

·1·

VSM High Level Design

The main target of VSM project is to integrate Solid State Storage in Compute and Storage

Nodes. This document mainly aims to describe our concept about VSM module. It contains:

 General Architecture

 Capacity Management

 Cluster Management

 CAS for VSM

 Status monitor of VSM cluster

 Web UI

 Developing Environment

1.1 General Architecture

Here, we mainly introduce the Architecture of VSM module. The design of VSM module is

completely according to the architecture design of OpenStack. To design this architecture, we

obey some principles:

 Easy to integrate with OpenStack modules.

 Fully de-coupled with other OpenStack modules.

 Ease to merge into other Cloud Platforms.

 With high reliability, high availability for large scale data center.

 Easy to use, deploy and manage.

·2·

1.1.1 Architecture

Figure 1.1 High level design of VSM module.

From figure 1.1, we can get that there are several modules. Every module in VMS has its

own contribution. We’ll introduce this architecture top-down.

1.1.2．Web UI

Our Web UI is built on horizon1 which is a component of OpenStack. Here, we may simply

introduce the design of horizon. From that, it’s easy to understand why we choose horizon.

Horizon is built on Django which is a popular project written in Python. Actually, horizon

does not provide Web UI to end user. Horizon just defines and provides basic elements such as

tables, panels and templates.

The Web UI accessed by end user is provided by Dashboard which organizes basic elements

provided by horizon. Dashboard is grouped by several panels such as “Project”, “Admin” which

are provided defiantly. It’s notable that Dashboard is a subproject in horizon.

1 http://docs.openstack.org/developer/horizon/.

python-vsmclient

API

conductor scheduler

storage

RabbitMQ

storage storage

Web UI

·3·

The relationship of Panels, Dashboard, and horizon is list as below:

Figure 1.2 Relationships between modules in Horizon

Figure 1.2 shows that VSM’s Web UI has been merged with OpenStack. The Web UI looks

like:

Figure 1.3 VSM’s Web UI merged with OpenStack.

If we want to use VSM’s Web UI individually, we can change the setting file1 in Horizon.

Find out the settings:

 'dashboards': ('project', 'admin', 'settings','vsm'),

change it to be:

 'dashboards': ('settings','vsm'),

After that, the architecture of Web UI looks as below:

1 horizon/openstack_dashboard/settings.py

Dashboards

Admin

Horizon

Django

VSM Project

·4·

Figure 1.4 VSM’s Web UI

Then the VSM’s Web UI in browser looks like:

Figure 1.5 VSM’s Web UI individually1

1.1.3．python-vsmclient

Web UI is just a pure UI (even without database). When Web UI needs some information

from VSM, it uses python-vsmclient to connect with VSM-api module.

Just likes other components in OpenStack2, python-vsmclient is the client tool of VSM.

Python-vsmclient is used to send RESTful request to VSM api server.

With python-vsmclient, Web UI is fully de-coupled with VSM API. In the future, if we want

to add VSM into other cloud computing platforms such as CloudStack. It just needs to send

1 As your wish, we may remove the OpenStack’s logo in the Web UI.

2 For example, Keystone has python-keystoneclient. Nova module has python-novaclient.

Dashboards

Horizon

Django

VSM

·5·

RESTful API request to VSM.

Figure 1.6 Add VSM into CloudStack.

Although CloudStack is not written in python, but it’s very easy to find one client tool to

instead python-vsmclient. By this strategy, VSM is de-coupled with specific cloud computing

platforms. It can be merged into different cloud platforms with flexibility.

1.1.4．API

API1 module in VSM provides RESTful API for VSM project. It receives RESTful request

from python-vsmclient, curl, and java RESTful client tools2.

In python, it’s easy to build RESTful API for VSM by PasteDeploy3 project. As we know,

after API receives the request sent by client tools, there are a lot of procedures to process. With

PasteDeploy, these procedures are split into atomic operations. The request processing pipeline is

constructed by these atomic operations.

1. Work with Keystone

For example, we may make up a simple pipeline for VSM. In the configuration file4, we can

define a pipeline as below:

The request processing procedure looks like:

1 In VSM, we just call it API. To make different with other API modules in OpenStack, we may call it

VSM-API or vsm-api. In this paper, if we say API, it refers to VSM-API.

2 API just receives the request with no sense about what the client tools is.

3 http://pythonpaste.org/deploy/.

4 /etc/vsm/api-paste.ini

CloudStack

RESTful
Client

VSM API

keystone = faultwrap authtoken ratelimit vsmapi_v1

·6·

Figure 1.7 An example of pipeline.

From Figure 1.7, faultwrap will handle the request at first, and then transfer the request to

authtoken. At last, vsmapi_v1 will receive the request if the request passed atomic operations

forehead. The unauthorized and illegal request would not handle by vsmapi_v1. If authtoken find

any illegal information in the request, authtoken will send response with “Unauthoried”. Then the

request will not pass to other atomic operations in the pipeline.

If we want to use Keystone project to make user authentication, we can set authtoken as

below:

“keystoneclient.middleware.auth_token” is a class in Keystone’s source code. It’s very

convenient that we do not need to merge Keystone’s source code in our VSM project. We just

need to change the configuration file with “authtoken” which refers to Keystone’s code. If we

use Keystone in VSM, the architecture of VSM would looks as below:

Figure 1.8 Use Keystone in VSM

2. Without Keystone

If we do not want to use Keystone user identification, we may change the configuration file

as:

• check request format

• check error

faultwrap

• indentify the request

•make authorized
context for the
request

authtoken
• check the request

frequency

• avoid network jam

ratelimit

•make operations
according to the
request

• send the response to
the end-user.

vsmapi_v1

keystone = faultwrap authtoken ratelimit vsmapi_v1

authtoken = keystoneclient.middleware.auth_token

python-vsmclient

API

Web UI

Keystone

·7·

Then the pipeline can be list as below:

Figure 1.9 the pipeline without Keystone.

3. Use other Authentication Package

As described, with PasteDeploy, we can use the third part user authenticate package easily.

For example, we want to merge VSM into another cloud platform. We have to use their user

authentication strategy. We may change the configuration file as below:

Sometimes, there are no class named “cloudstack.auth.auth_token” for us to use. We can

write one as below:

We just write wrapper classes which just call the cloudstack’s authenticate client tools.

1.1.5．Scheduler

After API received the request from end user, API module just transfer these request to other

•check request format

•check error

faultwrap

•check the request
frequency

•avoid network jam

ratelimit
•make operations

according to the
request

•send the response to
the end-user.

vsmapi_v1

keystone = faultwrap ratelimit vsmapi_v1

name = faultwrap cloudstackauth ratelimit vsmapi_v1

cloudstackauth = cloudstack.auth.auth_token

class auth_token:

def __call__(self, request):

 resp, ret = self._cloudstack_client.auth(request)

 if resp == 404:

 return 404, “Unthorized”

 else:

 return self.application

·8·

modules, such as conductor1, scheduler. The API module send the request to other modules by in

different conditions:

 Conductor: Get/Update information in data base.

 Scheduler: Actions need to be done. Actions may be “Create/Delete/Snapshot” of

block storage.

Scheduler module is used to make decision. Take the creation of volume as an example as

below:

Figure 1.10 The usage of Scheduler module.

We can add different driver for Scheduler. Then we can select physical nodes by different

strategy.

1.1.6．Conductor

Conductor provides data base services for VSM project. With conductor module, VSM

project is de-coupled with DataBase such as MySQL, Oracle, and DB2. Actually, Conductor is

built on python-sqlalchemy2 which is a DB toolkit written in Pyton. Then we can use different

DB which is supported by python-sqlalchemy.

1.1.7．Storage

Storage is the most important part of VSM. To support Ceph, CAS, and other features,

Storage module can be designed as below:

1 Conductor is used as data base service. Usually, conductor use MySQL as its DB.

2 http://docs.sqlalchemy.org/en/rel_0_8/.

•receive request from
client.

API

•Check resources in
physical nodes.

•Choose a right node
to accept the request.

Scheduler
•Receive request from

Scheduler.

•Accord to the request,
create volume.

Storage

·9·

Figure 1.11 the design of Storage module.

The StorageManager is used to receive request sent by Scheduler or other modules. The

Driver implements interfaces defined in StorageManager with different Agent. With this design,

it’s very easy to add more agents for Storage module.

1.1.8．RabbitMQ

Between python-vsmclient and API, we use RESTful API to communication. For the internal

modules, how do they communicate with others?

In OpenStack, they choose RabbitMQ services to implement RPC (remote procedure call)

between internal modules. In VSM project, we also use RabbitMQ which is very easy to use and

support more modules.

StorageManager

Ceph Agent CAS Agent DPL Agent

Driver

·10·

1.2 Management

Here we will introduce several parts of management which includes:

 Capacity Management

 Cluster Management

1.2.1．Capacity Management

Figure 2.1 the procedure of capacity management.

From Figure 2.1, we can see the procedure of Capacity Management:

 Api module receives clients’ requests.

 Scheduler receives request, chooses the right physical node. Then transfer the

request to it.

 Storage node receives the request, and then manages the capacity.

1．Storage pools

API

conductor scheduler

storage

RabbitMQ

storage storage

1

2

3

·11·

Figure 2.2 Ceph pools’ management

To manage ceph pools in Ceph, we add these functions in the Ceph Agent. There are several

aspects of Storage Pools Management. Here we just describe our high level design.

1. Storage Pool Recipes

Before we create storage pools, we may need to define Storage Pool Recipes. Although

recipes are related with Storage, the definition of recipe should be stored in data base. So the

conductor module will handle recipes’ operation such as define, undefine, list and query.

Figure 2.3 the definition of recipes.

Recipes’ operations should follow the procedure:

 API receives requests about from clients. Then transfer the request to Scheduler.

 Scheduler receives the request from API by RabbitMQ. It finds out one running

conductor service and then transfer this request to the chosen conductor.

 After Conductor receives the request sent by Scheduler, it will record information

about recipes in DB.

StorageManager

Ceph Agent

Storage Pools

CAS Agent DPL Agent

Driver

API

conductor RabbitMQ

1

2 3
scheduler

·12·

2. Create Storage Pools

Creating storage pools has more steps, this operation need every module to participate in.

Figure 2.4 Steps to create storage pools

Different modules in VSM have different function:

 Step 1: API receives requests about from clients. Send the authenticated request to

RabbitMQ.

 Step 2: Scheduler receives requests which are sent by API.

 Step 3: In order to get more information about recipes, Scheduler transfer request

to Conductor by RabbitMQ.

 Step 4: Conductor collects information about recipes from DB, and then transfers

details about recipes back to Scheduler.

 Step 5: Scheduler receives details about recipes sent by Conductor, and then finds

out the appropriate Storage to send the request.

 Step 6: Storage module gets the request, and then begins to create storage pools.

When storage module gets the request, it sends the request to Ceph Agent. Ceph agent will

use Ceph to manage storage pools. For creating storage pools, there are two methods provided by

Ceph:

 Command line1:

 Librados API

1 http://ceph.com/docs/master/rados/operations/pools/.

API

conductor RabbitMQ

1

2 3

scheduler

storage

6

4 5

ceph osd pool create {pool-name} {pg-num} [{pgp-num}]

http://ceph.com/docs/master/rados/operations/pools/

·13·

3. Access Right to Storage Pools

In our high level design, we use Keystone to control access right to storage pools and other

resources. Why we choose Keystone? There are several reasons:

 With Keystone, it’s very easy to merge into OpenStack.

 As we know, Keystone is an independent module. We can use Keystone in VSM

without efforts to change any code. We just need to change configuration file.

 With PasteDeploy package, it’s easy to use other user access right controlling packages.

With this flexibility, we can easily add VSM project into other cloud computing

platform with little efforts to use their Authentication module.

Ceph provides two strategies to the control access right to storage pools:

 No controlling. Gives out this function to upper level applications such as Keystone.

 Cephx: Ceph provides user authentication in a manner similar to Kerberos1. Such as:

The best way to control access right of lower level resources might be use Keystone and

Cephx both.

1 http://ceph.com/docs/master/rados/operations/authentication/#add-a-key

intrados_pool_create(rados_t cluster, const char *pool_name)

intrados_pool_create_with_auid(rados_t cluster, const char *pool_name, uint64_t auid)

intrados_pool_create_with_crush_rule(rados_t cluster, const char *pool_name, __u8

intrados_pool_create_with_all(rados_t cluster, const char *pool_name, uint64_t auid, __u8

$ ceph auth get-or-create client.{username} {daemon1} {cap1} {daemon2} {cap2} ...

$ ceph auth get-or-create client.foo osd 'allow rw' mon 'allow r' > keyring.foo

http://ceph.com/docs/master/rados/operations/authentication/#add-a-key

·14·

Figure 2.5 Use Keystone and Cephx to control the access right.

Keystone is to authenticate the user’s request. The illegal request will be rejected. But why

we also use Cephx?

For Storage module, we create Admin user in Cephx. After user’s request passed the

authentication of Keystone, Storage module will use Admin user to manage resources in Ceph

system.

For flexibility, we can change configuration file to use or unuse Keystone in VSM. In

Storage moduel, we can also write one option in configuration file:

If we set “use_cephx=No”, in Storage module of VSM, cephx will not be used. So, we can

use/unused Keystone and Cephx in VSM by changing configuration file.

4. Storage Pools for OpenStack

Ceph supports three kinds of usage of storage pools:

 Ceph File System

With Ceph File System provided by VSM, OpenStack can use it in this way:

API
RabbitMQ

storage

Keystone

Clients

Cephx

use_cephx=Yes/No

cephx_user=

·15·

 Glance can use storage pools to storage virtual machines’ images.

 Nova can use CephFS to storage virtual machines’ disks.

 Ceph block device

Virtual Machines can attach/detach Ceph block devices with Ceph qemu rbd driver1.

 Ceph object gateway

OpenStack can use CephGW as below:

 Provides storage devices for swift.

 Because CephGW supports S32 , Glance services in OpenStack can use this

interface to storage VM’s images.

5. Increasing the Capacity of Storage Pools

Increasing the capacity of storage pools has the same procedure with creating storage pools.

The differences are that several steps have different jobs.

Figure 2.6 Steps to increase the capacity of storage pools.

Steps to increase the capacity of Storage Pools:

 Step 1: API receives requests about from clients. Send the authenticated request to

RabbitMQ.

 Step 2: Scheduler receives requests which are sent by API.

 Step 3: In order to get more information about storage pools, Scheduler transfer

request to Conductor by RabbitMQ.

 Step 4: Conductor collects information about storage pools from DB, and then

transfers details about storage pools back to Scheduler.

 Step 5: Scheduler receives details about storage pools sent by Conductor, and then

finds out the appropriate Storage to send the request.

 Step 6: Storage module gets the request, and then begins to increase the capacty

1 If you want VMs to use RBD devices provided by Ceph, you have to install Qemu tools provided by Ceph.

2 http://ceph.com/docs/master/radosgw/s3/.

API

conductor RabbitMQ

1

2 3

scheduler

storage

6

4 5

http://ceph.com/docs/master/radosgw/s3/

·16·

storage pools.

After the capacity of storage pool is changed in Step 6, conductor will update the information

about storage pools.

6. Update information of Storage Pools

In order to monitor pool utilization, performance and other details, we have to update

information about storage pools periodically.

Figure 2.7 Steps to update information about storage pools.

Steps to update information about storage pools:

 Step 1: periodic threads monitor information about storage pools. If it’s valuable to

update into DB, Storage module send these information into RabbitMQ. In Storage

module, there are two methods to monitor information:

i. command line

ii. librados

 Step 2: Conductor receives information sent by Storage from RabbitMQ, and then

write these information into DB.

In order to show the information in Web UI, we will use Ajax in Web UI which can update

information from API. When API receives request from Web UI, it will collects information from

conductor then response to Web UI.

This is strategy is also used in Monitor of Cluster.

1.2.2．Cluster Management

With our high level design, cluster management is the same with Storage Pools management.

API

conductor RabbitMQ

3

storage

1

2

Web UI

$ radosdf

intrados_ioctx_pool_stat(rados_ioctx_tio, structrados_pool_stat_t *stats)

·17·

The only difference is actions in Storage module. So we can extend Storage module to support

cluster operations.

Figure 2.8 Cluster management in Ceph Agent.

For OSD, Disk and Servers, we have several operations:

 Add

 Delete

 Maintain

For monitoring of cluster’s status, we can also use ganglia1 and nagios2 which are very

easy to merge into our Web UI.

1.2.3．CAS Management

Because CAS is running on single node, so we run Storage module in each node. With CAS

agent in Storage module, we can manage CAS in VSM. The design architecture is the same with

Ceph Agent; so details will not be introduced here.

1 http://ganglia.sourceforge.net/.

2 http://www.nagios.org/.

StorageManager

Ceph Agent

Storage Pools Cluster

OSD

Disks

Servers

CAS Agent DPL Agent

Driver

http://ganglia.sourceforge.net/

·18·

1.3 Web UI

Here we design some examples of Web UI. There are several parts of our Web UI:

 OSD

 Server

 Storage Pools

1.3.1．OSD

Figure 3.1 Add OSD in Web UI.

·19·

Figure 3.2 Maintain OSD

Figure 3.3 Replace failed OSD.

·20·

1.3.1．Ceph Servers

Figure 3.4 Add Ceph Servers.

Figure 3.5 Ceph servers management.

·21·

1.3.1．Storage Pools

Figure 3.6 Create Storage Pools

Figure 3.7 Monitor Storage Pools

·22·

Figure 3.8 Usage of storage pools in OpenStack.

Figure 3.9 The management of storage pools.

