of any of these substrings.
    callbacks: Callbacks to pass through. Used for executing additional
        functionality, such as logging or streaming, throughout generation.
    **kwargs: Arbitrary additional keyword arguments. These are usually passed
        to the model provider API call.
 
Returns:
    An LLMResult, which contains a list of candidate Generations for each input
        prompt and additional model provider-specific output.
invoke(self, input: 'LanguageModelInput', config: 'Optional[RunnableConfig]' = None, *, stop: 'Optional[List[str]]' = None, **kwargs: 'Any') -> 'BaseMessage'
Transform a single input into an output. Override to implement.
 
Args:
    input: The input to the Runnable.
    config: A config to use when invoking the Runnable.
       The config supports standard keys like 'tags', 'metadata' for tracing
       purposes, 'max_concurrency' for controlling how much work to do
       in parallel, and other keys. Please refer to the RunnableConfig
       for more details.
 
Returns:
    The output of the Runnable.
predict(self, text: 'str', *, stop: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'str'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use invoke instead.
predict_messages(self, messages: 'List[BaseMessage]', *, stop: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'BaseMessage'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use invoke instead.
stream(self, input: 'LanguageModelInput', config: 'Optional[RunnableConfig]' = None, *, stop: 'Optional[List[str]]' = None, **kwargs: 'Any') -> 'Iterator[BaseMessageChunk]'
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
 
Args:
    input: The input to the Runnable.
    config: The config to use for the Runnable. Defaults to None.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    The output of the Runnable.

Class methods inherited from langchain_core.language_models.chat_models.BaseChatModel:
raise_deprecation(values: 'Dict') -> 'Dict' from pydantic.v1.main.ModelMetaclass
Raise deprecation warning if callback_manager is used.
 
Args:
    values (Dict): Values to validate.
 
Returns:
    Dict: Validated values.
 
Raises:
    DeprecationWarning: If callback_manager is used.

Readonly properties inherited from langchain_core.language_models.chat_models.BaseChatModel:
OutputType
Get the output type for this runnable.

Data and other attributes inherited from langchain_core.language_models.chat_models.BaseChatModel:
__orig_bases__ = (langchain_core.language_models.base.BaseLanguageModel[langchain_core.messages.base.BaseMessage], <class 'abc.ABC'>)

Methods inherited from langchain_core.language_models.base.BaseLanguageModel:
get_num_tokens_from_messages(self, messages: 'List[BaseMessage]') -> 'int'
Get the number of tokens in the messages.
 
Useful for checking if an input fits in a model's context window.
 
Args:
    messages: The message inputs to tokenize.
 
Returns:
    The sum of the number of tokens across the messages.
get_token_ids(self, text: 'str') -> 'List[int]'
Return the ordered ids of the tokens in a text.
 
Args:
    text: The string input to tokenize.
 
Returns:
    A list of ids corresponding to the tokens in the text, in order they occur
        in the text.

Class methods inherited from langchain_core.language_models.base.BaseLanguageModel:
set_verbose(verbose: 'Optional[bool]') -> 'bool' from pydantic.v1.main.ModelMetaclass
If verbose is None, set it.
 
This allows users to pass in None as verbose to access the global setting.
 
Args:
    verbose: The verbosity setting to use.
 
Returns:
    The verbosity setting to use.

Readonly properties inherited from langchain_core.language_models.base.BaseLanguageModel:
InputType
Get the input type for this runnable.

Methods inherited from langchain_core.runnables.base.RunnableSerializable:
configurable_alternatives(self, which: 'ConfigurableField', *, default_key: 'str' = 'default', prefix_keys: 'bool' = False, **kwargs: 'Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]') -> 'RunnableSerializable[Input, Output]'
Configure alternatives for Runnables that can be set at runtime.
 
Args:
    which: The ConfigurableField instance that will be used to select the
        alternative.
    default_key: The default key to use if no alternative is selected.
        Defaults to "default".
    prefix_keys: Whether to prefix the keys with the ConfigurableField id.
        Defaults to False.
    **kwargs: A dictionary of keys to Runnable instances or callables that
        return Runnable instances.
 
Returns:
    A new Runnable with the alternatives configured.
 
.. code-block:: python
 
    from langchain_anthropic import ChatAnthropic
    from langchain_core.runnables.utils import ConfigurableField
    from langchain_openai import ChatOpenAI
 
    model = ChatAnthropic(
        model_name="claude-3-sonnet-20240229"
    ).configurable_alternatives(
        ConfigurableField(id="llm"),
        default_key="anthropic",
        openai=ChatOpenAI()
    )
 
    # uses the default model ChatAnthropic
    print(model.invoke("which organization created you?").content)
 
    # uses ChatOpenAI
    print(
        model.with_config(
            configurable={"llm": "openai"}
        ).invoke("which organization created you?").content
    )
configurable_fields(self, **kwargs: 'AnyConfigurableField') -> 'RunnableSerializable[Input, Output]'
Configure particular Runnable fields at runtime.
 
Args:
    **kwargs: A dictionary of ConfigurableField instances to configure.
 
Returns:
    A new Runnable with the fields configured.
 
.. code-block:: python
 
    from langchain_core.runnables import ConfigurableField
    from langchain_openai import ChatOpenAI
 
    model = ChatOpenAI(max_tokens=20).configurable_fields(
        max_tokens=ConfigurableField(
            id="output_token_number",
            name="Max tokens in the output",
            description="The maximum number of tokens in the output",
        )
    )
 
    # max_tokens = 20
    print(
        "max_tokens_20: ",
        model.invoke("tell me something about chess").content
    )
 
    # max_tokens = 200
    print("max_tokens_200: ", model.with_config(
        configurable={"output_token_number": 200}
        ).invoke("tell me something about chess").content
    )
to_json(self) -> 'Union[SerializedConstructor, SerializedNotImplemented]'
Serialize the Runnable to JSON.
 
Returns:
    A JSON-serializable representation of the Runnable.

Methods inherited from langchain_core.load.serializable.Serializable:
__repr_args__(self) -> Any
Returns the attributes to show in __str__, __repr__, and __pretty__ this is generally overridden.
 
Can either return:
* name - value pairs, e.g.: `[('foo_name', 'foo'), ('bar_name', ['b', 'a', 'r'])]`
* or, just values, e.g.: `[(None, 'foo'), (None, ['b', 'a', 'r'])]`
to_json_not_implemented(self) -> langchain_core.load.serializable.SerializedNotImplemented

Class methods inherited from langchain_core.load.serializable.Serializable:
get_lc_namespace() -> List[str] from pydantic.v1.main.ModelMetaclass
Get the namespace of the langchain object.
 
For example, if the class is `langchain.llms.openai.OpenAI`, then the
namespace is ["langchain", "llms", "openai"]
lc_id() -> List[str] from pydantic.v1.main.ModelMetaclass
A unique identifier for this class for serialization purposes.
 
The unique identifier is a list of strings that describes the path
to the object.
For example, for the class `langchain.llms.openai.OpenAI`, the id is
["langchain", "llms", "openai", "OpenAI"].

Readonly properties inherited from langchain_core.load.serializable.Serializable:
lc_attributes
List of attribute names that should be included in the serialized kwargs.
 
These attributes must be accepted by the constructor.
Default is an empty dictionary.

Methods inherited from pydantic.v1.main.BaseModel:
__eq__(self, other: Any) -> bool
Return self==value.
__getstate__(self) -> 'DictAny'
__iter__(self) -> 'TupleGenerator'
so `dict(model)` works
__setattr__(self, name, value)
Implement setattr(self, name, value).
__setstate__(self, state: 'DictAny') -> None
copy(self: 'Model', *, include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, update: Optional[ForwardRef('DictStrAny')] = None, deep: bool = False) -> 'Model'
Duplicate a model, optionally choose which fields to include, exclude and change.
 
:param include: fields to include in new model
:param exclude: fields to exclude from new model, as with values this takes precedence over include
:param update: values to change/add in the new model. Note: the data is not validated before creating
    the new model: you should trust this data
:param deep: set to `True` to make a deep copy of the model
:return: new model instance
json(self, *, include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) -> str
Generate a JSON representation of the model, `include` and `exclude` arguments as per `dict()`.
 
`encoder` is an optional function to supply as `default` to json.dumps(), other arguments as per `json.dumps()`.

Class methods inherited from pydantic.v1.main.BaseModel:
__get_validators__() -> 'CallableGenerator' from pydantic.v1.main.ModelMetaclass
__try_update_forward_refs__(**localns: Any) -> None from pydantic.v1.main.ModelMetaclass
Same as update_forward_refs but will not raise exception
when forward references are not defined.
construct(_fields_set: Optional[ForwardRef('SetStr')] = None, **values: Any) -> 'Model' from pydantic.v1.main.ModelMetaclass
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if `Config.extra = 'allow'` was set since it adds all passed values
from_orm(obj: Any) -> 'Model' from pydantic.v1.main.ModelMetaclass
parse_file(path: Union[str, pathlib.Path], *, content_type: str = None, encoding: str = 'utf8', proto: pydantic.v1.parse.Protocol = None, allow_pickle: bool = False) -> 'Model' from pydantic.v1.main.ModelMetaclass
parse_obj(obj: Any) -> 'Model' from pydantic.v1.main.ModelMetaclass
parse_raw(b: Union[str, bytes], *, content_type: str = None, encoding: str = 'utf8', proto: pydantic.v1.parse.Protocol = None, allow_pickle: bool = False) -> 'Model' from pydantic.v1.main.ModelMetaclass
schema(by_alias: bool = True, ref_template: str = '#/definitions/{model}') -> 'DictStrAny' from pydantic.v1.main.ModelMetaclass
schema_json(*, by_alias: bool = True, ref_template: str = '#/definitions/{model}', **dumps_kwargs: Any) -> str from pydantic.v1.main.ModelMetaclass
update_forward_refs(**localns: Any) -> None from pydantic.v1.main.ModelMetaclass
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate(value: Any) -> 'Model' from pydantic.v1.main.ModelMetaclass

Data descriptors inherited from pydantic.v1.main.BaseModel:
__dict__
dictionary for instance variables (if defined)
__fields_set__

Methods inherited from pydantic.v1.utils.Representation:
__pretty__(self, fmt: Callable[[Any], Any], **kwargs: Any) -> Generator[Any, NoneType, NoneType]
Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects
__repr__(self) -> str
Return repr(self).
__repr_name__(self) -> str
Name of the instance's class, used in __repr__.
__repr_str__(self, join_str: str) -> str
__rich_repr__(self) -> 'RichReprResult'
Get fields for Rich library
__str__(self) -> str
Return str(self).

Methods inherited from langchain_core.runnables.base.Runnable:
__or__(self, other: 'Union[Runnable[Any, Other], Callable[[Any], Other], Callable[[Iterator[Any]], Iterator[Other]], Mapping[str, Union[Runnable[Any, Other], Callable[[Any], Other], Any]]]') -> 'RunnableSerializable[Input, Other]'
Compose this Runnable with another object to create a RunnableSequence.
__ror__(self, other: 'Union[Runnable[Other, Any], Callable[[Other], Any], Callable[[Iterator[Other]], Iterator[Any]], Mapping[str, Union[Runnable[Other, Any], Callable[[Other], Any], Any]]]') -> 'RunnableSerializable[Other, Output]'
Compose this Runnable with another object to create a RunnableSequence.
async abatch(self, inputs: 'List[Input]', config: 'Optional[Union[RunnableConfig, List[RunnableConfig]]]' = None, *, return_exceptions: 'bool' = False, **kwargs: 'Optional[Any]') -> 'List[Output]'
Default implementation runs ainvoke in parallel using asyncio.gather.
 
The default implementation of batch works well for IO bound runnables.
 
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying Runnable uses an API which supports a batch mode.
 
Args:
    inputs: A list of inputs to the Runnable.
    config: A config to use when invoking the Runnable.
       The config supports standard keys like 'tags', 'metadata' for tracing
       purposes, 'max_concurrency' for controlling how much work to do
       in parallel, and other keys. Please refer to the RunnableConfig
       for more details. Defaults to None.
    return_exceptions: Whether to return exceptions instead of raising them.
        Defaults to False.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Returns:
    A list of outputs from the Runnable.
async abatch_as_completed(self, inputs: 'Sequence[Input]', config: 'Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]' = None, *, return_exceptions: 'bool' = False, **kwargs: 'Optional[Any]') -> 'AsyncIterator[Tuple[int, Union[Output, Exception]]]'
Run ainvoke in parallel on a list of inputs,
yielding results as they complete.
 
Args:
    inputs: A list of inputs to the Runnable.
    config: A config to use when invoking the Runnable.
       The config supports standard keys like 'tags', 'metadata' for tracing
       purposes, 'max_concurrency' for controlling how much work to do
       in parallel, and other keys. Please refer to the RunnableConfig
       for more details. Defaults to None. Defaults to None.
    return_exceptions: Whether to return exceptions instead of raising them.
        Defaults to False.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    A tuple of the index of the input and the output from the Runnable.
as_tool(self, args_schema: 'Optional[Type[BaseModel]]' = None, *, name: 'Optional[str]' = None, description: 'Optional[str]' = None, arg_types: 'Optional[Dict[str, Type]]' = None) -> 'BaseTool'
[*Beta*] Create a BaseTool from a Runnable.
 
``as_tool`` will instantiate a BaseTool with a name, description, and
``args_schema`` from a Runnable. Where possible, schemas are inferred
from ``runnable.get_input_schema``. Alternatively (e.g., if the
Runnable takes a dict as input and the specific dict keys are not typed),
the schema can be specified directly with ``args_schema``. You can also
pass ``arg_types`` to just specify the required arguments and their types.
 
Args:
    args_schema: The schema for the tool. Defaults to None.
    name: The name of the tool. Defaults to None.
    description: The description of the tool. Defaults to None.
    arg_types: A dictionary of argument names to types. Defaults to None.
 
Returns:
    A BaseTool instance.
 
Typed dict input:
 
.. code-block:: python
 
    from typing import List
    from typing_extensions import TypedDict
    from langchain_core.runnables import RunnableLambda
 
    class Args(TypedDict):
        a: int
        b: List[int]
 
    def f(x: Args) -> str:
        return str(x["a"] * max(x["b"]))
 
    runnable = RunnableLambda(f)
    as_tool = runnable.as_tool()
    as_tool.invoke({"a": 3, "b": [1, 2]})
 
``dict`` input, specifying schema via ``args_schema``:
 
.. code-block:: python
 
    from typing import Any, Dict, List
    from langchain_core.pydantic_v1 import BaseModel, Field
    from langchain_core.runnables import RunnableLambda
 
    def f(x: Dict[str, Any]) -> str:
        return str(x["a"] * max(x["b"]))
 
    class FSchema(BaseModel):
        """Apply a function to an integer and list of integers."""
 
        a: int = Field(..., description="Integer")
        b: List[int] = Field(..., description="List of ints")
 
    runnable = RunnableLambda(f)
    as_tool = runnable.as_tool(FSchema)
    as_tool.invoke({"a": 3, "b": [1, 2]})
 
``dict`` input, specifying schema via ``arg_types``:
 
.. code-block:: python
 
    from typing import Any, Dict, List
    from langchain_core.runnables import RunnableLambda
 
    def f(x: Dict[str, Any]) -> str:
        return str(x["a"] * max(x["b"]))
 
    runnable = RunnableLambda(f)
    as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]})
    as_tool.invoke({"a": 3, "b": [1, 2]})
 
String input:
 
.. code-block:: python
 
    from langchain_core.runnables import RunnableLambda
 
    def f(x: str) -> str:
        return x + "a"
 
    def g(x: str) -> str:
        return x + "z"
 
    runnable = RunnableLambda(f) | g
    as_tool = runnable.as_tool()
    as_tool.invoke("b")
 
.. versionadded:: 0.2.14
 
Notes
-----
.. beta::
   This API is in beta and may change in the future.
assign(self, **kwargs: 'Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]') -> 'RunnableSerializable[Any, Any]'
Assigns new fields to the dict output of this Runnable.
Returns a new Runnable.
 
.. code-block:: python
 
    from langchain_community.llms.fake import FakeStreamingListLLM
    from langchain_core.output_parsers import StrOutputParser
    from langchain_core.prompts import SystemMessagePromptTemplate
    from langchain_core.runnables import Runnable
    from operator import itemgetter
 
    prompt = (
        SystemMessagePromptTemplate.from_template("You are a nice assistant.")
        + "{question}"
    )
    llm = FakeStreamingListLLM(responses=["foo-lish"])
 
    chain: Runnable = prompt | llm | {"str": StrOutputParser()}
 
    chain_with_assign = chain.assign(hello=itemgetter("str") | llm)
 
    print(chain_with_assign.input_schema.schema())
    # {'title': 'PromptInput', 'type': 'object', 'properties':
    {'question': {'title': 'Question', 'type': 'string'}}}
    print(chain_with_assign.output_schema.schema()) #
    {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
    {'str': {'title': 'Str',
    'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
astream_events(self, input: 'Any', config: 'Optional[RunnableConfig]' = None, *, version: "Literal['v1', 'v2']", include_names: 'Optional[Sequence[str]]' = None, include_types: 'Optional[Sequence[str]]' = None, include_tags: 'Optional[Sequence[str]]' = None, exclude_names: 'Optional[Sequence[str]]' = None, exclude_types: 'Optional[Sequence[str]]' = None, exclude_tags: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'AsyncIterator[StreamEvent]'
[*Beta*] Generate a stream of events.
 
Use to create an iterator over StreamEvents that provide real-time information
about the progress of the Runnable, including StreamEvents from intermediate
results.
 
A StreamEvent is a dictionary with the following schema:
 
- ``event``: **str** - Event names are of the
    format: on_[runnable_type]_(start|stream|end).
- ``name``: **str** - The name of the Runnable that generated the event.
- ``run_id``: **str** - randomly generated ID associated with the given execution of
    the Runnable that emitted the event.
    A child Runnable that gets invoked as part of the execution of a
    parent Runnable is assigned its own unique ID.
- ``parent_ids``: **List[str]** - The IDs of the parent runnables that
    generated the event. The root Runnable will have an empty list.
    The order of the parent IDs is from the root to the immediate parent.
    Only available for v2 version of the API. The v1 version of the API
    will return an empty list.
- ``tags``: **Optional[List[str]]** - The tags of the Runnable that generated
    the event.
- ``metadata``: **Optional[Dict[str, Any]]** - The metadata of the Runnable
    that generated the event.
- ``data``: **Dict[str, Any]**
 
 
Below is a table that illustrates some evens that might be emitted by various
chains. Metadata fields have been omitted from the table for brevity.
Chain definitions have been included after the table.
 
**ATTENTION** This reference table is for the V2 version of the schema.
 
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| event                | name             | chunk                           | input                                         | output                                          |
+======================+==================+=================================+===============================================+=================================================+
| on_chat_model_start  | [model name]     |                                 | {"messages": [[SystemMessage, HumanMessage]]} |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chat_model_stream | [model name]     | AIMessageChunk(content="hello") |                                               |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chat_model_end    | [model name]     |                                 | {"messages": [[SystemMessage, HumanMessage]]} | AIMessageChunk(content="hello world")           |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_llm_start         | [model name]     |                                 | {'input': 'hello'}                            |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_llm_stream        | [model name]     | 'Hello'                         |                                               |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_llm_end           | [model name]     |                                 | 'Hello human!'                                |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chain_start       | format_docs      |                                 |                                               |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chain_stream      | format_docs      | "hello world!, goodbye world!"  |                                               |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chain_end         | format_docs      |                                 | [Document(...)]                               | "hello world!, goodbye world!"                  |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_tool_start        | some_tool        |                                 | {"x": 1, "y": "2"}                            |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_tool_end          | some_tool        |                                 |                                               | {"x": 1, "y": "2"}                              |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_retriever_start   | [retriever name] |                                 | {"query": "hello"}                            |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_retriever_end     | [retriever name] |                                 | {"query": "hello"}                            | [Document(...), ..]                             |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_prompt_start      | [template_name]  |                                 | {"question": "hello"}                         |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_prompt_end        | [template_name]  |                                 | {"question": "hello"}                         | ChatPromptValue(messages: [SystemMessage, ...]) |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
 
In addition to the standard events, users can also dispatch custom events (see example below).
 
Custom events will be only be surfaced with in the `v2` version of the API!
 
A custom event has following format:
 
+-----------+------+-----------------------------------------------------------------------------------------------------------+
| Attribute | Type | Description                                                                                               |
+===========+======+===========================================================================================================+
| name      | str  | A user defined name for the event.                                                                        |
+-----------+------+-----------------------------------------------------------------------------------------------------------+
| data      | Any  | The data associated with the event. This can be anything, though we suggest making it JSON serializable.  |
+-----------+------+-----------------------------------------------------------------------------------------------------------+
 
Here are declarations associated with the standard events shown above:
 
`format_docs`:
 
.. code-block:: python
 
    def format_docs(docs: List[Document]) -> str:
        '''Format the docs.'''
        return ", ".join([doc.page_content for doc in docs])
 
    format_docs = RunnableLambda(format_docs)
 
`some_tool`:
 
.. code-block:: python
 
    @tool
    def some_tool(x: int, y: str) -> dict:
        '''Some_tool.'''
        return {"x": x, "y": y}
 
`prompt`:
 
.. code-block:: python
 
    template = ChatPromptTemplate.from_messages(
        [("system", "You are Cat Agent 007"), ("human", "{question}")]
    ).with_config({"run_name": "my_template", "tags": ["my_template"]})
 
 
Example:
 
.. code-block:: python
 
    from langchain_core.runnables import RunnableLambda
 
    async def reverse(s: str) -> str:
        return s[::-1]
 
    chain = RunnableLambda(func=reverse)
 
    events = [
        event async for event in chain.astream_events("hello", version="v2")
    ]
 
    # will produce the following events (run_id, and parent_ids
    # has been omitted for brevity):
    [
        {
            "data": {"input": "hello"},
            "event": "on_chain_start",
            "metadata": {},
            "name": "reverse",
            "tags": [],
        },
        {
            "data": {"chunk": "olleh"},
            "event": "on_chain_stream",
            "metadata": {},
            "name": "reverse",
            "tags": [],
        },
        {
            "data": {"output": "olleh"},
            "event": "on_chain_end",
            "metadata": {},
            "name": "reverse",
            "tags": [],
        },
    ]
 
 
Example: Dispatch Custom Event
 
.. code-block:: python
 
    from langchain_core.callbacks.manager import (
        adispatch_custom_event,
    )
    from langchain_core.runnables import RunnableLambda, RunnableConfig
    import asyncio
 
 
    async def slow_thing(some_input: str, config: RunnableConfig) -> str:
        """Do something that takes a long time."""
        await asyncio.sleep(1) # Placeholder for some slow operation
        await adispatch_custom_event(
            "progress_event",
            {"message": "Finished step 1 of 3"},
            config=config # Must be included for python < 3.10
        )
        await asyncio.sleep(1) # Placeholder for some slow operation
        await adispatch_custom_event(
            "progress_event",
            {"message": "Finished step 2 of 3"},
            config=config # Must be included for python < 3.10
        )
        await asyncio.sleep(1) # Placeholder for some slow operation
        return "Done"
 
    slow_thing = RunnableLambda(slow_thing)
 
    async for event in slow_thing.astream_events("some_input", version="v2"):
        print(event)
 
Args:
    input: The input to the Runnable.
    config: The config to use for the Runnable.
    version: The version of the schema to use either `v2` or `v1`.
             Users should use `v2`.
             `v1` is for backwards compatibility and will be deprecated
             in 0.4.0.
             No default will be assigned until the API is stabilized.
             custom events will only be surfaced in `v2`.
    include_names: Only include events from runnables with matching names.
    include_types: Only include events from runnables with matching types.
    include_tags: Only include events from runnables with matching tags.
    exclude_names: Exclude events from runnables with matching names.
    exclude_types: Exclude events from runnables with matching types.
    exclude_tags: Exclude events from runnables with matching tags.
    kwargs: Additional keyword arguments to pass to the Runnable.
        These will be passed to astream_log as this implementation
        of astream_events is built on top of astream_log.
 
Yields:
    An async stream of StreamEvents.
 
Raises:
    NotImplementedError: If the version is not `v1` or `v2`.
 
Notes
-----
.. beta::
   This API is in beta and may change in the future.
async astream_log(self, input: 'Any', config: 'Optional[RunnableConfig]' = None, *, diff: 'bool' = True, with_streamed_output_list: 'bool' = True, include_names: 'Optional[Sequence[str]]' = None, include_types: 'Optional[Sequence[str]]' = None, include_tags: 'Optional[Sequence[str]]' = None, exclude_names: 'Optional[Sequence[str]]' = None, exclude_types: 'Optional[Sequence[str]]' = None, exclude_tags: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]'
Stream all output from a Runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
 
Output is streamed as Log objects, which include a list of
Jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
 
The Jsonpatch ops can be applied in order to construct state.
 
Args:
    input: The input to the Runnable.
    config: The config to use for the Runnable.
    diff: Whether to yield diffs between each step or the current state.
    with_streamed_output_list: Whether to yield the streamed_output list.
    include_names: Only include logs with these names.
    include_types: Only include logs with these types.
    include_tags: Only include logs with these tags.
    exclude_names: Exclude logs with these names.
    exclude_types: Exclude logs with these types.
    exclude_tags: Exclude logs with these tags.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    A RunLogPatch or RunLog object.
async atransform(self, input: 'AsyncIterator[Input]', config: 'Optional[RunnableConfig]' = None, **kwargs: 'Optional[Any]') -> 'AsyncIterator[Output]'
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
 
Args:
    input: An async iterator of inputs to the Runnable.
    config: The config to use for the Runnable. Defaults to None.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    The output of the Runnable.
batch(self, inputs: 'List[Input]', config: 'Optional[Union[RunnableConfig, List[RunnableConfig]]]' = None, *, return_exceptions: 'bool' = False, **kwargs: 'Optional[Any]') -> 'List[Output]'
Default implementation runs invoke in parallel using a thread pool executor.
 
The default implementation of batch works well for IO bound runnables.
 
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying Runnable uses an API which supports a batch mode.
batch_as_completed(self, inputs: 'Sequence[Input]', config: 'Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]' = None, *, return_exceptions: 'bool' = False, **kwargs: 'Optional[Any]') -> 'Iterator[Tuple[int, Union[Output, Exception]]]'
Run invoke in parallel on a list of inputs,
yielding results as they complete.
bind(self, **kwargs: 'Any') -> 'Runnable[Input, Output]'
Bind arguments to a Runnable, returning a new Runnable.
 
Useful when a Runnable in a chain requires an argument that is not
in the output of the previous Runnable or included in the user input.
 
Args:
    kwargs: The arguments to bind to the Runnable.
 
Returns:
    A new Runnable with the arguments bound.
 
Example:
 
.. code-block:: python
 
    from langchain_community.chat_models import ChatOllama
    from langchain_core.output_parsers import StrOutputParser
 
    llm = ChatOllama(model='llama2')
 
    # Without bind.
    chain = (
        llm
        | StrOutputParser()
    )
 
    chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
    # Output is 'One two three four five.'
 
    # With bind.
    chain = (
        llm.bind(stop=["three"])
        | StrOutputParser()
    )
 
    chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
    # Output is 'One two'
config_schema(self, *, include: 'Optional[Sequence[str]]' = None) -> 'Type[BaseModel]'
The type of config this Runnable accepts specified as a pydantic model.
 
To mark a field as configurable, see the `configurable_fields`
and `configurable_alternatives` methods.
 
Args:
    include: A list of fields to include in the config schema.
 
Returns:
    A pydantic model that can be used to validate config.
get_graph(self, config: 'Optional[RunnableConfig]' = None) -> 'Graph'
Return a graph representation of this Runnable.
get_input_schema(self, config: 'Optional[RunnableConfig]' = None) -> 'Type[BaseModel]'
Get a pydantic model that can be used to validate input to the Runnable.
 
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the Runnable is invoked with.
 
This method allows to get an input schema for a specific configuration.
 
Args:
    config: A config to use when generating the schema.
 
Returns:
    A pydantic model that can be used to validate input.
get_name(self, suffix: 'Optional[str]' = None, *, name: 'Optional[str]' = None) -> 'str'
Get the name of the Runnable.
get_output_schema(self, config: 'Optional[RunnableConfig]' = None) -> 'Type[BaseModel]'
Get a pydantic model that can be used to validate output to the Runnable.
 
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the Runnable is invoked with.
 
This method allows to get an output schema for a specific configuration.
 
Args:
    config: A config to use when generating the schema.
 
Returns:
    A pydantic model that can be used to validate output.
get_prompts(self, config: 'Optional[RunnableConfig]' = None) -> 'List[BasePromptTemplate]'
Return a list of prompts used by this Runnable.
map(self) -> 'Runnable[List[Input], List[Output]]'
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
 
Returns:
    A new Runnable that maps a list of inputs to a list of outputs.
 
Example:
 
    .. code-block:: python
 
            from langchain_core.runnables import RunnableLambda
 
            def _lambda(x: int) -> int:
                return x + 1
 
            runnable = RunnableLambda(_lambda)
            print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4]
pick(self, keys: 'Union[str, List[str]]') -> 'RunnableSerializable[Any, Any]'
Pick keys from the dict output of this Runnable.
 
Pick single key:
    .. code-block:: python
 
        import json
 
        from langchain_core.runnables import RunnableLambda, RunnableMap
 
        as_str = RunnableLambda(str)
        as_json = RunnableLambda(json.loads)
        chain = RunnableMap(str=as_str, json=as_json)
 
        chain.invoke("[1, 2, 3]")
        # -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
 
        json_only_chain = chain.pick("json")
        json_only_chain.invoke("[1, 2, 3]")
        # -> [1, 2, 3]
 
Pick list of keys:
    .. code-block:: python
 
        from typing import Any
 
        import json
 
        from langchain_core.runnables import RunnableLambda, RunnableMap
 
        as_str = RunnableLambda(str)
        as_json = RunnableLambda(json.loads)
        def as_bytes(x: Any) -> bytes:
            return bytes(x, "utf-8")
 
        chain = RunnableMap(
            str=as_str,
            json=as_json,
            bytes=RunnableLambda(as_bytes)
        )
 
        chain.invoke("[1, 2, 3]")
        # -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
 
        json_and_bytes_chain = chain.pick(["json", "bytes"])
        json_and_bytes_chain.invoke("[1, 2, 3]")
        # -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
pipe(self, *others: 'Union[Runnable[Any, Other], Callable[[Any], Other]]', name: 'Optional[str]' = None) -> 'RunnableSerializable[Input, Other]'
Compose this Runnable with Runnable-like objects to make a RunnableSequence.
 
Equivalent to `RunnableSequence(self, *others)` or `self | others[0] | ...`
 
Example:
    .. code-block:: python
 
        from langchain_core.runnables import RunnableLambda
 
        def add_one(x: int) -> int:
            return x + 1
 
        def mul_two(x: int) -> int:
            return x * 2
 
        runnable_1 = RunnableLambda(add_one)
        runnable_2 = RunnableLambda(mul_two)
        sequence = runnable_1.pipe(runnable_2)
        # Or equivalently:
        # sequence = runnable_1 | runnable_2
        # sequence = RunnableSequence(first=runnable_1, last=runnable_2)
        sequence.invoke(1)
        await sequence.ainvoke(1)
        # -> 4
 
        sequence.batch([1, 2, 3])
        await sequence.abatch([1, 2, 3])
        # -> [4, 6, 8]
transform(self, input: 'Iterator[Input]', config: 'Optional[RunnableConfig]' = None, **kwargs: 'Optional[Any]') -> 'Iterator[Output]'
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
 
Args:
    input: An iterator of inputs to the Runnable.
    config: The config to use for the Runnable. Defaults to None.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    The output of the Runnable.
with_alisteners(self, *, on_start: 'Optional[AsyncListener]' = None, on_end: 'Optional[AsyncListener]' = None, on_error: 'Optional[AsyncListener]' = None) -> 'Runnable[Input, Output]'
Bind asynchronous lifecycle listeners to a Runnable, returning a new Runnable.
 
on_start: Asynchronously called before the Runnable starts running.
on_end: Asynchronously called after the Runnable finishes running.
on_error: Asynchronously called if the Runnable throws an error.
 
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
 
Args:
    on_start: Asynchronously called before the Runnable starts running.
        Defaults to None.
    on_end: Asynchronously called after the Runnable finishes running.
        Defaults to None.
    on_error: Asynchronously called if the Runnable throws an error.
        Defaults to None.
 
Returns:
    A new Runnable with the listeners bound.
 
Example:
 
.. code-block:: python
 
    from langchain_core.runnables import RunnableLambda
    import time
 
    async def test_runnable(time_to_sleep : int):
        print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
        await asyncio.sleep(time_to_sleep)
        print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")
 
    async def fn_start(run_obj : Runnable):
        print(f"on start callback starts at {format_t(time.time())}
        await asyncio.sleep(3)
        print(f"on start callback ends at {format_t(time.time())}")
 
    async def fn_end(run_obj : Runnable):
        print(f"on end callback starts at {format_t(time.time())}
        await asyncio.sleep(2)
        print(f"on end callback ends at {format_t(time.time())}")
 
    runnable = RunnableLambda(test_runnable).with_alisteners(
        on_start=fn_start,
        on_end=fn_end
    )
    async def concurrent_runs():
        await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))
 
    asyncio.run(concurrent_runs())
    Result:
    on start callback starts at 2024-05-16T14:20:29.637053+00:00
    on start callback starts at 2024-05-16T14:20:29.637150+00:00
    on start callback ends at 2024-05-16T14:20:32.638305+00:00
    on start callback ends at 2024-05-16T14:20:32.638383+00:00
    Runnable[3s]: starts at 2024-05-16T14:20:32.638849+00:00
    Runnable[5s]: starts at 2024-05-16T14:20:32.638999+00:00
    Runnable[3s]: ends at 2024-05-16T14:20:35.640016+00:00
    on end callback starts at 2024-05-16T14:20:35.640534+00:00
    Runnable[5s]: ends at 2024-05-16T14:20:37.640169+00:00
    on end callback starts at 2024-05-16T14:20:37.640574+00:00
    on end callback ends at 2024-05-16T14:20:37.640654+00:00
    on end callback ends at 2024-05-16T14:20:39.641751+00:00
with_config(self, config: 'Optional[RunnableConfig]' = None, **kwargs: 'Any') -> 'Runnable[Input, Output]'
Bind config to a Runnable, returning a new Runnable.
 
Args:
    config: The config to bind to the Runnable.
    kwargs: Additional keyword arguments to pass to the Runnable.
 
Returns:
    A new Runnable with the config bound.
with_fallbacks(self, fallbacks: 'Sequence[Runnable[Input, Output]]', *, exceptions_to_handle: 'Tuple[Type[BaseException], ...]' = (<class 'Exception'>,), exception_key: 'Optional[str]' = None) -> 'RunnableWithFallbacksT[Input, Output]'
Add fallbacks to a Runnable, returning a new Runnable.
 
The new Runnable will try the original Runnable, and then each fallback
in order, upon failures.
 
Args:
    fallbacks: A sequence of runnables to try if the original Runnable fails.
    exceptions_to_handle: A tuple of exception types to handle.
        Defaults to (Exception,).
    exception_key: If string is specified then handled exceptions will be passed
        to fallbacks as part of the input under the specified key. If None,
        exceptions will not be passed to fallbacks. If used, the base Runnable
        and its fallbacks must accept a dictionary as input. Defaults to None.
 
Returns:
    A new Runnable that will try the original Runnable, and then each
    fallback in order, upon failures.
 
Example:
 
    .. code-block:: python
 
        from typing import Iterator
 
        from langchain_core.runnables import RunnableGenerator
 
 
        def _generate_immediate_error(input: Iterator) -> Iterator[str]:
            raise ValueError()
            yield ""
 
 
        def _generate(input: Iterator) -> Iterator[str]:
            yield from "foo bar"
 
 
        runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
            [RunnableGenerator(_generate)]
            )
        print(''.join(runnable.stream({}))) #foo bar
 
Args:
    fallbacks: A sequence of runnables to try if the original Runnable fails.
    exceptions_to_handle: A tuple of exception types to handle.
    exception_key: If string is specified then handled exceptions will be passed
        to fallbacks as part of the input under the specified key. If None,
        exceptions will not be passed to fallbacks. If used, the base Runnable
        and its fallbacks must accept a dictionary as input.
 
Returns:
    A new Runnable that will try the original Runnable, and then each
    fallback in order, upon failures.
with_listeners(self, *, on_start: 'Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]' = None, on_end: 'Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]' = None, on_error: 'Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]' = None) -> 'Runnable[Input, Output]'
Bind lifecycle listeners to a Runnable, returning a new Runnable.
 
on_start: Called before the Runnable starts running, with the Run object.
on_end: Called after the Runnable finishes running, with the Run object.
on_error: Called if the Runnable throws an error, with the Run object.
 
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
 
Args:
    on_start: Called before the Runnable starts running. Defaults to None.
    on_end: Called after the Runnable finishes running. Defaults to None.
    on_error: Called if the Runnable throws an error. Defaults to None.
 
Returns:
    A new Runnable with the listeners bound.
 
Example:
 
.. code-block:: python
 
    from langchain_core.runnables import RunnableLambda
    from langchain_core.tracers.schemas import Run
 
    import time
 
    def test_runnable(time_to_sleep : int):
        time.sleep(time_to_sleep)
 
    def fn_start(run_obj: Run):
        print("start_time:", run_obj.start_time)
 
    def fn_end(run_obj: Run):
        print("end_time:", run_obj.end_time)
 
    chain = RunnableLambda(test_runnable).with_listeners(
        on_start=fn_start,
        on_end=fn_end
    )
    chain.invoke(2)
with_retry(self, *, retry_if_exception_type: 'Tuple[Type[BaseException], ...]' = (<class 'Exception'>,), wait_exponential_jitter: 'bool' = True, stop_after_attempt: 'int' = 3) -> 'Runnable[Input, Output]'
Create a new Runnable that retries the original Runnable on exceptions.
 
Args:
    retry_if_exception_type: A tuple of exception types to retry on.
        Defaults to (Exception,).
    wait_exponential_jitter: Whether to add jitter to the wait
        time between retries. Defaults to True.
    stop_after_attempt: The maximum number of attempts to make before
        giving up. Defaults to 3.
 
Returns:
    A new Runnable that retries the original Runnable on exceptions.
 
Example:
 
.. code-block:: python
 
    from langchain_core.runnables import RunnableLambda
 
    count = 0
 
 
    def _lambda(x: int) -> None:
        global count
        count = count + 1
        if x == 1:
            raise ValueError("x is 1")
        else:
             pass
 
 
    runnable = RunnableLambda(_lambda)
    try:
        runnable.with_retry(
            stop_after_attempt=2,
            retry_if_exception_type=(ValueError,),
        ).invoke(1)
    except ValueError:
        pass
 
    assert (count == 2)
 
 
Args:
    retry_if_exception_type: A tuple of exception types to retry on
    wait_exponential_jitter: Whether to add jitter to the wait time
                             between retries
    stop_after_attempt: The maximum number of attempts to make before giving up
 
Returns:
    A new Runnable that retries the original Runnable on exceptions.
with_types(self, *, input_type: 'Optional[Type[Input]]' = None, output_type: 'Optional[Type[Output]]' = None) -> 'Runnable[Input, Output]'
Bind input and output types to a Runnable, returning a new Runnable.
 
Args:
    input_type: The input type to bind to the Runnable. Defaults to None.
    output_type: The output type to bind to the Runnable. Defaults to None.
 
Returns:
    A new Runnable with the types bound.

Readonly properties inherited from langchain_core.runnables.base.Runnable:
config_specs
List configurable fields for this Runnable.
input_schema
The type of input this Runnable accepts specified as a pydantic model.
output_schema
The type of output this Runnable produces specified as a pydantic model.

Data and other attributes inherited from langchain_core.runnables.base.Runnable:
name = None

Class methods inherited from typing.Generic:
__class_getitem__(params) from pydantic.v1.main.ModelMetaclass
__init_subclass__(*args, **kwargs) from pydantic.v1.main.ModelMetaclass
This method is called when a class is subclassed.
 
The default implementation does nothing. It may be
overridden to extend subclasses.

 
class ChatOpenAI(ProxyOpenAI, langchain_openai.chat_models.base.ChatOpenAI)
    ChatOpenAI(*args, name: Optional[str] = None, cache: ForwardRef('Union[BaseCache, bool, None]') = None, verbose: bool = None, callbacks: ForwardRef('Callbacks') = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, custom_get_token_ids: Optional[Callable[[str], List[int]]] = None, callback_manager: Optional[langchain_core.callbacks.base.BaseCallbackManager] = None, rate_limiter: Optional[langchain_core.rate_limiters.BaseRateLimiter] = None, client: Any = None, async_client: Any = None, model_name: Optional[str] = None, temperature: float = 0.7, model_kwargs: Dict[str, Any] = None, api_key: Optional[pydantic.v1.types.SecretStr] = None, base_url: Optional[str] = None, organization: Optional[str] = None, openai_proxy: Optional[str] = None, timeout: Union[float, Tuple[float, float], Any, NoneType] = None, max_retries: int = 2, presence_penalty: Optional[float] = None, frequency_penalty: Optional[float] = None, seed: Optional[int] = None, logprobs: Optional[bool] = False, top_logprobs: Optional[int] = None, logit_bias: Optional[Dict[int, int]] = None, streaming: bool = False, n: int = 1, top_p: Optional[float] = None, max_tokens: Optional[int] = None, tiktoken_model_name: Optional[str] = None, default_headers: Optional[Mapping[str, str]] = None, default_query: Optional[Mapping[str, object]] = None, http_client: Optional[Any] = None, http_async_client: Optional[Any] = None, stop_sequences: Union[List[str], str, NoneType] = None, extra_body: Optional[Mapping[str, Any]] = None, include_response_headers: bool = False, stream_usage: bool = False, proxy_client: Optional[Any] = None, deployment_id: Optional[str] = None, config_name: Optional[str] = None, config_id: Optional[str] = None, proxy_model_name: Optional[str] = None, api_version: Optional[str] = None) -&gt; None
 

 
 
Method resolution order:
ChatOpenAI
ProxyOpenAI
gen_ai_hub.proxy.langchain.base.BaseAuth
langchain_openai.chat_models.base.ChatOpenAI
langchain_openai.chat_models.base.BaseChatOpenAI
langchain_core.language_models.chat_models.BaseChatModel
langchain_core.language_models.base.BaseLanguageModel
langchain_core.runnables.base.RunnableSerializable
langchain_core.load.serializable.Serializable
pydantic.v1.main.BaseModel
pydantic.v1.utils.Representation
langchain_core.runnables.base.Runnable
typing.Generic
abc.ABC
builtins.object

Methods defined here:
__init__(self, *args, **kwargs)
Create a new model by parsing and validating input data from keyword arguments.
 
Raises ValidationError if the input data cannot be parsed to form a valid model.

Class methods defined here:
validate_environment(values: Dict) -> Dict from pydantic.v1.main.ModelMetaclass
Validate that api key and python package exists in environment.

Static methods defined here:
__json_encoder__ = pydantic_encoder(obj: Any) -> Any
__new__(cls, **data: Any)
Initialize the OpenAI object.
:param data: Additional data to initialize the object
:type data: Any
:return: The initialized OpenAI object
:rtype: OpenAIBase

Data descriptors defined here:
__weakref__
list of weak references to the object (if defined)

Data and other attributes defined here:
__abstractmethods__ = frozenset()
__annotations__ = {'model_name': typing.Optional[str], 'openai_api_version': typing.Optional[str]}
__class_vars__ = set()
__config__ = <class 'pydantic.v1.config.Config'>
__custom_root_type__ = False
__exclude_fields__ = {'async_client': True, 'callback_manager': True, 'callbacks': True, 'client': True, 'custom_get_token_ids': True, 'metadata': True, 'rate_limiter': True, 'tags': True}
__fields__ = {'async_client': ModelField(name='async_client', type=Optional[Any], required=False, default=None), 'cache': ModelField(name='cache', type=Union[BaseCache, bool, NoneType], required=False, default=None), 'callback_manager': ModelField(name='callback_manager', type=Optiona...seCallbackManager], required=False, default=None), 'callbacks': ModelField(name='callbacks', type=Union[List[lan...Manager, NoneType], required=False, default=None), 'client': ModelField(name='client', type=Optional[Any], required=False, default=None), 'config_id': ModelField(name='config_id', type=Optional[str], required=False, default=None), 'config_name': ModelField(name='config_name', type=Optional[str], required=False, default=None), 'custom_get_token_ids': ModelField(name='custom_get_token_ids', type=Opt...[str], List[int]]], required=False, default=None), 'default_headers': ModelField(name='default_headers', type=Optional[Mapping[str, str]], required=False, default=None), 'default_query': ModelField(name='default_query', type=Optional[Mapping[str, object]], required=False, default=None), ...}
__hash__ = None
__include_fields__ = None
__parameters__ = ()
__post_root_validators__ = [(False, <function ChatOpenAI.validate_environment>)]
__pre_root_validators__ = [<function BaseChatModel.raise_deprecation>, <function BaseChatOpenAI.build_extra>]
__private_attributes__ = {}
__schema_cache__ = {}
__signature__ = <Signature (*args, name: Optional[str] = None, c...None, api_version: Optional[str] = None) -> None>
__validators__ = {'verbose': [<pydantic.v1.class_validators.Validator object>]}

Class methods inherited from ProxyOpenAI:
validate_clients(values: Dict) -> Dict from pydantic.v1.main.ModelMetaclass

Class methods inherited from langchain_openai.chat_models.base.ChatOpenAI:
get_lc_namespace() -> 'List[str]' from pydantic.v1.main.ModelMetaclass
Get the namespace of the langchain object.
is_lc_serializable() -> 'bool' from pydantic.v1.main.ModelMetaclass
Return whether this model can be serialized by Langchain.

Readonly properties inherited from langchain_openai.chat_models.base.ChatOpenAI:
lc_attributes
List of attribute names that should be included in the serialized kwargs.
 
These attributes must be accepted by the constructor.
Default is an empty dictionary.
lc_secrets
A map of constructor argument names to secret ids.
 
For example,
    {"openai_api_key": "OPENAI_API_KEY"}

Methods inherited from langchain_openai.chat_models.base.BaseChatOpenAI:
bind_functions(self, functions: 'Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]]', function_call: "Optional[Union[_FunctionCall, str, Literal['auto', 'none']]]" = None, **kwargs: 'Any') -> 'Runnable[LanguageModelInput, BaseMessage]'
Bind functions (and other objects) to this chat model.
 
Assumes model is compatible with OpenAI function-calling API.
 
NOTE: Using bind_tools is recommended instead, as the `functions` and
    `function_call` request parameters are officially marked as deprecated by
    OpenAI.
 
Args:
    functions: A list of function definitions to bind to this chat model.
        Can be  a dictionary, pydantic model, or callable. Pydantic
        models and callables will be automatically converted to
        their schema dictionary representation.
    function_call: Which function to require the model to call.
        Must be the name of the single provided function or
        "auto" to automatically determine which function to call
        (if any).
    **kwargs: Any additional parameters to pass to the
        :class:`~langchain.runnable.Runnable` constructor.
bind_tools(self, tools: 'Sequence[Union[Dict[str, Any], Type, Callable, BaseTool]]', *, tool_choice: "Optional[Union[dict, str, Literal['auto', 'none', 'required', 'any'], bool]]" = None, **kwargs: 'Any') -> 'Runnable[LanguageModelInput, BaseMessage]'
Bind tool-like objects to this chat model.
 
Assumes model is compatible with OpenAI tool-calling API.
 
Args:
    tools: A list of tool definitions to bind to this chat model.
        Supports any tool definition handled by
        :meth:`langchain_core.utils.function_calling.convert_to_openai_tool`.
    tool_choice: Which tool to require the model to call.
        Options are:
            - str of the form ``"<<tool_name>>"``: calls <<tool_name>> tool.
            - ``"auto"``: automatically selects a tool (including no tool).
            - ``"none"``: does not call a tool.
            - ``"any"`` or ``"required"`` or ``True``: force at least one tool to be called.
            - dict of the form ``{"type": "function", "function": {"name": <<tool_name>>}}``: calls <<tool_name>> tool.
            - ``False`` or ``None``: no effect, default OpenAI behavior.
    kwargs: Any additional parameters are passed directly to
        ``self.bind(**kwargs)``.
get_num_tokens_from_messages(self, messages: 'List[BaseMessage]') -> 'int'
Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
 
**Requirements**: You must have the ``pillow`` installed if you want to count
image tokens if you are specifying the image as a base64 string, and you must
have both ``pillow`` and ``httpx`` installed if you are specifying the image
as a URL. If these aren't installed image inputs will be ignored in token
counting.
 
OpenAI reference: https://github.com/openai/openai-cookbook/blob/
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb
get_token_ids(self, text: 'str') -> 'List[int]'
Get the tokens present in the text with tiktoken package.
with_structured_output(self, schema: 'Optional[_DictOrPydanticClass]' = None, *, method: "Literal['function_calling', 'json_mode']" = 'function_calling', include_raw: 'bool' = False, **kwargs: 'Any') -> 'Runnable[LanguageModelInput, _DictOrPydantic]'
Model wrapper that returns outputs formatted to match the given schema.
 
        Args:
            schema:
                The output schema. Can be passed in as:
                    - an OpenAI function/tool schema,
                    - a JSON Schema,
                    - a TypedDict class (support added in 0.1.20),
                    - or a Pydantic class.
                If ``schema`` is a Pydantic class then the model output will be a
                Pydantic instance of that class, and the model-generated fields will be
                validated by the Pydantic class. Otherwise the model output will be a
                dict and will not be validated. See :meth:`langchain_core.utils.function_calling.convert_to_openai_tool`
                for more on how to properly specify types and descriptions of
                schema fields when specifying a Pydantic or TypedDict class.
 
                .. versionchanged:: 0.1.20
 
                        Added support for TypedDict class.
 
            method:
                The method for steering model generation, either "function_calling"
                or "json_mode". If "function_calling" then the schema will be converted
                to an OpenAI function and the returned model will make use of the
                function-calling API. If "json_mode" then OpenAI's JSON mode will be
                used. Note that if using "json_mode" then you must include instructions
                for formatting the output into the desired schema into the model call.
            include_raw:
                If False then only the parsed structured output is returned. If
                an error occurs during model output parsing it will be raised. If True
                then both the raw model response (a BaseMessage) and the parsed model
                response will be returned. If an error occurs during output parsing it
                will be caught and returned as well. The final output is always a dict
                with keys "raw", "parsed", and "parsing_error".
 
        Returns:
            A Runnable that takes same inputs as a :class:`langchain_core.language_models.chat.BaseChatModel`.
 
            If ``include_raw`` is False and ``schema`` is a Pydantic class, Runnable outputs
            an instance of ``schema`` (i.e., a Pydantic object).
 
            Otherwise, if ``include_raw`` is False then Runnable outputs a dict.
 
            If ``include_raw`` is True, then Runnable outputs a dict with keys:
                - ``"raw"``: BaseMessage
                - ``"parsed"``: None if there was a parsing error, otherwise the type depends on the ``schema`` as described above.
                - ``"parsing_error"``: Optional[BaseException]
 
        Example: schema=Pydantic class, method="function_calling", include_raw=False:
            .. code-block:: python
 
                from typing import Optional
 
                from langchain_openai import ChatOpenAI
                from langchain_core.pydantic_v1 import BaseModel, Field
 
 
                class AnswerWithJustification(BaseModel):
                    '''An answer to the user question along with justification for the answer.'''
 
                    answer: str
                    # If we provide default values and/or descriptions for fields, these will be passed
                    # to the model. This is an important part of improving a model's ability to
                    # correctly return structured outputs.
                    justification: Optional[str] = Field(
                        default=None, description="A justification for the answer."
                    )
 
 
                llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
                structured_llm = llm.with_structured_output(AnswerWithJustification)
 
                structured_llm.invoke(
                    "What weighs more a pound of bricks or a pound of feathers"
                )
 
                # -> AnswerWithJustification(
                #     answer='They weigh the same',
                #     justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
                # )
 
        Example: schema=Pydantic class, method="function_calling", include_raw=True:
            .. code-block:: python
 
                from langchain_openai import ChatOpenAI
                from langchain_core.pydantic_v1 import BaseModel
 
 
                class AnswerWithJustification(BaseModel):
                    '''An answer to the user question along with justification for the answer.'''
 
                    answer: str
                    justification: str
 
 
                llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
                structured_llm = llm.with_structured_output(
                    AnswerWithJustification, include_raw=True
                )
 
                structured_llm.invoke(
                    "What weighs more a pound of bricks or a pound of feathers"
                )
                # -> {
                #     'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
                #     'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
                #     'parsing_error': None
                # }
 
        Example: schema=TypedDict class, method="function_calling", include_raw=False:
            .. code-block:: python
 
                # IMPORTANT: If you are using Python <=3.8, you need to import Annotated
                # from typing_extensions, not from typing.
                from typing_extensions import Annotated, TypedDict
 
                from langchain_openai import ChatOpenAI
 
 
                class AnswerWithJustification(TypedDict):
                    '''An answer to the user question along with justification for the answer.'''
 
                    answer: str
                    justification: Annotated[
                        Optional[str], None, "A justification for the answer."
                    ]
 
 
                llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
                structured_llm = llm.with_structured_output(AnswerWithJustification)
 
                structured_llm.invoke(
                    "What weighs more a pound of bricks or a pound of feathers"
                )
                # -> {
                #     'answer': 'They weigh the same',
                #     'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
                # }
 
        Example: schema=OpenAI function schema, method="function_calling", include_raw=False:
            .. code-block:: python
 
                from langchain_openai import ChatOpenAI
 
                oai_schema = {
                    'name': 'AnswerWithJustification',
                    'description': 'An answer to the user question along with justification for the answer.',
                    'parameters': {
                        'type': 'object',
                        'properties': {
                            'answer': {'type': 'string'},
                            'justification': {'description': 'A justification for the answer.', 'type': 'string'}
                        },
                       'required': ['answer']
                   }
               }
 
                llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
                structured_llm = llm.with_structured_output(oai_schema)
 
                structured_llm.invoke(
                    "What weighs more a pound of bricks or a pound of feathers"
                )
                # -> {
                #     'answer': 'They weigh the same',
                #     'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
                # }
 
        Example: schema=Pydantic class, method="json_mode", include_raw=True:
            .. code-block::
 
                from langchain_openai import ChatOpenAI
                from langchain_core.pydantic_v1 import BaseModel
 
                class AnswerWithJustification(BaseModel):
                    answer: str
                    justification: str
 
                llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
                structured_llm = llm.with_structured_output(
                    AnswerWithJustification,
                    method="json_mode",
                    include_raw=True
                )
 
                structured_llm.invoke(
                    "Answer the following question. "
                    "Make sure to return a JSON blob with keys 'answer' and 'justification'.
 
"
                    "What's heavier a pound of bricks or a pound of feathers?"
                )
                # -> {
                #     'raw': AIMessage(content='{
    "answer": "They are both the same weight.",
    "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." 
}'),
                #     'parsed': AnswerWithJustification(answer='They are both the same weight.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'),
                #     'parsing_error': None
                # }
 
        Example: schema=None, method="json_mode", include_raw=True:
            .. code-block::
 
                structured_llm = llm.with_structured_output(method="json_mode", include_raw=True)
 
                structured_llm.invoke(
                    "Answer the following question. "
                    "Make sure to return a JSON blob with keys 'answer' and 'justification'.
 
"
                    "What's heavier a pound of bricks or a pound of feathers?"
                )
                # -> {
                #     'raw': AIMessage(content='{
    "answer": "They are both the same weight.",
    "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." 
}'),
                #     'parsed': {
                #         'answer': 'They are both the same weight.',
                #         'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'
                #     },
                #     'parsing_error': None
                # }

Class methods inherited from langchain_openai.chat_models.base.BaseChatOpenAI:
build_extra(values: 'Dict[str, Any]') -> 'Dict[str, Any]' from pydantic.v1.main.ModelMetaclass
Build extra kwargs from additional params that were passed in.

Data and other attributes inherited from langchain_openai.chat_models.base.BaseChatOpenAI:
Config = <class 'langchain_openai.chat_models.base.BaseChatOpenAI.Config'>
Configuration for this pydantic object.

Methods inherited from langchain_core.language_models.chat_models.BaseChatModel:
__call__(self, messages: 'List[BaseMessage]', stop: 'Optional[List[str]]' = None, callbacks: 'Callbacks' = None, **kwargs: 'Any') -> 'BaseMessage'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use invoke instead.
async agenerate(self, messages: 'List[List[BaseMessage]]', stop: 'Optional[List[str]]' = None, callbacks: 'Callbacks' = None, *, tags: 'Optional[List[str]]' = None, metadata: 'Optional[Dict[str, Any]]' = None, run_name: 'Optional[str]' = None, run_id: 'Optional[uuid.UUID]' = None, **kwargs: 'Any') -> 'LLMResult'
Asynchronously pass a sequence of prompts to a model and return generations.
 
This method should make use of batched calls for models that expose a batched
API.
 
Use this method when you want to:
    1. take advantage of batched calls,
    2. need more output from the model than just the top generated value,
    3. are building chains that are agnostic to the underlying language model
        type (e.g., pure text completion models vs chat models).
 
Args:
    messages: List of list of messages.
    stop: Stop words to use when generating. Model output is cut off at the
        first occurrence of any of these substrings.
    callbacks: Callbacks to pass through. Used for executing additional
        functionality, such as logging or streaming, throughout generation.
    **kwargs: Arbitrary additional keyword arguments. These are usually passed
        to the model provider API call.
 
Returns:
    An LLMResult, which contains a list of candidate Generations for each input
        prompt and additional model provider-specific output.
async agenerate_prompt(self, prompts: 'List[PromptValue]', stop: 'Optional[List[str]]' = None, callbacks: 'Callbacks' = None, **kwargs: 'Any') -> 'LLMResult'
Asynchronously pass a sequence of prompts and return model generations.
 
This method should make use of batched calls for models that expose a batched
API.
 
Use this method when you want to:
    1. take advantage of batched calls,
    2. need more output from the model than just the top generated value,
    3. are building chains that are agnostic to the underlying language model
        type (e.g., pure text completion models vs chat models).
 
Args:
    prompts: List of PromptValues. A PromptValue is an object that can be
        converted to match the format of any language model (string for pure
        text generation models and BaseMessages for chat models).
    stop: Stop words to use when generating. Model output is cut off at the
        first occurrence of any of these substrings.
    callbacks: Callbacks to pass through. Used for executing additional
        functionality, such as logging or streaming, throughout generation.
    **kwargs: Arbitrary additional keyword arguments. These are usually passed
        to the model provider API call.
 
Returns:
    An LLMResult, which contains a list of candidate Generations for each input
        prompt and additional model provider-specific output.
async ainvoke(self, input: 'LanguageModelInput', config: 'Optional[RunnableConfig]' = None, *, stop: 'Optional[List[str]]' = None, **kwargs: 'Any') -> 'BaseMessage'
Default implementation of ainvoke, calls invoke from a thread.
 
The default implementation allows usage of async code even if
the Runnable did not implement a native async version of invoke.
 
Subclasses should override this method if they can run asynchronously.
async apredict(self, text: 'str', *, stop: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'str'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use ainvoke instead.
async apredict_messages(self, messages: 'List[BaseMessage]', *, stop: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'BaseMessage'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use ainvoke instead.
async astream(self, input: 'LanguageModelInput', config: 'Optional[RunnableConfig]' = None, *, stop: 'Optional[List[str]]' = None, **kwargs: 'Any') -> 'AsyncIterator[BaseMessageChunk]'
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
 
Args:
    input: The input to the Runnable.
    config: The config to use for the Runnable. Defaults to None.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    The output of the Runnable.
call_as_llm(self, message: 'str', stop: 'Optional[List[str]]' = None, **kwargs: 'Any') -> 'str'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use invoke instead.
dict(self, **kwargs: 'Any') -> 'Dict'
Return a dictionary of the LLM.
generate(self, messages: 'List[List[BaseMessage]]', stop: 'Optional[List[str]]' = None, callbacks: 'Callbacks' = None, *, tags: 'Optional[List[str]]' = None, metadata: 'Optional[Dict[str, Any]]' = None, run_name: 'Optional[str]' = None, run_id: 'Optional[uuid.UUID]' = None, **kwargs: 'Any') -> 'LLMResult'
Pass a sequence of prompts to the model and return model generations.
 
This method should make use of batched calls for models that expose a batched
API.
 
Use this method when you want to:
    1. take advantage of batched calls,
    2. need more output from the model than just the top generated value,
    3. are building chains that are agnostic to the underlying language model
        type (e.g., pure text completion models vs chat models).
 
Args:
    messages: List of list of messages.
    stop: Stop words to use when generating. Model output is cut off at the
        first occurrence of any of these substrings.
    callbacks: Callbacks to pass through. Used for executing additional
        functionality, such as logging or streaming, throughout generation.
    **kwargs: Arbitrary additional keyword arguments. These are usually passed
        to the model provider API call.
 
Returns:
    An LLMResult, which contains a list of candidate Generations for each input
        prompt and additional model provider-specific output.
generate_prompt(self, prompts: 'List[PromptValue]', stop: 'Optional[List[str]]' = None, callbacks: 'Callbacks' = None, **kwargs: 'Any') -> 'LLMResult'
Pass a sequence of prompts to the model and return model generations.
 
This method should make use of batched calls for models that expose a batched
API.
 
Use this method when you want to:
    1. take advantage of batched calls,
    2. need more output from the model than just the top generated value,
    3. are building chains that are agnostic to the underlying language model
        type (e.g., pure text completion models vs chat models).
 
Args:
    prompts: List of PromptValues. A PromptValue is an object that can be
        converted to match the format of any language model (string for pure
        text generation models and BaseMessages for chat models).
    stop: Stop words to use when generating. Model output is cut off at the
        first occurrence of any of these substrings.
    callbacks: Callbacks to pass through. Used for executing additional
        functionality, such as logging or streaming, throughout generation.
    **kwargs: Arbitrary additional keyword arguments. These are usually passed
        to the model provider API call.
 
Returns:
    An LLMResult, which contains a list of candidate Generations for each input
        prompt and additional model provider-specific output.
invoke(self, input: 'LanguageModelInput', config: 'Optional[RunnableConfig]' = None, *, stop: 'Optional[List[str]]' = None, **kwargs: 'Any') -> 'BaseMessage'
Transform a single input into an output. Override to implement.
 
Args:
    input: The input to the Runnable.
    config: A config to use when invoking the Runnable.
       The config supports standard keys like 'tags', 'metadata' for tracing
       purposes, 'max_concurrency' for controlling how much work to do
       in parallel, and other keys. Please refer to the RunnableConfig
       for more details.
 
Returns:
    The output of the Runnable.
predict(self, text: 'str', *, stop: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'str'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use invoke instead.
predict_messages(self, messages: 'List[BaseMessage]', *, stop: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'BaseMessage'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use invoke instead.
stream(self, input: 'LanguageModelInput', config: 'Optional[RunnableConfig]' = None, *, stop: 'Optional[List[str]]' = None, **kwargs: 'Any') -> 'Iterator[BaseMessageChunk]'
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
 
Args:
    input: The input to the Runnable.
    config: The config to use for the Runnable. Defaults to None.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    The output of the Runnable.

Class methods inherited from langchain_core.language_models.chat_models.BaseChatModel:
raise_deprecation(values: 'Dict') -> 'Dict' from pydantic.v1.main.ModelMetaclass
Raise deprecation warning if callback_manager is used.
 
Args:
    values (Dict): Values to validate.
 
Returns:
    Dict: Validated values.
 
Raises:
    DeprecationWarning: If callback_manager is used.

Readonly properties inherited from langchain_core.language_models.chat_models.BaseChatModel:
OutputType
Get the output type for this runnable.

Data and other attributes inherited from langchain_core.language_models.chat_models.BaseChatModel:
__orig_bases__ = (langchain_core.language_models.base.BaseLanguageModel[langchain_core.messages.base.BaseMessage], <class 'abc.ABC'>)

Methods inherited from langchain_core.language_models.base.BaseLanguageModel:
get_num_tokens(self, text: 'str') -> 'int'
Get the number of tokens present in the text.
 
Useful for checking if an input fits in a model's context window.
 
Args:
    text: The string input to tokenize.
 
Returns:
    The integer number of tokens in the text.

Class methods inherited from langchain_core.language_models.base.BaseLanguageModel:
set_verbose(verbose: 'Optional[bool]') -> 'bool' from pydantic.v1.main.ModelMetaclass
If verbose is None, set it.
 
This allows users to pass in None as verbose to access the global setting.
 
Args:
    verbose: The verbosity setting to use.
 
Returns:
    The verbosity setting to use.

Readonly properties inherited from langchain_core.language_models.base.BaseLanguageModel:
InputType
Get the input type for this runnable.

Methods inherited from langchain_core.runnables.base.RunnableSerializable:
configurable_alternatives(self, which: 'ConfigurableField', *, default_key: 'str' = 'default', prefix_keys: 'bool' = False, **kwargs: 'Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]') -> 'RunnableSerializable[Input, Output]'
Configure alternatives for Runnables that can be set at runtime.
 
Args:
    which: The ConfigurableField instance that will be used to select the
        alternative.
    default_key: The default key to use if no alternative is selected.
        Defaults to "default".
    prefix_keys: Whether to prefix the keys with the ConfigurableField id.
        Defaults to False.
    **kwargs: A dictionary of keys to Runnable instances or callables that
        return Runnable instances.
 
Returns:
    A new Runnable with the alternatives configured.
 
.. code-block:: python
 
    from langchain_anthropic import ChatAnthropic
    from langchain_core.runnables.utils import ConfigurableField
    from langchain_openai import ChatOpenAI
 
    model = ChatAnthropic(
        model_name="claude-3-sonnet-20240229"
    ).configurable_alternatives(
        ConfigurableField(id="llm"),
        default_key="anthropic",
        openai=ChatOpenAI()
    )
 
    # uses the default model ChatAnthropic
    print(model.invoke("which organization created you?").content)
 
    # uses ChatOpenAI
    print(
        model.with_config(
            configurable={"llm": "openai"}
        ).invoke("which organization created you?").content
    )
configurable_fields(self, **kwargs: 'AnyConfigurableField') -> 'RunnableSerializable[Input, Output]'
Configure particular Runnable fields at runtime.
 
Args:
    **kwargs: A dictionary of ConfigurableField instances to configure.
 
Returns:
    A new Runnable with the fields configured.
 
.. code-block:: python
 
    from langchain_core.runnables import ConfigurableField
    from langchain_openai import ChatOpenAI
 
    model = ChatOpenAI(max_tokens=20).configurable_fields(
        max_tokens=ConfigurableField(
            id="output_token_number",
            name="Max tokens in the output",
            description="The maximum number of tokens in the output",
        )
    )
 
    # max_tokens = 20
    print(
        "max_tokens_20: ",
        model.invoke("tell me something about chess").content
    )
 
    # max_tokens = 200
    print("max_tokens_200: ", model.with_config(
        configurable={"output_token_number": 200}
        ).invoke("tell me something about chess").content
    )
to_json(self) -> 'Union[SerializedConstructor, SerializedNotImplemented]'
Serialize the Runnable to JSON.
 
Returns:
    A JSON-serializable representation of the Runnable.

Methods inherited from langchain_core.load.serializable.Serializable:
__repr_args__(self) -> Any
Returns the attributes to show in __str__, __repr__, and __pretty__ this is generally overridden.
 
Can either return:
* name - value pairs, e.g.: `[('foo_name', 'foo'), ('bar_name', ['b', 'a', 'r'])]`
* or, just values, e.g.: `[(None, 'foo'), (None, ['b', 'a', 'r'])]`
to_json_not_implemented(self) -> langchain_core.load.serializable.SerializedNotImplemented

Class methods inherited from langchain_core.load.serializable.Serializable:
lc_id() -> List[str] from pydantic.v1.main.ModelMetaclass
A unique identifier for this class for serialization purposes.
 
The unique identifier is a list of strings that describes the path
to the object.
For example, for the class `langchain.llms.openai.OpenAI`, the id is
["langchain", "llms", "openai", "OpenAI"].

Methods inherited from pydantic.v1.main.BaseModel:
__eq__(self, other: Any) -> bool
Return self==value.
__getstate__(self) -> 'DictAny'
__iter__(self) -> 'TupleGenerator'
so `dict(model)` works
__setattr__(self, name, value)
Implement setattr(self, name, value).
__setstate__(self, state: 'DictAny') -> None
copy(self: 'Model', *, include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, update: Optional[ForwardRef('DictStrAny')] = None, deep: bool = False) -> 'Model'
Duplicate a model, optionally choose which fields to include, exclude and change.
 
:param include: fields to include in new model
:param exclude: fields to exclude from new model, as with values this takes precedence over include
:param update: values to change/add in the new model. Note: the data is not validated before creating
    the new model: you should trust this data
:param deep: set to `True` to make a deep copy of the model
:return: new model instance
json(self, *, include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) -> str
Generate a JSON representation of the model, `include` and `exclude` arguments as per `dict()`.
 
`encoder` is an optional function to supply as `default` to json.dumps(), other arguments as per `json.dumps()`.

Class methods inherited from pydantic.v1.main.BaseModel:
__get_validators__() -> 'CallableGenerator' from pydantic.v1.main.ModelMetaclass
__try_update_forward_refs__(**localns: Any) -> None from pydantic.v1.main.ModelMetaclass
Same as update_forward_refs but will not raise exception
when forward references are not defined.
construct(_fields_set: Optional[ForwardRef('SetStr')] = None, **values: Any) -> 'Model' from pydantic.v1.main.ModelMetaclass
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if `Config.extra = 'allow'` was set since it adds all passed values
from_orm(obj: Any) -> 'Model' from pydantic.v1.main.ModelMetaclass
parse_file(path: Union[str, pathlib.Path], *, content_type: str = None, encoding: str = 'utf8', proto: pydantic.v1.parse.Protocol = None, allow_pickle: bool = False) -> 'Model' from pydantic.v1.main.ModelMetaclass
parse_obj(obj: Any) -> 'Model' from pydantic.v1.main.ModelMetaclass
parse_raw(b: Union[str, bytes], *, content_type: str = None, encoding: str = 'utf8', proto: pydantic.v1.parse.Protocol = None, allow_pickle: bool = False) -> 'Model' from pydantic.v1.main.ModelMetaclass
schema(by_alias: bool = True, ref_template: str = '#/definitions/{model}') -> 'DictStrAny' from pydantic.v1.main.ModelMetaclass
schema_json(*, by_alias: bool = True, ref_template: str = '#/definitions/{model}', **dumps_kwargs: Any) -> str from pydantic.v1.main.ModelMetaclass
update_forward_refs(**localns: Any) -> None from pydantic.v1.main.ModelMetaclass
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate(value: Any) -> 'Model' from pydantic.v1.main.ModelMetaclass

Data descriptors inherited from pydantic.v1.main.BaseModel:
__dict__
dictionary for instance variables (if defined)
__fields_set__

Methods inherited from pydantic.v1.utils.Representation:
__pretty__(self, fmt: Callable[[Any], Any], **kwargs: Any) -> Generator[Any, NoneType, NoneType]
Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects
__repr__(self) -> str
Return repr(self).
__repr_name__(self) -> str
Name of the instance's class, used in __repr__.
__repr_str__(self, join_str: str) -> str
__rich_repr__(self) -> 'RichReprResult'
Get fields for Rich library
__str__(self) -> str
Return str(self).

Methods inherited from langchain_core.runnables.base.Runnable:
__or__(self, other: 'Union[Runnable[Any, Other], Callable[[Any], Other], Callable[[Iterator[Any]], Iterator[Other]], Mapping[str, Union[Runnable[Any, Other], Callable[[Any], Other], Any]]]') -> 'RunnableSerializable[Input, Other]'
Compose this Runnable with another object to create a RunnableSequence.
__ror__(self, other: 'Union[Runnable[Other, Any], Callable[[Other], Any], Callable[[Iterator[Other]], Iterator[Any]], Mapping[str, Union[Runnable[Other, Any], Callable[[Other], Any], Any]]]') -> 'RunnableSerializable[Other, Output]'
Compose this Runnable with another object to create a RunnableSequence.
async abatch(self, inputs: 'List[Input]', config: 'Optional[Union[RunnableConfig, List[RunnableConfig]]]' = None, *, return_exceptions: 'bool' = False, **kwargs: 'Optional[Any]') -> 'List[Output]'
Default implementation runs ainvoke in parallel using asyncio.gather.
 
The default implementation of batch works well for IO bound runnables.
 
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying Runnable uses an API which supports a batch mode.
 
Args:
    inputs: A list of inputs to the Runnable.
    config: A config to use when invoking the Runnable.
       The config supports standard keys like 'tags', 'metadata' for tracing
       purposes, 'max_concurrency' for controlling how much work to do
       in parallel, and other keys. Please refer to the RunnableConfig
       for more details. Defaults to None.
    return_exceptions: Whether to return exceptions instead of raising them.
        Defaults to False.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Returns:
    A list of outputs from the Runnable.
async abatch_as_completed(self, inputs: 'Sequence[Input]', config: 'Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]' = None, *, return_exceptions: 'bool' = False, **kwargs: 'Optional[Any]') -> 'AsyncIterator[Tuple[int, Union[Output, Exception]]]'
Run ainvoke in parallel on a list of inputs,
yielding results as they complete.
 
Args:
    inputs: A list of inputs to the Runnable.
    config: A config to use when invoking the Runnable.
       The config supports standard keys like 'tags', 'metadata' for tracing
       purposes, 'max_concurrency' for controlling how much work to do
       in parallel, and other keys. Please refer to the RunnableConfig
       for more details. Defaults to None. Defaults to None.
    return_exceptions: Whether to return exceptions instead of raising them.
        Defaults to False.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    A tuple of the index of the input and the output from the Runnable.
as_tool(self, args_schema: 'Optional[Type[BaseModel]]' = None, *, name: 'Optional[str]' = None, description: 'Optional[str]' = None, arg_types: 'Optional[Dict[str, Type]]' = None) -> 'BaseTool'
[*Beta*] Create a BaseTool from a Runnable.
 
``as_tool`` will instantiate a BaseTool with a name, description, and
``args_schema`` from a Runnable. Where possible, schemas are inferred
from ``runnable.get_input_schema``. Alternatively (e.g., if the
Runnable takes a dict as input and the specific dict keys are not typed),
the schema can be specified directly with ``args_schema``. You can also
pass ``arg_types`` to just specify the required arguments and their types.
 
Args:
    args_schema: The schema for the tool. Defaults to None.
    name: The name of the tool. Defaults to None.
    description: The description of the tool. Defaults to None.
    arg_types: A dictionary of argument names to types. Defaults to None.
 
Returns:
    A BaseTool instance.
 
Typed dict input:
 
.. code-block:: python
 
    from typing import List
    from typing_extensions import TypedDict
    from langchain_core.runnables import RunnableLambda
 
    class Args(TypedDict):
        a: int
        b: List[int]
 
    def f(x: Args) -> str:
        return str(x["a"] * max(x["b"]))
 
    runnable = RunnableLambda(f)
    as_tool = runnable.as_tool()
    as_tool.invoke({"a": 3, "b": [1, 2]})
 
``dict`` input, specifying schema via ``args_schema``:
 
.. code-block:: python
 
    from typing import Any, Dict, List
    from langchain_core.pydantic_v1 import BaseModel, Field
    from langchain_core.runnables import RunnableLambda
 
    def f(x: Dict[str, Any]) -> str:
        return str(x["a"] * max(x["b"]))
 
    class FSchema(BaseModel):
        """Apply a function to an integer and list of integers."""
 
        a: int = Field(..., description="Integer")
        b: List[int] = Field(..., description="List of ints")
 
    runnable = RunnableLambda(f)
    as_tool = runnable.as_tool(FSchema)
    as_tool.invoke({"a": 3, "b": [1, 2]})
 
``dict`` input, specifying schema via ``arg_types``:
 
.. code-block:: python
 
    from typing import Any, Dict, List
    from langchain_core.runnables import RunnableLambda
 
    def f(x: Dict[str, Any]) -> str:
        return str(x["a"] * max(x["b"]))
 
    runnable = RunnableLambda(f)
    as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]})
    as_tool.invoke({"a": 3, "b": [1, 2]})
 
String input:
 
.. code-block:: python
 
    from langchain_core.runnables import RunnableLambda
 
    def f(x: str) -> str:
        return x + "a"
 
    def g(x: str) -> str:
        return x + "z"
 
    runnable = RunnableLambda(f) | g
    as_tool = runnable.as_tool()
    as_tool.invoke("b")
 
.. versionadded:: 0.2.14
 
Notes
-----
.. beta::
   This API is in beta and may change in the future.
assign(self, **kwargs: 'Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]') -> 'RunnableSerializable[Any, Any]'
Assigns new fields to the dict output of this Runnable.
Returns a new Runnable.
 
.. code-block:: python
 
    from langchain_community.llms.fake import FakeStreamingListLLM
    from langchain_core.output_parsers import StrOutputParser
    from langchain_core.prompts import SystemMessagePromptTemplate
    from langchain_core.runnables import Runnable
    from operator import itemgetter
 
    prompt = (
        SystemMessagePromptTemplate.from_template("You are a nice assistant.")
        + "{question}"
    )
    llm = FakeStreamingListLLM(responses=["foo-lish"])
 
    chain: Runnable = prompt | llm | {"str": StrOutputParser()}
 
    chain_with_assign = chain.assign(hello=itemgetter("str") | llm)
 
    print(chain_with_assign.input_schema.schema())
    # {'title': 'PromptInput', 'type': 'object', 'properties':
    {'question': {'title': 'Question', 'type': 'string'}}}
    print(chain_with_assign.output_schema.schema()) #
    {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
    {'str': {'title': 'Str',
    'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
astream_events(self, input: 'Any', config: 'Optional[RunnableConfig]' = None, *, version: "Literal['v1', 'v2']", include_names: 'Optional[Sequence[str]]' = None, include_types: 'Optional[Sequence[str]]' = None, include_tags: 'Optional[Sequence[str]]' = None, exclude_names: 'Optional[Sequence[str]]' = None, exclude_types: 'Optional[Sequence[str]]' = None, exclude_tags: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'AsyncIterator[StreamEvent]'
[*Beta*] Generate a stream of events.
 
Use to create an iterator over StreamEvents that provide real-time information
about the progress of the Runnable, including StreamEvents from intermediate
results.
 
A StreamEvent is a dictionary with the following schema:
 
- ``event``: **str** - Event names are of the
    format: on_[runnable_type]_(start|stream|end).
- ``name``: **str** - The name of the Runnable that generated the event.
- ``run_id``: **str** - randomly generated ID associated with the given execution of
    the Runnable that emitted the event.
    A child Runnable that gets invoked as part of the execution of a
    parent Runnable is assigned its own unique ID.
- ``parent_ids``: **List[str]** - The IDs of the parent runnables that
    generated the event. The root Runnable will have an empty list.
    The order of the parent IDs is from the root to the immediate parent.
    Only available for v2 version of the API. The v1 version of the API
    will return an empty list.
- ``tags``: **Optional[List[str]]** - The tags of the Runnable that generated
    the event.
- ``metadata``: **Optional[Dict[str, Any]]** - The metadata of the Runnable
    that generated the event.
- ``data``: **Dict[str, Any]**
 
 
Below is a table that illustrates some evens that might be emitted by various
chains. Metadata fields have been omitted from the table for brevity.
Chain definitions have been included after the table.
 
**ATTENTION** This reference table is for the V2 version of the schema.
 
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| event                | name             | chunk                           | input                                         | output                                          |
+======================+==================+=================================+===============================================+=================================================+
| on_chat_model_start  | [model name]     |                                 | {"messages": [[SystemMessage, HumanMessage]]} |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chat_model_stream | [model name]     | AIMessageChunk(content="hello") |                                               |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chat_model_end    | [model name]     |                                 | {"messages": [[SystemMessage, HumanMessage]]} | AIMessageChunk(content="hello world")           |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_llm_start         | [model name]     |                                 | {'input': 'hello'}                            |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_llm_stream        | [model name]     | 'Hello'                         |                                               |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_llm_end           | [model name]     |                                 | 'Hello human!'                                |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chain_start       | format_docs      |                                 |                                               |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chain_stream      | format_docs      | "hello world!, goodbye world!"  |                                               |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chain_end         | format_docs      |                                 | [Document(...)]                               | "hello world!, goodbye world!"                  |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_tool_start        | some_tool        |                                 | {"x": 1, "y": "2"}                            |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_tool_end          | some_tool        |                                 |                                               | {"x": 1, "y": "2"}                              |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_retriever_start   | [retriever name] |                                 | {"query": "hello"}                            |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_retriever_end     | [retriever name] |                                 | {"query": "hello"}                            | [Document(...), ..]                             |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_prompt_start      | [template_name]  |                                 | {"question": "hello"}                         |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_prompt_end        | [template_name]  |                                 | {"question": "hello"}                         | ChatPromptValue(messages: [SystemMessage, ...]) |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
 
In addition to the standard events, users can also dispatch custom events (see example below).
 
Custom events will be only be surfaced with in the `v2` version of the API!
 
A custom event has following format:
 
+-----------+------+-----------------------------------------------------------------------------------------------------------+
| Attribute | Type | Description                                                                                               |
+===========+======+===========================================================================================================+
| name      | str  | A user defined name for the event.                                                                        |
+-----------+------+-----------------------------------------------------------------------------------------------------------+
| data      | Any  | The data associated with the event. This can be anything, though we suggest making it JSON serializable.  |
+-----------+------+-----------------------------------------------------------------------------------------------------------+
 
Here are declarations associated with the standard events shown above:
 
`format_docs`:
 
.. code-block:: python
 
    def format_docs(docs: List[Document]) -> str:
        '''Format the docs.'''
        return ", ".join([doc.page_content for doc in docs])
 
    format_docs = RunnableLambda(format_docs)
 
`some_tool`:
 
.. code-block:: python
 
    @tool
    def some_tool(x: int, y: str) -> dict:
        '''Some_tool.'''
        return {"x": x, "y": y}
 
`prompt`:
 
.. code-block:: python
 
    template = ChatPromptTemplate.from_messages(
        [("system", "You are Cat Agent 007"), ("human", "{question}")]
    ).with_config({"run_name": "my_template", "tags": ["my_template"]})
 
 
Example:
 
.. code-block:: python
 
    from langchain_core.runnables import RunnableLambda
 
    async def reverse(s: str) -> str:
        return s[::-1]
 
    chain = RunnableLambda(func=reverse)
 
    events = [
        event async for event in chain.astream_events("hello", version="v2")
    ]
 
    # will produce the following events (run_id, and parent_ids
    # has been omitted for brevity):
    [
        {
            "data": {"input": "hello"},
            "event": "on_chain_start",
            "metadata": {},
            "name": "reverse",
            "tags": [],
        },
        {
            "data": {"chunk": "olleh"},
            "event": "on_chain_stream",
            "metadata": {},
            "name": "reverse",
            "tags": [],
        },
        {
            "data": {"output": "olleh"},
            "event": "on_chain_end",
            "metadata": {},
            "name": "reverse",
            "tags": [],
        },
    ]
 
 
Example: Dispatch Custom Event
 
.. code-block:: python
 
    from langchain_core.callbacks.manager import (
        adispatch_custom_event,
    )
    from langchain_core.runnables import RunnableLambda, RunnableConfig
    import asyncio
 
 
    async def slow_thing(some_input: str, config: RunnableConfig) -> str:
        """Do something that takes a long time."""
        await asyncio.sleep(1) # Placeholder for some slow operation
        await adispatch_custom_event(
            "progress_event",
            {"message": "Finished step 1 of 3"},
            config=config # Must be included for python < 3.10
        )
        await asyncio.sleep(1) # Placeholder for some slow operation
        await adispatch_custom_event(
            "progress_event",
            {"message": "Finished step 2 of 3"},
            config=config # Must be included for python < 3.10
        )
        await asyncio.sleep(1) # Placeholder for some slow operation
        return "Done"
 
    slow_thing = RunnableLambda(slow_thing)
 
    async for event in slow_thing.astream_events("some_input", version="v2"):
        print(event)
 
Args:
    input: The input to the Runnable.
    config: The config to use for the Runnable.
    version: The version of the schema to use either `v2` or `v1`.
             Users should use `v2`.
             `v1` is for backwards compatibility and will be deprecated
             in 0.4.0.
             No default will be assigned until the API is stabilized.
             custom events will only be surfaced in `v2`.
    include_names: Only include events from runnables with matching names.
    include_types: Only include events from runnables with matching types.
    include_tags: Only include events from runnables with matching tags.
    exclude_names: Exclude events from runnables with matching names.
    exclude_types: Exclude events from runnables with matching types.
    exclude_tags: Exclude events from runnables with matching tags.
    kwargs: Additional keyword arguments to pass to the Runnable.
        These will be passed to astream_log as this implementation
        of astream_events is built on top of astream_log.
 
Yields:
    An async stream of StreamEvents.
 
Raises:
    NotImplementedError: If the version is not `v1` or `v2`.
 
Notes
-----
.. beta::
   This API is in beta and may change in the future.
async astream_log(self, input: 'Any', config: 'Optional[RunnableConfig]' = None, *, diff: 'bool' = True, with_streamed_output_list: 'bool' = True, include_names: 'Optional[Sequence[str]]' = None, include_types: 'Optional[Sequence[str]]' = None, include_tags: 'Optional[Sequence[str]]' = None, exclude_names: 'Optional[Sequence[str]]' = None, exclude_types: 'Optional[Sequence[str]]' = None, exclude_tags: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]'
Stream all output from a Runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
 
Output is streamed as Log objects, which include a list of
Jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
 
The Jsonpatch ops can be applied in order to construct state.
 
Args:
    input: The input to the Runnable.
    config: The config to use for the Runnable.
    diff: Whether to yield diffs between each step or the current state.
    with_streamed_output_list: Whether to yield the streamed_output list.
    include_names: Only include logs with these names.
    include_types: Only include logs with these types.
    include_tags: Only include logs with these tags.
    exclude_names: Exclude logs with these names.
    exclude_types: Exclude logs with these types.
    exclude_tags: Exclude logs with these tags.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    A RunLogPatch or RunLog object.
async atransform(self, input: 'AsyncIterator[Input]', config: 'Optional[RunnableConfig]' = None, **kwargs: 'Optional[Any]') -> 'AsyncIterator[Output]'
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
 
Args:
    input: An async iterator of inputs to the Runnable.
    config: The config to use for the Runnable. Defaults to None.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    The output of the Runnable.
batch(self, inputs: 'List[Input]', config: 'Optional[Union[RunnableConfig, List[RunnableConfig]]]' = None, *, return_exceptions: 'bool' = False, **kwargs: 'Optional[Any]') -> 'List[Output]'
Default implementation runs invoke in parallel using a thread pool executor.
 
The default implementation of batch works well for IO bound runnables.
 
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying Runnable uses an API which supports a batch mode.
batch_as_completed(self, inputs: 'Sequence[Input]', config: 'Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]' = None, *, return_exceptions: 'bool' = False, **kwargs: 'Optional[Any]') -> 'Iterator[Tuple[int, Union[Output, Exception]]]'
Run invoke in parallel on a list of inputs,
yielding results as they complete.
bind(self, **kwargs: 'Any') -> 'Runnable[Input, Output]'
Bind arguments to a Runnable, returning a new Runnable.
 
Useful when a Runnable in a chain requires an argument that is not
in the output of the previous Runnable or included in the user input.
 
Args:
    kwargs: The arguments to bind to the Runnable.
 
Returns:
    A new Runnable with the arguments bound.
 
Example:
 
.. code-block:: python
 
    from langchain_community.chat_models import ChatOllama
    from langchain_core.output_parsers import StrOutputParser
 
    llm = ChatOllama(model='llama2')
 
    # Without bind.
    chain = (
        llm
        | StrOutputParser()
    )
 
    chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
    # Output is 'One two three four five.'
 
    # With bind.
    chain = (
        llm.bind(stop=["three"])
        | StrOutputParser()
    )
 
    chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
    # Output is 'One two'
config_schema(self, *, include: 'Optional[Sequence[str]]' = None) -> 'Type[BaseModel]'
The type of config this Runnable accepts specified as a pydantic model.
 
To mark a field as configurable, see the `configurable_fields`
and `configurable_alternatives` methods.
 
Args:
    include: A list of fields to include in the config schema.
 
Returns:
    A pydantic model that can be used to validate config.
get_graph(self, config: 'Optional[RunnableConfig]' = None) -> 'Graph'
Return a graph representation of this Runnable.
get_input_schema(self, config: 'Optional[RunnableConfig]' = None) -> 'Type[BaseModel]'
Get a pydantic model that can be used to validate input to the Runnable.
 
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the Runnable is invoked with.
 
This method allows to get an input schema for a specific configuration.
 
Args:
    config: A config to use when generating the schema.
 
Returns:
    A pydantic model that can be used to validate input.
get_name(self, suffix: 'Optional[str]' = None, *, name: 'Optional[str]' = None) -> 'str'
Get the name of the Runnable.
get_output_schema(self, config: 'Optional[RunnableConfig]' = None) -> 'Type[BaseModel]'
Get a pydantic model that can be used to validate output to the Runnable.
 
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the Runnable is invoked with.
 
This method allows to get an output schema for a specific configuration.
 
Args:
    config: A config to use when generating the schema.
 
Returns:
    A pydantic model that can be used to validate output.
get_prompts(self, config: 'Optional[RunnableConfig]' = None) -> 'List[BasePromptTemplate]'
Return a list of prompts used by this Runnable.
map(self) -> 'Runnable[List[Input], List[Output]]'
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
 
Returns:
    A new Runnable that maps a list of inputs to a list of outputs.
 
Example:
 
    .. code-block:: python
 
            from langchain_core.runnables import RunnableLambda
 
            def _lambda(x: int) -> int:
                return x + 1
 
            runnable = RunnableLambda(_lambda)
            print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4]
pick(self, keys: 'Union[str, List[str]]') -> 'RunnableSerializable[Any, Any]'
Pick keys from the dict output of this Runnable.
 
Pick single key:
    .. code-block:: python
 
        import json
 
        from langchain_core.runnables import RunnableLambda, RunnableMap
 
        as_str = RunnableLambda(str)
        as_json = RunnableLambda(json.loads)
        chain = RunnableMap(str=as_str, json=as_json)
 
        chain.invoke("[1, 2, 3]")
        # -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
 
        json_only_chain = chain.pick("json")
        json_only_chain.invoke("[1, 2, 3]")
        # -> [1, 2, 3]
 
Pick list of keys:
    .. code-block:: python
 
        from typing import Any
 
        import json
 
        from langchain_core.runnables import RunnableLambda, RunnableMap
 
        as_str = RunnableLambda(str)
        as_json = RunnableLambda(json.loads)
        def as_bytes(x: Any) -> bytes:
            return bytes(x, "utf-8")
 
        chain = RunnableMap(
            str=as_str,
            json=as_json,
            bytes=RunnableLambda(as_bytes)
        )
 
        chain.invoke("[1, 2, 3]")
        # -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
 
        json_and_bytes_chain = chain.pick(["json", "bytes"])
        json_and_bytes_chain.invoke("[1, 2, 3]")
        # -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
pipe(self, *others: 'Union[Runnable[Any, Other], Callable[[Any], Other]]', name: 'Optional[str]' = None) -> 'RunnableSerializable[Input, Other]'
Compose this Runnable with Runnable-like objects to make a RunnableSequence.
 
Equivalent to `RunnableSequence(self, *others)` or `self | others[0] | ...`
 
Example:
    .. code-block:: python
 
        from langchain_core.runnables import RunnableLambda
 
        def add_one(x: int) -> int:
            return x + 1
 
        def mul_two(x: int) -> int:
            return x * 2
 
        runnable_1 = RunnableLambda(add_one)
        runnable_2 = RunnableLambda(mul_two)
        sequence = runnable_1.pipe(runnable_2)
        # Or equivalently:
        # sequence = runnable_1 | runnable_2
        # sequence = RunnableSequence(first=runnable_1, last=runnable_2)
        sequence.invoke(1)
        await sequence.ainvoke(1)
        # -> 4
 
        sequence.batch([1, 2, 3])
        await sequence.abatch([1, 2, 3])
        # -> [4, 6, 8]
transform(self, input: 'Iterator[Input]', config: 'Optional[RunnableConfig]' = None, **kwargs: 'Optional[Any]') -> 'Iterator[Output]'
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
 
Args:
    input: An iterator of inputs to the Runnable.
    config: The config to use for the Runnable. Defaults to None.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    The output of the Runnable.
with_alisteners(self, *, on_start: 'Optional[AsyncListener]' = None, on_end: 'Optional[AsyncListener]' = None, on_error: 'Optional[AsyncListener]' = None) -> 'Runnable[Input, Output]'
Bind asynchronous lifecycle listeners to a Runnable, returning a new Runnable.
 
on_start: Asynchronously called before the Runnable starts running.
on_end: Asynchronously called after the Runnable finishes running.
on_error: Asynchronously called if the Runnable throws an error.
 
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
 
Args:
    on_start: Asynchronously called before the Runnable starts running.
        Defaults to None.
    on_end: Asynchronously called after the Runnable finishes running.
        Defaults to None.
    on_error: Asynchronously called if the Runnable throws an error.
        Defaults to None.
 
Returns:
    A new Runnable with the listeners bound.
 
Example:
 
.. code-block:: python
 
    from langchain_core.runnables import RunnableLambda
    import time
 
    async def test_runnable(time_to_sleep : int):
        print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
        await asyncio.sleep(time_to_sleep)
        print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")
 
    async def fn_start(run_obj : Runnable):
        print(f"on start callback starts at {format_t(time.time())}
        await asyncio.sleep(3)
        print(f"on start callback ends at {format_t(time.time())}")
 
    async def fn_end(run_obj : Runnable):
        print(f"on end callback starts at {format_t(time.time())}
        await asyncio.sleep(2)
        print(f"on end callback ends at {format_t(time.time())}")
 
    runnable = RunnableLambda(test_runnable).with_alisteners(
        on_start=fn_start,
        on_end=fn_end
    )
    async def concurrent_runs():
        await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))
 
    asyncio.run(concurrent_runs())
    Result:
    on start callback starts at 2024-05-16T14:20:29.637053+00:00
    on start callback starts at 2024-05-16T14:20:29.637150+00:00
    on start callback ends at 2024-05-16T14:20:32.638305+00:00
    on start callback ends at 2024-05-16T14:20:32.638383+00:00
    Runnable[3s]: starts at 2024-05-16T14:20:32.638849+00:00
    Runnable[5s]: starts at 2024-05-16T14:20:32.638999+00:00
    Runnable[3s]: ends at 2024-05-16T14:20:35.640016+00:00
    on end callback starts at 2024-05-16T14:20:35.640534+00:00
    Runnable[5s]: ends at 2024-05-16T14:20:37.640169+00:00
    on end callback starts at 2024-05-16T14:20:37.640574+00:00
    on end callback ends at 2024-05-16T14:20:37.640654+00:00
    on end callback ends at 2024-05-16T14:20:39.641751+00:00
with_config(self, config: 'Optional[RunnableConfig]' = None, **kwargs: 'Any') -> 'Runnable[Input, Output]'
Bind config to a Runnable, returning a new Runnable.
 
Args:
    config: The config to bind to the Runnable.
    kwargs: Additional keyword arguments to pass to the Runnable.
 
Returns:
    A new Runnable with the config bound.
with_fallbacks(self, fallbacks: 'Sequence[Runnable[Input, Output]]', *, exceptions_to_handle: 'Tuple[Type[BaseException], ...]' = (<class 'Exception'>,), exception_key: 'Optional[str]' = None) -> 'RunnableWithFallbacksT[Input, Output]'
Add fallbacks to a Runnable, returning a new Runnable.
 
The new Runnable will try the original Runnable, and then each fallback
in order, upon failures.
 
Args:
    fallbacks: A sequence of runnables to try if the original Runnable fails.
    exceptions_to_handle: A tuple of exception types to handle.
        Defaults to (Exception,).
    exception_key: If string is specified then handled exceptions will be passed
        to fallbacks as part of the input under the specified key. If None,
        exceptions will not be passed to fallbacks. If used, the base Runnable
        and its fallbacks must accept a dictionary as input. Defaults to None.
 
Returns:
    A new Runnable that will try the original Runnable, and then each
    fallback in order, upon failures.
 
Example:
 
    .. code-block:: python
 
        from typing import Iterator
 
        from langchain_core.runnables import RunnableGenerator
 
 
        def _generate_immediate_error(input: Iterator) -> Iterator[str]:
            raise ValueError()
            yield ""
 
 
        def _generate(input: Iterator) -> Iterator[str]:
            yield from "foo bar"
 
 
        runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
            [RunnableGenerator(_generate)]
            )
        print(''.join(runnable.stream({}))) #foo bar
 
Args:
    fallbacks: A sequence of runnables to try if the original Runnable fails.
    exceptions_to_handle: A tuple of exception types to handle.
    exception_key: If string is specified then handled exceptions will be passed
        to fallbacks as part of the input under the specified key. If None,
        exceptions will not be passed to fallbacks. If used, the base Runnable
        and its fallbacks must accept a dictionary as input.
 
Returns:
    A new Runnable that will try the original Runnable, and then each
    fallback in order, upon failures.
with_listeners(self, *, on_start: 'Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]' = None, on_end: 'Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]' = None, on_error: 'Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]' = None) -> 'Runnable[Input, Output]'
Bind lifecycle listeners to a Runnable, returning a new Runnable.
 
on_start: Called before the Runnable starts running, with the Run object.
on_end: Called after the Runnable finishes running, with the Run object.
on_error: Called if the Runnable throws an error, with the Run object.
 
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
 
Args:
    on_start: Called before the Runnable starts running. Defaults to None.
    on_end: Called after the Runnable finishes running. Defaults to None.
    on_error: Called if the Runnable throws an error. Defaults to None.
 
Returns:
    A new Runnable with the listeners bound.
 
Example:
 
.. code-block:: python
 
    from langchain_core.runnables import RunnableLambda
    from langchain_core.tracers.schemas import Run
 
    import time
 
    def test_runnable(time_to_sleep : int):
        time.sleep(time_to_sleep)
 
    def fn_start(run_obj: Run):
        print("start_time:", run_obj.start_time)
 
    def fn_end(run_obj: Run):
        print("end_time:", run_obj.end_time)
 
    chain = RunnableLambda(test_runnable).with_listeners(
        on_start=fn_start,
        on_end=fn_end
    )
    chain.invoke(2)
with_retry(self, *, retry_if_exception_type: 'Tuple[Type[BaseException], ...]' = (<class 'Exception'>,), wait_exponential_jitter: 'bool' = True, stop_after_attempt: 'int' = 3) -> 'Runnable[Input, Output]'
Create a new Runnable that retries the original Runnable on exceptions.
 
Args:
    retry_if_exception_type: A tuple of exception types to retry on.
        Defaults to (Exception,).
    wait_exponential_jitter: Whether to add jitter to the wait
        time between retries. Defaults to True.
    stop_after_attempt: The maximum number of attempts to make before
        giving up. Defaults to 3.
 
Returns:
    A new Runnable that retries the original Runnable on exceptions.
 
Example:
 
.. code-block:: python
 
    from langchain_core.runnables import RunnableLambda
 
    count = 0
 
 
    def _lambda(x: int) -> None:
        global count
        count = count + 1
        if x == 1:
            raise ValueError("x is 1")
        else:
             pass
 
 
    runnable = RunnableLambda(_lambda)
    try:
        runnable.with_retry(
            stop_after_attempt=2,
            retry_if_exception_type=(ValueError,),
        ).invoke(1)
    except ValueError:
        pass
 
    assert (count == 2)
 
 
Args:
    retry_if_exception_type: A tuple of exception types to retry on
    wait_exponential_jitter: Whether to add jitter to the wait time
                             between retries
    stop_after_attempt: The maximum number of attempts to make before giving up
 
Returns:
    A new Runnable that retries the original Runnable on exceptions.
with_types(self, *, input_type: 'Optional[Type[Input]]' = None, output_type: 'Optional[Type[Output]]' = None) -> 'Runnable[Input, Output]'
Bind input and output types to a Runnable, returning a new Runnable.
 
Args:
    input_type: The input type to bind to the Runnable. Defaults to None.
    output_type: The output type to bind to the Runnable. Defaults to None.
 
Returns:
    A new Runnable with the types bound.

Readonly properties inherited from langchain_core.runnables.base.Runnable:
config_specs
List configurable fields for this Runnable.
input_schema
The type of input this Runnable accepts specified as a pydantic model.
output_schema
The type of output this Runnable produces specified as a pydantic model.

Data and other attributes inherited from langchain_core.runnables.base.Runnable:
name = None

Class methods inherited from typing.Generic:
__class_getitem__(params) from pydantic.v1.main.ModelMetaclass
__init_subclass__(*args, **kwargs) from pydantic.v1.main.ModelMetaclass
This method is called when a class is subclassed.
 
The default implementation does nothing. It may be
overridden to extend subclasses.

 
class OpenAI(ProxyOpenAI, langchain_openai.llms.base.OpenAI)
    OpenAI(*, name: Optional[str] = None, cache: ForwardRef('Union[BaseCache, bool, None]') = None, verbose: bool = None, callbacks: ForwardRef('Callbacks') = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, custom_get_token_ids: Optional[Callable[[str], List[int]]] = None, callback_manager: Optional[langchain_core.callbacks.base.BaseCallbackManager] = None, client: Any = None, async_client: Any = None, model_name: Optional[str] = None, temperature: float = 0.7, max_tokens: int = 256, top_p: float = 1, frequency_penalty: float = 0, presence_penalty: float = 0, n: int = 1, best_of: int = 1, model_kwargs: Dict[str, Any] = None, api_key: Optional[pydantic.v1.types.SecretStr] = None, base_url: Optional[str] = None, organization: Optional[str] = None, openai_proxy: Optional[str] = None, batch_size: int = 20, timeout: Union[float, Tuple[float, float], Any, NoneType] = None, logit_bias: Optional[Dict[str, float]] = None, max_retries: int = 2, seed: Optional[int] = None, logprobs: Optional[int] = None, streaming: bool = False, allowed_special: Union[Literal['all'], AbstractSet[str]] = set(), disallowed_special: Union[Literal['all'], Collection[str]] = 'all', tiktoken_model_name: Optional[str] = None, default_headers: Optional[Mapping[str, str]] = None, default_query: Optional[Mapping[str, object]] = None, http_client: Optional[Any] = None, http_async_client: Optional[Any] = None, extra_body: Optional[Mapping[str, Any]] = None, proxy_client: Optional[Any] = None, deployment_id: Optional[str] = None, config_name: Optional[str] = None, config_id: Optional[str] = None, proxy_model_name: Optional[str] = None, api_version: Optional[str] = None) -&gt; None
 

 
 
Method resolution order:
OpenAI
ProxyOpenAI
gen_ai_hub.proxy.langchain.base.BaseAuth
langchain_openai.llms.base.OpenAI
langchain_openai.llms.base.BaseOpenAI
langchain_core.language_models.llms.BaseLLM
langchain_core.language_models.base.BaseLanguageModel
langchain_core.runnables.base.RunnableSerializable
langchain_core.load.serializable.Serializable
pydantic.v1.main.BaseModel
pydantic.v1.utils.Representation
langchain_core.runnables.base.Runnable
typing.Generic
abc.ABC
builtins.object

Class methods defined here:
validate_environment(values: Dict) -> Dict from pydantic.v1.main.ModelMetaclass
Validates the environment.
 
:param values: The input values
:type values: Dict
:return: The validated values
:rtype: Dict

Static methods defined here:
__json_encoder__ = pydantic_encoder(obj: Any) -> Any
__new__(cls, **data: Any)
Initialize the OpenAI object.

Data descriptors defined here:
__weakref__
list of weak references to the object (if defined)

Data and other attributes defined here:
__abstractmethods__ = frozenset()
__annotations__ = {'model_name': typing.Optional[str], 'openai_api_version': typing.Optional[str]}
__class_vars__ = set()
__config__ = <class 'pydantic.v1.config.Config'>
__custom_root_type__ = False
__exclude_fields__ = {'async_client': True, 'callback_manager': True, 'callbacks': True, 'client': True, 'custom_get_token_ids': True, 'metadata': True, 'tags': True}
__fields__ = {'allowed_special': ModelField(name='allowed_special', type=Union[Li...AbstractSet[str]], required=False, default=set()), 'async_client': ModelField(name='async_client', type=Optional[Any], required=False, default=None), 'batch_size': ModelField(name='batch_size', type=int, required=False, default=20), 'best_of': ModelField(name='best_of', type=int, required=False, default=1), 'cache': ModelField(name='cache', type=Union[BaseCache, bool, NoneType], required=False, default=None), 'callback_manager': ModelField(name='callback_manager', type=Optiona...seCallbackManager], required=False, default=None), 'callbacks': ModelField(name='callbacks', type=Union[List[lan...Manager, NoneType], required=False, default=None), 'client': ModelField(name='client', type=Optional[Any], required=False, default=None), 'config_id': ModelField(name='config_id', type=Optional[str], required=False, default=None), 'config_name': ModelField(name='config_name', type=Optional[str], required=False, default=None), ...}
__hash__ = None
__include_fields__ = None
__parameters__ = ()
__post_root_validators__ = [(False, <function OpenAI.validate_environment>)]
__pre_root_validators__ = [<function BaseLLM.raise_deprecation>, <function BaseOpenAI.build_extra>]
__private_attributes__ = {}
__schema_cache__ = {}
__signature__ = <Signature (*, name: Optional[str] = None, cache...None, api_version: Optional[str] = None) -> None>
__validators__ = {'verbose': [<pydantic.v1.class_validators.Validator object>]}

Class methods inherited from ProxyOpenAI:
validate_clients(values: Dict) -> Dict from pydantic.v1.main.ModelMetaclass

Class methods inherited from langchain_openai.llms.base.OpenAI:
get_lc_namespace() -> 'List[str]' from pydantic.v1.main.ModelMetaclass
Get the namespace of the langchain object.
is_lc_serializable() -> 'bool' from pydantic.v1.main.ModelMetaclass
Return whether this model can be serialized by Langchain.

Readonly properties inherited from langchain_openai.llms.base.OpenAI:
lc_attributes
List of attribute names that should be included in the serialized kwargs.
 
These attributes must be accepted by the constructor.
Default is an empty dictionary.
lc_secrets
A map of constructor argument names to secret ids.
 
For example,
    {"openai_api_key": "OPENAI_API_KEY"}

Methods inherited from langchain_openai.llms.base.BaseOpenAI:
create_llm_result(self, choices: 'Any', prompts: 'List[str]', params: 'Dict[str, Any]', token_usage: 'Dict[str, int]', *, system_fingerprint: 'Optional[str]' = None) -> 'LLMResult'
Create the LLMResult from the choices and prompts.
get_sub_prompts(self, params: 'Dict[str, Any]', prompts: 'List[str]', stop: 'Optional[List[str]]' = None) -> 'List[List[str]]'
Get the sub prompts for llm call.
get_token_ids(self, text: 'str') -> 'List[int]'
Get the token IDs using the tiktoken package.
max_tokens_for_prompt(self, prompt: 'str') -> 'int'
Calculate the maximum number of tokens possible to generate for a prompt.
 
Args:
    prompt: The prompt to pass into the model.
 
Returns:
    The maximum number of tokens to generate for a prompt.
 
Example:
    .. code-block:: python
 
        max_tokens = openai.max_token_for_prompt("Tell me a joke.")

Class methods inherited from langchain_openai.llms.base.BaseOpenAI:
build_extra(values: 'Dict[str, Any]') -> 'Dict[str, Any]' from pydantic.v1.main.ModelMetaclass
Build extra kwargs from additional params that were passed in.

Static methods inherited from langchain_openai.llms.base.BaseOpenAI:
modelname_to_contextsize(modelname: 'str') -> 'int'
Calculate the maximum number of tokens possible to generate for a model.
 
Args:
    modelname: The modelname we want to know the context size for.
 
Returns:
    The maximum context size
 
Example:
    .. code-block:: python
 
        max_tokens = openai.modelname_to_contextsize("gpt-3.5-turbo-instruct")

Readonly properties inherited from langchain_openai.llms.base.BaseOpenAI:
max_context_size
Get max context size for this model.

Data and other attributes inherited from langchain_openai.llms.base.BaseOpenAI:
Config = <class 'langchain_openai.llms.base.BaseOpenAI.Config'>
Configuration for this pydantic object.

Methods inherited from langchain_core.language_models.llms.BaseLLM:
__call__(self, prompt: 'str', stop: 'Optional[List[str]]' = None, callbacks: 'Callbacks' = None, *, tags: 'Optional[List[str]]' = None, metadata: 'Optional[Dict[str, Any]]' = None, **kwargs: 'Any') -> 'str'
[*Deprecated*] Check Cache and run the LLM on the given prompt and input.
 
Args:
    prompt: The prompt to generate from.
    stop: Stop words to use when generating. Model output is cut off at the
        first occurrence of any of these substrings.
    callbacks: Callbacks to pass through. Used for executing additional
        functionality, such as logging or streaming, throughout generation.
    tags: List of tags to associate with the prompt.
    metadata: Metadata to associate with the prompt.
    **kwargs: Arbitrary additional keyword arguments. These are usually passed
        to the model provider API call.
 
Returns:
    The generated text.
 
Raises:
    ValueError: If the prompt is not a string.
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use invoke instead.
__str__(self) -> 'str'
Get a string representation of the object for printing.
async abatch(self, inputs: 'List[LanguageModelInput]', config: 'Optional[Union[RunnableConfig, List[RunnableConfig]]]' = None, *, return_exceptions: 'bool' = False, **kwargs: 'Any') -> 'List[str]'
Default implementation runs ainvoke in parallel using asyncio.gather.
 
The default implementation of batch works well for IO bound runnables.
 
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying Runnable uses an API which supports a batch mode.
 
Args:
    inputs: A list of inputs to the Runnable.
    config: A config to use when invoking the Runnable.
       The config supports standard keys like 'tags', 'metadata' for tracing
       purposes, 'max_concurrency' for controlling how much work to do
       in parallel, and other keys. Please refer to the RunnableConfig
       for more details. Defaults to None.
    return_exceptions: Whether to return exceptions instead of raising them.
        Defaults to False.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Returns:
    A list of outputs from the Runnable.
async agenerate(self, prompts: 'List[str]', stop: 'Optional[List[str]]' = None, callbacks: 'Optional[Union[Callbacks, List[Callbacks]]]' = None, *, tags: 'Optional[Union[List[str], List[List[str]]]]' = None, metadata: 'Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]' = None, run_name: 'Optional[Union[str, List[str]]]' = None, run_id: 'Optional[Union[uuid.UUID, List[Optional[uuid.UUID]]]]' = None, **kwargs: 'Any') -> 'LLMResult'
Asynchronously pass a sequence of prompts to a model and return generations.
 
This method should make use of batched calls for models that expose a batched
API.
 
Use this method when you want to:
    1. take advantage of batched calls,
    2. need more output from the model than just the top generated value,
    3. are building chains that are agnostic to the underlying language model
        type (e.g., pure text completion models vs chat models).
 
Args:
    prompts: List of string prompts.
    stop: Stop words to use when generating. Model output is cut off at the
        first occurrence of any of these substrings.
    callbacks: Callbacks to pass through. Used for executing additional
        functionality, such as logging or streaming, throughout generation.
    tags: List of tags to associate with each prompt. If provided, the length
        of the list must match the length of the prompts list.
    metadata: List of metadata dictionaries to associate with each prompt. If
        provided, the length of the list must match the length of the prompts
        list.
    run_name: List of run names to associate with each prompt. If provided, the
        length of the list must match the length of the prompts list.
    run_id: List of run IDs to associate with each prompt. If provided, the
        length of the list must match the length of the prompts list.
    **kwargs: Arbitrary additional keyword arguments. These are usually passed
        to the model provider API call.
 
Returns:
    An LLMResult, which contains a list of candidate Generations for each input
        prompt and additional model provider-specific output.
async agenerate_prompt(self, prompts: 'List[PromptValue]', stop: 'Optional[List[str]]' = None, callbacks: 'Optional[Union[Callbacks, List[Callbacks]]]' = None, **kwargs: 'Any') -> 'LLMResult'
Asynchronously pass a sequence of prompts and return model generations.
 
This method should make use of batched calls for models that expose a batched
API.
 
Use this method when you want to:
    1. take advantage of batched calls,
    2. need more output from the model than just the top generated value,
    3. are building chains that are agnostic to the underlying language model
        type (e.g., pure text completion models vs chat models).
 
Args:
    prompts: List of PromptValues. A PromptValue is an object that can be
        converted to match the format of any language model (string for pure
        text generation models and BaseMessages for chat models).
    stop: Stop words to use when generating. Model output is cut off at the
        first occurrence of any of these substrings.
    callbacks: Callbacks to pass through. Used for executing additional
        functionality, such as logging or streaming, throughout generation.
    **kwargs: Arbitrary additional keyword arguments. These are usually passed
        to the model provider API call.
 
Returns:
    An LLMResult, which contains a list of candidate Generations for each input
        prompt and additional model provider-specific output.
async ainvoke(self, input: 'LanguageModelInput', config: 'Optional[RunnableConfig]' = None, *, stop: 'Optional[List[str]]' = None, **kwargs: 'Any') -> 'str'
Default implementation of ainvoke, calls invoke from a thread.
 
The default implementation allows usage of async code even if
the Runnable did not implement a native async version of invoke.
 
Subclasses should override this method if they can run asynchronously.
async apredict(self, text: 'str', *, stop: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'str'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use ainvoke instead.
async apredict_messages(self, messages: 'List[BaseMessage]', *, stop: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'BaseMessage'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use ainvoke instead.
async astream(self, input: 'LanguageModelInput', config: 'Optional[RunnableConfig]' = None, *, stop: 'Optional[List[str]]' = None, **kwargs: 'Any') -> 'AsyncIterator[str]'
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
 
Args:
    input: The input to the Runnable.
    config: The config to use for the Runnable. Defaults to None.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    The output of the Runnable.
batch(self, inputs: 'List[LanguageModelInput]', config: 'Optional[Union[RunnableConfig, List[RunnableConfig]]]' = None, *, return_exceptions: 'bool' = False, **kwargs: 'Any') -> 'List[str]'
Default implementation runs invoke in parallel using a thread pool executor.
 
The default implementation of batch works well for IO bound runnables.
 
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying Runnable uses an API which supports a batch mode.
dict(self, **kwargs: 'Any') -> 'Dict'
Return a dictionary of the LLM.
generate(self, prompts: 'List[str]', stop: 'Optional[List[str]]' = None, callbacks: 'Optional[Union[Callbacks, List[Callbacks]]]' = None, *, tags: 'Optional[Union[List[str], List[List[str]]]]' = None, metadata: 'Optional[Union[Dict[str, Any], List[Dict[str, Any]]]]' = None, run_name: 'Optional[Union[str, List[str]]]' = None, run_id: 'Optional[Union[uuid.UUID, List[Optional[uuid.UUID]]]]' = None, **kwargs: 'Any') -> 'LLMResult'
Pass a sequence of prompts to a model and return generations.
 
This method should make use of batched calls for models that expose a batched
API.
 
Use this method when you want to:
    1. take advantage of batched calls,
    2. need more output from the model than just the top generated value,
    3. are building chains that are agnostic to the underlying language model
        type (e.g., pure text completion models vs chat models).
 
Args:
    prompts: List of string prompts.
    stop: Stop words to use when generating. Model output is cut off at the
        first occurrence of any of these substrings.
    callbacks: Callbacks to pass through. Used for executing additional
        functionality, such as logging or streaming, throughout generation.
    tags: List of tags to associate with each prompt. If provided, the length
        of the list must match the length of the prompts list.
    metadata: List of metadata dictionaries to associate with each prompt. If
        provided, the length of the list must match the length of the prompts
        list.
    run_name: List of run names to associate with each prompt. If provided, the
        length of the list must match the length of the prompts list.
    run_id: List of run IDs to associate with each prompt. If provided, the
        length of the list must match the length of the prompts list.
    **kwargs: Arbitrary additional keyword arguments. These are usually passed
        to the model provider API call.
 
Returns:
    An LLMResult, which contains a list of candidate Generations for each input
        prompt and additional model provider-specific output.
generate_prompt(self, prompts: 'List[PromptValue]', stop: 'Optional[List[str]]' = None, callbacks: 'Optional[Union[Callbacks, List[Callbacks]]]' = None, **kwargs: 'Any') -> 'LLMResult'
Pass a sequence of prompts to the model and return model generations.
 
This method should make use of batched calls for models that expose a batched
API.
 
Use this method when you want to:
    1. take advantage of batched calls,
    2. need more output from the model than just the top generated value,
    3. are building chains that are agnostic to the underlying language model
        type (e.g., pure text completion models vs chat models).
 
Args:
    prompts: List of PromptValues. A PromptValue is an object that can be
        converted to match the format of any language model (string for pure
        text generation models and BaseMessages for chat models).
    stop: Stop words to use when generating. Model output is cut off at the
        first occurrence of any of these substrings.
    callbacks: Callbacks to pass through. Used for executing additional
        functionality, such as logging or streaming, throughout generation.
    **kwargs: Arbitrary additional keyword arguments. These are usually passed
        to the model provider API call.
 
Returns:
    An LLMResult, which contains a list of candidate Generations for each input
        prompt and additional model provider-specific output.
invoke(self, input: 'LanguageModelInput', config: 'Optional[RunnableConfig]' = None, *, stop: 'Optional[List[str]]' = None, **kwargs: 'Any') -> 'str'
Transform a single input into an output. Override to implement.
 
Args:
    input: The input to the Runnable.
    config: A config to use when invoking the Runnable.
       The config supports standard keys like 'tags', 'metadata' for tracing
       purposes, 'max_concurrency' for controlling how much work to do
       in parallel, and other keys. Please refer to the RunnableConfig
       for more details.
 
Returns:
    The output of the Runnable.
predict(self, text: 'str', *, stop: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'str'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use invoke instead.
predict_messages(self, messages: 'List[BaseMessage]', *, stop: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'BaseMessage'
[*Deprecated*] 
 
Notes
-----
.. deprecated:: langchain-core==0.1.7
   Use invoke instead.
save(self, file_path: 'Union[Path, str]') -> 'None'
Save the LLM.
 
Args:
    file_path: Path to file to save the LLM to.
 
Raises:
    ValueError: If the file path is not a string or Path object.
 
Example:
.. code-block:: python
 
    llm.save(file_path="path/llm.yaml")
stream(self, input: 'LanguageModelInput', config: 'Optional[RunnableConfig]' = None, *, stop: 'Optional[List[str]]' = None, **kwargs: 'Any') -> 'Iterator[str]'
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
 
Args:
    input: The input to the Runnable.
    config: The config to use for the Runnable. Defaults to None.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    The output of the Runnable.

Class methods inherited from langchain_core.language_models.llms.BaseLLM:
raise_deprecation(values: 'Dict') -> 'Dict' from pydantic.v1.main.ModelMetaclass
Raise deprecation warning if callback_manager is used.

Readonly properties inherited from langchain_core.language_models.llms.BaseLLM:
OutputType
Get the input type for this runnable.

Data and other attributes inherited from langchain_core.language_models.llms.BaseLLM:
__orig_bases__ = (langchain_core.language_models.base.BaseLanguageModel[str], <class 'abc.ABC'>)

Methods inherited from langchain_core.language_models.base.BaseLanguageModel:
get_num_tokens(self, text: 'str') -> 'int'
Get the number of tokens present in the text.
 
Useful for checking if an input fits in a model's context window.
 
Args:
    text: The string input to tokenize.
 
Returns:
    The integer number of tokens in the text.
get_num_tokens_from_messages(self, messages: 'List[BaseMessage]') -> 'int'
Get the number of tokens in the messages.
 
Useful for checking if an input fits in a model's context window.
 
Args:
    messages: The message inputs to tokenize.
 
Returns:
    The sum of the number of tokens across the messages.
with_structured_output(self, schema: 'Union[Dict, Type[BaseModel]]', **kwargs: 'Any') -> 'Runnable[LanguageModelInput, Union[Dict, BaseModel]]'
Not implemented on this class.

Class methods inherited from langchain_core.language_models.base.BaseLanguageModel:
set_verbose(verbose: 'Optional[bool]') -> 'bool' from pydantic.v1.main.ModelMetaclass
If verbose is None, set it.
 
This allows users to pass in None as verbose to access the global setting.
 
Args:
    verbose: The verbosity setting to use.
 
Returns:
    The verbosity setting to use.

Readonly properties inherited from langchain_core.language_models.base.BaseLanguageModel:
InputType
Get the input type for this runnable.

Methods inherited from langchain_core.runnables.base.RunnableSerializable:
configurable_alternatives(self, which: 'ConfigurableField', *, default_key: 'str' = 'default', prefix_keys: 'bool' = False, **kwargs: 'Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]') -> 'RunnableSerializable[Input, Output]'
Configure alternatives for Runnables that can be set at runtime.
 
Args:
    which: The ConfigurableField instance that will be used to select the
        alternative.
    default_key: The default key to use if no alternative is selected.
        Defaults to "default".
    prefix_keys: Whether to prefix the keys with the ConfigurableField id.
        Defaults to False.
    **kwargs: A dictionary of keys to Runnable instances or callables that
        return Runnable instances.
 
Returns:
    A new Runnable with the alternatives configured.
 
.. code-block:: python
 
    from langchain_anthropic import ChatAnthropic
    from langchain_core.runnables.utils import ConfigurableField
    from langchain_openai import ChatOpenAI
 
    model = ChatAnthropic(
        model_name="claude-3-sonnet-20240229"
    ).configurable_alternatives(
        ConfigurableField(id="llm"),
        default_key="anthropic",
        openai=ChatOpenAI()
    )
 
    # uses the default model ChatAnthropic
    print(model.invoke("which organization created you?").content)
 
    # uses ChatOpenAI
    print(
        model.with_config(
            configurable={"llm": "openai"}
        ).invoke("which organization created you?").content
    )
configurable_fields(self, **kwargs: 'AnyConfigurableField') -> 'RunnableSerializable[Input, Output]'
Configure particular Runnable fields at runtime.
 
Args:
    **kwargs: A dictionary of ConfigurableField instances to configure.
 
Returns:
    A new Runnable with the fields configured.
 
.. code-block:: python
 
    from langchain_core.runnables import ConfigurableField
    from langchain_openai import ChatOpenAI
 
    model = ChatOpenAI(max_tokens=20).configurable_fields(
        max_tokens=ConfigurableField(
            id="output_token_number",
            name="Max tokens in the output",
            description="The maximum number of tokens in the output",
        )
    )
 
    # max_tokens = 20
    print(
        "max_tokens_20: ",
        model.invoke("tell me something about chess").content
    )
 
    # max_tokens = 200
    print("max_tokens_200: ", model.with_config(
        configurable={"output_token_number": 200}
        ).invoke("tell me something about chess").content
    )
to_json(self) -> 'Union[SerializedConstructor, SerializedNotImplemented]'
Serialize the Runnable to JSON.
 
Returns:
    A JSON-serializable representation of the Runnable.

Methods inherited from langchain_core.load.serializable.Serializable:
__repr_args__(self) -> Any
Returns the attributes to show in __str__, __repr__, and __pretty__ this is generally overridden.
 
Can either return:
* name - value pairs, e.g.: `[('foo_name', 'foo'), ('bar_name', ['b', 'a', 'r'])]`
* or, just values, e.g.: `[(None, 'foo'), (None, ['b', 'a', 'r'])]`
to_json_not_implemented(self) -> langchain_core.load.serializable.SerializedNotImplemented

Class methods inherited from langchain_core.load.serializable.Serializable:
lc_id() -> List[str] from pydantic.v1.main.ModelMetaclass
A unique identifier for this class for serialization purposes.
 
The unique identifier is a list of strings that describes the path
to the object.
For example, for the class `langchain.llms.openai.OpenAI`, the id is
["langchain", "llms", "openai", "OpenAI"].

Methods inherited from pydantic.v1.main.BaseModel:
__eq__(self, other: Any) -> bool
Return self==value.
__getstate__(self) -> 'DictAny'
__init__(__pydantic_self__, **data: Any) -> None
Create a new model by parsing and validating input data from keyword arguments.
 
Raises ValidationError if the input data cannot be parsed to form a valid model.
__iter__(self) -> 'TupleGenerator'
so `dict(model)` works
__setattr__(self, name, value)
Implement setattr(self, name, value).
__setstate__(self, state: 'DictAny') -> None
copy(self: 'Model', *, include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, update: Optional[ForwardRef('DictStrAny')] = None, deep: bool = False) -> 'Model'
Duplicate a model, optionally choose which fields to include, exclude and change.
 
:param include: fields to include in new model
:param exclude: fields to exclude from new model, as with values this takes precedence over include
:param update: values to change/add in the new model. Note: the data is not validated before creating
    the new model: you should trust this data
:param deep: set to `True` to make a deep copy of the model
:return: new model instance
json(self, *, include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) -> str
Generate a JSON representation of the model, `include` and `exclude` arguments as per `dict()`.
 
`encoder` is an optional function to supply as `default` to json.dumps(), other arguments as per `json.dumps()`.

Class methods inherited from pydantic.v1.main.BaseModel:
__get_validators__() -> 'CallableGenerator' from pydantic.v1.main.ModelMetaclass
__try_update_forward_refs__(**localns: Any) -> None from pydantic.v1.main.ModelMetaclass
Same as update_forward_refs but will not raise exception
when forward references are not defined.
construct(_fields_set: Optional[ForwardRef('SetStr')] = None, **values: Any) -> 'Model' from pydantic.v1.main.ModelMetaclass
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if `Config.extra = 'allow'` was set since it adds all passed values
from_orm(obj: Any) -> 'Model' from pydantic.v1.main.ModelMetaclass
parse_file(path: Union[str, pathlib.Path], *, content_type: str = None, encoding: str = 'utf8', proto: pydantic.v1.parse.Protocol = None, allow_pickle: bool = False) -> 'Model' from pydantic.v1.main.ModelMetaclass
parse_obj(obj: Any) -> 'Model' from pydantic.v1.main.ModelMetaclass
parse_raw(b: Union[str, bytes], *, content_type: str = None, encoding: str = 'utf8', proto: pydantic.v1.parse.Protocol = None, allow_pickle: bool = False) -> 'Model' from pydantic.v1.main.ModelMetaclass
schema(by_alias: bool = True, ref_template: str = '#/definitions/{model}') -> 'DictStrAny' from pydantic.v1.main.ModelMetaclass
schema_json(*, by_alias: bool = True, ref_template: str = '#/definitions/{model}', **dumps_kwargs: Any) -> str from pydantic.v1.main.ModelMetaclass
update_forward_refs(**localns: Any) -> None from pydantic.v1.main.ModelMetaclass
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate(value: Any) -> 'Model' from pydantic.v1.main.ModelMetaclass

Data descriptors inherited from pydantic.v1.main.BaseModel:
__dict__
dictionary for instance variables (if defined)
__fields_set__

Methods inherited from pydantic.v1.utils.Representation:
__pretty__(self, fmt: Callable[[Any], Any], **kwargs: Any) -> Generator[Any, NoneType, NoneType]
Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects
__repr__(self) -> str
Return repr(self).
__repr_name__(self) -> str
Name of the instance's class, used in __repr__.
__repr_str__(self, join_str: str) -> str
__rich_repr__(self) -> 'RichReprResult'
Get fields for Rich library

Methods inherited from langchain_core.runnables.base.Runnable:
__or__(self, other: 'Union[Runnable[Any, Other], Callable[[Any], Other], Callable[[Iterator[Any]], Iterator[Other]], Mapping[str, Union[Runnable[Any, Other], Callable[[Any], Other], Any]]]') -> 'RunnableSerializable[Input, Other]'
Compose this Runnable with another object to create a RunnableSequence.
__ror__(self, other: 'Union[Runnable[Other, Any], Callable[[Other], Any], Callable[[Iterator[Other]], Iterator[Any]], Mapping[str, Union[Runnable[Other, Any], Callable[[Other], Any], Any]]]') -> 'RunnableSerializable[Other, Output]'
Compose this Runnable with another object to create a RunnableSequence.
async abatch_as_completed(self, inputs: 'Sequence[Input]', config: 'Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]' = None, *, return_exceptions: 'bool' = False, **kwargs: 'Optional[Any]') -> 'AsyncIterator[Tuple[int, Union[Output, Exception]]]'
Run ainvoke in parallel on a list of inputs,
yielding results as they complete.
 
Args:
    inputs: A list of inputs to the Runnable.
    config: A config to use when invoking the Runnable.
       The config supports standard keys like 'tags', 'metadata' for tracing
       purposes, 'max_concurrency' for controlling how much work to do
       in parallel, and other keys. Please refer to the RunnableConfig
       for more details. Defaults to None. Defaults to None.
    return_exceptions: Whether to return exceptions instead of raising them.
        Defaults to False.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    A tuple of the index of the input and the output from the Runnable.
as_tool(self, args_schema: 'Optional[Type[BaseModel]]' = None, *, name: 'Optional[str]' = None, description: 'Optional[str]' = None, arg_types: 'Optional[Dict[str, Type]]' = None) -> 'BaseTool'
[*Beta*] Create a BaseTool from a Runnable.
 
``as_tool`` will instantiate a BaseTool with a name, description, and
``args_schema`` from a Runnable. Where possible, schemas are inferred
from ``runnable.get_input_schema``. Alternatively (e.g., if the
Runnable takes a dict as input and the specific dict keys are not typed),
the schema can be specified directly with ``args_schema``. You can also
pass ``arg_types`` to just specify the required arguments and their types.
 
Args:
    args_schema: The schema for the tool. Defaults to None.
    name: The name of the tool. Defaults to None.
    description: The description of the tool. Defaults to None.
    arg_types: A dictionary of argument names to types. Defaults to None.
 
Returns:
    A BaseTool instance.
 
Typed dict input:
 
.. code-block:: python
 
    from typing import List
    from typing_extensions import TypedDict
    from langchain_core.runnables import RunnableLambda
 
    class Args(TypedDict):
        a: int
        b: List[int]
 
    def f(x: Args) -> str:
        return str(x["a"] * max(x["b"]))
 
    runnable = RunnableLambda(f)
    as_tool = runnable.as_tool()
    as_tool.invoke({"a": 3, "b": [1, 2]})
 
``dict`` input, specifying schema via ``args_schema``:
 
.. code-block:: python
 
    from typing import Any, Dict, List
    from langchain_core.pydantic_v1 import BaseModel, Field
    from langchain_core.runnables import RunnableLambda
 
    def f(x: Dict[str, Any]) -> str:
        return str(x["a"] * max(x["b"]))
 
    class FSchema(BaseModel):
        """Apply a function to an integer and list of integers."""
 
        a: int = Field(..., description="Integer")
        b: List[int] = Field(..., description="List of ints")
 
    runnable = RunnableLambda(f)
    as_tool = runnable.as_tool(FSchema)
    as_tool.invoke({"a": 3, "b": [1, 2]})
 
``dict`` input, specifying schema via ``arg_types``:
 
.. code-block:: python
 
    from typing import Any, Dict, List
    from langchain_core.runnables import RunnableLambda
 
    def f(x: Dict[str, Any]) -> str:
        return str(x["a"] * max(x["b"]))
 
    runnable = RunnableLambda(f)
    as_tool = runnable.as_tool(arg_types={"a": int, "b": List[int]})
    as_tool.invoke({"a": 3, "b": [1, 2]})
 
String input:
 
.. code-block:: python
 
    from langchain_core.runnables import RunnableLambda
 
    def f(x: str) -> str:
        return x + "a"
 
    def g(x: str) -> str:
        return x + "z"
 
    runnable = RunnableLambda(f) | g
    as_tool = runnable.as_tool()
    as_tool.invoke("b")
 
.. versionadded:: 0.2.14
 
Notes
-----
.. beta::
   This API is in beta and may change in the future.
assign(self, **kwargs: 'Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]') -> 'RunnableSerializable[Any, Any]'
Assigns new fields to the dict output of this Runnable.
Returns a new Runnable.
 
.. code-block:: python
 
    from langchain_community.llms.fake import FakeStreamingListLLM
    from langchain_core.output_parsers import StrOutputParser
    from langchain_core.prompts import SystemMessagePromptTemplate
    from langchain_core.runnables import Runnable
    from operator import itemgetter
 
    prompt = (
        SystemMessagePromptTemplate.from_template("You are a nice assistant.")
        + "{question}"
    )
    llm = FakeStreamingListLLM(responses=["foo-lish"])
 
    chain: Runnable = prompt | llm | {"str": StrOutputParser()}
 
    chain_with_assign = chain.assign(hello=itemgetter("str") | llm)
 
    print(chain_with_assign.input_schema.schema())
    # {'title': 'PromptInput', 'type': 'object', 'properties':
    {'question': {'title': 'Question', 'type': 'string'}}}
    print(chain_with_assign.output_schema.schema()) #
    {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
    {'str': {'title': 'Str',
    'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
astream_events(self, input: 'Any', config: 'Optional[RunnableConfig]' = None, *, version: "Literal['v1', 'v2']", include_names: 'Optional[Sequence[str]]' = None, include_types: 'Optional[Sequence[str]]' = None, include_tags: 'Optional[Sequence[str]]' = None, exclude_names: 'Optional[Sequence[str]]' = None, exclude_types: 'Optional[Sequence[str]]' = None, exclude_tags: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'AsyncIterator[StreamEvent]'
[*Beta*] Generate a stream of events.
 
Use to create an iterator over StreamEvents that provide real-time information
about the progress of the Runnable, including StreamEvents from intermediate
results.
 
A StreamEvent is a dictionary with the following schema:
 
- ``event``: **str** - Event names are of the
    format: on_[runnable_type]_(start|stream|end).
- ``name``: **str** - The name of the Runnable that generated the event.
- ``run_id``: **str** - randomly generated ID associated with the given execution of
    the Runnable that emitted the event.
    A child Runnable that gets invoked as part of the execution of a
    parent Runnable is assigned its own unique ID.
- ``parent_ids``: **List[str]** - The IDs of the parent runnables that
    generated the event. The root Runnable will have an empty list.
    The order of the parent IDs is from the root to the immediate parent.
    Only available for v2 version of the API. The v1 version of the API
    will return an empty list.
- ``tags``: **Optional[List[str]]** - The tags of the Runnable that generated
    the event.
- ``metadata``: **Optional[Dict[str, Any]]** - The metadata of the Runnable
    that generated the event.
- ``data``: **Dict[str, Any]**
 
 
Below is a table that illustrates some evens that might be emitted by various
chains. Metadata fields have been omitted from the table for brevity.
Chain definitions have been included after the table.
 
**ATTENTION** This reference table is for the V2 version of the schema.
 
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| event                | name             | chunk                           | input                                         | output                                          |
+======================+==================+=================================+===============================================+=================================================+
| on_chat_model_start  | [model name]     |                                 | {"messages": [[SystemMessage, HumanMessage]]} |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chat_model_stream | [model name]     | AIMessageChunk(content="hello") |                                               |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chat_model_end    | [model name]     |                                 | {"messages": [[SystemMessage, HumanMessage]]} | AIMessageChunk(content="hello world")           |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_llm_start         | [model name]     |                                 | {'input': 'hello'}                            |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_llm_stream        | [model name]     | 'Hello'                         |                                               |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_llm_end           | [model name]     |                                 | 'Hello human!'                                |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chain_start       | format_docs      |                                 |                                               |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chain_stream      | format_docs      | "hello world!, goodbye world!"  |                                               |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_chain_end         | format_docs      |                                 | [Document(...)]                               | "hello world!, goodbye world!"                  |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_tool_start        | some_tool        |                                 | {"x": 1, "y": "2"}                            |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_tool_end          | some_tool        |                                 |                                               | {"x": 1, "y": "2"}                              |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_retriever_start   | [retriever name] |                                 | {"query": "hello"}                            |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_retriever_end     | [retriever name] |                                 | {"query": "hello"}                            | [Document(...), ..]                             |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_prompt_start      | [template_name]  |                                 | {"question": "hello"}                         |                                                 |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
| on_prompt_end        | [template_name]  |                                 | {"question": "hello"}                         | ChatPromptValue(messages: [SystemMessage, ...]) |
+----------------------+------------------+---------------------------------+-----------------------------------------------+-------------------------------------------------+
 
In addition to the standard events, users can also dispatch custom events (see example below).
 
Custom events will be only be surfaced with in the `v2` version of the API!
 
A custom event has following format:
 
+-----------+------+-----------------------------------------------------------------------------------------------------------+
| Attribute | Type | Description                                                                                               |
+===========+======+===========================================================================================================+
| name      | str  | A user defined name for the event.                                                                        |
+-----------+------+-----------------------------------------------------------------------------------------------------------+
| data      | Any  | The data associated with the event. This can be anything, though we suggest making it JSON serializable.  |
+-----------+------+-----------------------------------------------------------------------------------------------------------+
 
Here are declarations associated with the standard events shown above:
 
`format_docs`:
 
.. code-block:: python
 
    def format_docs(docs: List[Document]) -> str:
        '''Format the docs.'''
        return ", ".join([doc.page_content for doc in docs])
 
    format_docs = RunnableLambda(format_docs)
 
`some_tool`:
 
.. code-block:: python
 
    @tool
    def some_tool(x: int, y: str) -> dict:
        '''Some_tool.'''
        return {"x": x, "y": y}
 
`prompt`:
 
.. code-block:: python
 
    template = ChatPromptTemplate.from_messages(
        [("system", "You are Cat Agent 007"), ("human", "{question}")]
    ).with_config({"run_name": "my_template", "tags": ["my_template"]})
 
 
Example:
 
.. code-block:: python
 
    from langchain_core.runnables import RunnableLambda
 
    async def reverse(s: str) -> str:
        return s[::-1]
 
    chain = RunnableLambda(func=reverse)
 
    events = [
        event async for event in chain.astream_events("hello", version="v2")
    ]
 
    # will produce the following events (run_id, and parent_ids
    # has been omitted for brevity):
    [
        {
            "data": {"input": "hello"},
            "event": "on_chain_start",
            "metadata": {},
            "name": "reverse",
            "tags": [],
        },
        {
            "data": {"chunk": "olleh"},
            "event": "on_chain_stream",
            "metadata": {},
            "name": "reverse",
            "tags": [],
        },
        {
            "data": {"output": "olleh"},
            "event": "on_chain_end",
            "metadata": {},
            "name": "reverse",
            "tags": [],
        },
    ]
 
 
Example: Dispatch Custom Event
 
.. code-block:: python
 
    from langchain_core.callbacks.manager import (
        adispatch_custom_event,
    )
    from langchain_core.runnables import RunnableLambda, RunnableConfig
    import asyncio
 
 
    async def slow_thing(some_input: str, config: RunnableConfig) -> str:
        """Do something that takes a long time."""
        await asyncio.sleep(1) # Placeholder for some slow operation
        await adispatch_custom_event(
            "progress_event",
            {"message": "Finished step 1 of 3"},
            config=config # Must be included for python < 3.10
        )
        await asyncio.sleep(1) # Placeholder for some slow operation
        await adispatch_custom_event(
            "progress_event",
            {"message": "Finished step 2 of 3"},
            config=config # Must be included for python < 3.10
        )
        await asyncio.sleep(1) # Placeholder for some slow operation
        return "Done"
 
    slow_thing = RunnableLambda(slow_thing)
 
    async for event in slow_thing.astream_events("some_input", version="v2"):
        print(event)
 
Args:
    input: The input to the Runnable.
    config: The config to use for the Runnable.
    version: The version of the schema to use either `v2` or `v1`.
             Users should use `v2`.
             `v1` is for backwards compatibility and will be deprecated
             in 0.4.0.
             No default will be assigned until the API is stabilized.
             custom events will only be surfaced in `v2`.
    include_names: Only include events from runnables with matching names.
    include_types: Only include events from runnables with matching types.
    include_tags: Only include events from runnables with matching tags.
    exclude_names: Exclude events from runnables with matching names.
    exclude_types: Exclude events from runnables with matching types.
    exclude_tags: Exclude events from runnables with matching tags.
    kwargs: Additional keyword arguments to pass to the Runnable.
        These will be passed to astream_log as this implementation
        of astream_events is built on top of astream_log.
 
Yields:
    An async stream of StreamEvents.
 
Raises:
    NotImplementedError: If the version is not `v1` or `v2`.
 
Notes
-----
.. beta::
   This API is in beta and may change in the future.
async astream_log(self, input: 'Any', config: 'Optional[RunnableConfig]' = None, *, diff: 'bool' = True, with_streamed_output_list: 'bool' = True, include_names: 'Optional[Sequence[str]]' = None, include_types: 'Optional[Sequence[str]]' = None, include_tags: 'Optional[Sequence[str]]' = None, exclude_names: 'Optional[Sequence[str]]' = None, exclude_types: 'Optional[Sequence[str]]' = None, exclude_tags: 'Optional[Sequence[str]]' = None, **kwargs: 'Any') -> 'Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]'
Stream all output from a Runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
 
Output is streamed as Log objects, which include a list of
Jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
 
The Jsonpatch ops can be applied in order to construct state.
 
Args:
    input: The input to the Runnable.
    config: The config to use for the Runnable.
    diff: Whether to yield diffs between each step or the current state.
    with_streamed_output_list: Whether to yield the streamed_output list.
    include_names: Only include logs with these names.
    include_types: Only include logs with these types.
    include_tags: Only include logs with these tags.
    exclude_names: Exclude logs with these names.
    exclude_types: Exclude logs with these types.
    exclude_tags: Exclude logs with these tags.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    A RunLogPatch or RunLog object.
async atransform(self, input: 'AsyncIterator[Input]', config: 'Optional[RunnableConfig]' = None, **kwargs: 'Optional[Any]') -> 'AsyncIterator[Output]'
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
 
Args:
    input: An async iterator of inputs to the Runnable.
    config: The config to use for the Runnable. Defaults to None.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    The output of the Runnable.
batch_as_completed(self, inputs: 'Sequence[Input]', config: 'Optional[Union[RunnableConfig, Sequence[RunnableConfig]]]' = None, *, return_exceptions: 'bool' = False, **kwargs: 'Optional[Any]') -> 'Iterator[Tuple[int, Union[Output, Exception]]]'
Run invoke in parallel on a list of inputs,
yielding results as they complete.
bind(self, **kwargs: 'Any') -> 'Runnable[Input, Output]'
Bind arguments to a Runnable, returning a new Runnable.
 
Useful when a Runnable in a chain requires an argument that is not
in the output of the previous Runnable or included in the user input.
 
Args:
    kwargs: The arguments to bind to the Runnable.
 
Returns:
    A new Runnable with the arguments bound.
 
Example:
 
.. code-block:: python
 
    from langchain_community.chat_models import ChatOllama
    from langchain_core.output_parsers import StrOutputParser
 
    llm = ChatOllama(model='llama2')
 
    # Without bind.
    chain = (
        llm
        | StrOutputParser()
    )
 
    chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
    # Output is 'One two three four five.'
 
    # With bind.
    chain = (
        llm.bind(stop=["three"])
        | StrOutputParser()
    )
 
    chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
    # Output is 'One two'
config_schema(self, *, include: 'Optional[Sequence[str]]' = None) -> 'Type[BaseModel]'
The type of config this Runnable accepts specified as a pydantic model.
 
To mark a field as configurable, see the `configurable_fields`
and `configurable_alternatives` methods.
 
Args:
    include: A list of fields to include in the config schema.
 
Returns:
    A pydantic model that can be used to validate config.
get_graph(self, config: 'Optional[RunnableConfig]' = None) -> 'Graph'
Return a graph representation of this Runnable.
get_input_schema(self, config: 'Optional[RunnableConfig]' = None) -> 'Type[BaseModel]'
Get a pydantic model that can be used to validate input to the Runnable.
 
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic input schema that depends on which
configuration the Runnable is invoked with.
 
This method allows to get an input schema for a specific configuration.
 
Args:
    config: A config to use when generating the schema.
 
Returns:
    A pydantic model that can be used to validate input.
get_name(self, suffix: 'Optional[str]' = None, *, name: 'Optional[str]' = None) -> 'str'
Get the name of the Runnable.
get_output_schema(self, config: 'Optional[RunnableConfig]' = None) -> 'Type[BaseModel]'
Get a pydantic model that can be used to validate output to the Runnable.
 
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the Runnable is invoked with.
 
This method allows to get an output schema for a specific configuration.
 
Args:
    config: A config to use when generating the schema.
 
Returns:
    A pydantic model that can be used to validate output.
get_prompts(self, config: 'Optional[RunnableConfig]' = None) -> 'List[BasePromptTemplate]'
Return a list of prompts used by this Runnable.
map(self) -> 'Runnable[List[Input], List[Output]]'
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
 
Returns:
    A new Runnable that maps a list of inputs to a list of outputs.
 
Example:
 
    .. code-block:: python
 
            from langchain_core.runnables import RunnableLambda
 
            def _lambda(x: int) -> int:
                return x + 1
 
            runnable = RunnableLambda(_lambda)
            print(runnable.map().invoke([1, 2, 3])) # [2, 3, 4]
pick(self, keys: 'Union[str, List[str]]') -> 'RunnableSerializable[Any, Any]'
Pick keys from the dict output of this Runnable.
 
Pick single key:
    .. code-block:: python
 
        import json
 
        from langchain_core.runnables import RunnableLambda, RunnableMap
 
        as_str = RunnableLambda(str)
        as_json = RunnableLambda(json.loads)
        chain = RunnableMap(str=as_str, json=as_json)
 
        chain.invoke("[1, 2, 3]")
        # -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
 
        json_only_chain = chain.pick("json")
        json_only_chain.invoke("[1, 2, 3]")
        # -> [1, 2, 3]
 
Pick list of keys:
    .. code-block:: python
 
        from typing import Any
 
        import json
 
        from langchain_core.runnables import RunnableLambda, RunnableMap
 
        as_str = RunnableLambda(str)
        as_json = RunnableLambda(json.loads)
        def as_bytes(x: Any) -> bytes:
            return bytes(x, "utf-8")
 
        chain = RunnableMap(
            str=as_str,
            json=as_json,
            bytes=RunnableLambda(as_bytes)
        )
 
        chain.invoke("[1, 2, 3]")
        # -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
 
        json_and_bytes_chain = chain.pick(["json", "bytes"])
        json_and_bytes_chain.invoke("[1, 2, 3]")
        # -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
pipe(self, *others: 'Union[Runnable[Any, Other], Callable[[Any], Other]]', name: 'Optional[str]' = None) -> 'RunnableSerializable[Input, Other]'
Compose this Runnable with Runnable-like objects to make a RunnableSequence.
 
Equivalent to `RunnableSequence(self, *others)` or `self | others[0] | ...`
 
Example:
    .. code-block:: python
 
        from langchain_core.runnables import RunnableLambda
 
        def add_one(x: int) -> int:
            return x + 1
 
        def mul_two(x: int) -> int:
            return x * 2
 
        runnable_1 = RunnableLambda(add_one)
        runnable_2 = RunnableLambda(mul_two)
        sequence = runnable_1.pipe(runnable_2)
        # Or equivalently:
        # sequence = runnable_1 | runnable_2
        # sequence = RunnableSequence(first=runnable_1, last=runnable_2)
        sequence.invoke(1)
        await sequence.ainvoke(1)
        # -> 4
 
        sequence.batch([1, 2, 3])
        await sequence.abatch([1, 2, 3])
        # -> [4, 6, 8]
transform(self, input: 'Iterator[Input]', config: 'Optional[RunnableConfig]' = None, **kwargs: 'Optional[Any]') -> 'Iterator[Output]'
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
 
Args:
    input: An iterator of inputs to the Runnable.
    config: The config to use for the Runnable. Defaults to None.
    **kwargs: Additional keyword arguments to pass to the Runnable.
 
Yields:
    The output of the Runnable.
with_alisteners(self, *, on_start: 'Optional[AsyncListener]' = None, on_end: 'Optional[AsyncListener]' = None, on_error: 'Optional[AsyncListener]' = None) -> 'Runnable[Input, Output]'
Bind asynchronous lifecycle listeners to a Runnable, returning a new Runnable.
 
on_start: Asynchronously called before the Runnable starts running.
on_end: Asynchronously called after the Runnable finishes running.
on_error: Asynchronously called if the Runnable throws an error.
 
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
 
Args:
    on_start: Asynchronously called before the Runnable starts running.
        Defaults to None.
    on_end: Asynchronously called after the Runnable finishes running.
        Defaults to None.
    on_error: Asynchronously called if the Runnable throws an error.
        Defaults to None.
 
Returns:
    A new Runnable with the listeners bound.
 
Example:
 
.. code-block:: python
 
    from langchain_core.runnables import RunnableLambda
    import time
 
    async def test_runnable(time_to_sleep : int):
        print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
        await asyncio.sleep(time_to_sleep)
        print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")
 
    async def fn_start(run_obj : Runnable):
        print(f"on start callback starts at {format_t(time.time())}
        await asyncio.sleep(3)
        print(f"on start callback ends at {format_t(time.time())}")
 
    async def fn_end(run_obj : Runnable):
        print(f"on end callback starts at {format_t(time.time())}
        await asyncio.sleep(2)
        print(f"on end callback ends at {format_t(time.time())}")
 
    runnable = RunnableLambda(test_runnable).with_alisteners(
        on_start=fn_start,
        on_end=fn_end
    )
    async def concurrent_runs():
        await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))
 
    asyncio.run(concurrent_runs())
    Result:
    on start callback starts at 2024-05-16T14:20:29.637053+00:00
    on start callback starts at 2024-05-16T14:20:29.637150+00:00
    on start callback ends at 2024-05-16T14:20:32.638305+00:00
    on start callback ends at 2024-05-16T14:20:32.638383+00:00
    Runnable[3s]: starts at 2024-05-16T14:20:32.638849+00:00
    Runnable[5s]: starts at 2024-05-16T14:20:32.638999+00:00
    Runnable[3s]: ends at 2024-05-16T14:20:35.640016+00:00
    on end callback starts at 2024-05-16T14:20:35.640534+00:00
    Runnable[5s]: ends at 2024-05-16T14:20:37.640169+00:00
    on end callback starts at 2024-05-16T14:20:37.640574+00:00
    on end callback ends at 2024-05-16T14:20:37.640654+00:00
    on end callback ends at 2024-05-16T14:20:39.641751+00:00
with_config(self, config: 'Optional[RunnableConfig]' = None, **kwargs: 'Any') -> 'Runnable[Input, Output]'
Bind config to a Runnable, returning a new Runnable.
 
Args:
    config: The config to bind to the Runnable.
    kwargs: Additional keyword arguments to pass to the Runnable.
 
Returns:
    A new Runnable with the config bound.
with_fallbacks(self, fallbacks: 'Sequence[Runnable[Input, Output]]', *, exceptions_to_handle: 'Tuple[Type[BaseException], ...]' = (<class 'Exception'>,), exception_key: 'Optional[str]' = None) -> 'RunnableWithFallbacksT[Input, Output]'
Add fallbacks to a Runnable, returning a new Runnable.
 
The new Runnable will try the original Runnable, and then each fallback
in order, upon failures.
 
Args:
    fallbacks: A sequence of runnables to try if the original Runnable fails.
    exceptions_to_handle: A tuple of exception types to handle.
        Defaults to (Exception,).
    exception_key: If string is specified then handled exceptions will be passed
        to fallbacks as part of the input under the specified key. If None,
        exceptions will not be passed to fallbacks. If used, the base Runnable
        and its fallbacks must accept a dictionary as input. Defaults to None.
 
Returns:
    A new Runnable that will try the original Runnable, and then each
    fallback in order, upon failures.
 
Example:
 
    .. code-block:: python
 
        from typing import Iterator
 
        from langchain_core.runnables import RunnableGenerator
 
 
        def _generate_immediate_error(input: Iterator) -> Iterator[str]:
            raise ValueError()
            yield ""
 
 
        def _generate(input: Iterator) -> Iterator[str]:
            yield from "foo bar"
 
 
        runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
            [RunnableGenerator(_generate)]
            )
        print(''.join(runnable.stream({}))) #foo bar
 
Args:
    fallbacks: A sequence of runnables to try if the original Runnable fails.
    exceptions_to_handle: A tuple of exception types to handle.
    exception_key: If string is specified then handled exceptions will be passed
        to fallbacks as part of the input under the specified key. If None,
        exceptions will not be passed to fallbacks. If used, the base Runnable
        and its fallbacks must accept a dictionary as input.
 
Returns:
    A new Runnable that will try the original Runnable, and then each
    fallback in order, upon failures.
with_listeners(self, *, on_start: 'Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]' = None, on_end: 'Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]' = None, on_error: 'Optional[Union[Callable[[Run], None], Callable[[Run, RunnableConfig], None]]]' = None) -> 'Runnable[Input, Output]'
Bind lifecycle listeners to a Runnable, returning a new Runnable.
 
on_start: Called before the Runnable starts running, with the Run object.
on_end: Called after the Runnable finishes running, with the Run object.
on_error: Called if the Runnable throws an error, with the Run object.
 
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
 
Args:
    on_start: Called before the Runnable starts running. Defaults to None.
    on_end: Called after the Runnable finishes running. Defaults to None.
    on_error: Called if the Runnable throws an error. Defaults to None.
 
Returns:
    A new Runnable with the listeners bound.
 
Example:
 
.. code-block:: python
 
    from langchain_core.runnables import RunnableLambda
    from langchain_core.tracers.schemas import Run
 
    import time
 
    def test_runnable(time_to_sleep : int):
        time.sleep(time_to_sleep)
 
    def fn_start(run_obj: Run):
        print("start_time:", run_obj.start_time)
 
    def fn_end(run_obj: Run):
        print("end_time:", run_obj.end_time)
 
    chain = RunnableLambda(test_runnable).with_listeners(
        on_start=fn_start,
        on_end=fn_end
    )
    chain.invoke(2)
with_retry(self, *, retry_if_exception_type: 'Tuple[Type[BaseException], ...]' = (<class 'Exception'>,), wait_exponential_jitter: 'bool' = True, stop_after_attempt: 'int' = 3) -> 'Runnable[Input, Output]'
Create a new Runnable that retries the original Runnable on exceptions.
 
Args:
    retry_if_exception_type: A tuple of exception types to retry on.
        Defaults to (Exception,).
    wait_exponential_jitter: Whether to add jitter to the wait
        time between retries. Defaults to True.
    stop_after_attempt: The maximum number of attempts to make before
        giving up. Defaults to 3.
 
Returns:
    A new Runnable that retries the original Runnable on exceptions.
 
Example:
 
.. code-block:: python
 
    from langchain_core.runnables import RunnableLambda
 
    count = 0
 
 
    def _lambda(x: int) -> None:
        global count
        count = count + 1
        if x == 1:
            raise ValueError("x is 1")
        else:
             pass
 
 
    runnable = RunnableLambda(_lambda)
    try:
        runnable.with_retry(
            stop_after_attempt=2,
            retry_if_exception_type=(ValueError,),
        ).invoke(1)
    except ValueError:
        pass
 
    assert (count == 2)
 
 
Args:
    retry_if_exception_type: A tuple of exception types to retry on
    wait_exponential_jitter: Whether to add jitter to the wait time
                             between retries
    stop_after_attempt: The maximum number of attempts to make before giving up
 
Returns:
    A new Runnable that retries the original Runnable on exceptions.
with_types(self, *, input_type: 'Optional[Type[Input]]' = None, output_type: 'Optional[Type[Output]]' = None) -> 'Runnable[Input, Output]'
Bind input and output types to a Runnable, returning a new Runnable.
 
Args:
    input_type: The input type to bind to the Runnable. Defaults to None.
    output_type: The output type to bind to the Runnable. Defaults to None.
 
Returns:
    A new Runnable with the types bound.

Readonly properties inherited from langchain_core.runnables.base.Runnable:
config_specs
List configurable fields for this Runnable.
input_schema
The type of input this Runnable accepts specified as a pydantic model.
output_schema
The type of output this Runnable produces specified as a pydantic model.

Data and other attributes inherited from langchain_core.runnables.base.Runnable:
name = None

Class methods inherited from typing.Generic:
__class_getitem__(params) from pydantic.v1.main.ModelMetaclass
__init_subclass__(*args, **kwargs) from pydantic.v1.main.ModelMetaclass
This method is called when a class is subclassed.
 
The default implementation does nothing. It may be
overridden to extend subclasses.

 
class OpenAIEmbeddings(ProxyOpenAI, langchain_openai.embeddings.base.OpenAIEmbeddings)
    OpenAIEmbeddings(*args, client: Any = None, async_client: Any = None, model: Optional[str] = None, dimensions: Optional[int] = None, deployment: Optional[str] = 'text-embedding-ada-002', api_version: Optional[str] = None, base_url: Optional[str] = None, openai_api_type: Optional[str] = None, openai_proxy: Optional[str] = None, embedding_ctx_length: int = 8191, api_key: Optional[pydantic.v1.types.SecretStr] = None, organization: Optional[str] = None, allowed_special: Union[Literal['all'], Set[str], NoneType] = None, disallowed_special: Union[Literal['all'], Set[str], Sequence[str], NoneType] = None, chunk_size: int = 16, max_retries: int = 2, timeout: Union[float, Tuple[float, float], Any, NoneType] = None, headers: Any = None, tiktoken_enabled: bool = True, tiktoken_model_name: Optional[str] = 'text-embedding-ada-002', show_progress_bar: bool = False, model_kwargs: Dict[str, Any] = None, skip_empty: bool = False, default_headers: Optional[Mapping[str, str]] = None, default_query: Optional[Mapping[str, object]] = None, retry_min_seconds: int = 4, retry_max_seconds: int = 20, http_client: Optional[Any] = None, http_async_client: Optional[Any] = None, check_embedding_ctx_length: bool = True, proxy_client: Optional[Any] = None, deployment_id: Optional[str] = None, config_name: Optional[str] = None, config_id: Optional[str] = None, proxy_model_name: Optional[str] = None) -&gt; None
 

 
 
Method resolution order:
OpenAIEmbeddings
ProxyOpenAI
gen_ai_hub.proxy.langchain.base.BaseAuth
langchain_openai.embeddings.base.OpenAIEmbeddings
pydantic.v1.main.BaseModel
pydantic.v1.utils.Representation
langchain_core.embeddings.embeddings.Embeddings
abc.ABC
builtins.object

Methods defined here:
__init__(self, *args, **kwargs)
Create a new model by parsing and validating input data from keyword arguments.
 
Raises ValidationError if the input data cannot be parsed to form a valid model.

Class methods defined here:
validate_environment(values: Dict) -> Dict from pydantic.v1.main.ModelMetaclass
Validates the environment.
 
:param values: The input values
:type values: Dict
:return: The validated values
:rtype: Dict

Static methods defined here:
__json_encoder__ = pydantic_encoder(obj: Any) -> Any

Data descriptors defined here:
__weakref__
list of weak references to the object (if defined)

Data and other attributes defined here:
__abstractmethods__ = frozenset()
__annotations__ = {'chunk_size': <class 'int'>, 'model': typing.Optional[str], 'openai_api_version': typing.Optional[str], 'tiktoken_model_name': typing.Optional[str]}
__class_vars__ = set()
__config__ = <class 'pydantic.v1.config.Config'>
__custom_root_type__ = False
__exclude_fields__ = {'async_client': True, 'client': True}
__fields__ = {'allowed_special': ModelField(name='allowed_special', type=Union[Li...et[str], NoneType], required=False, default=None), 'async_client': ModelField(name='async_client', type=Optional[Any], required=False, default=None), 'check_embedding_ctx_length': ModelField(name='check_embedding_ctx_length', type=bool, required=False, default=True), 'chunk_size': ModelField(name='chunk_size', type=int, required=False, default=16), 'client': ModelField(name='client', type=Optional[Any], required=False, default=None), 'config_id': ModelField(name='config_id', type=Optional[str], required=False, default=None), 'config_name': ModelField(name='config_name', type=Optional[str], required=False, default=None), 'default_headers': ModelField(name='default_headers', type=Optional[Mapping[str, str]], required=False, default=None), 'default_query': ModelField(name='default_query', type=Optional[Mapping[str, object]], required=False, default=None), 'deployment': ModelField(name='deployment', type=Optional[str], required=False, default='text-embedding-ada-002'), ...}
__hash__ = None
__include_fields__ = None
__post_root_validators__ = [(False, <function OpenAIEmbeddings.validate_environment>)]
__pre_root_validators__ = [<function OpenAIEmbeddings.build_extra>]
__private_attributes__ = {}
__schema_cache__ = {}
__signature__ = <Signature (*args, client: Any = None, async_cli... proxy_model_name: Optional[str] = None) -> None>
__validators__ = {}

Class methods inherited from ProxyOpenAI:
validate_clients(values: Dict) -> Dict from pydantic.v1.main.ModelMetaclass

Methods inherited from langchain_openai.embeddings.base.OpenAIEmbeddings:
async aembed_documents(self, texts: 'List[str]', chunk_size: 'Optional[int]' = 0) -> 'List[List[float]]'
Call out to OpenAI's embedding endpoint async for embedding search docs.
 
Args:
    texts: The list of texts to embed.
    chunk_size: The chunk size of embeddings. If None, will use the chunk size
        specified by the class.
 
Returns:
    List of embeddings, one for each text.
async aembed_query(self, text: 'str') -> 'List[float]'
Call out to OpenAI's embedding endpoint async for embedding query text.
 
Args:
    text: The text to embed.
 
Returns:
    Embedding for the text.
embed_documents(self, texts: 'List[str]', chunk_size: 'Optional[int]' = 0) -> 'List[List[float]]'
Call out to OpenAI's embedding endpoint for embedding search docs.
 
Args:
    texts: The list of texts to embed.
    chunk_size: The chunk size of embeddings. If None, will use the chunk size
        specified by the class.
 
Returns:
    List of embeddings, one for each text.
embed_query(self, text: 'str') -> 'List[float]'
Call out to OpenAI's embedding endpoint for embedding query text.
 
Args:
    text: The text to embed.
 
Returns:
    Embedding for the text.

Class methods inherited from langchain_openai.embeddings.base.OpenAIEmbeddings:
build_extra(values: 'Dict[str, Any]') -> 'Dict[str, Any]' from pydantic.v1.main.ModelMetaclass
Build extra kwargs from additional params that were passed in.

Data and other attributes inherited from langchain_openai.embeddings.base.OpenAIEmbeddings:
Config = <class 'langchain_openai.embeddings.base.OpenAIEmbeddings.Config'>
Configuration for this pydantic object.

Methods inherited from pydantic.v1.main.BaseModel:
__eq__(self, other: Any) -> bool
Return self==value.
__getstate__(self) -> 'DictAny'
__iter__(self) -> 'TupleGenerator'
so `dict(model)` works
__repr_args__(self) -> 'ReprArgs'
Returns the attributes to show in __str__, __repr__, and __pretty__ this is generally overridden.
 
Can either return:
* name - value pairs, e.g.: `[('foo_name', 'foo'), ('bar_name', ['b', 'a', 'r'])]`
* or, just values, e.g.: `[(None, 'foo'), (None, ['b', 'a', 'r'])]`
__setattr__(self, name, value)
Implement setattr(self, name, value).
__setstate__(self, state: 'DictAny') -> None
copy(self: 'Model', *, include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, update: Optional[ForwardRef('DictStrAny')] = None, deep: bool = False) -> 'Model'
Duplicate a model, optionally choose which fields to include, exclude and change.
 
:param include: fields to include in new model
:param exclude: fields to exclude from new model, as with values this takes precedence over include
:param update: values to change/add in the new model. Note: the data is not validated before creating
    the new model: you should trust this data
:param deep: set to `True` to make a deep copy of the model
:return: new model instance
dict(self, *, include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) -> 'DictStrAny'
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
json(self, *, include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), NoneType] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) -> str
Generate a JSON representation of the model, `include` and `exclude` arguments as per `dict()`.
 
`encoder` is an optional function to supply as `default` to json.dumps(), other arguments as per `json.dumps()`.

Class methods inherited from pydantic.v1.main.BaseModel:
__get_validators__() -> 'CallableGenerator' from pydantic.v1.main.ModelMetaclass
__try_update_forward_refs__(**localns: Any) -> None from pydantic.v1.main.ModelMetaclass
Same as update_forward_refs but will not raise exception
when forward references are not defined.
construct(_fields_set: Optional[ForwardRef('SetStr')] = None, **values: Any) -> 'Model' from pydantic.v1.main.ModelMetaclass
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if `Config.extra = 'allow'` was set since it adds all passed values
from_orm(obj: Any) -> 'Model' from pydantic.v1.main.ModelMetaclass
parse_file(path: Union[str, pathlib.Path], *, content_type: str = None, encoding: str = 'utf8', proto: pydantic.v1.parse.Protocol = None, allow_pickle: bool = False) -> 'Model' from pydantic.v1.main.ModelMetaclass
parse_obj(obj: Any) -> 'Model' from pydantic.v1.main.ModelMetaclass
parse_raw(b: Union[str, bytes], *, content_type: str = None, encoding: str = 'utf8', proto: pydantic.v1.parse.Protocol = None, allow_pickle: bool = False) -> 'Model' from pydantic.v1.main.ModelMetaclass
schema(by_alias: bool = True, ref_template: str = '#/definitions/{model}') -> 'DictStrAny' from pydantic.v1.main.ModelMetaclass
schema_json(*, by_alias: bool = True, ref_template: str = '#/definitions/{model}', **dumps_kwargs: Any) -> str from pydantic.v1.main.ModelMetaclass
update_forward_refs(**localns: Any) -> None from pydantic.v1.main.ModelMetaclass
Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate(value: Any) -> 'Model' from pydantic.v1.main.ModelMetaclass

Data descriptors inherited from pydantic.v1.main.BaseModel:
__dict__
dictionary for instance variables (if defined)
__fields_set__

Methods inherited from pydantic.v1.utils.Representation:
__pretty__(self, fmt: Callable[[Any], Any], **kwargs: Any) -> Generator[Any, NoneType, NoneType]
Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects
__repr__(self) -> str
Return repr(self).
__repr_name__(self) -> str
Name of the instance's class, used in __repr__.
__repr_str__(self, join_str: str) -> str
__rich_repr__(self) -> 'RichReprResult'
Get fields for Rich library
__str__(self) -> str
Return str(self).

 
Functions
       
init_embedding_model(*args, proxy_client: 'Optional[BaseProxyClient]' = None, **kwargs) -> 'Embeddings'
Initializes an embedding model using the specified parameters.
 
:param proxy_client: The proxy client to use for the model (optional)
:type proxy_client: BaseProxyClient
:return: The initialized embedding model
:rtype: Embeddings
init_llm(*args, proxy_client: 'Optional[BaseProxyClient]' = None, temperature: 'float' = 0.0, max_tokens: 'int' = 256, top_k: 'Optional[int]' = None, top_p: 'float' = 1.0, **kwargs) -> 'BaseLanguageModel'
Initializes a language model using the specified parameters.
 
:param proxy_client: The proxy client to use for the model (optional)
:type proxy_client: ProxyClient
:param temperature: The temperature parameter for model generation (default: 0.0)
:type temperature: float
:param max_tokens: The maximum number of tokens to generate (default: 256)
:type max_tokens: int
:param top_k: The top-k parameter for model generation (optional)
:type top_k: int
:param top_p: The top-p parameter for model generation (default: 1.0)
:type top_p: float
:return: The initialized language model
:rtype: BaseLanguageModel

 
Data
        __all__ = ['init_llm', 'init_embedding_model', 'ChatOpenAI', 'OpenAI', 'OpenAIEmbeddings', 'ChatGoogleGenerativeAI', 'ChatBedrock']