from model import Model
from pySAXS.LS.LSsca import Qlogspace
from pySAXS.LS.LSsca import Pcylh
import numpy
[docs]class Capsule(Model):
'''
class monoSphere from LSSca
by OT 10/06/2009
'''
[docs] def CapsuleFunction(self,q,par):
"""
q array of q (A-1)
par[0] Radius(A)
par[1] Length (A)
par[2] concentration of sphere (cm-3)
par[3] scattering length density of sphere (cm-2)
par[4] scattering length density of outside (cm-2)
"""
R=par[0]
L=par[1]
return par[2]*(1.e-48)*((par[3]-par[4])**2.)*((numpy.pi*(par[0])**2.*(par[1]))**2.)*Pcylh(q,R,L)
'''
parameters definition
Model(2,MonoCylinder,Qlogspace(1e-4,1.,500.)
,([25.,100.,1.5e14,2e11,1e10]),
("Radius (A)","Length ","Number density",
"Scattering length density of cyl (cm-2)",
"scattering length density of medium (cm-2)"),
("%f","%f","%1.3e","%1.3e","%1.3e"),
(True,True,False,False,False)),
from LSsca
'''
IntensityFunc=CapsuleFunction #function
N=0
q=Qlogspace(1e-4,1.,100.) #q range(x scale)
Arg=[25.,100.,9.8e11,9.8e10,1e10] #list of defaults parameters
Format=["%f","%f","%1.3e","%1.3e","%1.3e"] #list of c format
istofit=[True,True,False,False,False] #list of boolean for fitting
name="Capsule" #name of the model
author="O Spalla" #name of the authors
WarningForCalculationTime=True
Doc=["Radius (A)",\
"Length ",\
"Number density",\
"Scattering length density of cyl (cm-2)",\
"scattering length density of medium (cm-2)"] #list of description for parameters
if __name__=="__main__":
'''
test code
'''
modl=Capsule()
#plot the model
import Gnuplot
gp=Gnuplot.Gnuplot()
gp("set logscale xy")
c=Gnuplot.Data(modl.q,modl.getIntensity(),with_='points')
gp.plot(c)
raw_input("enter")
#plot and fit the noisy model
yn=modl.getNoisy(0.4)
cn=Gnuplot.Data(modl.q,yn,with_='points')
res=modl.fit(yn)
cf=Gnuplot.Data(modl.q,modl.IntensityFunc(modl.q,res),with_='lines')
gp.plot(c,cn,cf)
raw_input("enter")
#plot and fit the noisy model with fitBounds
bounds=modl.getBoundsFromParam() #[250.0,2e11,1e10,1.5e15]
res2=modl.fitBounds(yn,bounds)
print res2
raw_input("enter")