
MacSyFinder
Release 2.0

Sophie Abby, Bertrand Néron

Jan 24, 2022

CONTENTS

1 User Guide 3
1.1 User Guide . 3

2 Modeller Guide 49
2.1 Modeller Guide . 49

3 Developer Guide 71
3.1 Developer Guide . 71

4 Indices and tables 135

Python Module Index 137

Index 139

i

ii

MacSyFinder, Release 2.0

Note: A new version of MacSyFinder (v2) is available, see here for an overview of the novelties. The search engine
was improved, and some bugs/unwanted behaviors corrected. MacSyFinder’s models for v2 are very similar, yet not
compatible with those from v1. See here for details on how to carry your models to v2.

MacSyFinder is a program to model and detect macromolecular systems, genetic pathways. . . in protein datasets.
In prokaryotes, these systems have often evolutionarily conserved properties: they are made of conserved compo-
nents, and are encoded in compact loci (conserved genetic architecture). The user models these systems with Mac-
SyFinder to reflect these conserved features, and to allow their efficient detection.

Criteria for systems detection include component content (quorum), and genomic co-localization. Each compo-
nent corresponds to a hidden Markov model (HMM) protein profile to perform sequence similarity searches with the
program Hmmer.

In order to model macromolecular systems, the user:

• builds or gather from databanks HMM protein profiles for components of interest,

• defines decision rules for each system in a dedicated XML grammar (see Macromolecular models).

Note: If you use MacSyFinder, please cite:

Abby SS, Néron B, Ménager H, Touchon M, Rocha EPC (2014). MacSyFinder: A Program to Mine
Genomes for Molecular Systems with an Application to CRISPR-Cas Systems. PLoS ONE 9(10): e110726.
doi:10.1371/journal.pone.0110726

CONTENTS 1

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0110726
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0110726
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0110726

MacSyFinder, Release 2.0

2 CONTENTS

CHAPTER

ONE

USER GUIDE

1.1 User Guide

1.1.1 Running MacSyFinder

What’s new in MacSyFinder v2?

For Version 2, MacSyFinder was carried under Python 3

New features and search engine

The search engine was changed for a more intuitive and comprehensive exploration of putative systems.

The search is now more thorough and avoid undesirable side-effects of the previous search engine. Being more thor-
ough, it now also includes a scoring scheme to build candidate systems from sets of detected components (clusters),
and can offer several optimal “solutions” (sets of detected systems) based on a combinatorial exploration of detected
clusters. See here for more details.

Several new features were added, including:

• a new type of gene component “neutral” was added in order to provide more possibilities for systems’ mod-
elling in macsy-models. See here for more details.

• more flexibility was introduced in the search for systems’ components using HMMER. It is now possible
to use the cut_ga threshold when provided in the HMM profiles used for components’ similarity search. This
enables to have a search tailored for each HMM profile, and thus component. See here for more details.

• a new file structure was created to better organize MacSyFinder’s packages (i.e. that include systems’ models
and corresponding HMMER profiles). See here for details.

• a tool to easily install and distribute MacSyFinder’s packages was created. See here for more details on macsy-
data.

• the format for MacSyFinder’s models has slightly changed, in order to offer more possibilities, and more
readibility. To see how to carry models from v1 to v2, visit here.

Also, the search modes corresponding to “unordered” and “unordered_replicon” were merged into the “unordered”
search mode - as they basically correspond to the same behaviour.

Note: In v2, output files were also re-defined. See here for more details.

3

https://www.python.org/download/releases/3.0/

MacSyFinder, Release 2.0

Dependencies

MacSyFinder v2 no longer requires the formatdb or makeblastdb tools from NCBI. However, new dependencies are
used, but as they are Python libraries, it should be transparent for the user, and not require manual installations. See
here for details.

Models are more formalized

The models data are more formalized, with a well defined structure. For instance the definitions and profiles must
be packed together in what we call a macsy-model package If you intend to model new systems please refer to the
Modeller Guide.

Models installation

We now provide a new tool to manage the models. See Models installation with macsydata.

Models configuration

The modeler can provide some spcific configuration values released along the model package. See Model configura-
tion.

Modeller helper tool

To help modellers create new models we provide a new helper tool macsyprofile, which analyses HMMER raw out-
put files from results of a previous MacSyFinder run, to provide information on all hits even if filtered out. See
macsyprofile.

Installation

MacSyFinder works with models for macromolecular systems that are not shipped with it, you have to install them
separately. See the macsydata section below.

MacSyFinder dependencies

Python version >=3.7 is required to run MacSyFinder: https://docs.python.org/3.7/index.html

MacSyFinder has one program dependency:

• the Hmmer program, version 3.1 or greater (http://hmmer.org/).

The hmmsearch program should be installed (e.g., in the PATH) in order to use MacSyFinder. Otherwise, the paths to
this executable must be specified in the command-line: see the command-line options.

MacSyFinder also relies on five Python library dependencies:

• colorlog

• pyyaml

• packaging

• networkx

4 Chapter 1. User Guide

https://docs.python.org/3.7/index.html
http://hmmer.org/

MacSyFinder, Release 2.0

• pandas

These dependencies will be automatically retrieved and installed when using pip for installation (see below).

MacSyFinder Installation procedure

It is recommended to use pip to install the MacSyFinder package.

Archive overview

• doc => the documentation in html and pdf

• etc => a template of macsyfinder configuration file

• test => all what is needed for unitary tests

• macsypy => the macsyfinder python library

• setup.py => the installation script

• requirements.txt => the python dependencies

• requirements_dev.txt => the python dependencies for developers

• COPYING => the licensing

• COPYRIGHT => the copyright

• README.md => very brief macsyfinder overview

• CONTRIBUTORS => list of people who contributed to the code

Installation steps:

Make sure every required dependency/software is present.

By default MacSyFinder will try to use hmmsearch in your PATH. If hmmsearch is not in the PATH, you have to set
the absolute path to hmmsearch in a configuration file or in the command-line upon execution. If the tools are not in
the path, some test will be skipped and a warning will be raised.

Perform the installation.

pip install --no-binary macsyfinder macsyfinder

If you do not have the privileges to perform a system-wide installation, you can either install it in your home directory
or use a virtual environment.

1.1. User Guide 5

https://virtualenv.pypa.io/en/stable/

MacSyFinder, Release 2.0

installation in your home directory

pip install --user --no-binary macsyfinder macsyfinder

installation in a virtualenv

python3.7 -m venv macsyfinder
cd macsyfinder
source bin/activate
pip install --no-binary macsyfinder macsyfinder

To exit the virtualenv just execute the deactivate command. To run macsyfinder, you need to activate the virtualenv:

source macsyfinder/bin/activate

Then run macsyfinder or macsydata.

Note: Super-user privileges (i.e., sudo) are necessary if you want to install the program in the general file architec-
ture.

Note: If you do not have the privileges, or if you do not want to install MacSyFinder in the Python libraries of your
system, you can install MacSyFinder in a virtual environment (http://www.virtualenv.org/).

Warning: When installing a new version of MacSyFinder, do not forget to uninstall the previous version installed
!

Uninstalling MacSyFinder

To uninstall MacSyFinder (the last version installed), run:

(sudo) pip uninstall macsyfinder

If you install it in a virtualenv, just delete the virtual environment. For instance if you create a virtualenv name
macsyfinder:

python3.7 -m venv macsyfinder

To delete it, remove the directory:

rm -R macsyfinder

6 Chapter 1. User Guide

http://www.virtualenv.org/

MacSyFinder, Release 2.0

Models installation with macsydata

Once MacSyFinder is installed you have access to an utility program to manage the models: macsydata

This script allows to search, download, install and get information from MacSyFinder models stored on github (https:
//github.com/macsy-models) or locally installed. The general syntax for macsydata is:

macsydata <general options> <subcommand> <sub command options> <arguments>

To list all models available on macsy-models:

macsydata available

To search for models on macsy-models:

macsydata search TXSS

you can also search in models description:

macsydata search -S secretion

To install a model package:

macsydata install <model name>

To install a model when you have not the right to install it system-wide

To install it in your home (./macsyfinder/data):

macsydata install --user <model name>

To install it in any directory:

macsydata install --target <model dir> <model_name>

To know how to cite a model package:

macsydata cite <model name>

To show the model definition:

macsydata definition <package or subpackage> model1 [model2, ...]

for instance to show model definitions T6SSii and T6SSiii in TXSS+/bacterial subpackage:

macsydata definition TXSS+/bacterial T6SSii T6SSiii

To show all models definitions in TXSS+/bacterial subpackage:

macsydata definition TXSS+/bacterial

To list all macsydata subcommands:

macsydata --help

To list all available options for a subcommand:

1.1. User Guide 7

https://github.com/macsy-models
https://github.com/macsy-models

MacSyFinder, Release 2.0

macsydata <subcommand> --help

For models not stored in macsy-models the commands available, search, installation from remote or upgrade from
remote are NOT available.

For models NOT stored in macsy-models, you have to manage them semi-manually. Download the archive (do not
unarchive it), then use macsydata to install the archive.

MacSyFinder Quick Start

1. We recommend to install MacSyFinder using pip in a virtual environment (for further details see Installation).

python3 -m venv MacSyFinder
cd MacSyFinder
source bin/activate
pip install macsyfinder

Warning: hmmsearch from the HMMER package (http://hmmer.org/) must be installed.

2. Prepare your data. You need a file containing all protein sequences of your genome of interest in fasta format
(for further details see Input dataset).

3. You need to have models to search in your input data. Please refer to Macromolecular models to create your
own package of models. We will soon provide a set of predefined models for you to test.

4. Command lines:

• Type: macsyfinder -h

To see all options available. All command-line options are described in the Command-line options section.
In order to run MacSyFinder on your favorite dataset as soon as you have installed it, you can simply
follow the following steps:

• On a “metagenomic” (unordered) dataset for example: macsyfinder --db-type unordered
--sequence-db metagenome.fasta --models model_family all

will detect all models of model_family modelled in .xml files placed in the “my-models” folder without
taking into account any gene order.

• On a completely assembled genome (where the gene order is known, and is relevant for systems’ detec-
tion):

macsyfinder --db-type ordered_replicon --sequence-db mygenome.fasta
--models model_family ModelA ModelB

will detect the macromolecular systems described in the two models “ModelA” and “ModelB” in a
complete genome from the “ModelA.xml” and “ModelB.xml” definition files placed in the folder “my-
models/model_family/definitions”.

• If you want to run the same analysis as above but with models not installed by macsydata:

macsyfinder --db-type ordered_replicon --sequence-db mygenome.fasta
--models-dir my-models --models model_family ModelA ModelB

my-models is the directory containing the model packages. The models must follow the macsy-models
package structure.

8 Chapter 1. User Guide

http://hmmer.org/

MacSyFinder, Release 2.0

Note: Systems names have to be spelled in a case-sensitive way to run their detection from the command-line. The
name of the System corresponds to the suffix defined for xml files (.xml by default), for example “toto” for a model
defined in “toto.xml”.

The “all” keyword allows to detect all models available in the definitions folder in a single run. See the Command-line
options.

Input and Options of MacSyFinder

Input dataset

The input dataset must be a set of protein sequences in Fasta format (see http://en.wikipedia.org/wiki/FASTA_
format).

The base section in the configuration file (see Configuration file) can be used to specify the path and the type of
dataset to deal with, as well as the –sequence_db and –db_type parameters respectively, described in the Command-
line options (see Input options).

Four types of protein datasets are supported:

• unordered : a set of sequences corresponding to a complete genome (e.g. an unassembled complete
genome)

• ordered_replicon : a set of sequences corresponding to an ordered complete replicon (e.g. an assem-
bled complete genome)

• gembase : a set of multiple ordered replicons, which format follows the convention described in
Gembase format.

For “ordered” (“ordered_replicon” or “gembase”) datasets only, MacSyFinder can take into account the shape of the
genome: “linear”, or “circular” for detection. The default is set to “circular”.

This can be set with the –replicon_topology parameter from Command-line options (see Input options),
or in the configuration in the base section.

With the “gembase” format, it is possible to specify a topology per replicon with a topology file (see
Gembase format and Topology files).

Command-line options

Optional arguments:

-h, --help Show the help message and exit

-m [MODELS [MODELS ...]], --models [MODELS [MODELS ...]]
The models to search. The --models option can be set several

→˓times.'
For each --models options the first element must be the name of

→˓family models,
followed by the name of the models.
If the name 'all' is in the list all models from the family

→˓will be searched.'
'--models TXSS Flagellum T2SS'

means MSF will search for models TXSS/Flagellum and
→˓TXSS/T2SS

(continues on next page)

1.1. User Guide 9

http://en.wikipedia.org/wiki/FASTA_format
http://en.wikipedia.org/wiki/FASTA_format

MacSyFinder, Release 2.0

(continued from previous page)

'--models TXSS all'
means for all models found in model package TXSS

'--models CRIPRcas/subtyping all'
means MSF will search for all models described in the

→˓CRISPRCas/subtyping subfamily.
(required unless --previous-run is set)

Input dataset options:

--sequence-db SEQUENCE_DB
Path to the sequence dataset in fasta format.
(required unless --previous-run is set)

--db-type {ordered_replicon,gembase,unordered}
The type of dataset to deal with. "unordered" corresponds
to a non-assembled genome,
"ordered_replicon" to an assembled genome,
and "gembase" to a set of replicons where sequence identifiers
follow this convention: ">RepliconName SequenceID".
(required unless --previous-run is set)

--replicon-topology {linear,circular}
The topology of the replicons
(this option is meaningful only if the db_type is
'ordered_replicon' or 'gembase'.

--topology-file TOPOLOGY_FILE
Topology file path. The topology file allows to specify a

→˓topology
(linear or circular) for each replicon (this option is

→˓meaningful only if
the db_type is 'ordered_replicon' or 'gembase'.
A topology file is a tabular file with two columns:
the 1st is the replicon name, and the 2nd the corresponding

→˓topology:
"RepliconA linear"

--idx Forces to build the indexes for the sequence dataset even
if they were previously computed and present at the dataset

→˓location.
(default: False)

Systems detection options:

--inter-gene-max-space INTER_GENE_MAX_SPACE INTER_GENE_MAX_SPACE
Co-localization criterion: maximum number of components non-

→˓matched by a
profile allowed between two matched components
for them to be considered contiguous.
Option only meaningful for 'ordered' datasets.
The first value must match to a model, the second to a number

→˓of components.
This option can be repeated several times:

"--inter-gene-max-space TXSS/T2SS 12 --inter-gene-max-space
→˓TXSS/Flagellum 20
--min-mandatory-genes-required MIN_MANDATORY_GENES_REQUIRED MIN_MANDATORY_GENES_
→˓REQUIRED

The minimal number of mandatory genes required for model
→˓assessment.

The first value must correspond to a model fully qualified name,
→˓ the second value to an integer.

(continues on next page)

10 Chapter 1. User Guide

MacSyFinder, Release 2.0

(continued from previous page)

This option can be repeated several times:
"--min-mandatory-genes-required TXSS/T2SS 15 --min-

→˓mandatory-genes-required TXSS/Flagellum 10"
--min-genes-required MIN_GENES_REQUIRED MIN_GENES_REQUIRED

The minimal number of genes required for model assessment "
(includes both 'mandatory' and 'accessory' components).
The first value must correspond to a model fully qualified name,

→˓ the second value to an integer.
This option can be repeated several times:

"--min-genes-required TXSS/T2SS 15 --min-genes-required
→˓TXSS/Flagellum 10
--max-nb-genes MAX_NB_GENES MAX_NB_GENES

The maximal number of genes to consider a system as full.
The first value must correspond to a model name, the second

→˓value to an integer.
This option can be repeated several times:

"--max-nb-genes TXSS/T2SS 5 --max-nb-genes TXSS/Flagellum 10
→˓"
--multi-loci MULTI_LOCI

Specifies if the system can be detected as a 'scattered' system.
The models are specified as a comma separated list of fully

→˓qualified name
"--multi-loci model_familyA/model_1,model_familyB/model_2"

Options for Hmmer execution and hits filtering:

--hmmer HMMER Path to the hmmsearch program.
If it is not specify rely on the PATH
(default: hmmsearch)

--e-value-search E_VALUE_SEARCH
Maximal e-value for hits to be reported during hmmsearch

→˓search.
By default MF set per profile threshold for hmmsearch run (--

→˓cut_ga option)
for profiles containing the GA bit score threshold.
If a profile does not contains the GA bit score the --e-value-

→˓search (-E in hmmsearch)
is applied to this profile.
To applied the --e-value-search to all profiles use the --no-

→˓cut-ga option.
(default: 0.1)

--no-cut-ga By default the Mf try to applied a threshold per profile by
→˓using the

hmmer -cut-ga option. This is possible only if the Ga bit
→˓score is present in the profile otherwise MF switch to use the

the --e-value-search (-E in hmmsearch).
If this option is set the --e-value-search option is used for

→˓all profiles regardless
the presence of the a GA bit score in the profiles.
(default: False)

--i-evalue-sel I_EVALUE_SEL
Maximal independent e-value for Hmmer hits to be selected for

→˓system detection.
(default:0.001)

--coverage-profile COVERAGE_PROFILE
Minimal profile coverage required in the hit alignment to allow
the hit selection for system detection.

(continues on next page)

1.1. User Guide 11

MacSyFinder, Release 2.0

(continued from previous page)

(default: 0.5)

Options for clusters and systems’ scoring:

--mandatory-weight MANDATORY_WEIGHT
the weight (score) of a mandatory component when scoring

→˓clusters
(default:1.0)

--accessory-weight ACCESSORY_WEIGHT
the weight (score) of an accessory component when scoring

→˓clusters
(default:0.5)

--exchangeable-weight EXCHANGEABLE_WEIGHT
the weight modifier for the score of a component that is

→˓exchangeable
(default:0.8)

--redundancy-penalty REDUNDANCY_PENALTY
the weight modifier for the score of a component that is

→˓already present in another cluster
(default:1.5)

--loner-multi-system-weight LONER_MULTI_SYSTEM_WEIGHT
the weight modifier for the score of a component that is `loner`

→˓and `multi-system` at the same time
(default:0.7)

Path options:

--models-dir MODELS_DIR
specify the path to the models if the models are not installed

→˓in the canonical place.
It gather definitions (xml files) and hmm profiles in a specific
structure. A directory with the name of the model with at least

→˓two directories
profiles" which contains all hmm profile for gene describe in

→˓definitions and
models" which contains either xml file of definitions or

→˓subdirectories
to organize the model in subsystems.

-o OUT_DIR, --out-dir OUT_DIR
Path to the directory where to store results.
if out-dir is specified res-search-dir will be ignored.

--index-dir INDEX_DIR
Specifies the path to a directory to store/read the sequence

→˓index when the sequence-db dir
is not writable.

--res-search-suffix RES_SEARCH_SUFFIX
The suffix to give to Hmmer raw output files. (default: .search_

→˓hmm.out)
--res-extract-suffix RES_EXTRACT_SUFFIX

The suffix to give to filtered hits output files. (default: .
→˓res_hmm_extract)
--profile-suffix PROFILE_SUFFIX

The suffix of profile files. For each 'Gene' element, the
→˓corresponding profile is

searched in the 'profile_dir', in a file which name is based on
→˓the

(continues on next page)

12 Chapter 1. User Guide

MacSyFinder, Release 2.0

(continued from previous page)

Gene name + the profile suffix.
For instance, if the Gene is named 'gspG' and the suffix is '.

→˓hmm3',
then the profile should be placed at the specified location
and be named 'gspG.hmm3'
(default: .hmm)

General options:

-w WORKER, --worker WORKER
Number of workers to be used by MacSyFinder.
In the case the user wants to run MacSyFinder in a multi-thread

→˓mode.
(0 mean all cores will be used).
(default: 1)

-v, --verbosity Increases the verbosity level. There are 4 levels:
Error messages (default), Warning (-v), Info (-vv) and Debug.(-

→˓vvv)
--mute mute the log on stdout.

(continue to log on macsyfinder.log)
(default: False)

--version show program's version number and exit
-l, --list-models display the all models installed in generic location and quit.
--cfg-file CFG_FILE Path to a MacSyFinder configuration file to be used.
--previous-run PREVIOUS_RUN

Path to a previous MacSyFinder run directory.
It allows to skip the Hmmer search step on same dataset,
as it uses previous run results and thus parameters regarding

→˓Hmmer detection.
The configuration file from this previous run will be used.
Conflict with options

--config, --sequence-db, --profile-suffix, --res-extract-
→˓suffix, --e-value-res, --db-type, --hmmer

Note: For some command line examples, have a look here, or at the MacSyFinder Quick Start section.

Configuration file

Options to run MacSyFinder can be specified in a configuration file. The Config object handles all configuration
options for MacSyFinder. Three locations are parsed to find configuration files:

• $PREFIX/etc/macsyfinder/macsyfinder.conf

• $(HOME)/.macsyfinder/macsyfinder.conf

• ./macsyfinder.conf

Moreover these three locations options can be passed on the command-line.

Each file can define options, and in the end all options are integrated. If an option is specified several times:

Note: The precedence rules from the least to the most important priority are:

1.1. User Guide 13

MacSyFinder, Release 2.0

$PREFIX/etc/macsyfinder/macsyfinder.conf < $(HOME)/.macsyfinder/macsyfinder.conf < macsyfinder.conf <
“command-line” options

This means that command-line options will always bypass those from the configuration files. In the same flavor,
options altering the definition of systems found in the command-line or the configuration file will always overwhelm
values from systems’ XML definition files.

The configuration files must follow the Python “ini” file syntax. The Config object provides some default values and
performs some validations of the values.

In MacSyFinder, six sections are defined and stored by default in the configuration file:

• base : all information related to the protein dataset under study

– sequence_db : the path to the dataset in Fasta format (no default value)

– db_type : the type of dataset to handle, four types are supported:

* unordered : a set of sequences corresponding to a complete replicon (e.g. an unassembled
complete genome)

* ordered_replicon : a set of sequences corresponding to a complete replicon ordered (e.g.
an assembled complete genome)

* gembase : a set of multiple ordered replicons.

(no default value)

– replicon_topology : the topology of the replicon under study. Two topologies are supported:
‘linear’ and ‘circular’ (default = ‘circular’). This option will be ignored if the dataset type is
not ordered (i.e. “unordered_replicon” or “unordered”).

• models * list of models to search in replicon

• models_opt

– inter_gene_max_space = list of models’ fully qualified names and integer separated by spaces
(see example below). These values will supersede the values found in the model definition file.

– min_mandatory_genes_required = list of models’ fully qualified name and integer separated by
spaces. These values will supersede the values found in the model definition file.

– min_genes_required = list of models’ fully qualified name and integer separated by spaces.
These values will supersede the values found in the model definition file.

– max_nb_genes = list of models’ fully qualified names and integer separated by spaces. These
values will supersede the values found in the model definition file.

• hmmer

– hmmer_exe (default= hmmsearch)

– e_value_res = (default= 1)

– i_evalue_sel = (default= 0.5)

– coverage_profile = (default= 0.5)

• score_opt

– mandatory_weight (default= 1.0)

– accessory_weight (default= 0.5)

– exchangeable_weight (default= 0.8)

14 Chapter 1. User Guide

MacSyFinder, Release 2.0

– redundancy_penalty (default= 1.5)

– loner_multi_system_weight (default= 0.7)

• directories

– res_search_dir = (default= ./datatest/res_search)

– res_search_suffix = (default= .search_hmm.out)

– system_models_dir = (default= ./models)

– res_extract_suffix = (default= .res_hmm_extract)

– index_dir = (default= beside the sequence_db)

• general

– log_level: (default= debug) This corresponds to an integer code:

Level Numeric value
CRITICAL 50
ERROR 40
WARNING 30
INFO 20
DEBUG 10
NOTSET 0

– log_file = (default = macsyfinder.log in directory of the run)

Example of a configuration file

[base]
prefix = /path/to/macsyfinder/home/
file = %(prefix)s/data/base/prru_psae.001.c01.fasta
db_type = gembase
replicon_topology = circular

[models]
models_1 = TFF-SF_final all

[models_opt]
inter_gene_max_space = TXSS/T2SS 22 TXSS/Flagellum 44
min_mandatory_genes_required = TXSS/T2SS 6 TXSS/Flagellum 4
min_genes_required = TXSS/T2SS 8 TXSS/Flagellum 4
max_nb_genes = TXSS/T2SS 12 TXSS/Flagellum 8

[hmmer]
hmmer = hmmsearch
e_value_res = 1
i_evalue_sel = 0.5
coverage_profile = 0.5

[score_opt]
mandatory_weight = 1.0
accessory_weight = 0.5
exchangeable_weight = 0.8
redundancy_penalty = 1.5
loner_multi_system_weight = 0.7

(continues on next page)

1.1. User Guide 15

MacSyFinder, Release 2.0

(continued from previous page)

[directories]
prefix = /path/to/macsyfinder/home/
data_dir = %(prefix)s/data/
res_search_dir = %(prefix)s/dataset/res_search/
res_search_suffix = .raw_hmm
system_models_dir = %(data_dir)/data/models, ~/.macsyfinder/data
profile_suffix = .fasta-aln.hmm
res_extract_suffix = .res_hmm
index_dir = path/where/I/store/my_indexes

[general]
log_level = debug
worker = 4

Note: After a run, the corresponding configuration file (“macsyfinder.conf”) is generated as a (re-usable) output file
that stores every options used in the run. It is stored in the results’ directory (see the output section).

Warning: The configuration variable models_dir cannot be set in general configuration file. models_dir`
can be set only in configuration under user control. `$(HOME)/.macsyfinder/macsyfinder.conf <
macsyfinder.conf < "command-line" options` models_dir is a single path to a directory whre
masyfinder can find models.

But the system_models_dir can be set in general configuration file $PREFIX/etc/macsyfinder/macsyfinder.conf

system_models_dir manage a list of locations where macsyfinder can find models. The order of locations is impor-
tant, it reflects the precedence rule (The models found in last location superseed models found in previous location).
By default system_models_dir is set to $PREFIX/share/macsyfinder/data/models, $HOME/.macsyfinder/data

In-house input files

Gembase format

In order to allow the users to run MacSyFinder on several genomes at once, we propose to adopt the following
convention to fulfill the requirements for the “gembase db_type”.

It consists in providing for each protein, both the replicon name and a protein identifier separated by a “_” in the first
field of fasta headers. “_” are accepted in the replicon name, but not in the protein identifier. Hence, the last “_” is
the separator between the replicon name and the protein identifier. As such, MacSyFinder will be able to treat each
replicon separately to assess macromolecular systems’ presence.

For instance:

>PlasmidA_0001 YP_003225072.1 | putative stcE protein
MKLKYLSCMILASLAMGAFAATAADNNSAIYFNTTQPVNDLQGGLAAEVK
FAQSQILSAHPKEGESQQHLTSLRKSLLLVRLVKADDKTPVQVEARDAND
KILGTLTLSPPSSLPDTVYHLDGVPADGIDFTPQNGTKKIINTVAEVNKL
SDASGSSIKSYLANNALVEIQTANGRWIRDMYLPQGAELEGKMVRFVSYA
GYNSTVFYGDRKVTLSVGNTLLFKYVNGQWFRSGELENNRIAYAQHTWSA
ELPAHWIVPGLNLVIKQGNLSGSLNDINVGAPGELLLHTIDIGMLTTPRG
RFDFAKDKEAHREYFQTIPVSRMIVNNYAPLHLKEVMLPTGTLLTDADPG
>PlasmidA_0002 YP_003225073.1 | type II secretion protein EtpC

(continues on next page)

16 Chapter 1. User Guide

MacSyFinder, Release 2.0

(continued from previous page)

MLFFLSSRRDRNLFIKDIALKMLTPNWVLCVILLIAGYQLVSVIRHFWLT
PATSASDLSHVSVSETAVTDEHTEENFVFTLFGTASPPLSEGKVQKTTSS
LSDDLLSGGDLDVRGILYSSVTEHSVAIFAHNNRQFSLGIGEKVPGYDAT
ISAIFSDHIVINYQGKNASLPLRYDNPAKRNAQDDNNLIVGPVTTQANFR
VKNIFDIMSLSPVTVNNTLSGYRLSPGKASSLFYNAGLHDNDLAVLLNGS
ELRDTRQAKQIMKQLTELKEIKITVERDGQLYDAFIAVGEN
....
>ChromosomeA_0001 YP_003573410.1 | adhesin-like protein
MKKLFLFAALLMTGFAFYSCEDVVDNPAQDPAQSWNYSVSVKFADFDFNG
AVDENSVPYTYKAPTTLYVLNEENTLMGTITTDAAPAIGDYGTYAGTLTG
SIGNNLIITTKIGNDLTKQDGTLKSAIENGIVQTAEVPIKIYNANSGTLT
TASAKMDNTAAIAYTSLGYIKGGDKILFVEGNQTFEWTVNEEFDPYTSTD
LYIALPMNTDPETEYTISSDSKDGYTRGGTFKLADYPTLAAGKVSNYIGG
IPFIQTGVDLTKWDAYMRTDPNNTWYMNNINNGWPATFSQEVEDGKSFIV
TQSGPTLDSLNVVVGGVTGKEVNVTLNNIRLGKDRSINIGDKHGWVEYDG
THDIYGWGAKANVTLIGENECETLYIQCPATKKGEGTLNYKNLSIDSYGS
>ChromosomeA_0020 YP_003573411.1 | hypothetical protein
MKRIVLITLVSILTTFQAIAQVANGFYRVQNNASSRYITLRDNAVGTVDY
SSTNVDLSNIVTWSGFDKVKSNPASIIYVEQHDSKYDLKVQGTGIYAITG
GRTYLELRPKDSGYILAVTYNGMEGRLYDSEEDVDGEGYVKRSGNSAYQY
WSFIPVDTENNYIGLQPTVQVGDNYYGTLYASYPFKAASSGIKFYYVDAI
....
>NC_001548_0015 YP_003225080.1 | type II secretion protein EtpJ (translation)
MSQQRVKGFTLLEMLLALAVFAALSISAFQVLQSGIRAHELSQDKVRRLA
ELQRGGSQIERDLMQMIPRHSRGSEGLLLAAPHLLKSDDWGISFTRNSWL
NPAGMLPRPELQWVGYRLRQQKLERLSYFYVDHPSGIAPDVRVVLEGVHA
FRLRFFVNGTWQARWDSTSILPQAVEVTLVMDDFAELTRLFLVSKETAE

This input file contains 3 replicons: PlasmidA (which 2 first protein identifiers are 0001 and 0002), ChromosomeA
(which 2 first protein identifiers are 0001 and 0020) and NC_001548 (which first protein identifier is 0015). Mac-
SyFinder search results will thus be reported for each of these three replicons.

Topology files

To be able to attribute a topology per replicon/genome when using the Gembase format, we propose the user to build a
“topology file” in the form of a tabular file with two columns separated by a “:”. The 1st column is the replicon name,
and the 2nd the corresponding topology. Comments can be written after a “#”.

For example:

comment line
PlasmidA : circular
ChromosomeA : linear
ChromosomeB : circular

Note: A topology file can be specified on the command-line with the --topology-file parameter.

1.1. User Guide 17

MacSyFinder, Release 2.0

Output format

MacSyFinder provides different types of output files. At each run, MacSyFinder creates a new folder, whose name
is based on a fixed prefix and a random suffix, for instance “macsyfinder-20130128_08-57-46”. MacSyFinder output
files are stored in this run-specific folder.

There are three types of output files:

1. The main output files for the systems’ search. They differ with the search mode (ordered or unordered).

2. The HMMER output files (search of each systems’ components), located in the hmmer_results folder.

3. The internal configuration and log files.

Note: Each tabular output file contains a header line describing each column in the output.

Output files for the “ordered replicon(s)” search modes

These output files are provided when MacSyFinder search proceeds on a set of proteins that are deemed to follow the
order of their genes on replicons. This corresponds to the two search modes gembase and ordered_replicon.

Systems detection results

Different types of output files are provided, human-readable files “.txt”, and tabulated files “.tsv”. For the latter,
headers are provided with the content of the lines in the file.

• best_solution.tsv - This file contains the best solution found by MacSyFinder in terms of systems detected,
under the form of a per-component, tabulated report file. A solution consists in a set of compatible systems (no
components’ overlap allowed). If multiple solutions showed a maximal score, a ranking is established.

To see potential other best solutions (in case several obtained the same highest score), see file
all_best_solutions.tsv.

To see all possible, candidate systems without further processing, see files all_systems.txt and all_systems.tsv.

The best_solution.tsv file is the most similar to former V1 file macsyfinder.report.

• best_solution_loners.tsv and best_solution_systems.tsv report hits which have been identified as loners or mul-
tisystems which means that the corresponding gene is tag ‘loner’ or ‘multisystem’ in the model definition and
the hit is lot located in a cluster.

• best_solution_summary.tsv is a summary of the best_solution.tsv file, containing the number of systems detected
in each replicon analysed.

• all_systems.txt - This file describes the search process of all possible candidate systems given the definitions in
systems’ models - without processing of the potential overlaps between candidate systems. This set of possible
candidate systems are also given under the form of a tabulated file in all_systems.tsv.

• rejected_clusters.txt - This file lists candidate clusters of systems’ components that were rejected by Mac-
SyFinder during the search process, and were thus not assigned to a candidate system.

• all_best_solutions.tsv - This file contains all possible best solutions under the form of a per-component, tabulated
report file. To retrieve a single best solution as proposed by MacSyFinder, see file best_solution.tsv.

• all_systems.tsv - This file contains all possible candidate systems given the definitions - without processing of
the potential overlaps between candidate systems, under the form of a per-component, tabulated report file. It
corresponds to the tabulated version of the all_systems.txt file.

18 Chapter 1. User Guide

MacSyFinder, Release 2.0

all_systems.txt

The file starts with some comments:

• the version of MacSyFinder used

• the command line used to produce this file

Then for each replicon, the systems detected are listed along with their description:

• system_id - the unique identifier of a system

• model - the model assigned to this system

• replicon - the name of the replicon harbouring the system

• clusters - the clusters composition of this system

– each clusters is a list of tuple

– each tuple is composed of:

* the name of the matching gene(s) in the replicon

* the name of the corresponding gene profile(s)

* the position of the corresponding sequence(s) along the replicon

• occurrence - the average number of occurrences of each components of the system (as a potential proxy to
estimate whether there’s the genetic potential for multiple systems in one)

• wholeness - the percentage of the model’s components that were found in this system

• loci nb - the number of different loci constituting this system

• score - the score of the system. See here for more details

• systems components - the number of occurrences of each model components in parenthesis the name of the
matching profile in square brackets the name of other putative systems that would involve this gene

Here is an example of the all_systems.txt file:

macsyfinder 20200217.dev
macsyfinder --sequence-db DATA_TEST/sequences.prt --db-type=gembase --models-dir
→˓data/models/ --models TFF-SF_final all -w 4
Systems found:

system id = VICH001.B.00001.C001_MSH_1
model = TFF-SF_final/MSH
replicon = VICH001.B.00001.C001
clusters = [('VICH001.B.00001.C001_00406', 'MSH_mshI', 366), ('VICH001.B.00001.C001_
→˓00407', 'MSH_mshJ', 367), ('VICH001.B.00001.C001_00408', 'MSH_mshK', 368), (
→˓'VICH001.B.00001.C001_00409', '
MSH_mshL', 369), ('VICH001.B.00001.C001_00410', 'MSH_mshM', 370), ('VICH001.B.00001.
→˓C001_00411', 'MSH_mshN', 371), ('VICH001.B.00001.C001_00412', 'MSH_mshE', 372), (
→˓'VICH001.B.00001.C001_0041
3', 'MSH_mshG', 373), ('VICH001.B.00001.C001_00414', 'MSH_mshF', 374), ('VICH001.B.
→˓00001.C001_00415', 'MSH_mshB', 375), ('VICH001.B.00001.C001_00416', 'MSH_mshA',
→˓376), ('VICH001.B.00001.C001
_00417', 'MSH_mshC', 377), ('VICH001.B.00001.C001_00418', 'MSH_mshD', 378), ('VICH001.
→˓B.00001.C001_00419', 'MSH_mshO', 379), ('VICH001.B.00001.C001_00420', 'MSH_mshP',
→˓380), ('VICH001.B.00001
.C001_00421', 'MSH_mshQ', 381)]
occ = 1

(continues on next page)

1.1. User Guide 19

MacSyFinder, Release 2.0

(continued from previous page)

wholeness = 0.941
loci nb = 1
score = 10.500

mandatory genes:
- MSH_mshA: 1 (MSH_mshA)
- MSH_mshE: 1 (MSH_mshE)
- MSH_mshG: 1 (MSH_mshG)
- MSH_mshL: 1 (MSH_mshL)
- MSH_mshM: 1 (MSH_mshM)

accessory genes:
- MSH_mshB: 1 (MSH_mshB)
- MSH_mshC: 1 (MSH_mshC)
- MSH_mshD: 1 (MSH_mshD)
- MSH_mshF: 1 (MSH_mshF)
- MSH_mshI: 1 (MSH_mshI)
- MSH_mshI2: 0 ()
- MSH_mshJ: 1 (MSH_mshJ)
- MSH_mshK: 1 (MSH_mshK)
- MSH_mshN: 1 (MSH_mshN)
- MSH_mshO: 1 (MSH_mshO)
- MSH_mshQ: 1 (MSH_mshQ)
- MSH_mshP: 1 (MSH_mshP)

neutral genes:

==
system id = VICH001.B.00001.C001_T4P_14
model = TFF-SF_final/T4P
replicon = VICH001.B.00001.C001
clusters = [('VICH001.B.00001.C001_00476', 'T4P_pilT', 427), ('VICH001.B.00001.C001_
→˓00477', 'T4P_pilU', 428)], [('VICH001.B.00001.C001_00847', 'T4P_pilO', 778), (
→˓'VICH001.B.00001.C001_00850',
'T4P_pilE', 781), ('VICH001.B.00001.C001_00851', 'T4P_fimT', 782), ('VICH001.B.00001.
→˓C001_00852', 'T4P_pilW', 783), ('VICH001.B.00001.C001_00853', 'T4P_pilX', 784), (
→˓'VICH001.B.00001.C001_00
854', 'T4P_pilV', 785)], [('VICH001.B.00001.C001_02305', 'T4P_pilA', 2202), ('VICH001.
→˓B.00001.C001_02306', 'T4P_pilB', 2203), ('VICH001.B.00001.C001_02307', 'T4P_pilC',
→˓2204), ('VICH001.B.000
01.C001_02308', 'T4P_pilD', 2205)], [('VICH001.B.00001.C001_02502', 'MSH_mshM', 2391),
→˓ ('VICH001.B.00001.C001_02505', 'T4P_pilQ', 2394), ('VICH001.B.00001.C001_02506',
→˓'T4P_pilP', 2395), ('VI
CH001.B.00001.C001_02507', 'T4P_pilO', 2396), ('VICH001.B.00001.C001_02508', 'T4P_pilN
→˓', 2397), ('VICH001.B.00001.C001_02509', 'T4P_pilM', 2398)]
occ = 1
wholeness = 0.944
loci nb = 4
score = 12.000

mandatory genes:
- T4P_pilE: 1 (T4P_pilE)
- T4P_pilB: 1 (T4P_pilB)
- T4P_pilC: 1 (T4P_pilC)
- T4P_pilO: 2 (T4P_pilO, T4P_pilO)
- T4P_pilQ: 1 (T4P_pilQ)
- T4P_pilN: 1 (T4P_pilN)

(continues on next page)

20 Chapter 1. User Guide

MacSyFinder, Release 2.0

(continued from previous page)

- T4P_pilT: 1 (T4P_pilT)
- T4P_pilD: 1 (T4P_pilD [VICH001.B.00001.C001_T2SS_4])

accessory genes:
- T4P_pilA: 1 (T4P_pilA)
- T4P_pilV: 1 (T4P_pilV)
- T4P_pilY: 0 ()
- T4P_pilW: 1 (T4P_pilW)
- T4P_pilX: 1 (T4P_pilX)
- T4P_fimT: 1 (T4P_fimT)
- T4P_pilM: 1 (T4P_pilM)
- T4P_pilP: 1 (T4P_pilP)
- T4P_pilU: 1 (T4P_pilU)
- MSH_mshM: 1 (MSH_mshM)

neutral genes:

all_systems.tsv

This corresponds to the tabulated version of the systems listed in all_systems.txt. Each line corresponds to a “hit” that
has been assigned to a detected system. It includes:

• replicon - the name of the replicon it belongs to

• hit_id - the unique identifier of the hit

• gene_name - the name of the component identified by the hit

• hit_pos - the position of the sequence in the replicon

• model_fqn - the model fully-qualified name

• sys_id - the unique identifier attributed to the detected system

• sys_loci - the number of loci

• locus_num - the number of the locus where is located this gene. Loners gene have a negative locus_num

• sys_wholeness - the wholeness of the system

• sys_score - the system score

• sys_occ - the estimated number of system occurrences that could be potentially “filled” with this system’s
occurrence, based on the average number of each component found. A proxy for the genetic potential ton
encode several systems from the set of components found in this one occurrence.

• hit_gene_ref - the gene in the model whose this hit plays the role of

• hit_status - the status of the component in the assigned system’s definition

• hit_seq_len - the length of the protein sequence matched by this hit

• hit_i_eval - Hmmer statistics, the independent-evalue

• hit_score - Hmmer score

• hit_profile_cov - the percentage of the profile covered by the alignment with the sequence

• hit_seq_cov - the percentage of the sequence covered by the alignment with the profile

• hit_begin_match - the position in the sequence where the profile match begins

1.1. User Guide 21

MacSyFinder, Release 2.0

• hit_end_match - the position in the sequence where the profile match ends

• counterpart - the hit id of some other hit which are equivalent. only Loners and multisystems hits have coun-
terpart

• used_in - whether the hit could be used in another system’s occurrence

This file can be easily parsed using the Python pandas library.

import pandas as pd

systems = pd.read_csv("path/to/systems.tsv", sep='\t', comment='#')

Note: Each system reported is separated from the others with a blank line to ease human reading. These lines are
ignored during the parsing with pandas.

macsyfinder 20220121.dev
/home/bneron/Projects/GEM/MacSyFinder/MacSyFinder/py39/bin/macsyfinder --db-
→˓type=gembase --models-dir=tests/data//models/ --models TFF-SF Archaeal-T4P ComM MSH
→˓T2SS T4bP T4P Tad --relative-path --sequence-db tests/data/base/gembase.fasta -w 12
Systems found:
replicon hit_id gene_name hit_pos model_fqn sys_
→˓id sys_loci locus_num sys_wholeness sys_
→˓score sys_occ hit_gene_ref hit_status hit_seq_
→˓len hit_i_eval hit_score hit_profile_cov hit_seq_
→˓cov hit_begin_match hit_end_match counterpart used_in
GCF_000005845 GCF_000005845_000970 T4P_pilC 97 TFF-SF/
→˓T4P GCF_000005845_T4P_14 3 1 0.556 7.
→˓260 1 T4P_pilC mandatory 400 2.2e-105 353.
→˓100 0.991 0.830 62 393
GCF_000005845 GCF_000005845_000980 T4P_pilB 98 TFF-SF/
→˓T4P GCF_000005845_T4P_14 3 1 0.556 7.
→˓260 1 T4P_pilB mandatory 461 8.9e-152 506.
→˓100 0.948 0.850 62 453
GCF_000005845 GCF_000005845_000990 T4P_pilA 99 TFF-SF/
→˓T4P GCF_000005845_T4P_14 3 1 0.556 7.
→˓260 1 T4P_pilA accessory 146 1.1e-19 71.
→˓200 0.859 0.473 5 73
GCF_000005845 GCF_000005845_025680 T4P_pilW 2568 TFF-SF/
→˓T4P GCF_000005845_T4P_14 3 2 0.556 7.
→˓260 1 T4P_pilW accessory 187 3.3e-08 34.
→˓500 0.625 0.401 6 80
GCF_000005845 GCF_000005845_025690 T4P_fimT 2569 TFF-SF/
→˓T4P GCF_000005845_T4P_14 3 2 0.556 7.
→˓260 1 T4P_fimT accessory 156 2.5e-06 28.
→˓500 0.939 0.397 5 66
GCF_000005845 GCF_000005845_030590 T4P_pilQ 3059 TFF-SF/
→˓T4P GCF_000005845_T4P_14 3 3 0.556 7.
→˓260 1 T4P_pilQ mandatory 412 5.9e-51 173.
→˓100 0.919 0.408 244 411
GCF_000005845 GCF_000005845_030620 T4P_pilN 3062 TFF-SF/
→˓T4P GCF_000005845_T4P_14 3 3 0.556 7.
→˓260 1 T4P_pilN mandatory 179 3.8e-09 37.
→˓500 0.986 0.765 5 141
GCF_000005845 GCF_000005845_030630 T4P_pilM 3063 TFF-SF/
→˓T4P GCF_000005845_T4P_14 3 3 0.556 7.
→˓260 1 T4P_pilM accessory 259 1.1e-09 39.
→˓300 0.988 0.598 8 162 (continues on next page)

22 Chapter 1. User Guide

https://pandas.pydata.org/

MacSyFinder, Release 2.0

(continued from previous page)

GCF_000005845 GCF_000005845_026740 T4P_pilT 2674 TFF-SF/
→˓T4P GCF_000005845_T4P_14 3 -1 0.556 7.
→˓260 1 T4P_pilT mandatory 326 1.1e-117 393.
→˓600 0.944 0.979 3 321
GCF_000005845 GCF_000005845_026930 T2SS_gspO 2693 TFF-SF/
→˓T4P GCF_000005845_T4P_14 3 -2 0.556 7.
→˓260 1 T4P_pilD mandatory 269 1.3e-87 294.
→˓000 1.000 0.859 30 260 GCF_000005845_
→˓030080 GCF_000005845_T2SS_2

Note: If a loner component is not clustered with other genes, it will not be considered as part of a locus. Thus, its
locus number will be a negative value (numbered from -1) and will not be counted in the variable sys_loci (number of
loci for a system). See above lines for more details.

GCF_000005845 GCF_000005845_026740 T4P_pilT 2674 TFF-SF/T4P GCF_
→˓000005845_T4P_25 3 -1 0.556 7.800
GCF_000005845 GCF_000005845_026930 T2SS_gspO 2693 TFF-SF/T4P GCF_
→˓000005845_T4P_25 3 -2 0.556 7.800

best_solution.tsv and all_best_solutions.tsv

Since MacSyFinder 2.0, a combinatorial exploration of solutions using sets of systems found is performed. We call
best solution, the combination of systems offering the highest score.

The best_solution.tsv and all_best_solutions.tsv files have the same structure as the file all_systems.tsv, except that
there is an extra column sol_id which is a solution identifier added to the file all_best_solutions.tsv. The systems that
have the same “sol_id” belong to a same solution.

As the files have the same structure as all_systems.tsv, they can also be parsed with pandas as shown above.

For the description of the fields of best_solution.tsv, see above those of the all_systems.tsv file.

For the all_best_solutions.tsv, each line corresponds to a “hit” that has been assigned to a detected system. It includes:

• sol_id - the name of the solution it is part of (only in all_best_solutions.tsv files)

• replicon - the name of the replicon it belongs to

• hit_id - the unique identifier of the hit

• gene_name - the name of the component identified by the hit

• hit_pos - the position of the sequence in the replicon

• model_fqn - the model fully-qualified name

• sys_id - the unique identifier attributed to the detected system

• sys_loci - the number of loci

• locus_num - the number of the locus where is located this gene. Loners gene have negative locus_num

• sys_wholeness - the wholeness of the system

• sys_score - the system score

• sys_occ - the estimated number of system occurrences that could be potentially “filled” with this system’s
occurrence, based on the average number of each component found. A proxy for the genetic potential ton
encode several systems from the set of components found in this one occurrence.

1.1. User Guide 23

MacSyFinder, Release 2.0

• hit_gene_ref - the gene in the model whose this hit plays the role of

• hit_status - the status of the component in the assigned system’s definition

• hit_seq_len - the length of the protein sequence matched by this hit

• hit_i_eval - Hmmer statistics, the independent-evalue

• hit_score - Hmmer score

• hit_profile_cov - the percentage of the profile covered by the alignment with the sequence

• hit_seq_cov - the percentage of the sequence covered by the alignment with the profile

• hit_begin_match - the position in the sequence where the profile match begins

• hit_end_match - the position in the sequence where the profile match ends

• counterpart - the hit id of some other hit which are equivalent. only Loners and multisystems hits have coun-
terpart

• used_in - whether the hit could be used in another system’s occurrence

Note: Each system reported is separated from the others with a blank line to ease human reading. These lines are
ignored during the parsing with pandas.

Example of best_solution.tsv files

macsyfinder 20220121.dev
/home/bneron/Projects/GEM/MacSyFinder/MacSyFinder/py39/bin/macsyfinder --db-
→˓type=gembase --models-dir=tests/data//models/ --models TFF-SF Archaeal-T4P ComM MSH
→˓T2SS T4bP T4P Tad --relative-path --sequence-db tests/data/base/gembase.fasta -w 12
Systems found:
replicon hit_id gene_name hit_pos model_fqn sys_
→˓id sys_loci locus_num sys_wholeness sys_
→˓score sys_occ hit_gene_ref hit_status hit_seq_
→˓len hit_i_eval hit_score hit_profile_cov hit_seq_
→˓cov hit_begin_match hit_end_match counterpart used_in
GCF_000005845 GCF_000005845_000970 T4P_pilC 97 TFF-SF/
→˓T4P GCF_000005845_T4P_9 1 1 0.278 3.
→˓760 1 T4P_pilC mandatory 400 2.2e-105 353.
→˓100 0.991 0.830 62 393
GCF_000005845 GCF_000005845_000980 T4P_pilB 98 TFF-SF/
→˓T4P GCF_000005845_T4P_9 1 1 0.278 3.
→˓760 1 T4P_pilB mandatory 461 8.9e-152 506.
→˓100 0.948 0.850 62 453
GCF_000005845 GCF_000005845_000990 T4P_pilA 99 TFF-SF/
→˓T4P GCF_000005845_T4P_9 1 1 0.278 3.
→˓760 1 T4P_pilA accessory 146 1.1e-19 71.
→˓200 0.859 0.473 5 73
GCF_000005845 GCF_000005845_026740 T4P_pilT 2674 TFF-SF/
→˓T4P GCF_000005845_T4P_9 1 -1 0.278 3.
→˓760 1 T4P_pilT mandatory 326 1.1e-117 393.
→˓600 0.944 0.979 3 321
GCF_000005845 GCF_000005845_026930 T2SS_gspO 2693 TFF-SF/
→˓T4P GCF_000005845_T4P_9 1 -2 0.278 3.
→˓760 1 T4P_pilD mandatory 269 1.3e-87 294.
→˓000 1.000 0.859 30 260 GCF_000005845_
→˓030080 GCF_000005845_T2SS_2

(continues on next page)

24 Chapter 1. User Guide

MacSyFinder, Release 2.0

(continued from previous page)

GCF_000005845 GCF_000005845_025680 T4P_pilW 2568 TFF-SF/
→˓T4P GCF_000005845_T4P_13 2 1 0.389 4.
→˓760 1 T4P_pilW accessory 187 3.3e-08 34.
→˓500 0.625 0.401 6 80
GCF_000005845 GCF_000005845_025690 T4P_fimT 2569 TFF-SF/
→˓T4P GCF_000005845_T4P_13 2 1 0.389 4.
→˓760 1 T4P_fimT accessory 156 2.5e-06 28.
→˓500 0.939 0.397 5 66
GCF_000005845 GCF_000005845_030590 T4P_pilQ 3059 TFF-SF/
→˓T4P GCF_000005845_T4P_13 2 2 0.389 4.
→˓760 1 T4P_pilQ mandatory 412 5.9e-51 173.
→˓100 0.919 0.408 244 411
GCF_000005845 GCF_000005845_030620 T4P_pilN 3062 TFF-SF/
→˓T4P GCF_000005845_T4P_13 2 2 0.389 4.
→˓760 1 T4P_pilN mandatory 179 3.8e-09 37.
→˓500 0.986 0.765 5 141
GCF_000005845 GCF_000005845_030630 T4P_pilM 3063 TFF-SF/
→˓T4P GCF_000005845_T4P_13 2 2 0.389 4.
→˓760 1 T4P_pilM accessory 259 1.1e-09 39.
→˓300 0.988 0.598 8 162

Example of all_best_solutions.tsv files

macsyfinder 20220121.dev
/home/bneron/Projects/GEM/MacSyFinder/MacSyFinder/py39/bin/macsyfinder --db-
→˓type=gembase --models-dir=tests/data//models/ --models TFF-SF Archaeal-T4P ComM MSH
→˓T2SS T4bP T4P Tad --relative-path --sequence-db tests/data/base/gembase.fasta -w 12
Systems found:
sol_id replicon hit_id gene_name hit_pos model_
→˓fqn sys_id sys_loci locus_num sys_wholeness sys_
→˓score sys_occ hit_gene_ref hit_status hit_seq_
→˓len hit_i_eval hit_score hit_profile_cov hit_seq_
→˓cov hit_begin_match hit_end_match counterpart used_in
1 GCF_000005845 GCF_000005845_000970 T4P_
→˓pilC 97 TFF-SF/T4P GCF_000005845_T4P_
→˓9 1 1 0.278 3.760 1 T4P_
→˓pilC mandatory 400 2.2e-105 353.100 0.
→˓991 0.830 62 393
1 GCF_000005845 GCF_000005845_000980 T4P_
→˓pilB 98 TFF-SF/T4P GCF_000005845_T4P_
→˓9 1 1 0.278 3.760 1 T4P_
→˓pilB mandatory 461 8.9e-152 506.100 0.
→˓948 0.850 62 453
1 GCF_000005845 GCF_000005845_000990 T4P_
→˓pilA 99 TFF-SF/T4P GCF_000005845_T4P_
→˓9 1 1 0.278 3.760 1 T4P_
→˓pilA accessory 146 1.1e-19 71.200 0.859 0.
→˓473 5 73
1 GCF_000005845 GCF_000005845_026740 T4P_
→˓pilT 2674 TFF-SF/T4P GCF_000005845_T4P_9 1 -
→˓1 0.278 3.760 1 T4P_
→˓pilT mandatory 326 1.1e-117 393.600 0.
→˓944 0.979 3 321
1 GCF_000005845 GCF_000005845_026930 T2SS_
→˓gspO 2693 TFF-SF/T4P GCF_000005845_T4P_9 1 -
→˓2 0.278 3.760 1 T4P_
→˓pilD mandatory 269 1.3e-87 294.000 1.
→˓000 0.859 30 260 GCF_000005845_030080 GCF_
→˓000005845_T2SS_2

(continues on next page)

1.1. User Guide 25

MacSyFinder, Release 2.0

(continued from previous page)

1 GCF_000005845 GCF_000005845_025680 T4P_
→˓pilW 2568 TFF-SF/T4P GCF_000005845_T4P_
→˓13 2 1 0.389 4.760 1 T4P_
→˓pilW accessory 187 3.3e-08 34.500 0.625 0.
→˓401 6 80
1 GCF_000005845 GCF_000005845_025690 T4P_
→˓fimT 2569 TFF-SF/T4P GCF_000005845_T4P_
→˓13 2 1 0.389 4.760 1 T4P_
→˓fimT accessory 156 2.5e-06 28.500 0.939 0.
→˓397 5 66
1 GCF_000005845 GCF_000005845_030590 T4P_
→˓pilQ 3059 TFF-SF/T4P GCF_000005845_T4P_
→˓13 2 2 0.389 4.760 1 T4P_
→˓pilQ mandatory 412 5.9e-51 173.100 0.
→˓919 0.408 244 411
1 GCF_000005845 GCF_000005845_030620 T4P_
→˓pilN 3062 TFF-SF/T4P GCF_000005845_T4P_
→˓13 2 2 0.389 4.760 1 T4P_
→˓pilN mandatory 179 3.8e-09 37.500 0.986 0.
→˓765 5 141
1 GCF_000005845 GCF_000005845_030630 T4P_
→˓pilM 3063 TFF-SF/T4P GCF_000005845_T4P_
→˓13 2 2 0.389 4.760 1 T4P_
→˓pilM accessory 259 1.1e-09 39.300 0.988 0.
→˓598 8 162
1 GCF_000005845 GCF_000005845_026740 T4P_
→˓pilT 2674 TFF-SF/T4P GCF_000005845_T4P_13 2 -
→˓1 0.389 4.760 1 T4P_
→˓pilT mandatory 326 1.1e-117 393.600 0.
→˓944 0.979 3 321
1 GCF_000005845 GCF_000005845_026930 T2SS_
→˓gspO 2693 TFF-SF/T4P GCF_000005845_T4P_13 2 -
→˓2 0.389 4.760 1 T4P_
→˓pilD mandatory 269 1.3e-87 294.000 1.
→˓000 0.859 30 260 GCF_000005845_030080 GCF_
→˓000005845_T2SS_2

1 GCF_000005845 GCF_000005845_029970 T2SS_
→˓gspC 2997 TFF-SF/T2SS GCF_000005845_T2SS_
→˓1 1 1 0.857 9.000 1 T2SS_
→˓gspC mandatory 271 2.3e-19 70.400 0.897 0.
→˓358 47 143
1 GCF_000005845 GCF_000005845_029980 T2SS_
→˓gspD 2998 TFF-SF/T2SS GCF_000005845_T2SS_
→˓1 1 1 0.857 9.000 1 T2SS_
→˓gspD mandatory 650 2e-72 243.100 0.995 0.
→˓283 427 610
1 GCF_000005845 GCF_000005845_030060 T2SS_
→˓gspL 3006 TFF-SF/T2SS GCF_000005845_T2SS_
→˓1 1 1 0.857 9.000 1 T2SS_
→˓gspL accessory 387 1.5e-37 129.300 1.
→˓000 0.351 6 141
1 GCF_000005845 GCF_000005845_030070 T2SS_
→˓gspM 3007 TFF-SF/T2SS GCF_000005845_T2SS_
→˓1 1 1 0.857 9.000 1 T2SS_
→˓gspM accessory 153 2.8e-29 102.900 0.
→˓985 0.804 13 135 (continues on next page)

26 Chapter 1. User Guide

MacSyFinder, Release 2.0

(continued from previous page)

1 GCF_000005845 GCF_000005845_030080 T2SS_
→˓gspO 3008 TFF-SF/T2SS GCF_000005845_T2SS_
→˓1 1 1 0.857 9.000 1 T2SS_
→˓gspO mandatory 225 4e-65 220.400 0.978 0.
→˓840 26 214

WARNING Loner: there is only 1 occurrence(s) of loner 'T4P_pilT' and 2 potential
→˓systems [GCF_000005845_T4P_9, GCF_000005845_T4P_13]

2 GCF_000005845 GCF_000005845_000970 T4P_
→˓pilC 97 TFF-SF/T4P GCF_000005845_T4P_
→˓11 2 1 0.389 4.760 1 T4P_
→˓pilC mandatory 400 2.2e-105 353.100 0.
→˓991 0.830 62 393
2 GCF_000005845 GCF_000005845_000980 T4P_
→˓pilB 98 TFF-SF/T4P GCF_000005845_T4P_
→˓11 2 1 0.389 4.760 1 T4P_
→˓pilB mandatory 461 8.9e-152 506.100 0.
→˓948 0.850 62 453

Note: If a loner component is not clustered with other genes, it will not be considered as part of a locus. Thus, its
locus number will be a negative value (numbered from -1) and will not be counted in the variable sys_loci (number of
loci for a system). See above lines for more details.

Note: If several systems from same model use a loner (same gene) msf check that there is at least one occurrence of
this hit for each system. If there are fewer hits than systems occurrence a warning is displayed in best_solution.tsv or
all_best_solution.tsv as comment. So the file can be parsed with pandas without problem.

1 GCF_000005845 GCF_000005845_030080 T2SS_gspO 3008 TFF-SF/T2SS
→˓ GCF_000005845_T2SS_1 1 1 0.857 9.000 1 T2SS_gspO
→˓mandatory 225 4e-65 220.400 0.978 0.840 26 214

WARNING Loner: there is only 1 occurrence(s) of loner 'T4P_pilT' and 2 potential
→˓systems [GCF_000005845_T4P_9, GCF_000005845_T4P_13]

2 GCF_000005845 GCF_000005845_000970 T4P_pilC 97 TFF-SF/T4P
→˓ GCF_000005845_T4P_11 2 1 0.389 4.760 1 T4P_pilC
→˓mandatory 400 2.2e-105 353.100 0.991 0.830 62 393

Note: In case multiple solutions have the exact same score, a sorting is performed among the best solutions, and the
solution ranked 1st is reported in the best_solution.tsv and best_solution.txt files. The ranking is performed as follow:

1. by the number of systems’ components (hits) constituting the solution (most components first)

2. by the number of systems (most systems in first)

3. by the average of systems’ wholeness

4. by hits position. This criterion is mostly introduced to produce reproducible results between two runs.

1.1. User Guide 27

MacSyFinder, Release 2.0

best_solution_summary.tsv

This file is a concise view of which systems have been found in your replicons and how many per replicon. It is based
on best_solution.tsv. The first two lines are comments that indicate the version of MacSyFinder and the command
line used to generate the results. Then a table represented by tabulated text to separate columns, with the searched
models in columns and the replicons scanned for the models in row.

macsyfinder 20220121.dev
/home/bneron/Projects/GEM/MacSyFinder/MacSyFinder/py39/bin/macsyfinder --db-
→˓type=gembase --models-dir=tests/data//models/ --models TFF-SF Archaeal-T4P ComM MSH
→˓T2SS T4bP T4P Tad --relative-path --sequence-db tests/data/base/gembase.fasta -w 12
replicon TFF-SF/MSH TFF-SF/T2SS TFF-SF/T4P TFF-SF/
→˓T4bP TFF-SF/Tad TFF-SF/Archaeal-T4P TFF-SF/ComM
GCF_000005845 0 1 2 0 0 0 0
GCF_000006725 0 1 2 0 0 0 0
GCF_000006745 1 1 2 1 0 0 0
GCF_000006765 0 3 1 0 1 0 0
GCF_000006845 0 0 1 0 0 0 0
GCF_000006905 0 1 0 0 1 0 0
GCF_000006925 0 0 1 0 0 0 0
GCF_000006945 0 0 2 0 0 0 0

as a tsv file it can be parsed easily using pandas:

import pandas as pd
solution = pd.read_csv('path to best_solution_summary.tsv', sep='\t', comment='#',
→˓index_col=0)

Note:

If you want to do the same operation but based on the all_best_solutions.tsv file, you can do it with the
few lines of pandas below:

import pandas as pd

all_best_sol = '<macsyfinder_results_dir>/all_best_solutions.tsv'

read data from best_solution file
data = pd.read_csv(all_best_sol, sep='\t', comment='#')

remove useless columns
selection = data[['sol_id', 'replicon', 'sys_id', 'model_fqn']]

keep only one row per replicon, sys_id
dropped = selection.drop_duplicates(subset=['sol_id', 'replicon', 'sys_id'])

count for each replicon which models have been detected and their
→˓occurrences
summary = pd.crosstab(index=[dropped.sol_id, dropped.replicon],
→˓columns=dropped['model_fqn'])

if you are not fluent in pandas, we provide you a tiny script msf_summary.py based on few lines above to do the job

msf_summary.py .

Then you can run the script

28 Chapter 1. User Guide

MacSyFinder, Release 2.0

python msf_summary.py <path_to_all_best_solutions.tsv>

below an example of summary of all_best_solutions.tsv

sol_id replicon TFF-SF/MSH TFF-SF/T2SS TFF-SF/
→˓T4P TFF-SF/T4bP TFF-SF/Tad
1 GCF_000005845 0 1 1 0 0
2 GCF_000006725 0 1 1 0 0
3 GCF_000006725 0 1 1 0 0
4 GCF_000006745 1 1 2 1 0
5 GCF_000006745 1 1 2 1 0
6 GCF_000006745 1 1 1 1 0
7 GCF_000006765 0 3 1 0 1
8 GCF_000006845 0 0 1 0 0
9 GCF_000006905 0 1 0 0 1
10 GCF_000006925 0 0 1 0 0
11 GCF_000006945 0 0 1 0 0

best_solution_loners.tsv

This file give an overview of all hits identified as Loner in the best_solution

macsyfinder 20220121.dev
/home/bneron/Projects/GEM/MacSyFinder/MacSyFinder/py39/bin/macsyfinder --
→˓db-type=gembase --models-dir=tests/data//models/ --models TFF-SF Archaeal-
→˓T4P ComM MSH T2SS T4bP T4P Tad --relative-path --sequence-db tests/data/
→˓base/gembase.fasta -w 12
Loners found:
replicon model_fqn function gene_name hit_
→˓id hit_pos hit_status hit_seq_len hit_i_
→˓eval hit_score hit_profile_cov hit_seq_cov hit_
→˓begin_match hit_end_match
GCF_000005845 TFF-SF/T4P T4P_pilT T4P_pilT GCF_
→˓000005845_026740 2674 mandatory 326 1.100e-
→˓117 393.600 0.944 0.979 3 321
GCF_000005845 TFF-SF/T4P T4P_pilD T2SS_gspO GCF_
→˓000005845_026930 2693 mandatory 269 1.300e-
→˓87 294.000 1.000 0.859 30 260
GCF_000005845 TFF-SF/T4P T4P_pilD T2SS_gspO GCF_
→˓000005845_030080 3008 mandatory 225 4.000e-
→˓65 220.400 0.978 0.840 26 214
GCF_000006725 TFF-SF/T4P T4P_pilT T4P_pilT GCF_
→˓000006725_000270 4269 mandatory 344 1.800e-
→˓172 573.700 0.994 0.985 2 340
GCF_000006725 TFF-SF/T4P T4P_pilA T4P_pilA GCF_
→˓000006725_003680 4610 accessory 187 9.000e-
→˓10 39.500 0.667 0.278 6 57
GCF_000006725 TFF-SF/T2SS T2SS_gspO T4P_pilD GCF_
→˓000006725_014570 5699 mandatory 287 7.400e-
→˓77 258.600 1.000 0.836 28 267
GCF_000006725 TFF-SF/T2SS T2SS_gspE T2SS_
→˓gspE GCF_000006725_
→˓018700 6112 mandatory 566 1.800e-
→˓171 571.000 0.936 0.701 165 561

(continues on next page)

1.1. User Guide 29

MacSyFinder, Release 2.0

(continued from previous page)

GCF_000006725 TFF-SF/T4P T4P_pilA T4P_pilA GCF_
→˓000006725_022640 6506 accessory 178 2.000e-
→˓10 41.600 0.603 0.264 5 51
GCF_000006745 TFF-SF/T2SS T2SS_gspO T4P_pilD GCF_
→˓000006745_021980 8766 mandatory 291 3.100e-
→˓88 295.800 1.000 0.832 28 269
GCF_000006765 TFF-SF/T2SS T2SS_gspO T4P_pilD GCF_
→˓000006765_044730 14545 mandatory 290 1.100e-
→˓88 297.200 1.000 0.828 31 270
GCF_000006925 TFF-SF/T4P T4P_pilT T4P_pilT GCF_
→˓000006925_026070 23874 mandatory 341 6.600e-
→˓118 394.300 0.950 0.941 18 338
GCF_000006945 TFF-SF/T4P T4P_pilT T4P_pilT GCF_
→˓000006945_030160 28596 mandatory 326 3.400e-
→˓113 378.800 0.933 0.966 3 317
GCF_000006945 TFF-SF/T4P T4P_pilD T2SS_gspO GCF_
→˓000006945_033450 28925 mandatory 155 2.900e-
→˓35 122.700 0.588 0.871 9 143

best_solution_multisystems.tsv

This file give an overview of all hits identified as MultiSystems in the best_solution

macsyfinder 20220121.dev
/home/bneron/Projects/GEM/MacSyFinder/MacSyFinder/py39/bin/macsyfinder --
→˓db-type ordered_replicon --replicon-topology linear --models-dir tests/
→˓data/models/ -m functional T12SS-multisystem --relative-path --sequence-db
→˓tests/data/base/test_13.fasta -w 15
Multisystems found:
replicon model_fqn function gene_name hit_
→˓id hit_pos hit_status hit_seq_len hit_i_
→˓eval hit_score hit_profile_cov hit_seq_cov hit_
→˓begin_match hit_end_match
UserReplicon functional/T12SS-multisystem T1SS_omf T1SS_
→˓omf VICH001.B.00001.C001_
→˓01360 20 mandatory 484 3.200e-28 90.
→˓000 0.985 0.820 80 476
UserReplicon functional/T12SS-multisystem T1SS_omf T1SS_
→˓omf VICH001.B.00001.C001_
→˓01506 35 mandatory 419 9.100e-35 111.
→˓500 0.998 0.912 25 406

rejected_clusters.txt

This file records all clusters or cluster combinations (if the “multi_loci” search mode is on) which have been discarded
and the reason why they were not selected as systems.

The header is composed of the MacSyFinder version and the command line used followed by the description of the
cluster(s). The list of the hits composing the cluster is presented at the end of the cluster or clusters’ combination,
followed by the reason why it has been discarded.

macsyfinder 20200511.dev
/macsyfinder --sequence-db data/base/GCF_000006745.fasta --models TFF-SF all --
→˓models-dir data/models/ --db-type gembase -w 4

(continues on next page)

30 Chapter 1. User Guide

MacSyFinder, Release 2.0

(continued from previous page)

Rejected clusters:

Cluster:
- model: T4P
- hits: (GCF_000005845_025680, T4P_pilW, 2568), (GCF_000005845_025690, T4P_fimT,

→˓2569)
Cluster:

- model: T4P
- hits: (GCF_000005845_026930, T2SS_gspO, 2693)

Cluster:
- model: T4P
- hits: (GCF_000005845_030080, T2SS_gspO, 3008)

These clusters have been rejected because:
The quorum of mandatory genes required (4) is not reached: 1
The quorum of genes required (5) is not reached: 3
==
Cluster:

- model: Archaeal-T4P
- hits: (GCF_000005845_019260, Archaeal-T4P_arCOG00589, 1926), (GCF_000005845_

→˓019310, Archaeal-T4P_arCOG02900, 1931)
These clusters have been rejected because:
The quorum of mandatory genes required (3) is not reached: 0
The quorum of genes required (3) is not reached: 2
==

Output files for the “unordered replicon” search mode

Systems detection results

As for ordered replicons, several output files are provided.

• all_systems.txt - This file contains the description of candidate systems found.

• all_systems.tsv - The same information as in all_systems.txt but in the tabulated tsv format.

• uncomplete_systems.txt - This file contains occurrences for systems that did not complete models’ definitions
and that were therefore not kept as candidate systems.

Note: In this unordered search mode, there is no notion of order or distance of the components along the replicon. The
clustering step is skipped by MacSyFinder, and it is therefore “only” checked for each type of system being searched
whether there is the genetic potential to fulfil its model definition.

all_systems.txt

This file contains potential systems for unordered replicon in human readable format.

In this file, for each component of each searched system’s model, we report the number of hits found. For the descrip-
tion of the fields, see above.

1.1. User Guide 31

MacSyFinder, Release 2.0

Warning: In this mode the forbidden genes are reported here to the user. As we do not know if they co-localize
(cluster) with the other genes they could be present in the replicon, yet far away - or very close on the contrary - to
the potential system.

macsyfinder 20201028.dev
macsyfinder --sequence-db tests/data/base/one_replicon.fasta --db-type unordered --
→˓models-dir tests/data/models -m TFF-SF T4P_single_locus
Systems found:

This replicon contains genetic materials needed for system TFF-SF/T4P_single_locus

system id = Unordered_T4P_single_locus_1
model = TFF-SF/T4P_single_locus
replicon = Unordered
hits = [('GCF_000006845_000250', 'T4P_pilY', 25), ('GCF_000006845_000700', 'T4P_pilY',
→˓ 70), ('GCF_000006845_001030', 'T4P_pilQ', 103), ('GCF_000006845_001040', 'T4P_pilP
→˓', 104), ('GCF_000006845_001050', 'T4P_pilO', 105), ('GCF_000006845_001060', 'T4P_
→˓pilN', 106), ('GCF_000006845_001070', 'T4P_pilM', 107), ('GCF_000006845_003200',
→˓'T4P_pilU', 320), ('GCF_000006845_004190', 'T4P_fimT', 419), ('GCF_000006845_004200
→˓', 'T4P_pilV', 420), ('GCF_000006845_004210', 'T4P_pilW', 421), ('GCF_000006845_
→˓004220', 'T4P_pilX', 422), ('GCF_000006845_004230', 'T4P_pilA', 423), ('GCF_
→˓000006845_010160', 'T4P_pilA', 1016), ('GCF_000006845_012440', 'T4P_pilA', 1244), (
→˓'GCF_000006845_014270', 'T4P_pilC', 1427), ('GCF_000006845_014280', 'T4P_pilD',
→˓1428), ('GCF_000006845_014310', 'T4P_pilB', 1431), ('GCF_000006845_016430', 'T4P_
→˓pilT', 1643), ('GCF_000006845_016440', 'T4P_pilU', 1644)]
wholeness = 0.889

mandatory genes:
- T4P_pilE: 0 ()
- T4P_pilB: 1 (T4P_pilB)
- T4P_pilC: 1 (T4P_pilC)
- T4P_pilO: 1 (T4P_pilO)
- T4P_pilQ: 1 (T4P_pilQ)
- T4P_pilN: 1 (T4P_pilN)
- T4P_pilT: 1 (T4P_pilT)
- T4P_pilD: 1 (T4P_pilD)

accessory genes:
- T4P_pilA: 3 (T4P_pilA, T4P_pilA, T4P_pilA)
- T4P_pilV: 1 (T4P_pilV)
- T4P_pilY: 2 (T4P_pilY, T4P_pilY)
- T4P_pilW: 1 (T4P_pilW)
- T4P_pilX: 1 (T4P_pilX)
- T4P_fimT: 1 (T4P_fimT)
- T4P_pilM: 1 (T4P_pilM)
- T4P_pilP: 1 (T4P_pilP)
- T4P_pilU: 2 (T4P_pilU, T4P_pilU)
- MSH_mshM: 0 ()

neutral genes:

forbidden genes:

Use ordered replicon to have better prediction.

32 Chapter 1. User Guide

MacSyFinder, Release 2.0

all_systems.tsv

This file contains the same information as in all_systems.txt but in tsv format. For the description of the fields, see
above.

Note: This file can be easily parsed with pandas:

import pandas as pd
pot_systems = pd.read_csv('all_systems.tsv', sep='\t', comment='#')

macsyfinder 20201028.dev
macsyfinder --sequence-db tests/data/base/one_replicon.fasta --db-type unordered --
→˓models-dir tests/data/models -m TFF-SF T4P_single_locus
Likely Systems found:

replicon hit_id gene_name hit_pos model_fqn sys_id sys_wholeness
→˓hit_gene_ref hit_status hit_seq_len hit_i_eval hit_score hit_
→˓profile_cov hit_seq_cov hit_begin_match hit_end_match used_in
Unordered GCF_000006845_014310 T4P_pilB 1431 TFF-SF/T4P_single_locus
→˓Unordered_T4P_single_locus_1 0.889 T4P_pilB mandatory 558 3.
→˓8e-178 589.000 0.964 0.731 146 553
Unordered GCF_000006845_014270 T4P_pilC 1427 TFF-SF/T4P_single_locus
→˓Unordered_T4P_single_locus_1 0.889 T4P_pilC mandatory 410 1.
→˓9e-131 434.800 0.997 0.817 72 406
Unordered GCF_000006845_014280 T4P_pilD 1428 TFF-SF/T4P_single_locus
→˓Unordered_T4P_single_locus_1 0.889 T4P_pilD mandatory 286 2.
→˓8e-82 272.300 1.000 0.829 28 264
Unordered GCF_000006845_001060 T4P_pilN 106 TFF-SF/T4P_single_locus
→˓Unordered_T4P_single_locus_1 0.889 T4P_pilN mandatory 199 2.
→˓3e-33 112.200 0.986 0.714 7 148
Unordered GCF_000006845_001050 T4P_pilO 105 TFF-SF/T4P_single_locus
→˓Unordered_T4P_single_locus_1 0.889 T4P_pilO mandatory 215 2.
→˓9e-37 124.800 0.980 0.693 23 171
Unordered GCF_000006845_001030 T4P_pilQ 103 TFF-SF/T4P_single_locus
→˓Unordered_T4P_single_locus_1 0.889 T4P_pilQ mandatory 723 1.
→˓9e-62 206.600 0.935 0.238 548 719
Unordered GCF_000006845_016430 T4P_pilT 1643 TFF-SF/T4P_single_locus
→˓Unordered_T4P_single_locus_1 0.889 T4P_pilT mandatory 347 6.
→˓9e-167 551.400 0.997 0.983 2 342
Unordered GCF_000006845_004190 T4P_fimT 419 TFF-SF/T4P_single_locus
→˓Unordered_T4P_single_locus_1 0.889 T4P_fimT accessory 221 2.
→˓7e-23 78.900 0.985 0.294 7 71
Unordered GCF_000006845_004230 T4P_pilA 423 TFF-SF/T4P_single_locus
→˓Unordered_T4P_single_locus_1 0.889 T4P_pilA accessory 162 8.
→˓6e-20 67.800 0.744 0.389 9 71
Unordered GCF_000006845_010160 T4P_pilA 1016 TFF-SF/T4P_single_locus
→˓Unordered_T4P_single_locus_1 0.889 T4P_pilA accessory 149 1.
→˓3e-15 54.300 0.821 0.430 5 68
Unordered GCF_000006845_012440 T4P_pilA 1244 TFF-SF/T4P_single_locus
→˓Unordered_T4P_single_locus_1 0.889 T4P_pilA accessory 129 1.
→˓5e-19 67.000 0.859 0.519 6 72
Unordered GCF_000006845_001070 T4P_pilM 107 TFF-SF/T4P_single_locus
→˓Unordered_T4P_single_locus_1 0.889 T4P_pilM accessory 371 3.
→˓3e-43 144.300 0.988 0.429 30 188
Unordered GCF_000006845_001040 T4P_pilP 104 TFF-SF/T4P_single_locus
→˓Unordered_T4P_single_locus_1 0.889 T4P_pilP accessory 181 2.
→˓7e-34 115.600 1.000 0.735 13 145

(continues on next page)

1.1. User Guide 33

MacSyFinder, Release 2.0

(continued from previous page)

Unordered GCF_000006845_003200 T4P_pilU 320 TFF-SF/T4P_single_locus
→˓Unordered_T4P_single_locus_1 0.889 T4P_pilU accessory 376 2.
→˓2e-170 562.600 0.985 0.896 16 352
Unordered GCF_000006845_016440 T4P_pilU 1644 TFF-SF/T4P_single_locus
→˓Unordered_T4P_single_locus_1 0.889 T4P_pilU accessory 408 1.
→˓5e-127 421.800 0.994 0.833 40 379
Unordered GCF_000006845_004200 T4P_pilV 420 TFF-SF/T4P_single_locus
→˓Unordered_T4P_single_locus_1 0.889 T4P_pilV accessory 203 9.
→˓6e-16 54.600 1.000 0.276 14 69
Unordered GCF_000006845_004210 T4P_pilW 421 TFF-SF/T4P_single_locus
→˓Unordered_T4P_single_locus_1 0.889 T4P_pilW accessory 326 1.
→˓7e-10 38.000 0.517 0.190 17 78
Unordered GCF_000006845_004220 T4P_pilX 422 TFF-SF/T4P_single_locus
→˓Unordered_T4P_single_locus_1 0.889 T4P_pilX accessory 203 2.
→˓8e-18 62.600 0.983 0.286 17 74
Unordered GCF_000006845_000250 T4P_pilY 25 TFF-SF/T4P_single_locus
→˓Unordered_T4P_single_locus_1 0.889 T4P_pilY accessory 1006 2.
→˓2e-57 191.700 0.728 0.389 463 853
Unordered GCF_000006845_000700 T4P_pilY 70 TFF-SF/T4P_single_locus
→˓Unordered_T4P_single_locus_1 0.889 T4P_pilY accessory 1047 1.
→˓9e-57 191.900 0.721 0.362 516 894

uncomplete_systems.txt

This file is created when a search is performed in the unordered replicon mode. This file list models that probably do
not have not full systems in the replicon(s). For each model, the reason why it is not fulfilled is reported, followed by
the model description and the components found.

macsyfinder 20201113.dev
macsyfinder --sequence-db tests/data/base/one_replicon.fasta --db-type unordered --
→˓models-dir tests/data/models -m TFF-SF all
Unlikely Systems found:

This replicon probably not contains a system TFF-SF/T2SS:
The quorum of mandatory genes required (4) is not reached: 1
The quorum of genes required (6) is not reached: 2

system id = Unordered_T2SS_3
model = TFF-SF/T2SS
replicon = Unordered
hits = [('GCF_000006845_002600', 'Tad_tadD', 260), ('GCF_000006845_014280', 'T4P_pilD
→˓', 1428), ('GCF_000006845_016430', 'T4P_pilT', 1643)]
wholeness = 0.143

mandatory genes:
- T2SS_gspD: 0 ()
- T2SS_gspE: 0 ()
- T2SS_gspF: 0 ()
- T2SS_gspG: 0 ()
- T2SS_gspC: 0 ()
- T2SS_gspO: 1 (T4P_pilD)

accessory genes:
- T2SS_gspM: 0 ()
- T2SS_gspH: 0 ()

(continues on next page)

34 Chapter 1. User Guide

MacSyFinder, Release 2.0

(continued from previous page)

- T2SS_gspI: 0 ()
- T2SS_gspJ: 0 ()
- T2SS_gspK: 0 ()
- T2SS_gspN: 0 ()
- T2SS_gspL: 0 ()
- Tad_tadD: 1 (Tad_tadD)

neutral genes:

forbidden genes:
- T4P_pilT: 1 (T4P_pilT)

Use ordered replicon to have better prediction.

==

Hmmer results’ output files

Raw Hmmer outputs are provided, as long with processed tabular outputs that include hits filtered as specified by the
user. For instance, the Hmmer search for SctC homologs with the corresponding profile will result in the creation of
two output files: “sctC.search_hmm.out” for the raw HMMER output file and “sctC.res_hmm_extract” for the output
file after processing/filtering of the HMMER results by MacSyFinder.

The processed output file “sctC.res_hmm_extract” recalls on the first lines the parameters used for hits filtering and
relevant information on the matches, as in this example:

gene: sctC extract from /Users/bob/macsyfinder_results/
macsyfinder-20130128_08-57-46/sctC.search_hmm.out hmm output

profile length= 544
i_evalue threshold= 0.001000
coverage threshold= 0.500000
hit_id replicon_name position_hit hit_sequence_length gene_name gene_system i_eval
→˓score

profile_coverage sequence_coverage begin end
PSAE001c01_006940 PSAE001c01 3450 803 sctC T3SS 1.1e-41 141.6

0.588235 0.419676 395 731
PSAE001c01_018920 PSAE001c01 4634 776 sctC T3SS 9.2e-48 161.7

0.976103 0.724227 35 596
PSAE001c01_031420 PSAE001c01 5870 658 sctC T3SS 2.7e-52 176.7

0.963235 0.844985 49 604
PSAE001c01_051090 PSAE001c01 7801 714 sctC T3SS 1.9e-46 157.4

0.571691 0.463585 374 704

Logs and configuration files

Three specific output files are systematically built, whatever the search mode, to store information on MacSyFinder’s
execution:

• macsyfinder.conf - contains the configuration information of the run. It is useful to recover all the parameters
used for the run.

• macsyfinder.log - the log file, contains raw information on the run. Please send it to us with any bug report.

1.1. User Guide 35

MacSyFinder, Release 2.0

1.1.2 MacSyFinder functioning

Macromolecular models

MacSyFinder relies on the definition of models of macromolecular systems as a set of models’ components to be
searched by similarity search, and a set of rules regarding their genomic organization and their requirement level to
make a complete system (mandatory, accessory components, number of components required).

See below for more details on MacSyFinder’s modelling scheme and the section on Functioning for the principles of
the MacSyFinder’s search engine.

A MacSyFinder model (macsy-model for short) is the association of several elements:

• a definition which describes the system to detect with a specific XML grammar that is described below.

• a set of HMM profiles (one per component/gene in the model) to enable the similarity search of the systems’
components with the HMMER program.

The models are grouped by family possibly gathering sub-families (multiple levels allowed), for instance Secretion,
Cas-proteins. . . A set of models from a same family (coherent set) of systems to detect is called hereafter a macsy-
model package NEW in V2.

Note: For details on how to create your own macsy-models, have a look at the Modeller Guide.

Installing models

How to install new models

MacSyFinder does not provide models. You must install models before using it. The macsydata utility tool is
shipped with MacSyFinder to deal with macsy-models:

macsydata <subcommand> [options]

The main sub-commands are

• macsydata available to get the list of macsy-models available

• macsydata search to search a model given its name or a pattern in its description

• macsydata install to install a macsy-model package (the installed version can be set see –help)

• macsydata cite to retrieve information on how to cite the model

• macsydata definition to display one or a set of model defintion

• macsydata --help to get the extended list of available subcommands

• macsydata <subcommand> --help to get help about the specified subcommand

macsydata is NEW in V2

36 Chapter 1. User Guide

MacSyFinder, Release 2.0

Where the models are located

MacSyFinder looks at several locations to find macsy-models.

system-wide installation

By default macsydata installs models in a shared location (set by –install-data option) that is /usr/share/macsyfinder/
or /usr/local/share/macsyfinder depending on your Operating System distribution. If you use a virtualenv, the shared
resources are located in the <virtualenv>/share/macsyfinder directory.

user-wide installation

If you don’t own rights to install system-wide, you can install models in the MacSyFinder’s cache located in your
home: $HOME/.macsyfinder/data/. macsydata installs packages in this location when you use the –user option. The
packages installed in user land is added to the system-wide packages.

Note: If two packages have the same name, the package in the user land supersedes the system-wide package.

project-wide installation

If you cannot install macsy-model packages in system or user land locations, you can install models in specific direc-
tory with the –target option.

macsydata install –target <my_models>

The specify this specific location with the --models-dir command-line option.

macsyfinder –db-type ordered_replicon –models-dir=my_models –models TFF-SF all –sequence-db
my_genome.fasta

The path must point at a directory that contains macsy-model packages as described above.

MacSyFinder’s search engine

Functioning overview

MacSyFinder is run from the command-line using a variety of input files and options. See Input dataset for more
details. Below follows a description of its overall functioning.

A. Searching for Systems’ components

Initially, MacSyFinder searches for the components of the System(s) to detect by sequence similarity search.

1. From the list of System(s) to detect, a non-redundant list of components to search is built. For each system, the
list can include:

• mandatory components

• accessory components

• neutral components

1.1. User Guide 37

MacSyFinder, Release 2.0

• forbidden components

• exchangeable components that can be functionally replaced by other components (usually by analogs or ho-
mologs). These other components are thus also added to the list of components to search.

See here for more details on writing MacSyFinder’s models.

2. HMMER is run on the corresponding set of components’ HMM profiles, and the hits are filtered according to the
criteria defined by the user or by default (see Hmmer options and for more, the API report object page). This step,
and the extraction of significant hits can be performed in parallel (-w command-line option). See the Command-line
options, and the search_genes API for more details.

Model B
G2 mandatory
G6 mandatory
G8 mandatory
G9 accessory
G10 accessory
G11 accessory

Quorum
min_mandatory_genes = 2
min_genes = 4

Distance Constraints
inter_gene_max_space = 1

Genomic Architecture
multi_loci = True

Model A
G1 mandatory
G2 mandatory
G4 mandatory
G3 accessory
 exchangeable G7
G5 accesssory loner
G10 accessory
G13 neutral

G1, G2,G3,G4,G5,G6,G7, G8,G9,G10,G11,G13

H1
H9

H7
H3H1 H2 H7H6 H10 H13 H13 H5H11 H8H6 H9

H3H1 H2 H7H6 H10 H13 H13 H5H11 H8H6 H9

Models parsing, list genes to search

hmmsearch, sort hits according to position

For each position, assign the best match

A

B. Hits browsing

The following steps depend on whether the input dataset is ordered (complete or nearly complete genome(s)), or
unordered (metagenomes, or unassembled genome(s)) (see the Input dataset section).

In the case of ordered datasets (ordered_replicon or gembase search mode), the hits are filtered to keep only hits
related to the system’s model we are looking for. These hits are used to build clusters of co-localized genes as defined
in the macsy-model files. These clusters are then screened to check for the model specifications such as the minimal
quorum of “Mandatory” or “Accessory” genes, or the absence of “Forbidden” components.

When the gene order is unknown (unordered search mode) the power of the analysis is more limited. In this case,
the presence of systems can only be suggested on the basis of the quorum of components - and not based on genomic
context information.

For ordered datasets: building clusters of components

The following two steps are reiterated for each model being searched.

1. The search starts with the filtering of hits to only keep the hits that are listed in the model (mandatory, acces-
sory, neutral, forbidden, exchangeable).

2. MacSyFinder searches for sets of contiguous hits to build clusters, following the (co-localization criterion) for
each replicon, as defined in the MacSyFinder’s model. Two hits are deemed contiguous if their genomic location
is separated by less than d protein-encoding genes, d being the maximum of the two inter_gene_max_space
parameters from the two genes with hits (system-wise, or gene-specific parameter). The loner components may
form a cluster on their own.

38 Chapter 1. User Guide

MacSyFinder, Release 2.0

C1

H1 H2 H7

C1 C3C2

H10 H13 H13 H3

C2

H5

C3

C1 => Rejected (min_genes_required)

C2 => Rejected (min_mandatory_genes_required / min_genes_required)

C3 => Rejected (min_mandatory_genes_required / min_genes_required)

C1 C2 => System (System A #1: "SA_1")

C1 C3 => System ("SA_2")

C2 C3 => Rejected (min_mandatory_genes_required)

C1 C2 C3 => System ("SA_3")

H3H1 H2 H7H6 H10 H13 H13 H5H11 H8H6 H9

H1 H2 H6 H7 H10 H13 H13 H5H6 H9 H8H3 H11

H1 H2 H6 H7 H10 H13 H13 H5H6 H9 H8H3 H11

Consider the first Model (A) to filter hits

Build clusters "C" with
co-localizing sets of Hits

Check quorum:
- from clusters only
("single_locus" search mode)

+ from combinations
of clusters
("multi_loci" search mode)

distance(H7, H10) > inter_gene_max_space

BStep 1

Step 2 C1; C2; C3
C2 C3

SA_1: C1 C2
SA_2: C1 C3
SA_3: C1 C2 C3} all_systems.txt/tsv

} rejected_clusters.txt

(Genes of model (A): G1 ,G2,G3,G4,G5,G7,G10,G13)

Once performed for each model searched, the next step is performed.

Note: The clusters that do not fulfill the quorum requirements are stored in the rejected_clusters.txt file.

For unordered datasets:

For each model being searched:

1. The Hits are filtered by model.

2. They are used to check if they reach the quorum (i.e., the clustering step is skipped as there is no notion of
genetic distance in this search mode).

3. For each system, if the quorum is reached, hits are reported in the all_systems.tsv output file. It has to be noted
that forbidden components are listed too, as they can also be informative for the user.

Note: The “unordered” mode of detection is less powerful, as a single occurrence of a given model is filled for an
entire dataset with hits that origin is unknown. Please consider the assessment of systems with caution in this mode.

For unordered datasets, the search so ends, and MacSyFinder generates the final output files.

1.1. User Guide 39

MacSyFinder, Release 2.0

C. Computing candidate Systems’ scores (ordered mode)

This step only applies to the most powerful search mode, i.e., on ordered datasets. The whole step is NEW in V2

The new search engine implemented since version 2.0 of MacSyFinder better explores the space of possible Solutions
regarding the presence of Systems in replicons analysed. It creates clusters of hits for Systems’ components separately
for each System searched, and therefore might find candidate occurrences of Systems that overlap in terms of
components. Moreover, if a System is possibly encoded at several locations on the replicon analysed (option multi_loci
set to “True” in the model), this calls for a combinatorial screening of the different clusters to assemble them into
coherent systems regarding the macsy-models.

• For a given model, clusters are used to “fill up” Systems’ occurrence(s) according to the quorum criteria
defined in the System’s model (see function macsypy.system.match()):

The min_genes_required and min_mandatory_genes_required thresholds must be reached.

– In the case of the single-locus system search mode (default), each cluster in addition to potential
loners are evaluated for System’s assessment separately.

– In the case of the multi-loci system search mode (multi_loci=True), each possible combi-
nation of clusters is confronted to the quorum of the System being examined.

The sets of clusters that fulfill the quorum are reported as candidate Systems in the all_systems.txt
and all_systems.tsv output files (see Output format), and they obtain a System’s score (see below).

The clusters that do not allow to form a candidate System are reported in the rejected_clusters.txt
output file.

• We introduce a scoring scheme for candidate Systems, to easily separate combinations of clusters that are
readily more similar to a system’s model than others.

The assumptions behind this scoring scheme are the following:

– We set a score for the different types of genes/components when defining a cluster’s score. Here are the
default values, but these can be changed:

* +1.0 is added when a mandatory gene is present

* +0.5 is added when an accessory gene is present

* +0.0 is added when a neutral gene is present

* *0.8 (a factor of 0.8) is applied to the above-scores when the function is fulfilled by an exchangeable
gene

* *0.7 (a factor of 0.7) is applied to the above-scores if the gene is a loner and multi system component.

– When combinations of clusters are explored in order to fulfill macsy-models’ requirements and build
candidate systems (“multi_loci” mode, several clusters can make a complete System), we sum the score of
clusters to assign a System’s score.

– In addition, we want to favor concise sets of clusters to fulfill a System’s model. We thus penalize the
adjunction of a cluster to a candidate System when this cluster does not bring any new components to the
System’s quorum, or when it brings redundant components. Thus:

* -1.5 is added when a redundant mandatory gene is added when adjuncting the cluster to a candidate
System

* -1.5 is added when a redundant accessory gene is added when adjuncting the cluster to a candidate
System

* for the components that are loner and multi system, the score of the loner component is added only if
the function is not fulfilled in the other clusters. In this case, even if there are several occurrences of
the component, it is counted only once (and no penalty is applied).

40 Chapter 1. User Guide

MacSyFinder, Release 2.0

– Only candidate sets of clusters that fulfill a macsy-model and that are thus designated candidate Systems,
obtain a System’s score

In summary, a Systems’s score is made of two parts: the sum of the scores of the Clusters it is made of, plus a
penality part to avoid too much component’s redundancy in Cluster’s combinations. The systems’ scoring step
is exemplified in this figure:

C1

H1 H2 H7 H10 H13 H13 H12

C2

H5

C3
SA_3

C1

H1 H2 H7 H5

C3
SA_2

C1

H1 H2 H7 H10 H13 H13 H12

C2
SA_1 (1 + 1 + 1 x 0.75) + (0.5 + 0.5) - (0) = 3.75

(1 + 1 + 1 x 0.75) + (0.5) - (0) = 3.25

(1 + 1 + 1 x 0.75) + (0.5 + 0.5) + (0.5) - (0) = 4.25

Compute Systems' scores given Model (A): C

} } }

C1 score C2 score "Penalty"

Scoring scheme reminder:

mandatory: +1.0
accessory: +0.5
neutral: +0.0
exchangeable: *0.75

Clusters:
mandatory: -1.5
accessory: -1.5

Adjunction rules for redundant components ("Penalty"):

Model A
G1 mandatory
G2 mandatory
G4 mandatory
G3 accessory
 exchangeable G7
G5 accesssory loner
G10 accessory
G13 neutral

1.1. User Guide 41

MacSyFinder, Release 2.0

D. Repeat operations B and C for the other models being searched

C6

H8H9

C4 C5 C6

C4 => Rejected (min_mandatory_genes_required / min_genes_required)

C5 => Rejected (min_mandatory_genes_required / min_genes_required)

C6 => Rejected (min_mandatory_genes_required / min_genes_required)

C4 C5 => System "SB_1"
C4 C6 => System "SB_2"
C5 C6 => System "SB_3"
C4 C5 C6 => System "SB_4"

H3H1 H2 H7H6 H10 H13 H13 H5H11 H8H6 H9

H3H1 H7H6 H10 H13 H13 H5H11 H8H6 H9H2

H11H6

C5C4

H6H2

H11H6

C5
SB_1

H6H2

C4

C4

H2 H6

C6

H8H9
SB_2

H11H6

C5 C6

H8H9

C6
SB_3

H11H6

C5C4 C6

H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9H6H2
SB_4

(1 + 1) + (1 + 0.5) - (1 * 1.5) = 2.0

(1 + 1) + (0.5 + 1) - (0 * 1.5) = 3.5

(1 + 0.5) + (0.5 + 1) - (0 * 1.5) = 3.0

(1 + 1) + (1 + 0.5) + (0.5 + 1) - (1 * 1.5) = 3.5

Consider next Model (B) to filter hits

Build clusters

Check quorum

Compute Systems' scores

D

This search for candidate Systems from different models results in a number of possible Solutions representing com-
binations of putative sets of Systems in the analysed dataset.

E. Computing possible Solutions, defining the best one (ordered mode)

At the end of the previous step MacSyFinder has computed all potential Systems present in the replicon, made of
combinations of Clusters and loner components that fulfill the model’s requirements, which are themselves made of
a subset of Hits (remember, Hits are at 1st filtered and treated separately for each model of System to be detected).
Candidate Systems may thus overlap by being partly made of the same components, or even partly being made of the
same Clusters.

We define a Solution as being a set of compatible Systems, i.e. that do not have any overlaps between their compo-
nents. All possible Solutions are combinatorially explored and consist in all possible sets of compatible Systems.

A scoring scheme enables to separate between sets of Solutions. A Solution’s score is basically the sum of its
Systems’ scores. The overall procedure of exploring the space of all possible Solutions while finding the optimal one,
i.e. that with the maximal score, is performed at once using a graph solution to this problem, implemented in the
networkx package.

We create a graph where each potential System is a vertex, and we create an edge between pairs of vertices if they do

42 Chapter 1. User Guide

MacSyFinder, Release 2.0

not share any components (compatible Systems). Once the graph is created we look for the maximum clique which
maximizes the score. This allows to provide the user with one, or multiple Solutions that have the best score possible
among all combinations of compatible Systems.

C1

H1 H2 H7 H10 H13 H13 H12

C2
SA_1

C1

H1 H2 H7 H5

C3
SA_2

C1

H1 H2 H7 H10 H13 H13 H12

C2

H5

C3
SA_3

C4

H6H2 H11H6

C5
SB_1

C4

H2

C6

H8H9

C6

H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9
SB_2

C6

H8H9

C6

H8H9 H8H9 H8H9H11H6

C5

H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9 H8H9
SB_3

C6

H8H9

C6

H8H11H6

C5C4

H6H2
SB_4

C1

H1 H2 H7 H10 H13 H13 H12

C2

H5

C3
SA_3

C6

H8H9

C6

H8H9H11H6

C5
SB_3

C1

H1 H2 H7 H5

C3
SA_2

C6

H8H9 H8H9H11H6

C5
SB_3

C4

H6H2 H11H6

C5
SB_1

C4

H2 H6

C6

H8H9
SB_2

C6

H11H6

C5

H8H9
SB_3

C1

H1 H2 H7 H10 H13 H13 H12

C2
SA_1

C6C6

H11H6

C5C4

H8H9H6H2
SB_4

4.25 + 3.0 = 7.25

3.25 + 3.0 = 6.25

2.0

3.5

3.0 + 3.75 = 6.75

3.5

H6

E
Build a graph of Systems
(edges between compatible Systems)

Compute the scores of maximal cliques

Step 1

Step 2

} best_solution.tsv
all_best_solutions.tsv

1.1.3 Frequently Asked Questions

Frequently Asked Questions

How to report an issue?

If you encounter a problem while running MacSyFinder, please submit an issue on the dedicated page of the GitHub
project

To ensure we have all elements to help, please provide:

• a concise description of the issue

• the expected behavior VS observed one

• the exact command-line used

• the version of MacSyFinder used

1.1. User Guide 43

https://en.wikipedia.org/wiki/Clique_problem#Definitions
https://github.com/gem-pasteur/macsyfinder/issues
https://github.com/gem-pasteur/macsyfinder/issues

MacSyFinder, Release 2.0

• the exact error message, and if applicable, the macsyfinder.log and macsyfinder.conf files

• if applicable, an archive (or link to it) with the output files obtained

• if possible, the smallest dataset there is to reproduce the issue

• if applicable, this would also include the macsy-models (XML models plus HMM profiles) used (or precise
version of the models if there are publicly available). Same as above, if possible, please provide the smallest set
possible of models and HMM profiles.

All these will definitely help us to help you! ;-)

How to cite MacSyFinder and published macy-models?

• Abby et al. 2014, PLoS ONE for the general principles of MacSyFinder (version 1), and the corresponding
set of Cas systems (CasFinder, 1st version).

• Abby and Rocha 2012, PLoS Genetics, for the study of the evolutionary relationship between the T3SS and the
bacterial flagellum, and how were designed the corresponding HMM protein profiles.

• Abby et al. 2016, Scientific Reports, for the description of bacterial protein secretion systems’ models (TXSS-
can: T1SS, T2SS, T5SS, T6SS, T9SS, Tad, T4P).

• Denise et al. 2019, PLoS Biology, for the description of type IV-filament super-family models (TFF-SF: T2SS,
T4aP, T4bP, Com, Tad, archaeal T4P).

• Rendueles et al. 2017, PLoS Pathogens, for the CapsuleFinder set of models.

• Couvin, Bernheim et al. 2018, Nucleic Acids Research, for the updated version of the set of Cas systems’
models, CasFinder.

What do MacSyFinder command lines look like?

Here are a few examples of command line formation:

To browse interactive help:

macsyfinder -h

The minimal command line, to search all systems with models from the “TFF-SF” set of models (installed with
macsydata):

macsyfinder --db-type ordered_replicon --sequence-db genome.fasta
--models TFF-SF all

To search for several systems (ModelA and ModelB) from the “model_family” set of models that can be found in the
“./my-models” folder:

macsyfinder --db-type ordered_replicon --sequence-db genome.fasta
--models model_family ModelA ModelB --models-dir ./my-models

To alter the search parameters and allow a maximal distance between components of 20 for the T2SS and 15 for the
Tad pilus:

macsyfinder --db-type ordered_replicon --sequence-db genome.
fasta --models TFF-SF all --inter-gene-max-space T2SS 20
--inter-gene-max-space Tad 15

To alter the search parameters and allow the Tad pilus to be made of multiple loci:

44 Chapter 1. User Guide

https://doi.org/10.1371/journal.pone.0110726
https://doi.org/10.1371/journal.pgen.1002983
https://www.nature.com/articles/srep23080
https://doi.org/10.1371/journal.pbio.3000390
https://doi.org/10.1371/journal.ppat.1006525
https://doi.org/10.1093/nar/gky425

MacSyFinder, Release 2.0

macsyfinder --db-type ordered_replicon --sequence-db genome.fasta
--models TFF-SF all --multi-loci Tad

In gembase or ordered_replicon mode macsyfinder need to index the sequence-db. By default, this index is write beside
the sequence-db file. But sometimes the directory where the sequence-db is located is not writable, in centralized
shared data in multi user environement for instance. To avoid to copy sequences in other location, you could specify
an alternate directory for the index with --index-dir (This directory must exists):

macsyfinder --db-type ordered_replicon --sequence-db genome.fasta
--index-dir my-indexes --models TFF-SF all

See also the MacSyFinder Quick Start section for more examples.

What search mode to be used?

Depending on the type of dataset you have, you will have to adapt MacSyFinder’s search mode.

• If you have a fasta file from a complete genome where proteins are ordered according to the correspond-
ing genes’ order along the replicon, your dataset is entitled to the most powerful search mode (see below):
ordered_replicon and use the following option –db-type ordered_replicon.

• If you have a fasta file of proteins with no sense of the order of the corresponding genes along the chromo-
some(s) or replicon(s), you will have to use the unordered search mode with the following option: –db-type
unordered

• If you have multiple ordered replicons to analyse at once, you can follow the Gembase convention to name
the proteins in the fasta file, so that the original replicons can be assessed from their name: see here for a
description.

Note:

• When the gene order is known (ordered_replicon search mode) the power of the analysis is maximal, since
both the genomic content and context are taken into account for the search.

• When the gene order is unknown (unordered search mode) the power of the analysis is more limited since
the presence of systems can only be suggested on the basis of the quorum of components - and not based on
genomic context information.

More on command-line options here and on MacSyFinder’s functioning here.

How to interpret the results from an unordered search?

As mentioned above, in the unordered search mode, the inference of a system’s presence is only based on the list of
components found in the protein dataset. Thus, the kind of search specificity provided when using the genomic context
(components next to each other are more likely to be part of a same system’s occurrence) is not within reach.

In the unordered search mode, the number of proteins selected as system’s components (based on the filtering of HMM
profiles’ similarity search) is reported. We decided to report all kinds of system’s components, including the forbidden
ones in order to raise awareness of the user -> even if all constraints are met for the system’s inference (here, the
quorum: minimal number of components), it cannot be excluded that a forbidden component would lie next to the
bona fide components (mandatory and accessory ones) in the genome. . .

In the end, the unordered search mode provides an idea as to whether the genetic potential for a given system is found
in the set of proteins analysed, with no attempt to assign proteins to particular systems’ occurrences, nor guarantee as
to whether forbidden components should be considered for the potential occurrences.

1.1. User Guide 45

MacSyFinder, Release 2.0

How to search for multiple systems at once?

• It is possible to search for only some systems from a macsy-model package. In this case, the command-line
should be formed as follows:

macsyfinder --models TXSS Flagellum T2SS --sequence-db mygenomes.fasta --db-type
→˓gembase

This would run the search of the systems “Flagellum” and “T2SS” in the dataset “mygenomes.fasta”.

• To run the search of all the models contained in a macsy-model package, use the following:

macsyfinder --models TXSS all --sequence-db mygenomes.fasta --db-type gembase
macsyfinder --models CRISPRCas all --sequence-db mygenomes.fasta --db-type gembase
macsyfinder --models CRISPRCas/typing all --sequence-db mygenomes.fasta --db-type
→˓gembase

You can see that the all keyword can not only be applied to an entire macsy-model package and its entire hierarchy,
but can also be ran on all the systems from a macsy-model sub-directory.

When can the option –previous-run be used?

The option –previous-run enables to avoid running the HMM profile search and the hits extraction when the set of
systems to search and the replicons to analyse are exactly the same between runs. This enables to alter the features of
the systems to be searched for, i.e. basically any feature found in the XML file of the corresponding models:

• the maximal distance allowed between components to be considered as part of a same locus –inter-gene-max-
space

• the minimal number of components to be found to infer a full system –min-mandatory-genes-required and
–min-genes-required

• the general genomic architecture of the system –multi-loci

This also means that there are a number of options that are incompatible with –previous-run, including:

--config, --sequence-db, --profile-suffix, --res-extract-suffix, --e-value-res, --db-
→˓type, --hmmer

Which output file to be used to get ONE solution?

Since version 2 of MacSyFinder, a combinatorial exploration of the possible sets of systems is performed. A scoring
scheme has been set up to differentiate between solutions, in order to provide the user with the most complete set
of systems as possible given the searched models. This score is maximal for the “best solution”. This also means
that some solutions might get the same maximal score. In this case, one can wonder how to find all the equivalent
solutions, and an other, how to simply pick one solution among the best, whichever it is. We thus propose several kind
of output files.

• All equivalent best solutions are found in the all_best_solutions.tsv file.

• One best solution is given in the best_solution.tsv file.

Note: For those more familiar with the output files from MacSyFinder v1, the file best_solution.tsv is the closest from
the previous output file macsyfinder.report.

46 Chapter 1. User Guide

MacSyFinder, Release 2.0

Where to find MacSyFinder models?

Since version 2, there is a tool to enable the download and installation of published models from a repository: the
macsydata tool.

See here for details on how to use it.

What are the rules for options precedence?

MacSyFinder offers many ways to parametrize the systems’ search: through the command-line, through various con-
figuration files (for the models, for the run, etc. . .). It offers a large control over the search engine. But it also means
you can get lost in configuration. ;-)

Here is a recap of the rules for options precedence. In a general manner, the command line always wins.

The precedence rules between the different levels of configuration are:

system < home < model < project < --cfg-file | --previous-run < command line options

• system: the macsyfinder.conf file either in /etc/macsyfinder/ or in virtalenv/etc/macsyfinder/ in case of a vir-
tualenv this configuration affects only the MacSyFinder version installed in this virtualenv

• home: the ~/.macsyfinder/macsyfinder.conf file

• model: the model_conf.xml file at the root of the model package

• project: the macsyfinder.conf file found in the directory where the macsyfinder command was run

• cfgfile: any configuration file specified by the user on the command line (conflicts with the –previous-run option)

• previous-run: the macsyfinder.conf file found in the results directory of the previous run (conflicts with the
–cfg-file option)

• command line: any option specified directly in the command line

1.1. User Guide 47

MacSyFinder, Release 2.0

48 Chapter 1. User Guide

CHAPTER

TWO

MODELLER GUIDE

2.1 Modeller Guide

2.1.1 Modelling Systems with MacSyFinder

Models Package

MacSyFinder relies on the definition of models of macromolecular systems as a set of models’ components to be
searched by similarity search, and a set of rules regarding their genomic organization and their requirement level to
make a complete system (mandatory, accessory components, number of components required).

See the section The XML hierarchy for more details on MacSyFinder’s modelling scheme and the section on Func-
tioning for the principles of the MacSyFinder’s search engine.

A MacSyFinder model (macsy-model for short) is the association of several elements:

• a definition which describes the system to detect with a specific XML grammar that is described here.

• a set of HMM profiles (one per component/gene in the model) to enable the similarity search of the systems’
components with the HMMER program.

The models are grouped by family possibly gathering sub-families (multiple levels allowed), for instance Secretion,
Cas-proteins. . . A set of models from a same family (coherent set) of systems to detect is called hereafter a macsy-
model package NEW in V2.

Structure of a macsy-model package

A macsy-model package follows the following structure:

family_name
|_______ metadata.yml
|_______ LICENSE
|_______ README.md
|_______ model_conf.xml
|_______ definitions
| |________ model_1.xml
| |________ model_2.xml
| :
|
|_______ profiles

|________ geneA.hmm
|________ geneB.hmm

49

MacSyFinder, Release 2.0

If the package contains sub-families:

family_name
|_______ metadata.yml
|_______ LICENSE
|_______ README.md
|_______ model_conf.xml
|_______ definitions
| |________ subfamilyA
| | |________ model_1.xml
| | |________ model_2.xml
| |
| |________ subfamilyB
| | |________ model_3.xml
| | |________ model_4.xml
| |
| :
|
|_______ profiles

|________ geneA.hmm
|________ geneB.hmm

For examples of macsy-model packages, please visit https://github.com/macsy-models

README.md

A description of the package: what kind of systems the package models, how to use it etc. . . in markdown format.
The Readme is displayed to the user on the macsy-models repository on Github. It is also displayed when the user
runs macsydata help.

LICENSE

The license is used to protect your work when sharing it. If you don’t know which license to choose, have a look at
CreativeCommons This file is optional, but highly recommended.

Metadata file

The metadata.yml file contains some meta information about the package itself.

It is in YAML format and must have the following structure:

maintainer:

name: The name of the person who maintains/to contact for further information.
→˓(required)
email: The email of the maintainer (required)

short_desc: A one line description of the package (can e.g. be used for *macsydata*
→˓searches) (required)
vers: The package version (required)
cite: The publication(s) to cite by the user when the package is used (optional, used
→˓by `macsydata cite`)
doc: Where to find extended documentation (optional)
license: The license under the package is released (optional but highly recommended)
copyright: The copyright of the package (optional)

50 Chapter 2. Modeller Guide

https://github.com/macsy-models
https://guides.github.com/features/mastering-markdown/
https://creativecommons.org/share-your-work/
https://en.wikipedia.org/wiki/YAML

MacSyFinder, Release 2.0

For example:

maintainer:

name: first name last name
email: login@my_domain.com

short_desc: Models for 15 types of secretion systems or bacterial appendages (T1SS,
→˓T2SS, T3SS, T4P, pT4SSt, pT4SSi, T5aSS, T5bSS, T5bSS, T6SSi, T6SSii, T6SSiii,
→˓Flagellum, Tad, T9SS).
vers: 0.0a1
cite:

- |
Abby Sophie S., Cury Jean, Guglielmini Julien, Néron Bertrand, Touchon Marie,

→˓Rocha Eduardo P. C. (2016).
Identification of protein secretion systems in bacterial genomes.
In Scientific Reports, 6, pp. 23080.
http://dx.doi.org/10.1038/srep23080

doc: https://github.com/macsy-models/TXSS
license: CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)
copyright: 2014-2022, Institut Pasteur, CNRS

Warning: This metadata.yml file is mandatory. Without this file your archive/repository will not be considered
as a macsy-model package.

Note:

• - specify an item of yaml list

• | is used to specify a single item but over multiple lines.

Model configuration

The modeler has the possibility to specify some options that are specific to their package, different than the Mac-
SyFinder defaults in the model_conf.xml file. NEW in v2

These options can be grouped in two families: the scoring weights and filtering options.

Scoring weights:

• mandatory (float default = 1.0)

• accessory (float default = 0.5)

• exchangeable (float default = 0.8)

• loner_multi_systems (float default = 0.7)

• redundancy_penalty (float default = 1.5)

Filtering options:

• e_value_search (float default = 0.1)

• i_evalue_sel (float default = 0.001)

• profile_coverage (float default = 0.5)

• cut_ga (bool default = True)

2.1. Modeller Guide 51

MacSyFinder, Release 2.0

All these options are optional and can be omitted in the configuration file, the file itself is optional. The precedence
rules between the different levels of configuration are:

system < home < model < project < --cfg-file | --previous-run < command line options

• system: the macsyfinder.conf file either in /etc/macsyfinder/ or in virtalenv/etc/macsyfinder/ in case of a vir-
tualenv this configuration affects only the MacSyFinder version installed in this virtualenv

• home: the ~/.macsyfinder/macsyfinder.conf file

• model: the model_conf.xml file at the root of the model package

• project: the macsyfinder.conf file found in the directory where the macsyfinder command was run

• cfgfile: any configuration file specified by the user on the command line (conflicts with the –previous-run option)

• previous-run: the macsyfinder.conf file found in the results directory of the previous run (conflicts with the
–cfg-file option)

• command line: any option specified directly in the command line

The model_conf.xml configuration file is in xml format and must have the following structure:

<model_config>
<weights>

<mandatory>1</mandatory>
<accessory>0.5</accessory>
<exchangeable>0.8</exchangeable>
<redundancy_penalty>1.5</redundancy_penalty>
<loner_multi_system>0.7</loner_multi_system>

</weights>
<filtering>

<e_value_search>0.1</e_value_search>
<i_evalue_sel>0.01</i_evalue_sel>
<coverage_profile>0.5</coverage_profile>
<cut_ga>True</cut_ga>

</filtering>
</model_config>

Details about the scoring method can be obtained here.

Macromolecular models

MacSyFinder relies on the definition of models of macromolecular systems as a set of models’ components to be
searched by similarity search, and a set of rules regarding their genomic organization and their requirement level to
make a complete system (mandatory, accessory components, number of components required).

See below for more details on MacSyFinder’s modelling scheme and the section on Functioning for the principles of
the MacSyFinder’s search engine.

A MacSyFinder model (macsy-model for short) is the association of several elements:

• a definition which describes the system to detect with a specific XML grammar that is described below.

• a set of HMM profiles (one per component/gene in the model) to enable the similarity search of the systems’
components with the HMMER program.

The models are grouped by family possibly gathering sub-families (multiple levels allowed), for instance Secretion,
Cas-proteins. . . A set of models from a same family (coherent set) of systems to detect is called hereafter a macsy-
model package NEW in V2.

52 Chapter 2. Modeller Guide

MacSyFinder, Release 2.0

Principles, and how to write macsy-models definitions

Macsy-models are written as XML files, and should be named with the name of the system to detect as a prefix, and
the XML file extension as a suffix. For example, ‘T1SS.xml’ for T1SS (Type I Secretion System).

A macsy-model defines a macromolecular System as:

• A set of components (i.e. proteins, or protein-coding genes given the context) with different attributes that are
used for system’s content description.

• Features regarding the genomic architecture of the systems’ components for system detection.

• Rules for quorum specifying how many components are required to infer the presence of a complete system.

Macsy-model Components

Four distinct types of components can be used to model the System’s content. Components correspond to Gene
objects in MacSyFinder’s implementation, and point to corresponding HMM protein profiles.

• mandatory components represent components that are essential to be found to infer the system’s presence.

• accessory components correspond to components that can be found in some systems’ occurrence (or quickly
evolving components that are hard to detect with a single HMM profile and thus can be missed along similarity
search).

• neutral components are used to build/extend clusters of proximal genes/components on the replicon analysed,
but are not part of the quorum (i.e., not taken into account to assess the system’s presence). NEW in V2

• forbidden components are components which presence is eliminatory for the system’s presence assessment.

Specifying a genomic organization

Beyond its list of Components, a MacSyFinder’s model of a System is defined by the genomic organization of its
components. This genomic organization can be defined in several ways:

• the general System’s architecture, whether it is single-locus or multi-loci (encoded at one or several loci)

• the co-localization criteria defined either at the System level or at the Gene (component) level:

– the inter-gene-max-space parameter (system- or gene- wise)

– the loner parameter (gene- wise)

See below for more details on how to specify these parameters in a macsy-model.

The XML hierarchy

A System’s model is defined using a specific XML grammar that is hereby described. It consists in a hierarchic
view of a Model that has specific features described through parameters, and is made of a set of Genes that have
specific features themselves. All these elements and corresponding parameters will parametrize the search of Systems
matching the search by MacSyFinder, in terms of Gene content and genomic architecture criteria.

2.1. Modeller Guide 53

MacSyFinder, Release 2.0

• The element root of a System’s model is “model”.

– It has a mandatory attribute: “inter_gene_max_space”, an integer representing the maximal number of
components without a match between two components with a match for a component profile in order to
consider them contiguous (part of a same Cluster).

– The version of the XML grammar (the actual version is “2.0”)

– The element “model” may have attributes:

* min_mandatory_genes_required: an integer representing the minimal number of mandatory genes
required to infer the system’s presence.

* min_genes_required: an integer representing the minimal number of mandatory or accessory genes
(whose corresponding proteins match a profile of the model) required to infer the system’s presence.

* multi_loci: a boolean set to True (“1”, “true” or “True”) to allow the definition of “scattered” systems
(i.e., systems encoded at different genomic loci or by different gene clusters). If not specified, default
value is false.

* max_nb_genes define how many genes is necessary to consider a system as full. By default it is the
sum of mandatory and accessory genes. But sometimes in special cases, there is 2 profiles, so 2 msf
genes in model for one real gene. So in system only one gene can be detected and the whaleness is
false.

– The model contains one or more element(s) “gene” that correspond(s) to the genetic components of the
macromolecular system.

• The element “gene” has several mandatory attributes:

– name: a string representing the name of the component/gene which must match that of a profile enclosed
in the profile directory of the macsy-model package (see below).

– presence: a string representing the status of the gene’s presence in the system. It can take four values
among “mandatory”, “accessory”, “neutral”, “forbidden” (see above).

54 Chapter 2. Modeller Guide

MacSyFinder, Release 2.0

The element “gene” may have other attributes:

• loner: a boolean. A loner gene can be isolated on the genome and does not have to be part of a
cluster of genes to be considered for system’s assessment (default false).

• multi_system: a boolean. If a gene has the feature “multi_system” (value set to “1”, “true” or
“True”), it means that it can be used to fill multiple systems’ occurrences - and thus be considered
part of several systems. (default false).

• inter_gene_max_space: an integer that defines gene-wise value of system’s “in-
ter_gene_max_space” parameter (see above). It supersedes the system-wise parameter to
give the gene a specific co-localization parameter.

The element “gene” may have one “exchangeables” child element:

• The element “exchangeables” can contain one or more elements “gene”.

For a Gene to have “exchangeables” Genes listed, means that this Gene can be replaced in the
quorum by the listed child Genes.

Note: If not specified by the user, several features will have their values assigned by default:

• the genomic architecture of the System being searched will consist in a single locus. If a System may be made
of Genes from multiple loci, consider setting the multi_loci parameter to True.

• the quorum parameters min_mandatory_genes_required and min_genes_required will be set to the number of
mandatory Genes listed - the accessory Genes being deemed not required to infer a complete System.

Example of a macsy-model definition in XML:

<model inter_gene_max_space="5" vers="2.0">
<gene name="gspD" presence="mandatory">

<exchangeables>
<gene name="sctC"/>

</exchangeables>
</gene>
<gene name="sctN_FLG" presence="mandatory" loner="1">

<exchangeables>
<gene name="gspE"/>
<gene name="pilT"/>

</exchangeables>
</gene>
<gene name="sctV_FLG" presence="mandatory"/>
<gene name="flp" presence="accessory"/>

</model>

In this example, the described System consists of three mandatory and one accessory components:

• Two components, the Gene “GspD” and the Gene “sctN_FLG” can respectively be replaced by sctC, and gspE
and pilT genes in the quorum.

• To be considered as part of such System, the components should be co-localized in loci (Clusters of Genes),
which in this case would amount to being located from each other at a distance of 5-Genes maximum, except
for the Gene “sctN_FLG” that is allowed to be located “alone” in the genome being investigated, by a loner
parameter being set to True. As the multi_loci parameter is not set, by default the System should be made of a
single locus (Cluster of co-localized Genes - except for the ones listed as loners).

• To be considered a complete System, the quorum of Genes should be reached. In this case, the
min_genes_required and min_mandatory_genes_required are not specified and therefore assigned to their de-

2.1. Modeller Guide 55

MacSyFinder, Release 2.0

fault values: min_mandatory_genes_required is set to the number of mandatory Genes listed as well as the
min_genes_required parameter (see above).

Warning:

• a gene is identified by its name.

• this name is case sensitive.

• this name must be unique inside a family of models.

• a HMM profile with a gene-based name must exist in the profiles directory of the macsy-model package (see
below).

Providing HMM profiles

For each gene mentioned in each model you have to provide a HMM profile to enable the similarity search of this
gene. The HMM profile must have been created by the user from a curated multiple sequence alignment with the
hmmbuild program from the HMMER package, or can have been obtained from HMM profiles’ databases such as
TIGRFAM or PFAM .

This profile MUST have the same name as the name of the gene mentioned in the definition. For instance, a component
named “GeneA” in the macsy-model would correspond by default to a HMM profile “GeneA.hmm” enclosed in the
macsy-model package. The names are case-sensitive. All HMM profiles must be placed in the profiles directory of
the macsy-model package.

Note: For a detailed tutorial on how to define your macsy-model’s features, parameters and HMM profiles, you can
have a look at our cookbook in this book chapter .

Helper Tool

macsyprofile

To help develop new models we provide the tool macsyprofile which is to be used as post treatement.

It is ran over a previous macsyfinder analysis:

• it extracts from raw HMMER output files the hits and computes the profile coverage for each of them.

• it enables to filter the hits in a user-defined manner, to test other values of filtering parameters than those used
with the MacSyFinder run.

• it writes down the results in a file in tsv format hmm_coverage.tsv.

usage: macsyprofile [-h] [--coverage-profile COVERAGE_PROFILE]
[--i-evalue-sel I_EVALUE_SEL]
[--best-hits {score,i_eval,profile_coverage}] [-p PATTERN]
[-o OUT] [-f] [-V] [-v] [--mute]
previous_run

* * * * * *
* * * * * * ** *

** * * * * * * *
__ __ * ____ * ____ ** __ _ _ *

(continues on next page)

56 Chapter 2. Modeller Guide

http://hmmer.org/
https://dx.doi.org/10.1093%2Fnar%2Fgkg128
https://pfam.xfam.org/
https://link.springer.com/protocol/10.1007/978-1-4939-7033-9_1

MacSyFinder, Release 2.0

(continued from previous page)

| \/ | __ _ ___/ ___| _ _| _ \ _ __ ___ / _(_) | ___
| |\/| |/ _` |/ _____ \| | | | |_) | '__/ _ \| |_| | |/ _ \
| | | | (_| | (__ ___) | |_| | __/| | | (_) | _| | | __/
|_| |_|__,_|___|____/ __, |_| |_| ___/|_| |_|_|___|

* |___/ * *
* * * * * ** * * * *
* * * * * *

* * * * *

MacSyProfile - MacSyFinder profile helper tool

positional arguments:
previous_run The path to a macsyfinder results directory.

optional arguments:
-h, --help show this help message and exit
--coverage-profile COVERAGE_PROFILE

Minimal profile coverage required for the hit
alignment with the profile to allow the hit selection
for systems detection. (default no threshold)

--i-evalue-sel I_EVALUE_SEL
Maximal independent e-value for Hmmer hits to be
selected for systems detection. (default: no selection
based on i-evalue)

--best-hits {score,i_eval,profile_coverage}
If several hits match the same replicon, same gene.
Select only the best one (based on best 'score' or
'i_evalue' or 'profile_coverage')

-p PATTERN, --pattern PATTERN
pattern to filter the hmm files to analyse.

-o OUT, --out OUT the path to a file to write results.
--index-dir INDEX_DIR

Specifies the path to a directory to store/read the sequence
→˓index

when the sequence-db dir is not writable.
-f, --force force to write output even the file already exists

(overwrite it).
-V, --version show program's version number and exit
-v, --verbosity Increases the verbosity level. There are 4 levels:

Error messages (default), Warning (-v), Info (-vv) and
Debug.(-vvv)

--mute Mute the log on stdout. (continue to log on
macsyfinder.log) (default: False)

For more details, visit the MacSyFinder website and see the MacSyFinder documentation.

For instance

macsyprofile macsyfinder-2021XXXX_XX-XX-XX

will analyse the HMMER raw outputs stored in macsyfinder-2021XXXX_XX-XX-XX/hmmer_results directory and the
results wil be stored in macsyfinder-2021XXXX_XX-XX-XX/hmm_coverage.tsv file

2.1. Modeller Guide 57

MacSyFinder, Release 2.0

Setting filtering parameters

This helper tool is designed to help the user test the relevance of the HMM profiles used, what filtering parameters for
HMMER to be used, and understand why some components might be unexpectedly missing from the MacSyFinder
results. This can thus help to improve the models - for instance for the genomic location parameters (is a component
not found cause it should be listed as a loner?).

Therefore by default, the filtering parameters are very loose so that most hits found with HMMER will be reported,
even the weakest ones.

However, it is possible to filter hits to be extracted based on the profile coverage with –coverage-profile or the i-evalue
(–i-evalue-sel) to be a bit more stringent.

Also, it is possible to use the –best-hits in order to report only the best hit for a given protein sequence when several
profiles were matching hit.

Using patterns with “–pattern”

If in previous_run/hmmer_results you have the following files:

previous_run/hmmer_results/Archaeal-T4P_arCOG11238.search_hmm.out
previous_run/hmmer_results/Archaeal-T4P_arCOG11520.search_hmm.out
previous_run/hmmer_results/Archaeal-T4P_arCOG11777.search_hmm.out
previous_run/hmmer_results/Archaeal-T4P_arCOG11778.search_hmm.out
previous_run/hmmer_results/Archaeal-T4P_arCOG11936.search_hmm.out
previous_run/hmmer_results/Archaeal-T4P_arCOG14515.search_hmm.out
previous_run/hmmer_results/ComM_comC.search_hmm.out
previous_run/hmmer_results/ComM_comEB.search_hmm.out
previous_run/hmmer_results/ComM_comEC.search_hmm.out
previous_run/hmmer_results/ComM_comGA.search_hmm.out
previous_run/hmmer_results/ComM_comGB.search_hmm.out
previous_run/hmmer_results/ComM_comGC.search_hmm.out
previous_run/hmmer_results/ComM_comGD.search_hmm.out
previous_run/hmmer_results/ComM_comGE.search_hmm.out
previous_run/hmmer_results/MSH_mshA.search_hmm.out
previous_run/hmmer_results/MSH_mshB.search_hmm.out
previous_run/hmmer_results/MSH_mshC.search_hmm.out

But you are interested only in ComM family genes, you can specify the option --pattern 'ComM*' For instance:

macsyprofile --pattern 'ComM*' macsyfinder-2021XXXX_XX-XX-XX
parsing macsyfinder-2021XXXX_XX-XX-XX/hmmer_results/ComM_comB.search_hmm.out
parsing macsyfinder-2021XXXX_XX-XX-XX/hmmer_results/ComM_comC.search_hmm.out
parsing macsyfinder-2021XXXX_XX-XX-XX/hmmer_results/ComM_comEA.search_hmm.out
parsing macsyfinder-2021XXXX_XX-XX-XX/hmmer_results/ComM_comEB.search_hmm.out
parsing macsyfinder-2021XXXX_XX-XX-XX/hmmer_results/ComM_comEC.search_hmm.out
parsing macsyfinder-2021XXXX_XX-XX-XX/hmmer_results/ComM_comGA.search_hmm.out
parsing macsyfinder-2021XXXX_XX-XX-XX/hmmer_results/ComM_comGB.search_hmm.out
parsing macsyfinder-2021XXXX_XX-XX-XX/hmmer_results/ComM_comGC.search_hmm.out
parsing macsyfinder-2021XXXX_XX-XX-XX/hmmer_results/ComM_comGD.search_hmm.out
parsing macsyfinder-2021XXXX_XX-XX-XX/hmmer_results/ComM_comGE.search_hmm.out
found 79 hits
result is in 'macsyfinder-2021XXXX_XX-XX-XX/hmm_coverage.tsv'

Note: The patterns available are the glob patterns (the jokers usable with unix ls command)

58 Chapter 2. Modeller Guide

MacSyFinder, Release 2.0

macsyprofile --pattern 'ComM_com?C' -f macsyfinder-2021XXXX_XX-XX-XX
parsing macsyfinder-2021XXXX_XX-XX-XX/hmmer_results/ComM_comEC.search_hmm.out
parsing macsyfinder-2021XXXX_XX-XX-XX/hmmer_results/ComM_comGC.search_hmm.out
found 16 hits
result is in 'macsyfinder-2021XXXX_XX-XX-XX/hmm_coverage.tsv'

The macsyprofile output is a tabulated separated values (.tsv) files The first lines which are comments (starting with
‘#’) display the tool version and the complete command line used. Then follow the results. The first line of results is
a header line.

macsyprofile 2.0rc1
macsyprofile --pattern ComM* --coverage-profile 0.5 macsyfinder-20201202_15-17-46/
hit_id replicon_name position_hit hit_sequence_length gene_name i_
→˓eval score profile_coverage sequence_coverage begin end
GCF_000006745_021980 GCF_000006745 2198 291 ComM_comC 2.500e-40
→˓ 136.400 0.942 0.708 62 267
GCF_000006745_007650 GCF_000006745 765 253 ComM_comC 9.600e-31
→˓ 105.100 0.937 0.798 43 244
...

Note: This file can be easily parsed using the Python pandas library.

import pandas as pd

systems = pd.read_csv("path/to/hmm_coverage.tsv", sep='\t', comment='#')

Warning: The macsyprofile is not compliant with results produced with macsyfinder v1. If you get Cannot
find models in conf file XXX. May be these results have been generated with
an old version of macsyfinder. Check the configuration file, if [models] section contains
models_1 = XXX YYY remove the _1 from models models = XXX YYY

Publishing/sharing models

Writing your own macsy-model package

The whole package structure and the corresponding files are described in the section Structure of a macsy-model
package. It requires five different types of files to be complete:

• a metadata.yml file (mandatory)

• a README.md file (mandatory)

• a LICENSE file (optional but HIGHLY recommended)

• a model_conf.xml file (optional)

• macsy-models definition(s) within a definitions folder (mandatory)

• HMM profiles within a profiles folder (mandatory)

2.1. Modeller Guide 59

https://pandas.pydata.org/

MacSyFinder, Release 2.0

Sharing your models

If you want to share your models you can create a macsy-model package in your github repository. Several steps are
needed to publish your model:

1. Check the validity of your package with the macsydata check command. You have to run it from within
the folder containing your package files. It will report:

• everything is clear: macsydata displays the next step totake to publish the package

• warning: it means that the package could be improved.

It is better to fix it if you can, but you can also proceed to Step 2

• error: the package is not ready to be published as is. You have to fix the errors before you go to Step 2.

2. Create a tag, and submit a pull request to the https://github.com/macsy-models organization. This step is
very important: without a tag, there is no package. macsydata checks only tagged packages. It is also
the duty of the model provider to setup a tag with the same name as the version in the metadata.yml file.
It is recommended to follow a versioning scheme describe here: https://www.python.org/dev/peps/pep-0440/
#public-version-identifiers

3. When your pull request (PR) is accepted, the model package becomes automatically available to the community
through the macsydata tool.

If you don’t want to submit a PR you can provide the tag release tarball (tar.gz) as is to your collaborators. This archive
will also be usable with the macsydata tool.

Note: macsydata check checks the syntax of the package, but it does not publish anything. It just warns you if
something is wrong with the package. Every model provider should check its own package before publishing it. The
package publication is done by the git push and the pull request.

Examples of macsydata check outputs:

Your package is syntactically correct:

macsydata check tests/data/models/test_model_package/
Checking 'test_model_package' package structure
Checking 'test_model_package' metadata_path
Checking 'test_model_package' Model definitions
Models Parsing
Definitions are consistent
Checking 'test_model_package' model configuration
There is no model configuration for package test_model_package.
If everyone were like you, I'd be out of business
To push the models in organization:

cd tests/data/models/test_model_package
Transform the models into a git repository

git init .
git add .
git commit -m 'initial commit'

add a remote repository to host the models
for instance if you want to add the models to 'macsy-models'

git remote add origin https://github.com/macsy-models/
git tag 1.0b2
git push --tags

You received some warnings:

60 Chapter 2. Modeller Guide

https://github.com/macsy-models
https://www.python.org/dev/peps/pep-0440/#public-version-identifiers
https://www.python.org/dev/peps/pep-0440/#public-version-identifiers

MacSyFinder, Release 2.0

macsydata check tests/data/models/Model_w_conf/
Checking 'Model_w_conf' package structure
Checking 'Model_w_conf' metadata_path
Checking 'Model_w_conf' Model definitions
Models Parsing
Definitions are consistent
Checking 'Model_w_conf' model configuration
The package 'Model_w_conf' have not any LICENSE file. May be you have not right to
→˓use it.
The package 'Model_w_conf' have not any README file.
macsydata says: You're only giving me a partial QA payment?
I'll take it this time, but I'm not happy.
I'll be really happy, if you fix warnings above, before to publish these models.

You received some errors:

macsydata check tests/data/models/TFF-SF/
Checking 'TFF-SF' package structure
The package 'TFF-SF' have no 'metadata.yml'.
Please fix issues above, before publishing these models.
ValueError

Gallery of examples of MacSyFinder’s models

Table of contents of the gallery

• Getting started with a one-component system: the autotransporter T5SS

• A (not-so-)simple example: modelling the T1SS

• The case of T3SS and bacterial flagella, or how to distinguish homologous cellular machineries

Here follows a “gallery” of MacSyFinder models we have developed over the years, attempting to describe the rea-
soning behind the modeling process.

These examples are extracted from published work, see the following references (they include more examples):

• Abby et al. 2016, Scientific Reports, for the description of the T1SS, T3SS and T5aSS models (and way more
models not discussed here).

• Abby and Rocha 2012, PLoS Genetics, for the evolutionary study of the T3SS and the bacterial flagellum, and
how were designed the corresponding profiles.

• Denise et al. 2019, PLoS Biology, for the description of the T2SS and type IV-filament super-family models.

2.1. Modeller Guide 61

https://www.nature.com/articles/srep23080
https://doi.org/10.1371/journal.pgen.1002983
https://doi.org/10.1371/journal.pbio.3000390

MacSyFinder, Release 2.0

Getting started with a one-component system: the autotransporter T5SS

This case is rather straight-forward, as the detection of the autotransporter type V secretion system (T5aSS) relies
solely on the detection of a single component. This system indeed encodes both a translocator (outer membrane,
pore-forming domain) and a passenger domain (toxin or enzyme) on the same gene.

The translocator domain is the evolutionarily conserved part across T5aSS. This family of homologous proteins is
gathered in the PFAM protein family PF03797 of “Autotransporter” domains.

We thus downloaded the corresponding pre-computed HMM profile that we named “T5aSS_PF03797.hmm” to enable
its search using sequence similarity.

We then wrote the corresponding MacSyFinder model in a file T5aSS.xml:

<model inter_gene_max_space="1" vers="2.0">
<gene name="T5aSS_PF03797" presence="mandatory"/>

</model>

It can be noted that several features do not have to be defined if default values are relevant. In particular, in this
example it is not needed to specify the quorum parameters: the default value for the minimal number of genes required
to infer the presence of the T5aSS is by default the number of components listed in the definition of the system (1).

A (not-so-)simple example: modelling the T1SS

1. Identifying genetic components

The type I secretion system (T1SS) consists in three conserved components:

• an ABC transporter (ABC)

• a membrane-fusion protein (MFP)

• an outer membrane protein (OMF)

For their detection, we therefore need to provide HMM profiles for each component, for example: “abc.hmm”,
“mfp.hmm” and “omf.hmm”. These can be specifically designed, or taken from HMM profiles databanks such as
PFAM , TIGRFAM or SUPERFAMILY..

Note: For suggestions on how to design specific HMM protein profiles, read our dedicated book chapter:

Identification of Protein Secretion Systems in Bacterial Genomes Using MacSyFinder by Sophie Abby
and Eduardo Rocha, in Methods in Molecular Biology (2017).

2. Determining the role of the components

From litterature, the three components listed above must be present to have a viable T1SS. Therefore, these are all
deemed mandatory in the model of the T1SS.

62 Chapter 2. Modeller Guide

http://pfam.xfam.org/family/PF03797
http://pfam.xfam.org/
http://tigrfams.jcvi.org/cgi-bin/index.cgi
https://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/
https://link.springer.com/protocol/10.1007/978-1-4939-7033-9_1

MacSyFinder, Release 2.0

3. Describing their genetic architecture

According to the litteraure, the genes encoding the three components listed above are generally found lying next to
each other in genomes. Therefore, these are considered as “single-locus” system. In addition, there is the particular
case of the OMF component. It can either be found:

• next to the two other components, as explained just below

• in some other cases, it can be involved in other cellular machineries functioning, and thus be encoded some
place else that at the main T1SS’ locus (in this case, made of ABC+MFP).

Therefore, we can attribute the loner feature to the OMF component.

In addition to the latter exception described, it means that this OMF component can also be involved in the functioning
of not a single, but several machineries at the same time. In practice, this would mean that two full sets of T1SS
components can be inferred with a single OMF component found in the genome. This corresponds to the multi-system
feature.

4. Writing down the model

Now that all elements of the model are listed, the model for the T1SS can be written using the dedicated MacSyFinder
XML grammar:

<model inter_gene_max_space="5" min_mandatory_genes_required="3" min_genes_required="3
→˓" vers="2.0">

<gene name="T1SS_abc" presence="mandatory"/>
<gene name="T1SS_mfp" presence="mandatory"/>
<gene name="T1SS_omf" presence="mandatory" loner="1" multi_system="1"/>

</model>

The case of T3SS and bacterial flagella, or how to distinguish homologous cellular machineries

The type III secretion system (T3SS), involved in proteic effectors secretion into eukaryotic cells) and the bacterial
flagellum (involved in motility) are evolutionarily related (Abby and Rocha 2012). This can make their annotation in
genomes tricky, if only based on core components that can have homologs in both systems.

However, these machineries also have specific core components. With MacSyFinder and the forbidden feature for
components, it is possible to model this, and create models for efficient discrimination between homologous machiner-
ies.

For a toy example on how to model similar yet distinct machineries, you can also have a look here.

2.1. Modeller Guide 63

https://doi.org/10.1371/journal.pgen.1002983

MacSyFinder, Release 2.0

1. Identifying genetic components and determining their role

The T3SS is partly homologous to the bacterial flagellum: 8 of its 9 core components are homologous to core compo-
nents of the flagellum. This is explained by the fact that the T3SS is evolutionarily derived from the flagellum (Abby
and Rocha 2012). Yet, the T3SS is made of two dozens of components, and the flagellum, more than twice this number
of components:

• The flagellum presents specific core components that have no counterpart in the T3SS.

• It is also the case of the T3SS, which has one specific core component: the secretin.

Solely based on the specificity of core components, it is possible to distinguish T3SS from flagella. This can be
done by listing the specific core components of a given system as mandatory in the system, and as forbidden in the
homologous system.

Then, HMM protein profiles can be specifically designed for these components, or can be retrieved from databases
such as PFAM , TIGRFAM or SUPERFAMILY.

2. Dealing with components with varied evolutionary origins

Another peculiarity of T3SS’ evolutionary history consists in that of the secretin, which has been co-opted (acquired)
at least three times independently along T3SS diversification: once from the T2SS, once from the Tad pilus, and once
from the Type IVa pilus (Abby and Rocha 2012 , Denise et al. 2019).

This means that sometimes, the T3SS secretin will have more sequence similarity for the secretins from these other
machineries - and thus that the profile for the T3SS secretin might “miss” these components, whereas profiles for
secretins from the T2SS, T4P or Tad might be more efficient to retrieve them.

Using the exchangeables feature, MacSyFinder enables to use different HMM protein profile to search for components
that may fill a same function. Therefore, it is possible to list profiles of secretins from other machineries among the
set of profiles to use to retrieve all T3SS potential secretins.

In the following drawing, a scheme of a T3SS is shown on the left, and the features listed above are shown on a scheme
of the T3SS model, including forbidden components from the flagellum (red crosses), and exchangeable components
for the secretin “sctC”, depicted with yellow boxes (with the name of the secretin gene from the T4aP, T2SS and Tad
pilus respectively). The inter-gene-max-space parameter - i.e., maximal number of components allowed between two
systems’ components to consider them consecutive - is expressed with the “d” letter.

64 Chapter 2. Modeller Guide

https://doi.org/10.1371/journal.pgen.1002983
https://doi.org/10.1371/journal.pgen.1002983
http://pfam.xfam.org/
http://tigrfams.jcvi.org/cgi-bin/index.cgi
https://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/
https://doi.org/10.1371/journal.pgen.1002983
https://doi.org/10.1371/journal.pbio.3000390

MacSyFinder, Release 2.0

3. Describing the quorum, and genetic architecture of the systems

• T3SS and bacterial flagella are generally encoded on the form of multi-components loci in genomes. Given the
fact that we designed HMM protein profiles only for the most conserved, core components of these machineries,
and that it means that several systems’ components can intersperse between the core ones (remember, T3SS has
aroound 25 components, and the flagellum >40), we set the inter-gene-max-space parameter (maximal number
of components allowed between two systems’ components to consider them consecutive) to 10 in the case of
the T3SS, and to 20 in the case of the flagellum.

• T3SS and bacterial flagella can be encoded by one, or multiple loci. We therefore use the multi-loci feature to
describe their genetic architecture (set to “1”, meaning “True” in the models).

Note: For suggestions on how to set the quorum and genetic architecture parameters, read our dedicated book chapter:

Identification of Protein Secretion Systems in Bacterial Genomes Using MacSyFinder by Sophie Abby
and Eduardo Rocha, in Methods in Molecular Biology (2017).

4. Writing down the models

Given all the features described above, here is the model of the T3SS:

T3SS.xml

<model inter_gene_max_space="10" min_mandatory_genes_required="7" min_genes_required=
→˓"7" multi_loci="1" vers="2.0">

<gene name="T3SS_sctC" presence="mandatory">
<exchangeables>

<gene name="T2SS_gspD"/>
<gene name="T4P_pilQ"/>
<gene name="Tad_rcpA"/>

</exchangeables>
</gene>
<gene name="T3SS_sctJ" presence="mandatory"/>
<gene name="T3SS_sctN" presence="mandatory"/>
<gene name="T3SS_sctQ" presence="mandatory"/>
<gene name="T3SS_sctR" presence="mandatory"/>
<gene name="T3SS_sctS" presence="mandatory"/>
<gene name="T3SS_sctT" presence="mandatory"/>
<gene name="T3SS_sctU" presence="mandatory"/>
<gene name="T3SS_sctV" presence="mandatory"/>
<gene name="Flg_fliE" presence="forbidden"/>
<gene name="Flg_flgB" presence="forbidden"/>
<gene name="Flg_flgC" presence="forbidden"/>

</model>

And the model of the Flagellum:

Flagellum.xml

<model inter_gene_max_space="20" min_mandatory_genes_required="9" min_genes_required=
→˓"10" multi_loci="1" vers="2.0">

<gene name="Flg_sctJ_FLG" presence="mandatory"/>
<gene name="Flg_sctN_FLG" presence="mandatory"/>
<gene name="Flg_sctQ_FLG" presence="mandatory"/>
<gene name="Flg_sctR_FLG" presence="mandatory"/>

(continues on next page)

2.1. Modeller Guide 65

https://link.springer.com/protocol/10.1007/978-1-4939-7033-9_1

MacSyFinder, Release 2.0

(continued from previous page)

<gene name="Flg_sctS_FLG" presence="mandatory"/>
<gene name="Flg_sctT_FLG" presence="mandatory"/>
<gene name="Flg_sctU_FLG" presence="mandatory"/>
<gene name="Flg_sctV_FLG" presence="mandatory"/>
<gene name="Flg_flgB" presence="mandatory"/>
<gene name="Flg_flgC" presence="mandatory"/>
<gene name="Flg_fliE" presence="mandatory"/>
<gene name="T3SS_sctC" presence="forbidden"/>

</model>

2.1.2 Carrying models from v1 to v2

Carrying models from v1 to v2

Models from v1 are not compatible straight away with v2. For those who had designed MacSyFinder’s models for
Version 1 and would like to carry them for Version 2, here are the changes to consider:

• the keyword “system” was changed: <system> ::arrow:: <model>

• the keyword <system_ref> was removed. For a given systems’ package, each gene has to be defined only once
in a macsy-model. There is no need anymore to reference which model it is from, when used as a component in
another system’s model.

• now the version of the macsy-models’ type has to be documented as a feature of the “model” keyword, like this:
vers = “2.0”

• the following keywords have been replaced (but see below for more details):

– homologs => exchangeables

– analogs => exchangeables

Note: “exchangeable” is not a feature anymore, but is replaced by the keyword “exchangeables”.

Note: These changes in the grammar used to specify model is also accompanied by a change on how to organize
folders with models and profiles. In particular, the new file architecture enables an easier shipping of the developed
macsy-models. See here for more details.

Here follow some examples of updates from v1 to v2.

1. A very simple model.

T1SS.xml under v1:

<system inter_gene_max_space="5" min_mandatory_genes_required="3" min_genes_required=
→˓"3">

<gene name="T1SS_abc" presence="mandatory"/>
<gene name="T1SS_mfp" presence="mandatory"/>
<gene name="T1SS_omf" presence="mandatory" loner="1" multi_system="1"/>

</system>

T1SS.xml under v2:

66 Chapter 2. Modeller Guide

MacSyFinder, Release 2.0

<model inter_gene_max_space="5" min_mandatory_genes_required="3" min_genes_required="3
→˓" vers = "2.0">

<gene name="T1SS_abc" presence="mandatory"/>
<gene name="T1SS_mfp" presence="mandatory"/>
<gene name="T1SS_omf" presence="mandatory" loner="1" multi_system="1"/>

</model>

Note: In a nutshell, the minimal changes from v1 to v2 for a simple macsy-model listing components are the
following:

• <system> => <model>

• vers = “2.0”

2. A model with homologs.

Tad.xml under v1:

<system inter_gene_max_space="5" min_mandatory_genes_required="4" min_genes_required=
→˓"6" multi_loci="0">

<gene name="Tad_rcpA" presence="mandatory">
<homologs>

<gene name="T2SS_gspD" system_ref="T2SS"/>
<gene name="T4P_pilQ" system_ref="T4P"/>
<gene name="T3SS_sctC" system_ref="T3SS"/>

</homologs>
</gene>
<gene name="Tad_tadA" presence="mandatory"/>
<gene name="Tad_tadB" presence="mandatory"/>
<gene name="Tad_tadC" presence="mandatory"/>
<gene name="Tad_tadV" presence="mandatory"/>
<gene name="Tad_tadZ" presence="mandatory"/>
<gene name="Tad_flp" presence="accessory"/>
<gene name="Tad_tadE" presence="accessory"/>
<gene name="Tad_tadF" presence="accessory"/>

</system>

Tad.xml under v2:

<model inter_gene_max_space="5" min_mandatory_genes_required="4" min_genes_required="6
→˓" multi_loci="0" vers="2.0">

<gene name="Tad_rcpA" presence="mandatory"/>
<gene name="Tad_tadA" presence="mandatory"/>
<gene name="Tad_tadB" presence="mandatory"/>
<gene name="Tad_tadC" presence="mandatory"/>
<gene name="Tad_tadV" presence="mandatory"/>
<gene name="Tad_tadZ" presence="mandatory"/>
<gene name="Tad_flp" presence="accessory"/>
<gene name="Tad_tadE" presence="accessory"/>
<gene name="Tad_tadF" presence="accessory"/>

</model>

2.1. Modeller Guide 67

MacSyFinder, Release 2.0

Note: The homologs and analogs keyword having disappeared, it is not necessary anymore to list homologous
components (e.g., those that may match several HMM profiles during the sequence similarity search), unless they are
exchangeables.

3. A model with exchangeable homologs.

T3SS.xml under v1:

<system inter_gene_max_space="10" min_mandatory_genes_required="7" min_genes_required=
→˓"7" multi_loci="1">

<gene name="T3SS_sctC" presence="mandatory" exchangeable="1">
<homologs>

<gene name="T2SS_gspD" system_ref="T2SS"/>
<gene name="T4P_pilQ" system_ref="T4P"/>
<gene name="Tad_rcpA" system_ref="Tad"/>

</homologs>
</gene>
<gene name="T3SS_sctJ" presence="mandatory">

<homologs>
<gene name="Flg_sctJ_FLG" system_ref="Flagellum"/>

</homologs>
</gene>
<gene name="T3SS_sctN" presence="mandatory">

<homologs>
<gene name="Flg_sctN_FLG" system_ref="Flagellum"/>

</homologs>
</gene>
<gene name="T3SS_sctQ" presence="mandatory">

<homologs>
<gene name="Flg_sctQ_FLG" system_ref="Flagellum"/>

</homologs>
</gene>
<gene name="T3SS_sctR" presence="mandatory">

<homologs>
<gene name="Flg_sctR_FLG" system_ref="Flagellum"/>

</homologs>
</gene>
<gene name="T3SS_sctS" presence="mandatory">

<homologs>
<gene name="Flg_sctS_FLG" system_ref="Flagellum"/>

</homologs>
</gene>
<gene name="T3SS_sctT" presence="mandatory">

<homologs>
<gene name="Flg_sctT_FLG" system_ref="Flagellum"/>

</homologs>
</gene>
<gene name="T3SS_sctU" presence="mandatory">

<homologs>
<gene name="Flg_sctU_FLG" system_ref="Flagellum"/>

</homologs>
</gene>
<gene name="T3SS_sctV" presence="mandatory">

<homologs>

(continues on next page)

68 Chapter 2. Modeller Guide

MacSyFinder, Release 2.0

(continued from previous page)

<gene name="Flg_sctV_FLG" system_ref="Flagellum"/>
</homologs>

</gene>
<gene name="Flg_fliE" presence="forbidden" system_ref="Flagellum"/>
<gene name="Flg_flgB" presence="forbidden" system_ref="Flagellum"/>
<gene name="Flg_flgC" presence="forbidden" system_ref="Flagellum"/>

</system>

T3SS.xml under v2:

<model inter_gene_max_space="10" min_mandatory_genes_required="7" min_genes_required=
→˓"7" multi_loci="1" vers="2.0">

<gene name="T3SS_sctC" presence="mandatory">
<exchangeables>

<gene name="T2SS_gspD"/>
<gene name="T4P_pilQ"/>
<gene name="Tad_rcpA"/>

</exchangeables>
</gene>
<gene name="T3SS_sctJ" presence="mandatory"/>
<gene name="T3SS_sctN" presence="mandatory"/>
<gene name="T3SS_sctQ" presence="mandatory"/>
<gene name="T3SS_sctR" presence="mandatory"/>
<gene name="T3SS_sctS" presence="mandatory"/>
<gene name="T3SS_sctT" presence="mandatory"/>
<gene name="T3SS_sctU" presence="mandatory"/>
<gene name="T3SS_sctV" presence="mandatory"/>
<gene name="Flg_fliE" presence="forbidden"/>
<gene name="Flg_flgB" presence="forbidden"/>
<gene name="Flg_flgC" presence="forbidden"/>

</model>

Note:

• As only the secretin component ‘T3SS_sctC’ was exchangeable in its role within T3SS with its homologs
T2SS_gspD, T4P_pilQ and Tad_rcpA, these three components are now set as exchangeables (they can function-
ally replace the component ‘T3SS_sctC’), and all other homologs do not need to be listed anymore.

• The keyword system_ref is not needed anymore. Therefore, the v2 definition of T3SS is way more compact
than that for v1.

2.1.3 Frequently Asked Questions

Frequently Asked Questions

How to report an issue?

If you encounter a problem while running MacSyFinder, please submit an issue on the dedicated page of the GitHub
project

To ensure we have all elements to help, please provide:

• a concise description of the issue

2.1. Modeller Guide 69

https://github.com/gem-pasteur/macsyfinder/issues
https://github.com/gem-pasteur/macsyfinder/issues

MacSyFinder, Release 2.0

• the expected behavior VS observed one

• the exact command-line used

• the version of MacSyFinder used

• the exact error message, and if applicable, the macsyfinder.log and macsyfinder.conf files

• if applicable, an archive (or link to it) with the output files obtained

• if possible, the smallest dataset there is to reproduce the issue

• if applicable, this would also include the macsy-models (XML models plus HMM profiles) used (or precise
version of the models if there are publicly available). Same as above, if possible, please provide the smallest set
possible of models and HMM profiles.

All these will definitely help us to help you! ;-)

How to list several components or HMM profiles for a given function in the model?

MacSyFinder provides a framework to associate a component/function in the model of a system with the mean to
search for it - a HMM profile.

In some cases, it is needed to list several possible components (i.e. HMM profiles) to assume a given function for the
system to model. There can be several reasons for that:

• a biological reason (e.g., two components from two different gene families can assume a same role in the system)

• a methodological reason (it is not possible or difficult to provide a single HMM profile that covers the diversity
of the components’ sequences to be retrieved).

It is possible to list several possible components for a same role within the system’s model using the exchangeables
keyword.

See here for more details and examples.

70 Chapter 2. Modeller Guide

CHAPTER

THREE

DEVELOPER GUIDE

3.1 Developer Guide

3.1.1 MacSyFinder implementation overview

MacSyFinder is implemented with an object-oriented architecture. Below a short glossary to fix the vocabulary used
in MacSyFinder

Cluster Is a “contiguous” set of hits. two hits are considered contiguous if the number of genes between the 2 genes
matching the 2 hits in the replicon is lesser than inter-genes-max-space.

Model Is a formal description of a macromolecular system. Is composed of a definition and a list of profiles. at each
gene of the Model must correspond a profile

Model family A set of models, on the same topic. It is composed of several definitions which can be sorted in
hierachical structure and profiles. A profile is a hmm profile file.

ModelDefinition Is a definition of model, it’s serialize as a xml file

Solution It’s a systems combination for one replicon. Technically it’s a list of Systems. The best solution for a
replicon, is the combination of all systems found in this replicon which maximize the score.

System It’s an occurrence of a specific Model on a replicon. Basically, it’s a cluster or set of clusters which satisfy
the Model quorum.

MacSyFinder project structure

A brief overview of the files and directory constituting the MacSyFinder project

doc The project is documented using sphinx. All sources files needed to generate this documentation is in the directory
doc

etc This directory contains a template to configure macsyfinder. It’s allow to set some configuration available for each
run and avoid to specify them at each run on the command line. This file is in ini format.

macsypy This the MacSyFinder python library Inside macsypy there is a subdirectory scripts which are the entry
points for macsyfinder and macsydata

tests The code is tested using unittests. In tests the directory data contains all data needed to perform the tests.

utils Contains a binary setsid needed macsyfinder to parallelize some steps. Usually setsid is provides by the system,
but some macOS version does not provide it.

CITATION.yml A file indicating how to cite macsyfinder in yaml format.

CONTRIBUTORS A file containing the list of code contributors.

71

MacSyFinder, Release 2.0

CONTRIBUTING A guide on how to contribute to the project.

COPYRIGHT The macsyfinder copyrights.

COPYING The licencing. MacSyFinder is released under GPLv3.

README.md Brief information about the project.

requirements.txt The list of python dependencies needed by macsyfinder. do not forget to install hmmsearch which
is not handle by python packet manager pip

requirements_dev.txt The list of extra dependencies needed if you want to contribute to the code.

setup.py The installation recipe.

MacSyFinder architecture overview

An overview of the main classes.

Note: use view image of your browser to zoom in the diagram

MacSyFinder functioning overview

In this section I’ll give you an idea of the macsyfinder functioning at very high grain coarse.

As all program the entrypoint is the main function The goal of macsyfinder.main is to parse the command line. Then
to creates a configuration object and also initialize the logger. After that it call main_search_systems which contains
the macsyfinder logic

The first main_search_systems task is to create models asked by the user on the command line. So a DefinitionParser
is instantiated and the ModelBank and GeneBank are populated

Once all models are created, we gather all genes and search them in the replicons. This step is done in parallel.
The search is done by profile object associated to each gene and rely on the external software hmmsearch. The
parallelization is ensure by search_genes function The results of this step is a list of hits.

This list is sorted by position and score. this list is filtered to keep only one hit for each position, the one with the best
score (position is a gene product in a replicon)

For each model asked by the user, we filter the hits list to keep only those related to the model. Those which are link
to mandatory, accessory, neutral or forbidden genes included the exchangeables.

This hits are clustered based on distance constraints describe in the models:

• inter_gene_max_space : the maximum genes allowed between to genes of a system.

• loner : allow a gene to participate to system even if it does not clusterize with some other genes.

Then we check if each cluster satisfy the quorum described in the model.

• min_mandatory_genes : the minimum of mandatory genes requisite to have a system.

• min_genes_required : the minimum of genes (mandatory + accessory) requisite to have a system.

• forbidden_genes : no forbidden genes may appear in the cluster.

If the model is multi_loci we generate a combination of the clusters and check the quorum for each combination. If
the cluster or combination satisfy the quorum a macsypy.systems.System is created otherwise a macsypy.
cluster.RejectedCluster.

The Systems from the same replicon are sort against their position, score.

72 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

ModelBank

+ field: type

+ method(type): type

DefinitionParser

+ field: type

+ method(type): type

Hit

+ gene: CoreGene
+ id: str
+ seq_length: int
+ replicon_name: str
+ position: int
...

+ method(type): type

ModelRegistry

-_registry: Dict[name:str, ModelLocation]

+ method(type): type

ModelLocation

- _profiles: Dict[name str: path:str]

- _definitions: Dict[name str: DefLocation]

+ method(type): type

DefinitionLocation

+ name: str

+ fqn:str

+ path: str

+ subdefinition: Dict[name:str: DefinitionLocation]

+ method(type): type

Profile

+ field: type

+ method(type): type

ProfileFactory

+ field: type

+ method(type): type

package

AbstractModelIndex

+ field: type

+ method(type): type

LocalModelIndex

+ field: type

+ method(type): type

RemoteModelIndex

+ field: type

+ method(type): type

Package

+ field: type

+ method(type): type

config

MacsyDefaults

+ field: type

+ method(type): type

Config

+ field: type

+ method(type): type

hit

ValidHit

+ hit: Hit

+ hit: Hit

+ status: GeneStatus

+ gene_ref: ModelGene

HitWeight

+ itself: float

+ exchangeable: float

+ mandatory: float

+ accessory: float

profile

registries

model

Model

mandatory: List[ModelGene]

accessory: List[ModelGene]

neutral: List[ModelGene]

accessory: List[ModelGene]

+ method(type): type

gene

GeneStatus

+ MANDATORY

+ ACCESSORY

+ NEUTRAL

+ FORBIDEN

ModelGene

+ model: Model

+ gene: CoreGene

+ method(type): type

CoreGene

+ method(type): type

+ profile: Profile

Exchangeable

+ gene_ref: ModelGene

+ method(type): type

GeneBank

+ field: type

+ method(type): type

Extends

1

system

System

+ clusters: List[Cluster]

+ model: Model

+ method(type): type

RejectedClusters

+ clusters: List[Cluster]

+ model: Model

+ method(type): type

UnlikelySytem

+ reasons: List of str

+ __str__

LikelySystem

+ __str__

MetaSetOfHits

+ method(type): type

<<Abstract>>
AbstractSetOfHits

+ model: Model

+ hits

<<Abstract>>
AbstractSetOfHits

+ model: Model

+ mandatory_hits: List[ValidHit]

+ accessory_hits: List[ValidHit]

+ neutral_hits: List[ValidHit]

+ forbidden_hits: List[ValidHit]

<<Abstract>>
AbstractMatchMaker

+ sort_hits_by_status

+ present_genes

+ match

OrderedMatchMaker

+ match(clusters)

UnOrderedMatchMaker

+ match(clusters)

definition_parser databases

RepliconDB

+ field: type

+ method(type): type

Indexes

+ field: type

+ method(type): type

1

cluster

Cluster

+ hits: Hit/ValidHit

+ model: Model

+ method(type): type

build_clusters

get_loners

filter_loners

TxtSystemSerializer

+ serialize(system):String

TsvSystemSerializer

+ serialize(system):String

<<Abstract>>
SystemSerilizer

+ system: System

+ serailize(): type

TsvSolutionSerializer

+ system: System

+ serialize():String

TxtLikelySystemSerializer

+ serialize(LikelySystem):String

serialization

TsvLikelySystemSerializer

+ serialize(LikelySystem):String

TxtUnlikelySystemSerializer

+ serialize(UmlikelySystem):String

Use

Fig. 1: The macsyfinder classes diagram. The classes are not details. only the main attributes allowing us to understand
the interaction are mentioned.

• in green the modules

• in orange, the concrete class

• in red the abstract classes

• in blue the enumeration

• in purple the dataclass

• in purple/pink functions

3.1. Developer Guide 73

MacSyFinder, Release 2.0

Note: The neutral genes are used to build clusters. But not to fulfill the quorum.

Among all this potential systems, MSF compute the best combination. macsypy.solution.
find_best_solutions(). The best combination is the set of compatible systems (do not share common
hits) which maximize the score. It’s possible to have several equivalent “best solutions”. The results of this step is
reported in the best_systems.tsv file.

The Model object

The Model object represents a macromolecular model to detect. It is defined via a definition file in XML stored in a
dedicated location that can be specified via the configuration file, or the command-line (-d parameter). See The XML
hierarchy for more details on the XML grammar.

An object ModelDefinitionParser is used to build a model object from its XML definition file.

A model is named after the file tree name of its XML definition. A model has an attribute inter_gene_max_space
which is an integer, and four kind of components are listed in function of their presence in the system:

• The genes that must be present in the genome to define this model (“mandatory”).

• The genes that can be present, but do not have to be found in every case (“accessory”).

• The genes that are used to build clusters, but not take in account to check the quorum (min-genes-required
and min-mandatory-genes-required) are described as “neutral”.

• The genes that must not be present in the system (“forbidden”).

Note: A complete description of macromolecular models modelling is available in the section Macromolecular
models

The Gene object

The Gene object represents genes encoding the protein components of a Model. There is 2 kind of gene The
CoreGene (macsypy.gene.CoreGene) which must be unique given a name. A CoreGene must have a corre-
sponding HMM protein profile. These profiles are represented by Profile objects (macsypy.profile.Profile),
and must be named after the gene name. For instance, the gene gspD will correspond to the “gspD.hmm” profile file.
See The Profile object). After hmmsearch step the hits are link the them. The CoreGene must be created by using the
GeneBank factory.

A ModelGene (macsypy.gene.ModelGene) which encapsulate a CoreGene and is linked to a Model. Instead
CoreGene, several ModelGene with the same name may coexists in macsyfinder, in different Models and hold different
values for attributes as inter_gene_max_space, . . . Each ModelGene points out its Model of origin (macsypy.
model.Model). A Gene has several properties described in the Gene API.

A ModelGene may be functionally replaced by an other (usually Homologs or Analogs). In this case these genes are
described as exchangeables. Exchangeable object encapsulates a ModelGene and has a reference to the ModelGene it
is exchangeable to. See the Exchangeable API for more details.

Warning: To optimize computation and to avoid concurrency problems when we search several Models,
each CoreGene must be instantiated only once, and stored in a “gene_bank”. gene_bank is a macsypy.
gene.GeneBank object. The gene_bank and model_bank are filled by the system_parser (macsypy.
definition_parser.ModelDefinitionParser)

74 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

The Profile object

Each “CoreGene” component corresponds to a “Profile”. The “Profile” object is used for the search of the gene with
Hmmer. Thus, a “Profile” must match a HMM file, which name is based on the profile name. For instance, the gspG
gene has the corresponding “gspG.hmm” profile file provided at a dedicated location.

Reporting Hmmer search results

A “HMMReport” (macsypy.report.HMMReport) object represents the results of a Hmmer program search on
the input dataset with a hidden Markov model protein profile. This object has methods to extract and build “Hits” that
are then analyzed for systems assessment.

It analyses Hmmer raw outputs, and applies filters on the matches (according to Hmmer options). See Hmmer results’
output files for details on the resulting output files. For profile matches selected with the filtering parameters, “Hit”
objects are built (see the Hit API).

3.1.2 MacSyFinder API documentation

configuration

Options to run MacSyFinder can be specified in a Configuration file. The API described below handles all configura-
tion options for MacSyFinder.

The macsypy.config.MacsyDefaults hold the default values for macsyfinder whereas the macsypy.
config.Config hold the values for a macsyfinder run.

configuration API reference

MacsyDefaults

class macsypy.config.MacsyDefaults(**kwargs)
Handle all default values for macsyfinder. the default values must be defined here, NOT in argument parser nor
in config the argument parser or config must use a MacsyDefaults object

__init__(**kwargs)

Parameters kwargs – allow to overwrite a default value. It mainly used in unit tests

To define a new default value just add an attribute with the default value

__weakref__
list of weak references to the object (if defined)

3.1. Developer Guide 75

MacSyFinder, Release 2.0

Config

class macsypy.config.Config(defaults, parsed_args)
Handle configuration values for macsyfinder. This values come from default and ar superseded by the configu-
ration files, then the command line settings.

__init__(defaults, parsed_args)
Store macsyfinder configuration options and propose an interface to access to them.

The config object is populated in several steps, the rules of precedence are

system wide conf < user home conf < model conf < (project conf | previous run) < command line

system wide conf = etc/macsyfinder/macsyfinder.conf user home conf = ~/.macsyfinder/macsyfinder.conf
model conf = model_conf.xml at the root of the model package project conf = macsyfinder.conf where the
analysis is run previous run = macsyfinder.conf in previous run results dir command line = the options set
on the command line

Parameters

• defaults (a MacsyDefaults object) –

• parsed_args (a argspace.Namescape object) – the command line arguments
parsed

__weakref__
list of weak references to the object (if defined)

_config_file_2_dict(file)
Parse a configuration file in ini format in dictionnary

Parameters file (str) – path to the configuartion file

Returns the parsed options

Return type dict

_set_command_line_config(parsed_args)

Parameters parsed_args (argparse.Namespace object.) – the argument set on the
command line

_set_db_type(value)
set value for ‘db_type’ option

Parameters value (str) – the value for db_type, allowed values are : ‘ordered_replicon’,
‘gembase’, ‘unordered’

Raises ValueError – if value is not allowed

_set_default_config()
set the value comming from MacsyDefaults

_set_inter_gene_max_space(value)
set value for ‘inter_gene_max_space’ option

Parameters value (str) – the string parse representing the model fully qualified name and
it’s associated value and so on the model_fqn is a string, the associated value must be cast in
int

Raises ValueError – if value is not well formed

_set_max_nb_genes(value)
set value for ‘max_nb_genes’ option

76 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

Parameters value (str) – the string parse representing the model fully qualified name and
it’s associated value and so on the model_fqn is a string, the associated value must be cast in
int

Raises ValueError – if value is not well formed

_set_min_genes_required(value)
set value for ‘min_genes_required’ option

Parameters value (str) – the string parse representing the model fully qualified name and
it’s associated value and so on the model_fqn is a string, the associated value must be cast in
int

Raises ValueError – if value is not well formed

_set_min_mandatory_genes_required(value)
set value for ‘min_mandatory_genes_required’ option

Parameters value (str) – the string parse representing the model fully qualified name and
it’s associated value and so on the model_fqn is a string, the associated value must be cast in
int

Raises ValueError – if value is not well formed

_set_model_config(model_conf_path)
Set the options from the model package model_conf.xml file

Parameters model_conf_path (str) – The path to the model_conf.xml file

_set_models(value)

Parameters value – The models to search as return by the command line parsing or the con-
figuration files

if value come from command_line [‘model1’, ‘def1’, ‘def2’, ‘def3’]

if value come from config file ’set_1’, ‘T9SS T3SS T4SS_typeI’)] [(model_family,
[def_name1, . . .]), . . .]

_set_models_dir(path)

Parameters path (str) – the path to the models (definitions + profiles) are stored.

_set_multi_loci(value)

Parameters value (str) – the models fqn list separated by comma of multi loc models

_set_options(options)
set key, value in the general config

Parameters options (a dictionary with option name as keys and
values as values) – the options to specify in general config

_set_previous_run_config(prev_config_path)
Set the options specified by the user on the command line via –previous-run

Parameters prev_config_path –

_set_project_config_file(config_path)
Set the options from the macsyfinder.conf present in the current directory

Parameters config_path (str) – the path to the configuration file

_set_replicon_topology(value)
set the default replicon topology

3.1. Developer Guide 77

MacSyFinder, Release 2.0

Parameters value (str) – ‘circular’ or ‘linear’

_set_sequence_db(path)

Parameters path (str) – set the path to the sequence file (in fasta format) to analysed

_set_system_models_dir(value)

Parameters value (list of string or a single string) – the path of the mod-
els dir set by the system (vs set by the user)

Returns

_set_system_wide_config(config_path)
set the options from the system wide configuration file

Parameters config_path (str) –

_set_topology_file(path)
test if the path exists and set it in config

Parameters path (str) – the path to the topology file

_set_user_config_file(config_path)
Set the options specified by the user on the command line via the –cfg-file option

Parameters config_path (str) – The path to the configuration path

_set_user_wide_config(config_path)
Set the options from the ~/.macsyfinder/macsyfinder.conf file

Parameters config_path (str) – The path to the ~/.macsyfinder/macsyfinder.conf

_str_2_tuple(value)
transform a string with syntax {model_fqn int} in list of tuple

Parameters value (str) – the string to parse

Returns

Return type [(model_fqn, int), ..]

hit_weights()

Returns the options used in scoring systems (mandatory_weight, accessory_weight, it-
self_weight, exchangeable_weight, out_of_cluster_weight)

Return type dict

hmmer_dir()

Returns The name of the directory containing the hmmsearch results (output, error, parsing)

inter_gene_max_space(model_fqn)

Parameters model_fqn (str) – the model fully qualifed name

Returns the gene_max_space for the model_fqn or None if it’s does not specify

Return type int or None

log_level()

Returns the verbosity output level

Return type int

max_nb_genes(model_fqn)

78 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

Parameters model_fqn (str) – the model fully qualifed name

Returns the max_nb_genes for the model_fqn or None if it’s does not specify

Return type int or None

min_genes_required(model_fqn)

Parameters model_fqn (str) – the model fully qualifed name

Returns the min_genes_required for the model_fqn or None if it’s does not specify

Return type int or None

min_mandatory_genes_required(model_fqn)

Parameters model_fqn (str) – the model fully qualifed name

Returns the min_mandatory_genes_required for the model_fqn or None if it’s does not specify

Return type int or None

models_dir()

Returns list of models dir path

Return type list of str

multi_loci(model_fqn)

Parameters model_fqn (str) – the model fully qualified name

Returns True if the model is multi loci, False otherwise

Return type bool

out_dir()

Returns the path to the directory where the results are stored

save(path_or_buf=None)
save itself in a file in ini format.

Note: the undefined options (set to None) are omitted

Parameters path_or_buf (str or file like object) – where to serialize itself.

working_dir()
alias to config.Config.out_dir()

NoneConfig

class macsypy.config.Config(defaults, parsed_args)
Handle configuration values for macsyfinder. This values come from default and ar superseded by the configu-
ration files, then the command line settings.

__init__(defaults, parsed_args)
Store macsyfinder configuration options and propose an interface to access to them.

The config object is populated in several steps, the rules of precedence are

system wide conf < user home conf < model conf < (project conf | previous run) < command line

3.1. Developer Guide 79

MacSyFinder, Release 2.0

system wide conf = etc/macsyfinder/macsyfinder.conf user home conf = ~/.macsyfinder/macsyfinder.conf
model conf = model_conf.xml at the root of the model package project conf = macsyfinder.conf where the
analysis is run previous run = macsyfinder.conf in previous run results dir command line = the options set
on the command line

Parameters

• defaults (a MacsyDefaults object) –

• parsed_args (a argspace.Namescape object) – the command line arguments
parsed

__weakref__
list of weak references to the object (if defined)

_config_file_2_dict(file)
Parse a configuration file in ini format in dictionnary

Parameters file (str) – path to the configuartion file

Returns the parsed options

Return type dict

_set_command_line_config(parsed_args)

Parameters parsed_args (argparse.Namespace object.) – the argument set on the
command line

_set_db_type(value)
set value for ‘db_type’ option

Parameters value (str) – the value for db_type, allowed values are : ‘ordered_replicon’,
‘gembase’, ‘unordered’

Raises ValueError – if value is not allowed

_set_default_config()
set the value comming from MacsyDefaults

_set_inter_gene_max_space(value)
set value for ‘inter_gene_max_space’ option

Parameters value (str) – the string parse representing the model fully qualified name and
it’s associated value and so on the model_fqn is a string, the associated value must be cast in
int

Raises ValueError – if value is not well formed

_set_max_nb_genes(value)
set value for ‘max_nb_genes’ option

Parameters value (str) – the string parse representing the model fully qualified name and
it’s associated value and so on the model_fqn is a string, the associated value must be cast in
int

Raises ValueError – if value is not well formed

_set_min_genes_required(value)
set value for ‘min_genes_required’ option

Parameters value (str) – the string parse representing the model fully qualified name and
it’s associated value and so on the model_fqn is a string, the associated value must be cast in
int

80 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

Raises ValueError – if value is not well formed

_set_min_mandatory_genes_required(value)
set value for ‘min_mandatory_genes_required’ option

Parameters value (str) – the string parse representing the model fully qualified name and
it’s associated value and so on the model_fqn is a string, the associated value must be cast in
int

Raises ValueError – if value is not well formed

_set_model_config(model_conf_path)
Set the options from the model package model_conf.xml file

Parameters model_conf_path (str) – The path to the model_conf.xml file

_set_models(value)

Parameters value – The models to search as return by the command line parsing or the con-
figuration files

if value come from command_line [‘model1’, ‘def1’, ‘def2’, ‘def3’]

if value come from config file ’set_1’, ‘T9SS T3SS T4SS_typeI’)] [(model_family,
[def_name1, . . .]), . . .]

_set_models_dir(path)

Parameters path (str) – the path to the models (definitions + profiles) are stored.

_set_multi_loci(value)

Parameters value (str) – the models fqn list separated by comma of multi loc models

_set_options(options)
set key, value in the general config

Parameters options (a dictionary with option name as keys and
values as values) – the options to specify in general config

_set_previous_run_config(prev_config_path)
Set the options specified by the user on the command line via –previous-run

Parameters prev_config_path –

_set_project_config_file(config_path)
Set the options from the macsyfinder.conf present in the current directory

Parameters config_path (str) – the path to the configuration file

_set_replicon_topology(value)
set the default replicon topology

Parameters value (str) – ‘circular’ or ‘linear’

_set_sequence_db(path)

Parameters path (str) – set the path to the sequence file (in fasta format) to analysed

_set_system_models_dir(value)

Parameters value (list of string or a single string) – the path of the mod-
els dir set by the system (vs set by the user)

Returns

3.1. Developer Guide 81

MacSyFinder, Release 2.0

_set_system_wide_config(config_path)
set the options from the system wide configuration file

Parameters config_path (str) –

_set_topology_file(path)
test if the path exists and set it in config

Parameters path (str) – the path to the topology file

_set_user_config_file(config_path)
Set the options specified by the user on the command line via the –cfg-file option

Parameters config_path (str) – The path to the configuration path

_set_user_wide_config(config_path)
Set the options from the ~/.macsyfinder/macsyfinder.conf file

Parameters config_path (str) – The path to the ~/.macsyfinder/macsyfinder.conf

_str_2_tuple(value)
transform a string with syntax {model_fqn int} in list of tuple

Parameters value (str) – the string to parse

Returns

Return type [(model_fqn, int), ..]

hit_weights()

Returns the options used in scoring systems (mandatory_weight, accessory_weight, it-
self_weight, exchangeable_weight, out_of_cluster_weight)

Return type dict

hmmer_dir()

Returns The name of the directory containing the hmmsearch results (output, error, parsing)

inter_gene_max_space(model_fqn)

Parameters model_fqn (str) – the model fully qualifed name

Returns the gene_max_space for the model_fqn or None if it’s does not specify

Return type int or None

log_level()

Returns the verbosity output level

Return type int

max_nb_genes(model_fqn)

Parameters model_fqn (str) – the model fully qualifed name

Returns the max_nb_genes for the model_fqn or None if it’s does not specify

Return type int or None

min_genes_required(model_fqn)

Parameters model_fqn (str) – the model fully qualifed name

Returns the min_genes_required for the model_fqn or None if it’s does not specify

Return type int or None

82 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

min_mandatory_genes_required(model_fqn)

Parameters model_fqn (str) – the model fully qualifed name

Returns the min_mandatory_genes_required for the model_fqn or None if it’s does not specify

Return type int or None

models_dir()

Returns list of models dir path

Return type list of str

multi_loci(model_fqn)

Parameters model_fqn (str) – the model fully qualified name

Returns True if the model is multi loci, False otherwise

Return type bool

out_dir()

Returns the path to the directory where the results are stored

save(path_or_buf=None)
save itself in a file in ini format.

Note: the undefined options (set to None) are omitted

Parameters path_or_buf (str or file like object) – where to serialize itself.

working_dir()
alias to config.Config.out_dir()

model_conf_parser

The parser of xml file model_cof.xml located at the root of the model package. This file is optional in package

model_conf_parser API reference

ModelConfParser

class macsypy.model_conf_parser.ModelConfParser(path)
Handle model_conf.xml configuration file.

__init__(path)

Parameters path (str) – The path to the configuration file

__weakref__
list of weak references to the object (if defined)

_get_model_conf_node()
Find the root of the document

Returns the document root of model_conf

3.1. Developer Guide 83

MacSyFinder, Release 2.0

_parse_section(section_node, allowed_elements)
Parse a node containing configurations options and value

Parameters

• section_node –

• allowed_elements (a dict with options name as keys and
function to parse the element) – The elements allowed in this section
Only these elements are parsed and in the final dictionnary

Returns dict

parse()
Parse the xml ‘model_conf’ file set at the root of a data package

Returns The specific configuration for a model family

Return type dict with the name of variables as keys and value as values

parse_filtering(filtering_node)
Parse the node ‘filtering’ containing the filtering options configuration

Parameters filtering_node (:class”Et.ElementTree object) – the node ‘filtering’

Returns the configuration option/value about the filtering

Return type dict

parse_weights(weights_node)
Parse the node ‘weights’ contening the scoring weight configuration

Parameters weights_node (:class”Et.ElementTree object) – the node ‘weights’

Returns the configuration option/value about the scores

Return type dict

registries

The registry manage the different location where macsyfinder can find models definitions and their associated profiles.

registries API reference

ModelRegistry

class macsypy.registries.ModelRegistry
scan canonical directories to register the different models available in global macsyfinder share data location
(depending installation /usr/share/data/models) or can be overload with the location specify in the macsyfinder
configuration (either in config file or command line)

__getitem__(name)

Parameters name (string) –

Returns the model corresponding to name.

Return type ModelLocation object.

Raises KeyError – if name does not match any ModelLocation registered.

84 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

__init__()
Initialize self. See help(type(self)) for accurate signature.

__str__()
Return str(self).

__weakref__
list of weak references to the object (if defined)

add(model_loc)

Parameters model_loc (ModelLocation object) – the model location to add to the reg-
istry

models()

Returns the list of models

Return type list of ModelLocation object

ModelLocation

class macsypy.registries.ModelLocation(path=None, profile_dir=None, def_dir=None, pro-
file_suffix='.hmm', relative_path=False)

Handle where are store Models. Models are organized in families and sub families. each family match to a
ModelLocation. a ModelLocation contains the path toward the definitions and the paths to corresponding to the
profiles.

__eq__(other)
Return self==value.

__gt__(other)
Return self>value.

__init__(path=None, profile_dir=None, def_dir=None, profile_suffix='.hmm', relative_path=False)

Parameters

• path (str) – if it’s an installed model, path is the absolute path to a model family.
otherwise path is None, and profile_dir and def_dir must be specified.

• profile_dir (str) – the absolute path to the directory which contains the hmm pro-
files files.

• def_dir (str) – The absolute path to the directory which contains the models defini-
tions (xml files) or submodels.

• profile_suffix (str) – the suffix of hmm files

• relative_path (bool) – True if you want to work with relative path, False to work
with absolute path.

Raise MacsypyError if path is set and profile_dir or def_dir is set

Raise MacsypyError if profile_dir is set but not def_dir and vice versa

__lt__(other)
Return self<value.

__str__()
Return str(self).

__weakref__
list of weak references to the object (if defined)

3.1. Developer Guide 85

MacSyFinder, Release 2.0

_scan_definitions(parent_def=None, def_path=None)
Scan recursively the definitions tree on the file model and store them.

Parameters

• model_def (DefinitionLocation) – the current model definition to add new sub-
model location

• def_path (string) – the absolute path to analyse

Returns a definition location

Return type DefinitionLocation object

_scan_profiles(path, profile_suffix='.hmm', relative_path=False)
Store all hmm profiles associated to the model

get_all_definitions(root_def_name=None)

Name root_def_name The name of the root definition to get sub definitions. If root_def is None,
return all definitions for this set of models

Parameters root_def_name – string

Returns the list of definitions or subdefinitions if root_def is specified for this model.

Return type list of macsypy.registries.DefinitionLocation object

Raises ValueError – if root_def_name does not match with any definitions

get_definition(fqn)

Parameters fqn (string.) – the fully qualified name of the definition to retrieve.
it’s complete path without extension. for instance for a file with path like this:
models/TXSS/defintions/T3SS.xml the name is: TXSS/T3SS for models/CRISPR-
Cas/definitions/typing/CAS.xml: the name is CRISPR-Cas/typing/CAS

Returns the definition corresponding to the given name.

Return type a DefinitionLocation object.

Raise valueError if fqn does not match with any model definition.

get_definitions()

Returns the list of the definitions of this modelLocation. It return the 1rst level only (not re-
cursive). For recursive explorations see macsypy.registries.ModelLocation.
get_all_definitions()

get_profile(name)

Parameters name (string.) – the name of the profile to retrieve (without extension).

Returns the absolute path of the hmm profile.

Return type string.

Raise KeyError if name does not match with any profiles.

get_profiles_names()

Returns The list of profiles name (without extension) for this model location

Return type str

86 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

MetaDefLoc

class macsypy.registries.MetaDefLoc

DefinitionLocation

class macsypy.registries.DefinitionLocation(name=None, fqn=None, subdefini-
tions=None, path=None)

Manage where definitions are stored. a Model is a xml definition and associated profiles. It has 3 attributes

name: the fully qualified definitions name like TXSS/T3SS or CRISPR-cas/Typing/Cas path: the absolute path
to the definitions or set of definitions subdefinitions: the subdefintions if it exists

__eq__(other)
Return self==value.

__gt__(other)
Return self>value.

__hash__()
Return hash(self).

__init__(name=None, fqn=None, subdefinitions=None, path=None)
Initialize self. See help(type(self)) for accurate signature.

__lt__(other)
Return self<value.

__str__()
Return str(self).

__weakref__
list of weak references to the object (if defined)

add_subdefinition(subdefinition)
add new sub category of definitions to this definition

Parameters subdefinition (DefinitionLocation object) – the new definition to add
as subdefinition.

split_def_name

macsypy.registries.split_def_name(fqn)

Parameters fqn (string) – the fully qualified de name of a DefinitionLocation object the follow
the schema model_name/<def_name>*/def_name for instance CRISPR-Cas/typing/cas

Returns the list of components of the def path [‘CRISPR-Cas’, ‘typing’, ‘cas’]

Return type list of string

3.1. Developer Guide 87

MacSyFinder, Release 2.0

join_def_path

macsypy.registries.join_def_path(*args)
join different elements of the definition path :param str args: the elements of the definition path, each elements
must be a string :return: The return value is the concatenation of different elements of args with one separator
:rtype: string

scan_models_dir

macsypy.registries.scan_models_dir(models_dir, profile_suffix='.hmm', relative_path=False)

Parameters

• models_dir (str) – The path to the directory where are stored the models

• profile_suffix – the suffix of the hmm profiles

• relative_path – True if models_dir is relative false otherwise

Returns the list of models in models_dir

Return type [macsypy.registries.ModelLocation, . . .]

definition_parser

The model definition parser object “DefinitionParser” instantiates Models and Genes objects from XML model defi-
nitions (see Macromolecular models). The parsing consists in three phases.

Phase 1.

• For each model to parse

– create the Model

– add this Model to the model_bank

– findall genes defined in this model what are the level in the model definition.

– create the CoreGene (a Gene which is not bind to a model). For each gene name there is only one instance
of CoreGene

– add these CoreGene in the gene_bank

Phase 2.

• For each model to search

– For each Gene defined in this System:

* link the gene to the model. Create a ModelGene by encapsulating CoreGene from the gene_bank It
can exists at each run several ModelGene for one CoreGene

* If a gene has exhangeables create them (an Exchangeable inherits from ModeleGene) and add them
to the current ModelGene

For instance:

Syst_1
<system inter_gene_max_space="10">

<gene name=”A” mandatory=”1” loner="1">
<exchangeables>

(continues on next page)

88 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

(continued from previous page)

<gene name=”B”>
</exchangeables>

</gene>
<system>

Syst_2
<system inter_gene_max_space="15">

<gene name=”B” mandatory=”1”>
<exchangeables>

<gene name=”C”>
</exchangeables>

</gene>
<system>

Syst_3
<system inter_gene_max_space="20">

<gene name=”c” mandatory=”1” />
<system>

With the example above:

• the CoreGene A, B, C will be created

• the ModelGene (Syst_1, A) (Syst_1, B), (Syst_2, B), (Syst_2, C), (Syst_3, C)

• The ModeleGene (Syst_1, A), (Syst_2, B) and (Syst_3, C) are directly link to their respective Models

• and where (Syst_1, B) (Syst_2, C) are exchangeables and link respectively to (Syst_1, A) and (Syst_2, B)

• the ModelGene has attributes defined in the model where they appear (Syst_1, B) inter_gene_max_space=”10”
(Syst_2, B) inter_gene_max_space=”15”

Note: The only “full” Systems (i.e., with all corresponding Genes created) are those to detect.

defintion_parser API reference

DefinitionParser

class macsypy.definition_parser.DefinitionParser(cfg, model_bank, gene_bank,
model_registry, profile_factory)

Build a Model instance from the corresponding model definition described in the XML file.

__init__(cfg, model_bank, gene_bank, model_registry, profile_factory)

Parameters

• cfg (macsypy.config.Config object) – the configuration object of this run

• model_bank (macsypy.model.ModelBank object) – the model factory

• gene_bank (macsypy.gene.GeneBank object) – the gene factory

• model_registry (macsypy.registry.ModelRegistry object) – The registry
with all model location

• profile_factory (macsypy.profil.ProfilFactory object) – The profile
factory

3.1. Developer Guide 89

MacSyFinder, Release 2.0

__weakref__
list of weak references to the object (if defined)

_check_syntax(model_node, path)
Check if the definition does not contains logical error which is allow by syntax and absence of explicit
grammar.

Parameters

• model_node (Et.Element object) – the node correponding to the model

• path (str) – the path of the definition.

Returns None

Raises ModelInconsistencyError – if an error is encountered in the document.

_create_model(def_loc, model_node)

Parameters

• def_loc (macsypy.registries.DefinitionLocation object) – the defini-
tion location to parse.

• model_node (Et.ElementTree object.) – the node corresponding to the model.

Returns the model corresponding to the definition location.

Return type macsypy.model.Model object.

_fill_gene_bank(model_node, model_location, def_loc)
find all gene node and add them to the gene_bank

Parameters

• model_node (Et.ElementTree object.) –

param model_node the node corresponding to the model.

• model_location (class:macsypy.registries.ModelLocation object.) –

• def_loc (the node corresponding to the 'model' tag) – a definition
location to parse.

Returns None

_get_model_node(def_loc)

Parameters def_loc (return the node corresponding to the 'model'
tag) – a definition location to parse.

_parse_exchangeable(node, gene_ref, curr_model)
Parse a xml element gene child of exchangeable and build the corresponding object

Parameters

• node (xml.etree.ElementTree.Element object.) – a “node” corresponding to
the gene element in the XML hierarchy

• gene_ref (class:macsypy.gene.ModelGene object) – the gene which this gene is ho-
molog to

• curr_model (macsypy.model.Model object) – the model being parsed .

Returns the gene object corresponding to the node

Return type macsypy.gene.Exchangeable object

90 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

_parse_genes(model, model_node)
Create genes belonging to the models. Each gene is directly added to the model in it’s right category
(‘mandatory, accessory, . . .)

Parameters

• model (macsypy.model.Model object) – the Model currently parsing

• model_node (:class”Et.ElementTree object) – the element ‘model’

check_consistency(models)
Check the consistency of the co-localization features between the different values given as an input: be-
tween XML definitions, configuration file, and command-line options.

Parameters models (list of class:macsypy.model.Model object) – the list of models to check

Raise macsypy.error.ModelInconsistencyError if one test fails

(see feature)

In the different possible situations, different requirements need to be fulfilled (“mandatory_genes” and
“accessory_genes” consist of lists of genes defined as such in the model definition):

• If: min_mandatory_genes_required = None ; min_genes_required = None

• Then: min_mandatory_genes_required = min_genes_required = len(mandatory_genes)

always True by Models design

• If: min_mandatory_genes_required = value ; min_genes_required = None

• Then: min_mandatory_genes_required <= len(mandatory_genes)

• AND min_genes_required = min_mandatory_genes_required

always True by design

• If: min_mandatory_genes_required = None ; min_genes_required = Value

• Then: min_mandatory_genes_required = len(mandatory_genes)

• AND min_genes_required >= min_mandatory_genes_required

• AND min_genes_required <= len(mandatory_genes+accessory_genes)

to be checked

• If: min_mandatory_genes_required = Value ; min_genes_required = Value

• Then: min_genes_required <= len(accessory_genes+mandatory_genes)

• AND min_genes_required >= min_mandatory_genes_required

• AND min_mandatory_genes_required <= len(mandatory_genes)

to be checked

parse(models_2_detect)
Parse models definition in XML format to build the corresponding Model objects, and add them to the
model factory after checking its consistency. To get the model ask it to model_bank

Parameters models_2_detect (list of macsypy.registry.
DefinitionLocation) – a list of model definition to parse.

3.1. Developer Guide 91

https://projets.pasteur.fr/issues/1850

MacSyFinder, Release 2.0

model

The model is a formal representation of system. The model is describe in terms of components. There are 4 component
classes:

• genes which are mandatory

• genes which are accessory

• genes which are neutral

• genes which are forbiden

Each genes can have Exchangeable. An exchangeable is another gene which can paly the same role in the system.
Usualy an analog or homolog. The models describe also distance constraints between genes:

• inter_gene_max_space

• loner

• multi_loci

and quorum constraints

• min_mandatory_genes_required

• min_genes_required

and if a gene can be shared by several systems (several occurrences of the same model)

• multisystem

model API reference

ModelBank

class macsypy.model.ModelBank
Store all Models objects.

__contains__(model)
Implement the membership test operator

Parameters model (macsypy.model.Model object) – the model to test
Returns True if the model is in the Model factory, False otherwise
Return type boolean

__getitem__(fqn)
Parameters fqn (string) – the fully qualified name of the model
Returns the model corresponding to the fqn.
Return type macsypy.model.Model object
Raises KeyError – if the model corresponding to the name does not exists

__init__()
Initialize self. See help(type(self)) for accurate signature.

__iter__()
Return an iterator object on the models contained in the bank

__len__()
Returns the number of models stored in the bank
Return type integer

92 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

__weakref__
list of weak references to the object (if defined)

add_model(model)
Parameters model (macsypy.model.Model object) – the model to add
Raise KeyError if a model with the same name is already registered.

Model

class macsypy.model.Model(*args, **kwargs)
Handles a macromolecular model.

Contains all its pre-defined characteristics expected to be fulfilled to predict a complete model:

• component list (genes that are mandatory, accessory, neutral, forbidden)

• quorum (number of genes)

• genetic architecture

__eq__(other)

Parameters other – the other model to compare

Returns True if this fully qualified name is equal to other fully qualified name. False otherwise.

Return type boolean

__gt__(other)

Parameters other – the other model to compare

Returns True if this fully qualified name is greater than to other fully qualified name. False
otherwise.

Return type boolean

__hash__()

Returns

__init__(fqn, inter_gene_max_space, min_mandatory_genes_required=None,
min_genes_required=None, max_nb_genes=None, multi_loci=False)

Parameters

• fqn (string) – the fully qualified name of the model CRISPR-Cas/sub-typing/CAS-
TypeIE

• inter_gene_max_space (integer) – the maximum distance between two genes
(co-localization parameter)

• min_mandatory_genes_required (integer) – the quorum of mandatory genes
to define this model

• min_genes_required (integer) – the quorum of genes to define this model

• max_nb_genes (integer) – The number of gene to be considered as full system Used
to compute the wholeness. If None the mx_nb_genes = mandatory + accessory

• multi_loci (boolean) –

Raises ModelInconsistencyError – if an error is found in model logic. For instance
genes_required > min_mandatory_genes_required

__lt__(other)

3.1. Developer Guide 93

MacSyFinder, Release 2.0

Parameters other – the other model to compare

Returns True if this fully qualified name is lesser than to other fully qualified name. False
otherwise.

Return type boolean

__str__()
Return str(self).

__weakref__
list of weak references to the object (if defined)

property family_name

Returns the family name of the model for instance ‘CRISPRCas’ or ‘TXSS’

Return type str

filter(hits)
filter out the hits according to this model. The filtering is based on the name of CoreGene associated to
hit and the name of ModelGene of the model (the name of the ModelGene is the name of the CoreGene
embed in the ModelGene) only the hits related to genes implied in the model are kept.

Parameters hits (list of macsypy.report.CoreHit object) – list of hits to filter

Returns list of hits

Return type list of macsypy.report.Model object

genes(exchangeable=False)

Parameters exchangeable (bool) – include exchageables if True

Returns all the genes described in the model. with exchangeables if exchageable is True. other-
wise only “first level” genes.

Return type set of macsypy.gene.ModelGene objects.

get_gene(gene_name)

Parameters gene_name (string) – the name of the gene to get

Returns the gene corresponding to gene_name.

Return type a macsypy.gene.ModelGene object.

Raise KeyError the model does not contain any gene with name gene_name.

property inter_gene_max_space

Returns set the maximum distance allowed between 2 genes for this model

Return type integer

property max_nb_genes

Returns the maximum number of genes to assess the model presence.

Return type int (or None)

property min_genes_required

Returns get the minimum number of genes to assess for the model presence.

Return type integer

property min_mandatory_genes_required

94 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

Returns get the quorum of mandatory genes required for this model

Return type integer

property multi_loci

Returns True if the model is authorized to be inferred from multiple loci, False otherwise

Return type boolean

property name

Returns the short name of this model

gene

The Gene object represents genes encoding the protein components of a Model. There is 2 kind of gene The
CoreGene (macsypy.gene.CoreGene) which must be unique given a name. A CoreGene must have a corre-
sponding HMM protein profile. A ModelGene encapsulate a CoreGene and is linked to a Model.

Warning: To optimize computation and to avoid concurrency problems when we search several models,
each gene must be instantiated only once, and stored in gene_bank. gene_bank is a macsypy.gene.
GeneBank object. The gene_bank and model_bank (macsypy.model.ModelBank object) are instanti-
ated in macsypy.scripts.macsyfinder.main() function and filled by a definition_parser (macsypy.
defintion_parser.DefinitionParser)

Example to get a CoreGene object:

get a model object
model_a = model_bank("TXSS/model_a")
model_b = model_bank("TXSS/model_b")

get of a <CoreGene> object
t2ss = gene_bank[("TXSS", "T2SS")]
pilO = gene_bank[("TXSS", "pilO")]

to create a ModelGene

modelA_t2ss(t2ss, model_A)
modelA_pilO(pilO, model_a, loner=True, inter_gene_max_space=12)
modelB_pilO(pilO, model_b, inter_gene_max_space=5)

There is only one instance of CoreGene with a given name (model family name, gene name) in one MSF run. But
several instance of a ModelGene with the same name may exists. Above, there is 2 <ModelGene> representing pilO
one in model_a the second in model_b with different properties.

Exchangeable inherits from ModelGene. Then a gene in some model is seen as a Gene, in some other models as an
Exchangeable. But there only one instance of the corresponding CoreGene.:

core_sctn = gene_bank(("TXSS", "sctN"))
core_sctn_flg = gene_bank(("TXSS", "sctN_FLG"))
model_sctn = ModelGene(core_sctn, model_a)
ex_sctn_flg = Exchangeable(core_stn_flg, model_sctn)
model_sctn.add_exchangeable(ex_sctn_flg)

model_sctn_flg = ModelGene(core_sctn_flg, model_b)

3.1. Developer Guide 95

MacSyFinder, Release 2.0

which means that in model_a the gene sctn can be functionally replaced by sctn_flg. In Model_a it appear as an
alternative to sctn but in model_B it appear as sctn_flg itself. In one MacSyFinder run several instances of ModelGene
and/or Exchangeable with the same name may coexists . But in A whole macsyfinder run there is only one instance
core_sctn_flg and core_sctn.

gene API reference

GeneBank

class macsypy.gene.GeneBank
Store all Gene objects. Ensure that genes are instanciated only once.

__contains__(gene)
Implement the membership test operator

Parameters gene (macsypy.gene.CoreGene object) – the gene to test
Returns True if the gene is in, False otherwise
Return type boolean

__getitem__(key)
Parameters key (tuple (string, string)) – The key to retrieve a gene. The

key is composed of the name of models family and the gene name. for instance
CRISPR-Cas/cas9_TypeIIB (‘CRISPR-Cas’ , ‘cas9_TypeIIB’) or TXSS/T6SS_tssH
(‘TXSS’, ‘T6SS_tssH’)

Returns return the Gene corresponding to the key.
Return type macsypy.gene.CoreGene object
Raises KeyError – if the key does not exist in GeneBank.

__init__()
Initialize self. See help(type(self)) for accurate signature.

__iter__()
Return an iterator object on the genes contained in the bank

__weakref__
list of weak references to the object (if defined)

add_new_gene(model_location, name, profile_factory)
Create a gene and store it in the bank. If the same gene (same name) is add twice, it is created
only the first time.

Parameters
• model_location (macsypy.registry.ModelLocation object) – the

location where the model family can be found.
• name (str) – the name of the gene to add
• profile_factory (profile.ProfileFactory object.) – The Profile

factory

genes_fqn()
Returns the fully qualified name for all genes in the bank
Return type str

96 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

Gene

There is two classes to modelize a gene: macsypy.gene.CoreGene and macsypy.gene.ModelGene. The
CoreGene are created using the macsypy.gene.GeneBank factory and there is only one instance of a CoreGene
with a given name. Whereas several ModelGene with the same name can appear in different model and can have
differents properties, loner in one model and not in an other, have different inter_gene_max_space . . . The ModelGene
is attached to the model and is composed of a CoreGene.

Note: The macsypy.hit.Hit object are link to a CoreGene, whereas the macsypy.hit.ValidHit ref_gene
attribute reference a macsypy.gene.ModelGene

CoreGene

class macsypy.gene.CoreGene(model_location, name, profile_factory)
Modelize gene attach to a profile. It can be only one instance with the the same name (familly name, gene name)

__hash__()
Return hash(self).

__init__(model_location, name, profile_factory)
Initialize self. See help(type(self)) for accurate signature.

__weakref__
list of weak references to the object (if defined)

property model_family_name
The name of the model family for instance ‘CRISPRCas’ or ‘TXSS’

property name
The name of the gene a hmm profile with the same name must exists.

property profile
The HMM protein Profile corresponding to this gene macsypy.profile.Profile object

ModelGene

class macsypy.gene.ModelGene(gene, model, loner=False, multi_system=False, in-
ter_gene_max_space=None)

Handle Gene describe in a Model

__hash__()
Return hash(self).

__init__(gene, model, loner=False, multi_system=False, inter_gene_max_space=None)
Handle gene described in a Model

Parameters

• gene (a macsypy.gene.CoreGene object.) – a gene link to a profile

• model (macsypy.model.Model object.) – the model that owns this Gene

• loner (boolean.) – True if the Gene can be isolated on the genome (with no contigu-
ous genes), False otherwise.

3.1. Developer Guide 97

MacSyFinder, Release 2.0

• multi_system (boolean.) – True if this Gene can belong to different occurrences of
this System.

• inter_gene_max_space (integer) – the maximum space between this Gene and
another gene of the System.

__str__()
Print the name of the gene and of its exchangeable genes.

__weakref__
list of weak references to the object (if defined)

add_exchangeable(exchangeable)
Add a exchangeable gene to this Gene

Parameters exchangeable (macsypy.gene.Exchangeable object) – the exchange-
able to add

alternate_of()

Returns the gene to which this one is an exchangeable to (reference gene), or itself if it is a first
level gene.

Return type macsypy.gene.ModelGene object

property exchangeables

Returns the list of genes which can replace this one without any effect on the model

Return type list of macsypy.gene.ModelGene objects

property inter_gene_max_space

Returns The maximum distance allowed between this gene and another gene for them to be
considered co-localized. If the value is not set at the Gene level, return None.

Return type integer. or None

is_accessory(model)

Returns True if the gene is within the accessory genes of the model, False otherwise.

Parameters model (macsypy.model.Model object.) – the query of the test

Return type boolean.

property is_exchangeable

Returns True if this gene is describe in the model as an exchangeable. False if ot is describe as
first level gene.

is_forbidden(model)

Returns True if the gene is within the forbidden genes of the model, False otherwise.

Parameters model (macsypy.model.Model object.) – the query of the test

Return type boolean.

is_mandatory(model)

Returns True if the gene is within the mandatory genes of the model, False otherwise.

Parameters model (macsypy.model.Model object.) – the query of the test

Return type boolean.

property loner

98 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

Returns True if the gene can be isolated on the genome, False otherwise

Return type boolean

property model

Returns the Model that owns this Gene

Return type macsypy.model.Model object

property multi_system

Returns True if this Gene can belong to different occurrences of the model (and can be used for
multiple System assessments), False otherwise.

Return type boolean.

set_status(status)
Set the status for this gene

Parameters status (macsypy.gene.GeneStatus object) – the status of this gene

property status

Returns The status of this gene

Return type macsypy.gene.GeneStatus object

Exchangeable

class macsypy.gene.Exchangeable(c_gene, gene_ref)
Handle Exchangeables. Exchangeable are ModelGene which can replaced functionally an other ModelGene.
Biologically it can be Homolog or Analog

__init__(c_gene, gene_ref)

Parameters

• c_gene (macsypy.gene.CoreGene object.) – the gene

• gene_ref (macsypy.gene.ModelGene object.) – the gene to which the current can
replace it.

add_exchangeable(exchangeable)
This method should never be called, it’s a security to avoid to add exchangeable to an exchangeable.

Parameters exchangeable (macsypy.gene.Exchangeable) –

Raises MacsypyError –

alternate_of()

Returns the gene to which this one is an exchangeable to (reference gene)

Return type macsypy.gene.ModelGene object

property is_exchangeable

Returns True

property status

Returns The status of this gene. if the status is not define for this gene itself, return the status of
the reference gene.

Return type macsypy.gene.GeneStatus object

3.1. Developer Guide 99

MacSyFinder, Release 2.0

GeneStatus

class macsypy.gene.GeneStatus(value)
Handle status of Gene GeneStatus can take 4 value:

• MANDATORY

• ACCESSORY

• FORBIDDEN

• NEUTRAL

profile

The Profile object is used for the search of the gene with Hmmer. A “Profile” must match a HMM protein profile file,
which name is based on the profile name. For instance, the gspG gene has the corresponding “gspG.hmm” profile file
provided at a dedicated location.

profile API reference

ProfileFactory

class macsypy.profile.ProfileFactory(cfg)
Build and store all Profile objects. Profiles must not be instanciated directly. The profile_factory
must be used. The profile_factory ensures there is only one instance of profile for a given name. To
get a profile, use the method get_profile. If the profile is already cached, this instance is returned.
Otherwise a new profile is built, stored in the profile_factory and then returned.

__init__(cfg)
Initialize self. See help(type(self)) for accurate signature.

__weakref__
list of weak references to the object (if defined)

get_profile(gene, model_location)
Parameters

• gene (macsypy.gene.Gene or macsypy.gene.Homolog or macsypy.
gene.Analog object) – the gene associated to this profile

• model_location (macsypy.registries.ModelLocation object.) –
The where to get the profile

Returns the profile corresponding to the name. If the profile already exists, return it.
Otherwise build it, store it and return it.

Return type macsypy.profile.Profile object

100 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

Profile

class macsypy.profile.Profile(gene, cfg, path)
Handle a HMM protein profile

__init__(gene, cfg, path)

Parameters

• gene (macsypy.secretion.Gene object) – the gene corresponding to this profile

• cfg (macsypy.config.Config object) – the configuration

• path (string) – the path to the hmm profile.

__len__()

Returns the length of the HMM protein profile

Return type int

__str__()
Print the name of the corresponding gene and the path to the HMM profile.

__weakref__
list of weak references to the object (if defined)

_profile_features()
Parse the HMM profile to extract the length and the presence of GA bit threshold

Returns the length, presence of ga bit threshold

Return type tuple(int length, bool ga_threshold)

execute()
Launch the Hmmer search (hmmsearch executable) with this profile

Returns an object storing information on the results of the HMM search (HMMReport)

Return type macsypy.report.HMMReport object

hit

A Hit is created when hmmsearch find similarities between a profile and protein of the input dataset

This module implements class relative to hit and some functions to do some computation on hit objects.

3.1. Developer Guide 101

MacSyFinder, Release 2.0

hit abc hit def hit ghj

Profil abc Profil def Profil ghj

CoreGene abc CoreGene def CoreGene ghj

Model A

+ mandatory

+ accessory

+ neutral

+ forbidden

Model B

+ mandatory

+ accessory

+ neutral

+ forbidden

ModelGene "def"

+ gene

+ loner = True

+ exchangeables

+ alternate_of

Exchangeable "abc"

+ gene_ref

+ exchangeable

+ alternate_of

ModelGene "ghj"

+ gene

+ loner = False

+ exchangeables

+ alternate_of

return

ModelGene "def"

+ gene

+ loner = Falsereturn

+ exchangeables

+ alternate_of

ModelGene "abc"

+ gene

+ loner = False

+ exchangeables

+ alternate_of

ValidHit "abc"

+ hit

+ gene_ref

ValidHit "def"

+ hit

+ gene_ref

ValidHit "def"

+ hit

+ gene_ref

ValidHit "abc"

+ hit

+ gene_ref

ValidHit "ghj"

+ hit

+ gene_ref

return

Fig. 2: A diagram showing the interaction between CoreGene, ModelGene, Model, Hit, ValidHit interactions The
diagram above represents the models, genes and hit generated from the definitions below.

<model name="A" inter_gene_max_space="2">
<gene name="abc" presence="mandatory"/>
<gene name="def" presence="accessory"/>

</model>

<model name="B" inter_gene_max_space="5">
<gene name="def" presence="mandatory"/>

<exchangeables>
<gene name="abc"/>

</exchangeables>
<gene name="ghj" presence="accessory"

</model>

102 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

macsypy.hit.CoreHit Modelize a hmm hit on the replicon. There is only one Corehit for a
CoreGene.

macsypy.hit.ModelHit Modelize a hit and its relation to the Model.
macsypy.hit.
AbstractCounterpartHit

Parent class of Loner, MultiSystem. It’s inherits from ModelHit.

macsypy.hit.Loner Modelize “true” Loner.
macsypy.hit.MultiSystem Modelize hit which can be used in several Systems (same model)
macsypy.hit.LonerMultiSystem Modelize a hit representing a gene Loner and MultiSystem at same

time.
macsypy.hit.HitWeight The weights apply to the hit to compute score
macsypy.hit.
get_best_hit_4_func()

Return the best hit for a given function

macsypy.hit.sort_model_hits() Sort hits
macsypy.hit.
compute_best_MSHit()

Choose among svereal multisystem hits the best one

macsypy.hit.get_best_hits() If several profile hit the same gene return the best hit

hit API reference

CoreHit

class macsypy.hit.CoreHit(gene, hit_id, hit_seq_length, replicon_name, position_hit, i_eval, score,
profile_coverage, sequence_coverage, begin_match, end_match)

Handle the hits filtered from the Hmmer search. The hits are instanciated by HMMReport.extract()
method In one run of MacSyFinder, there exists only one CoreHit per gene These hits are independent of
any macsypy.model.Model instance.

__eq__(other)
Return True if two hits are totally equivalent, False otherwise.

Parameters other (macsypy.report.CoreHit object) – the hit to compare to the current
object

Returns the result of the comparison

Return type boolean

__gt__(other)
compare two Hits. If the sequence identifier is the same, do the comparison on the score. Otherwise, do it
on alphabetical comparison of the sequence identifier.

Parameters other (macsypy.report.CoreHit object) – the hit to compare to the current
object

Returns True if self is > other, False otherwise

__hash__()
To be hashable, it’s needed to be put in a set or used as dict key

__init__(gene, hit_id, hit_seq_length, replicon_name, position_hit, i_eval, score, profile_coverage,
sequence_coverage, begin_match, end_match)

Parameters

• gene (macsypy.gene.CoreGene object) – the gene corresponding to this profile

• hit_id (str) – the identifier of the hit

3.1. Developer Guide 103

MacSyFinder, Release 2.0

• hit_seq_length (int) – the length of the hit sequence

• replicon_name (str) – the name of the replicon

• position_hit (int) – the rank of the sequence matched in the input dataset file

• i_eval (float) – the best-domain evalue (i-evalue, “independent evalue”)

• score (float) – the score of the hit

• profile_coverage (float) – percentage of the profile that matches the hit sequence

• sequence_coverage (float) – percentage of the hit sequence that matches the pro-
file

• begin_match (int) – where the hit with the profile starts in the sequence

• end_match (int) – where the hit with the profile ends in the sequence

__lt__(other)
Compare two Hits. If the sequence identifier is the same, do the comparison on the score. Otherwise, do it
on alphabetical comparison of the sequence identifier.

Parameters other (macsypy.report.CoreHit object) – the hit to compare to the current
object

Returns True if self is < other, False otherwise

__str__()

Returns Useful information on the CoreHit: regarding Hmmer statistics, and sequence informa-
tion

Return type str

__weakref__
list of weak references to the object (if defined)

get_position()

Returns the position of the hit (rank in the input dataset file)

Return type integer

ModelHit

class macsypy.hit.ModelHit(hit, gene_ref, gene_status)
Encapsulates a macsypy.report.CoreHit This class stores a CoreHit that has been attributed to a putative
system. Thus, it also stores:

• the system,

• the status of the gene in this system, (‘mandatory’, ‘accessory’, . . .

• the gene in the model for which it’s an occurrence

for one gene it can exist several ModelHit instance one for each Model containing this gene

__eq__(other)
Return self==value.

__gt__(other)
Return self>value.

104 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

__hash__()
To be hashable, it’s needed to be put in a set or used as dict key

__init__(hit, gene_ref, gene_status)

Parameters

• hit (macsypy.hit.CoreHit object) – a match between a hmm profile and a replicon

• gene_ref (macsypy.gene.ModelGene object) – The ModelGene link to this hit
The ModeleGene have the same name than the CoreGene But one hit can be link to several
ModelGene (several Model) To know for what gene this hit play role use the macsypy.
gene.ModelGene.alternate_of()

hit.gene_ref.alternate_of()

• gene_status (macsypy.gene.GeneStatus object) –

__lt__(other)
Return self<value.

__str__()
Return str(self).

__weakref__
list of weak references to the object (if defined)

property hit

Returns The CoreHit below this ModelHit

Return type macsypy.hit.CoreHit oject

property loner

Returns

True if the hit represent a loner macsypy.Gene.ModelGene, False otherwise. A True
Loner is a hit representing a gene with the attribute loner and which does not include in a
cluster.

• a hit representing a loner gene but include in a cluster is not a true loner

• a hit which is not include with other gene in a cluster but does not represent a gene loner
is not a True loner (This situation may append when min_genes_required = 1)

Return type bool

property multi_system

Returns True if the hit represent a multi_systems macsypy.Gene.ModelGene, False other-
wise.

Return type bool

3.1. Developer Guide 105

MacSyFinder, Release 2.0

AbstractCounterpartHit

class macsypy.hit.AbstractCounterpartHit(hit, gene_ref=None, gene_status=None, counter-
part=None)

Abstract Class to handle ModelHit wit equivalent for instance Loner or MultiSystem hit

__init__(hit, gene_ref=None, gene_status=None, counterpart=None)

Parameters

• hit (macsypy.hit.CoreHit object) – a match between a hmm profile and a replicon

• gene_ref (macsypy.gene.ModelGene object) – The ModelGene link to this hit
The ModeleGene have the same name than the CoreGene But one hit can be link to several
ModelGene (several Model) To know for what gene this hit play role use the macsypy.
gene.ModelGene.alternate_of()

hit.gene_ref.alternate_of()

• gene_status (macsypy.gene.GeneStatus object) –

__str__()
Return str(self).

property counterpart

Returns The set of hits that can play the same role

property loner

Returns

True if the hit represent a loner macsypy.Gene.ModelGene, False otherwise. A True
Loner is a hit representing a gene with the attribute loner and which does not include in a
cluster.

• a hit representing a loner gene but include in a cluster is not a true loner

• a hit which is not include with other gene in a cluster but does not represent a gene loner
is not a True loner (This situation may append when min_genes_required = 1)

Return type bool

property multi_system

Returns True if the hit represent a multi_systems macsypy.Gene.ModelGene, False other-
wise.

Return type bool

Loner

class macsypy.hit.Loner(hit, gene_ref=None, gene_status=None, counterpart=None)
Handle hit which encode for a gene tagged as loner and which not clustering with other hit.

__init__(hit, gene_ref=None, gene_status=None, counterpart=None)
hit that is outside a cluster, the gene_ref is a loner

Parameters

• hit (macsypy.hit.CoreHit object) – a match between a hmm profile and a replicon

106 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

• gene_ref (macsypy.gene.ModelGene object) – The ModelGene link to this hit
The ModeleGene have the same name than the CoreGene But one hit can be link to several
ModelGene (several Model) To know for what gene this hit play role use the macsypy.
gene.ModelGene.alternate_of()

hit.gene_ref.alternate_of()

• gene_status (macsypy.gene.GeneStatus object) –

• counterpart (list of macsypy.hit.CoreHit) – the other occurence of the gene or
exchangeable in the replicon

property loner

Returns

True if the hit represent a loner macsypy.Gene.ModelGene, False otherwise. A True
Loner is a hit representing a gene with the attribute loner and which does not include in a
cluster.

• a hit representing a loner gene but include in a cluster is not a true loner

• a hit which is not include with other gene in a cluster but does not represent a gene loner
is not a True loner (This situation may append when min_genes_required = 1)

Return type bool

MultiSystem

class macsypy.hit.MultiSystem(hit, gene_ref=None, gene_status=None, counterpart=None)
Handle hit which encode for a gene tagged as loner and which not clustering with other hit.

__init__(hit, gene_ref=None, gene_status=None, counterpart=None)
hit that is outside a cluster, the gene_ref is a loner

Parameters

• hit (macsypy.hit.CoreHit object) – a match between a hmm profile and a replicon

• gene_ref (macsypy.gene.ModelGene object) – The ModelGene link to this hit
The ModeleGene have the same name than the CoreGene But one hit can be link to several
ModelGene (several Model) To know for what gene this hit play role use the macsypy.
gene.ModelGene.alternate_of()

hit.gene_ref.alternate_of()

• gene_status (macsypy.gene.GeneStatus object) –

• counterpart (list of macsypy.hit.CoreHit) – the other occurence of the gene or
exchangeable in the replicon

property multi_system

Returns True if the hit represent a multi_systems macsypy.Gene.ModelGene, False other-
wise.

Return type bool

3.1. Developer Guide 107

MacSyFinder, Release 2.0

LonerMultiSystem

class macsypy.hit.LonerMultiSystem(hit, gene_ref=None, gene_status=None, counter-
part=None)

Handle hit which encode for a gene

• gene tagged as multi-system

• and gene tagged as loner also

• and the hit do not clustering with other hits.

__init__(hit, gene_ref=None, gene_status=None, counterpart=None)
hit that is outside a cluster, the gene_ref is loner and multi_system

Parameters

• hit (macsypy.hit.CoreHit | macsypy.hit.ModelHit | macsypy.hit.
MultiSystem object) – a match between a hmm profile and a replicon

• gene_ref (macsypy.gene.ModelGene object) – The ModelGene link to this hit
The ModeleGene have the same name than the CoreGene But one hit can be link to several
ModelGene (several Model) To know for what gene this hit play role use the macsypy.
gene.ModelGene.alternate_of()

hit.gene_ref.alternate_of()

• gene_status (macsypy.gene.GeneStatus object) –

• counterpart (list of macsypy.hit.CoreHit) – the other occurence of the gene or
exchangeable in the replicon

HitWeight

class macsypy.hit.HitWeight(itself: float = 1, exchangeable: float = 0.8, mandatory: float = 1,
accessory: float = 0.5, neutral: float = 0, out_of_cluster: float =
0.7)

The weight to compute the cluster and system score see user documentation macsyfinder functionning for further
details by default

• itself = 1

• exchangeable = 0.8

• mandatory = 1

• accessory = 0.5

• neutral = 0

• out_of_cluster = 0.7

__weakref__
list of weak references to the object (if defined)

108 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

get_best_hit_4_func

macsypy.hit.get_best_hit_4_func(function, hits, key='score')
select the best Loner among several ones encoding for same function

• score

• i_evalue

• profile_coverage

Parameters

• function (str) – the name of the function fulfill by the hits (all hits must have same
function)

• hits (sequence of macsypy.hit.ModelHit object) – the hits to filter.

• key (str) – The criterion used to select the best hit ‘score’, i_evalue’, ‘profile_coverage’

Returns the best hit

Return type macsypy.hit.ModelHit object

sort_model_hits

macsypy.hit.sort_model_hits(model_hits)
Sort macsypy.hit.ModelHit per function

Parameters model_hits – a sequence of macsypy.hit.ModelHit

Returns dict {str function name: [model_hit, . . .] }

compute_best_MSHit

macsypy.hit.compute_best_MSHit(ms_registry)

Parameters ms_registry –

Returns

get_best_hits

macsypy.hit.get_best_hits(hits, key='score')
If several hits match the same protein, keep only the best match based either on

• score

• i_evalue

• profile_coverage

Parameters

• hits ([macsypy.hit.CoreHit object, . . .]) – the hits to filter, all hits must match the
same protein.

• key (str) – The criterion used to select the best hit ‘score’, i_evalue’, ‘profile_coverage’

Returns the list of the best hits

3.1. Developer Guide 109

MacSyFinder, Release 2.0

Return type [macsypy.hit.CoreHit object, . . .]

cluster

A cluster is an ordered set of hits related to a model which satisfy the model distance constraints.

cluster API reference

cluster

class macsypy.cluster.Cluster(hits, model, hit_weights)
Handle hits relative to a model which collocates

__contains__(v_hit)

Parameters v_hit (macsypy.hit.ModelHit object) – The hit to test

Returns True if the hit is in the cluster hits, False otherwise

__init__(hits, model, hit_weights)

Parameters

• hits ([macsypy.hit.CoreHit | macsypy.hit.ModelHit, . . .]) – the hits
constituting this cluster

• model (macsypy.model.Model) – the model associated to this cluster

__str__()

Returns a string representation of this cluster

__weakref__
list of weak references to the object (if defined)

_check_replicon_consistency()

Raise MacsypyError if all hits of a cluster are NOT related to the same replicon

fulfilled_function(*genes)

Parameters gene – The genes which must be tested.

Returns the common functions between genes and this cluster.

Return type set of string

property loner

Returns True if this cluster is made of only one hit representing a loner gene False otherwise: -
contains several hits - contains one hit but gene is not tag as loner (max_gene_required = 1)

merge(cluster, before=False)
merge the cluster in this one. (do it in place)

Parameters

• cluster (macsypy.cluster.Cluster object) –

• before (bool) – If False the hits of the cluster will be add at the end of this one, Other-
wise the cluster hits will be inserted before the hits of this one.

Returns None

110 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

Raises MacsypyError – if the two clusters have not the same model

property multi_system

Returns True if this cluster is made of only one hit representing a multi_system gene False other-
wise: - contains several hits - contains one hit but gene is not tag as loner (max_gene_required
= 1)

replace(old, new)
replace hit old in this cluster by new one. (work in place)

Parameters

• old (macsypy.hit.ModelHit object.) – the hit to replace

• new (macsypy.hit.ModelHit object.) – the new hit

Returns None

build_clusters

macsypy.cluster.build_clusters(hits, rep_info, model, hit_weights)
From a list of filtered hits, and replicon information (topology, length), build all lists of hits that satisfied the
constraints:

• max_gene_inter_space

• loner

• multi_system

If Yes create a cluster A cluster contains at least two hits separated by less or equal than max_gene_inter_space
Except for loner genes which are allowed to be alone in a cluster

Parameters

• hits (list of macsypy.hit.ModelHit objects) – list of filtered hits

• rep_info (macsypy.Indexes.RepliconInfo object) – the replicon to analyse

• model (macsypy.model.Model object) – the model to study

Returns list of regular clusters, the special clusters (loners not in cluster and multi systems)

Return type

tuple with 2 elements

• true_clusters which is list of Cluster objects

• true_loners: a dict { str function: :class:macsypy.hit.Loner |
:class:macsypy.hit.LonerMultiSystem object}

3.1. Developer Guide 111

MacSyFinder, Release 2.0

system

This module classes and functions which a given set of hits and a model compute if this set satisfy the model or not

The object which check the compliance of hits to a model is MatchMaker which have 2 sub-classes for ordered and
unordered replicons

MatchMaker.match method link hit to a model (macsypy.hit.ValidHit) and then check if these valid hit sat-
isfy the quorum constraints defined in the model. According this it instanciate a macsypy.system.System
or macsypy.system.RejectedClusters for ordered replicons or macsypy.system.LikelySystem or
macsypy.system.UnlikelySystem for unordered replicons

below the inheritance diagram:

AbstractClusterizedHits

RejectedClusters

System

AbstractSetOfHits

AbstractUnordered LikelySystem

UnlikelySystem

Warning: The abstract class macsypy.system.AbstractSetOfHits is controlled by the metaclass
macsypy.system.MetaSetOfHits which inject on the fly several private attributes and public properties
(see more in macsypy.system.MetaSetOfHits documentation)

MatchMaker

OrderedMatchMaker

UnorderedMatchMaker

112 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

system reference api

MatchMaker

class macsypy.system.MatchMaker(model)
Is an abstract class for (Odered/Unordered)MatchMaker the match class method must be implemented in con-
crete classes

__init__(model)
Initialize self. See help(type(self)) for accurate signature.

__weakref__
list of weak references to the object (if defined)

_create_exchangeable_map(genes)
create a map between an exchangeable (formly homolog or analog) gene name and it’s gene reference

Parameters genes (list of macsypy.gene.ModelGene objects) – The genes to get the
exchangeable genes

Return type a dict with keys are the exchangeable gene_name and the value the reference gene

present_genes()

Returns the lists of genes name in model which are present in the replicon (included exchange-
able)

Return type tuple of 4 lists for mandatory, accessory, neutral and forbidden ([str gene_name,
..], [str gene_name], [str gene_name], [str gene_name])

sort_hits_by_status(hits)
sort macsypy.hit.ModelHit according the the status of the gene the hit code for.

Parameters hits – list of macsypy.hit.ModelHit object

Returns the valid hits according their status

Return type

a tuple of 4 lists

• macsypy.hit.ModelHit for MANDATORY genes

• macsypy.hit.ModelHit for ACCESSORY genes

• macsypy.hit.ModelHit for NEUTRAL genes

• macsypy.hit.ModelHit for FORBIDDEN genes

OrderedMatchMaker

class macsypy.system.OrderedMatchMaker(model, redundancy_penalty)
check if a set of hits match the quorum for ordered replicons (ordered_replicon or gembase)

__init__(model, redundancy_penalty)
Initialize self. See help(type(self)) for accurate signature.

match(clusters)
Check a set of clusters fill model constraints. If yes create a macsypy.system.System otherwise
create a macsypy.cluster.RejectedClusters.

3.1. Developer Guide 113

MacSyFinder, Release 2.0

Parameters clusters (list of macsypy.cluster.Cluster objects) – The list of cluster
to check if fit the model

Returns either a System or a RejectedClusters

Return type macsypy.system.System or macsypy.cluster.
RejectedClusters object

UnorderedMatchMaker

class macsypy.system.UnorderedMatchMaker(model)

match(hits)

Parameters hits –

Returns

HitSystemTracker

class macsypy.system.HitSystemTracker(systems)
track in which system is implied each hit

__init__(systems)
Initialize self. See help(type(self)) for accurate signature.

__weakref__
list of weak references to the object (if defined)

MetaSetOfHits

class macsypy.system.MetaSetOfHits(name, bases, namespace, **kwargs)
This metaclass control the AbstractSetOfHits class creation. In this metaclass we inject on the fly several
attributes and properties two private attributes and one public property corresponding to each value of _sup-
ported_status class attribute defined in the concrete classes. for instance for System class

• the attributes

– self._mandatory

– self._mandatory_occ

– self._accessory

– self._accessory_occ

– self._neutral

– self._neutral_occ

• and the properties

– mandatory

– accessory

– neutral

114 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

are automatically injected

The value for attributes _<status>_occ are filled by the count method which is defined in AbstractSetOfHits

__call__(*args, **kwargs)
Call self as a function.

getter_maker()
Create a property which allow to access to the gene corresponding of the cat of the model

Parameters cat (str) – the type of gene category to which we create the getter

Returns unbound method

AbstractSetOfHits

class macsypy.system.AbstractSetOfHits(*args, **kwargs)
Is the mother class of System, RejectedCluster, LikelySystems UnlikelySystem, . . .

__init__(model)
Initialize self. See help(type(self)) for accurate signature.

__weakref__
list of weak references to the object (if defined)

count()
fill structures one for supported status mandatory, accessory, . . . each structure count how many hit for
each gene of the model mandatory_occ = { gene_name : [ModelHit, . . .] :return: None

property position

Returns The position of the first and last hit, excluded the hit coding for loners. If the system is
composed only by loners, used loners to compute position

Return type tuple (start: int, end:int)

property replicon_name

Returns The name of the replicon

Return type str

property wholeness

Returns a score indicating the genes ratio of the model which have at least one hit by default full
system is mandatory + accessory (‘neutral’ genes do not count) but for special corner case it
can be sepcified in model definition (xml) or on the command line

Return type float

AbstractClusterizedHits

class macsypy.system.AbstractClusterizedHits(*args, **kwargs)

__init__(model, clusters)
Initialize self. See help(type(self)) for accurate signature.

fulfilled_function(*genes)

Parameters gene – The genes which must be tested.

3.1. Developer Guide 115

MacSyFinder, Release 2.0

Returns the common functions between genes and this system.

Return type set of string

System

class macsypy.system.System(*args, **kwargs)
Modelize as system. a system is an occurrence of a given model on a replicon.

__init__(model, clusters, redundancy_penalty=1.5)

Parameters

• model (macsypy.model.Model object) – The model which has ben used to build
this system

• clusters (list of macsypy.cluster.Cluster objects) – The list of cluster that
form this system

get_hits_encoding_multisystem()

Returns The hits codding for a gene taged as multi system

Return type set of macsypy.hit.ModelHit object

get_loners()

Returns The True Loners (Loner which not colocalize with an other hit) belonging to the sys-
tems

Return type set of macsypy.hit.Loner object

get_multisystems()

Returns The MultiSystem hit (comming from out system (other cluster or loner) and tag as
multisystem)

Return type set of macsypy.hit.MultiSystem | macsypy.hit.
LonerMultiSystem object

property hits

Returns The list of all hits that compose this system

Return type [macsypy.hit.ValidHits , . . .]

is_compatible(other)

Parameters other (macsypy.system.System object) – the other systems to test compat-
ibility

Returns

True if other system is compatible with this one. False otherwise. Two systems are
compatible if they do not share macsypy.hit.CoreHit except hit corresponding to a
multi_system gene in the model.

Note: This method is used to compute the best combination of systems.

property loci_nb

Returns The number of loci of this system (loners are not considered)

116 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

Return type int >= 0

property loci_num

Returns the number of the corresponding locus for each cluster the cluster made of only one
Loner are not considered as a loci so these clusters have a negative locus_num

Return type list of int

property multi_loci

Returns True if the systems is encoded in multiple loci. False otherwise

Return type bool

occurrence()
sometimes several systems collocates so they form only one cluster so macsyfinder build only one system
the occurrence is an indicator of how many systems are it’s based on the number of occurrence of each
mandatory genes The multi_system genes are not take in account.

Returns a predict number of biologic systems

property score

Returns a score take in account * if a hit match for the gene or it is an exchangeable gene *
if a hit is duplicated and already present in the system or the cluster * if a hit match for
mandatory/accessory gene of the model

Return type float

RejectedClusters

class macsypy.system.RejectedClusters(*args, **kwargs)
Handle a set of clusters which has been rejected during the macsypy.system.match() step This clusters
(can be one) does not fill the requirements or contains forbidden genes.

__init__(model, clusters, reasons)

Parameters

• model (macsypy.model.Model object) –

• clusters (list of macsypy.cluster.Cluster objects) – list of clusters. These
Clusters should be created with macsypy.cluster.Cluster of macsypy.hit.
ModelHit objects

• reasons (list of string) – the reason why these clusters have been rejected

__str__()

Returns a string representation of this RejectedCluster

property hits

Returns The list of all hits that compose this system

Return type [macsypy.hit.ValidHits , . . .]

3.1. Developer Guide 117

MacSyFinder, Release 2.0

AbstractUnordered

class macsypy.system.AbstractUnordered(*args, **kwargs)
Technical abstract class to factorize code share between LikelySystem and UnlikelySystem

__init__(model, mandatory_hits, accessory_hits, neutral_hits, forbidden_hits)
Initialize self. See help(type(self)) for accurate signature.

property accessory_hits

Returns The list of accesory hits

Return type list of macsypy.hit.ModelHit objects

property allowed_hits

Returns The list of allowed (mandatory, accessory, neutral) hits

Return type list of macsypy.hit.ModelHit objects

property forbidden_hits

Returns The list of forbidden hits

Return type list of macsypy.hit.ModelHit objects

property hits

Returns The list of all hits sorted by their position

Return type list of macsypy.hit.ModelHit objects

property mandatory_hits

Returns The list of mandatory hits

Return type list of macsypy.hit.ModelHit objects

property neutral_hits

Returns The list of neutral hits

Return type list of macsypy.hit.ModelHit objects

LikelySystem

class macsypy.system.LikelySystem(*args, **kwargs)
” Handle components that fill the quorum requirements defined in model. with no idea about genetic organization
(gene cluster) so we cannot take in account forbidden genes

__str__()

Returns a string representation of this LikelySystem

118 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

UnlikelySystem

class macsypy.system.UnlikelySystem(*args, **kwargs)
Handle components that not fill the quorum requirements defined in model.

__init__(model, mandatory_hits, accessory_hits, neutral_hits, forbidden_hits, reasons)

Parameters

• model (macsypy.model.Model object) – The model which has ben used to build
this system

• mandatory_hits (list of macsypy.hit.ModelHit objects) – The list of manda-
tory hits (encode for a gene tagged as mandatory)

• accessory_hits (list of macsypy.hit.ModelHit objects) – The list of accessory
hits (encode for a gene tagged as accessory)

• neutral_hits (list of macsypy.hit.ModelHit objects) – The list of neutral hits
(encode for a gene tagged as neutral)

• forbidden_hits (list of macsypy.hit.ModelHit objects) – The list of hits that
are forbidden

• reasons (List of str) – the reasons why this set of hits has been rejected

__str__()

Returns a string representation of this UnlikelySystem

property reasons

Returns The reasons why it probably not a system

Return type list of string

report

A “HMMReport” object represents the results of a Hmmer program search on a dataset with a hidden Markov model
protein profile (see this section). This object has methods to extract and filter Hmmer raw outputs (see generated
output files), and then build Hits relevant for system detection. For matches selected with the filtering parameters,
“Hit” objects (macsypy.HMMReport.Hit) are built.

report API reference

HMMReport

class macsypy.report.HMMReport(gene, hmmer_output, cfg)
Handle the results from the HMM search. Extract a synthetic report from the raw hmmer output, after having
applied a hit filtering. This class is an abstract class. There are two implementations of this abstract class
depending on whether the input sequence dataset is “ordered” (“gembase” or “ordered_replicon” db_type) or
not (“unordered” db_type).

__init__(gene, hmmer_output, cfg)

Parameters

• gene (macsypy.gene.CoreGene object) – the gene corresponding to the profile
search reported here

3.1. Developer Guide 119

MacSyFinder, Release 2.0

• hmmer_output (string) – The path to the raw Hmmer output file

• cfg (macsypy.config.Config object) – the configuration object

__str__()

Returns string representation of this report

Return type str

__weakref__
list of weak references to the object (if defined)

_build_my_db(hmm_output)
Build the keys of a dictionary object to store sequence identifiers of hits.

Parameters hmm_output (string) – the path to the hmmsearch output to parse.

Returns a dictionary containing a key for each sequence id of the hits

Return type dict

_fill_my_db(db)
Fill the dictionary with information on the matched sequences

Parameters db (dict) – the database containing all sequence id of the hits.

abstract _get_replicon_name(hit_id)
This method is used by extract method and must be implemented by concrete class

Parameters hit_id (str) – the id of the current hit extract from hmm output.

Returns The name of the replicon

_hit_start(line)

Parameters line (string) – the line to parse

Returns True if it’s the beginning of a new hit in Hmmer raw output files. False otherwise

Return type boolean.

_parse_hmm_body(hit_id, gene_profile_lg, seq_lg, coverage_threshold, replicon_name, position_hit,
i_evalue_sel, b_grp)

Parse the raw Hmmer output to extract the hits, and filter them with threshold criteria selected (“cover-
age_profile” and “i_evalue_select” command-line parameters)

Parameters

• hit_id (str) – the sequence identifier

• gene_profile_lg (int) – the length of the profile matched

• coverage_threshold (float) – the minimal coverage of the profile to be reached
in the Hmmer alignment for hit selection.

• replicon_name (str) – the identifier of the replicon

• position_hit (int) – the rank of the sequence matched in the input dataset file

• i_evalue_sel (float) – the maximal i-evalue (independent evalue) for hit selection

• b_grp (list of list of strings) – the Hmmer output lines to deal with
(grouped by hit)

Paramint seq_lg the length of the sequence

Returns a sequence of hits

120 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

Return type list of macsypy.report.CoreHit objects

_parse_hmm_header(h_grp)

Parameters h_grp (sequence of string (<itertools._grouper object at
0x7ff9912e3b50>)) – the sequence of string return by groupby function representing
the header of a hit

Returns the sequence identifier from a set of lines that corresponds to a single hit

Return type string

best_hit()
Return the best hit among multiple hits

extract()
Parse the output file of hmmer compute from an unordered genes base and produced a new synthetic report
file.

save_extract()
Write the string representation of the extract report in a file. The name of this file is the concatenation of
the gene name and of the “res_extract_suffix” from the config object

GeneralHMMReport

class macsypy.report.GeneralHMMReport(gene, hmmer_output, cfg)
Handle HMM report. Extract a synthetic report from the raw hmmer output. Dedicated to any type of ‘un-
ordered’ datasets.

_get_replicon_name(hit_id)
This method is used by extract method and must be implemented by concrete class

Parameters hit_id (str) – the id of the current hit extract from hmm output.

Returns The name of the replicon

OrderedHMMReport

class macsypy.report.OrderedHMMReport(gene, hmmer_output, cfg)
Handle HMM report. Extract a synthetic report from the raw hmmer output. Dedicated to ‘ordered_replicon’
datasets.

_get_replicon_name(hit_id)
This method is used by extract method and must be implemented by concrete class

Parameters hit_id (str) – the id of the current hit extract from hmm output.

Returns The name of the replicon

3.1. Developer Guide 121

MacSyFinder, Release 2.0

GembaseHMMReport

class macsypy.report.GembaseHMMReport(gene, hmmer_output, cfg)
Handle HMM report. Extract a synthetic report from the raw hmmer output. Dedicated to ‘gembase’ format
datasets.

_get_replicon_name(hit_id)
This method is used by extract method and must be implemented by concrete class

Parameters hit_id (str) – the id of the current hit extract from hmm output.

Returns The name of the replicon

. . . MacSyFinder - Detection of macromolecular systems in protein datasets using systems modelling and simi-
larity search. Authors: Sophie Abby, Bertrand Néron Copyright © 2014-2022 Institut Pasteur (Paris), and
CNRS. See the COPYRIGHT file for details MacsyFinder is distributed under the terms of the GNU General
Public License (GPLv3). See the COPYING file for details.

search_genes

manage the paralelization of code which execute in fine hmmsearch to find the genes constituting the models in the
input dataset.

search_genes API reference

search_genes

macsypy.search_genes.search_genes(genes, cfg)
For each gene of the list, use the corresponding profile to perform an Hmmer search, and parse the output to
generate a HMMReport that is saved in a file after CoreHit filtering. These tasks are performed in parallel
using threads. The number of workers can be limited by worker_nb directive in the config object or in the
command-line with the “-w” option.

Parameters

• genes (list of macsypy.gene.CoreGene objects) – the genes to search in the input
sequence dataset

• cfg (macsypy.config.Config object) – the configuration object

solution

MacSyFinder find lot of potential systems for the same model, all these systems are saved in “all_systems.xxx” files.
This module allow to explore among of all systems which combination seems to be more probable.

122 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

solution API reference

Solution

class macsypy.solution.Solution(systems)
Handle Solution, a solution is a set of compatible Systems

when compare solutions we check the following criteria

1. The number of hits

2. The number of systems

3. The average of wholeness

4. The hits position (is used ti give predictable output for unit tests)

__eq__(other)
Return self==value.

__gt__(other)
Return self>value.

__init__(systems)
Initialize self. See help(type(self)) for accurate signature.

__iter__()
Solution allow to iterate over the systems

Returns generator

__lt__(other)
Return self<value.

__weakref__
list of weak references to the object (if defined)

_sorted_systems(systems)
sort the systems following the positions of th hits that composed the systems

Parameters systems (list of mcsypy.system.System objects) – the systems to sort

Returns a sorted copy of the systems

Return type list of mcsypy.system.System objects

property average_wholeness
The average of the systems wholeness

property hits_number
The sum of the hits of each systems in this solution

property hits_positions
The list of position of all hits of the soltution

property score
The score of this solution

property systems
“a sorted list of the systems that composed the solution

3.1. Developer Guide 123

MacSyFinder, Release 2.0

combine_clusters

macsypy.solution.combine_clusters(clusters, true_loners, multi_loci=False)
generate the combinations of clusters, with loners and multi systems

Parameters

• clusters (list of macsypy.cluster.Cluster object) – the clusters to combines

• true_loners (dict the name of the function code by hit gene_ref.alternate_of as
key and 1 macsypy.cluster.Cluster with the best a macsypy.hit.Loner or
macsypy.hit.LonerMultiSystem hit as value) – the multi-systems hits

• multi_loci (bool) – True if the model is multi_loci false otherwise

Returns all available combination of clusters

Return type List of combination. a combination is a tuple of macsypy.cluster.Cluster
objects

combine_multisystems

macsypy.solution.combine_multisystems(rejected_clusters, multi_systems)

Parameters

• rejected_clusters –

• multi_systems – sequence of macsypy.cluster.Cluster each cluster must be
composed of only one macsypy.hit.MultiSystem object

Returns list of cluster combination with teh multisystem

Return type [(macsypy.cluster.Cluster cluster1, cluster2, . . .), (macsypy.cluster.
Cluster cluster3, cluster4, . . .)]

find_best_solutions

macsypy.solution.find_best_solutions(systems)
Among the systems choose the combination of systems which does not share macsypy.hit.CoreHit and
maximize the sum of systems scores

Parameters systems (list of macsypy.system.System object) – the systems to analyse

Returns the list of list of systems which represent one best solution and the it’s score

Return type tuple of 2 elements the best solution and it’s score ([[macsypy.system.System,
. . .], [macsypy.system.System, . . .]], float score) The inner list represent a best solution

124 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

serialization

This module is a technical module where we can find the different way to serialize the results:

• the Systems found

• The best solutions (best combination of systems)

• The rejected clusters

SystemSerializer

class macsypy.serialization.SystemSerializer
handle the different way to serialize a system

__weakref__
list of weak references to the object (if defined)

TsvSystemSerializer

class macsypy.serialization.TsvSystemSerializer
Handle System serialization in tsv format

serialize(system, hit_system_tracker)

Returns a serialisation of this system in tabulated separated value format each line represent a
hit and have the following structure:

replicon\thit_id\tgene_name\thit_pos\tmodel_fqn\tsys_id\tsys_loci\tlocus_num\
→˓tsys_wholeness\tsys_score
\tsys_occ\thit_gene_ref.alternate_of\thit_status\thit_seq_len\thit_i_eval\
→˓thit_score\thit_profile_cov
\thit_seq_cov\tit_begin_match\thit_end_match\tcounterpart\tused_in_systems

Return type str

TsvSolutionSerializer

class macsypy.serialization.TsvSolutionSerializer
Handle Solution (list of Systems) serialization in tsv format

__init__()
Constructor

__weakref__
list of weak references to the object (if defined)

serialize(solution, sol_id, hit_system_tracker)

Parameters

• solution (list of macsypy.system.System object) – the solution to serialize

• sol_id (int) – the solution identifier

• hit_system_tracker (macsypy.system.HitSystemTracker object) –

3.1. Developer Guide 125

MacSyFinder, Release 2.0

Returns a serialisation of this solution (a list of systems) in tabulated separated value format
each line represent a hit and have the same structure as system serialization macsypy.
serialization.TsvSystemSerializer.serialize() but with an extra col-
umn sol_id which is a technical id to identified the different solutions.

TsvLikelySystemSerializer

class macsypy.serialization.TsvLikelySystemSerializer
Handle potential System from unordered replicon serialization in tsv format

serialize(likely_system, hit_system_tracker)

Returns a serialisation of this system in tabulated separated value format each line represent a
hit and have the following structure:

replicon\thit_id\tgene_name\thit_pos\tmodel_fqn\tsys_id\tsys_wholeness
\thit_gene_ref.alternate_of\thit_status\thit_seq_len\thit_i_eval\thit_score\
→˓thit_profile_cov
\thit_seq_cov\tit_begin_match\thit_end_match\t$used_in_systems

Return type str

TsvSpecialHitSerializer

class macsypy.serialization.TsvSpecialHitSerializer
Seraialize special hits: macsypy.hit.Loner and macsypy.hit.MultiSystem in tsv format

serialize(best_hits)

Parameters best_hits (sequence of macsypy.hit.Loner or macsypy.hit.
MultiSystem objects) – the special hits to serialized

TxtSystemSerializer

class macsypy.serialization.TxtSystemSerializer
Handle System serialization in text

serialize(system, hit_system_tracker)

Returns a string representation of system readable by human

TxtLikelySystemSerializer

class macsypy.serialization.TxtLikelySystemSerializer
Handle System serialization in text

serialize(likely_system, hit_system_tracker)

Returns a string representation of system readable by human

126 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

TxtUnikelySystemSerializer

class macsypy.serialization.TxtUnikelySystemSerializer
Handle System serialization in text

serialize(likely_system)

Returns a string representation of system readable by human

database

The “database” object handles the indexes of the sequence dataset in fasta format, and other useful information on the
input dataset.

MacSyFinder needs to have the length of each sequence and its position in the database to compute some statistics on
Hmmer hits. Additionally, for ordered datasets (db_type = ‘gembase’ or ‘ordered_replicon’), MacSyFinder builds an
internal “database” from these indexes to store information about replicons, their begin and end positions, and their
topology.

The begin and end positions of each replicon are computed from the sequence file, and the topology from the parsing
of the topology file (–topology-file, see Topology files).

Thus it also builds an index (with .idx suffix) that is stored in the same directory as the sequence dataset. If this file is
found in the same folder than the input dataset, MacSyFinder will use it. Otherwise, it will build it.

The user can force MacSyFinder to rebuild these indexes with the “–idx” option on the command-line.

database API reference

Indexes

class macsypy.database.Indexes(cfg)
Handle the indexes for macsyfinder:

• find the indexes required by macsyfinder to compute some scores, or build them.

__init__(cfg)
The constructor retrieves the file of indexes in the case they are not present or the user asked for build
indexes (–idx) Launch the indexes building.

Parameters cfg (macsypy.config.Config object) – the configuration

__iter__()

Raises MacsypyError – if the indexes are not buid

Returns an iterator on the indexes

To use it the index must be build.

__weakref__
list of weak references to the object (if defined)

_build_my_indexes(index_dir)
Build macsyfinder indexes. These indexes are stored in a file.

The file format is the following:

• the first line is the path of the sequence-db indexed

• one entry per line, with each line having this format:

3.1. Developer Guide 127

MacSyFinder, Release 2.0

• sequence id;sequence length;sequence rank

_index_dir(build=False)
search where to store(build=True) read indexes

Parameters build (bool) – if check the index-dir permissions to write

Returns The directory where read or write the indexes

Return type str

Raises ValueError – if the directory specify by –index-dir option does not exists or if build
= True index-dir is not writable

build(force=False)
Build the indexes from the sequence data set in fasta format,

Parameters force (boolean) – If True, force the index building even if the index files are
present in the sequence data set folder

Returns the path to the index

Return type str

find_my_indexes()

Returns the file of macsyfinder indexes if it exists in the dataset folder, None otherwise.

Return type string

RepliconInfo

class macsypy.database.RepliconInfo(topology, min, max, genes)
handle information about a replicon

topology
The type of replicon topology ‘linear or ‘circular’

min
The position of the last gene of the replicon in the sequence dataset.

max
The position of the last gene of the replicon in the sequence dataset.

genes
A list of genes beloging to the replicon. Each genes is representing by a tuple (str seq_id, int length)

genes
Alias for field number 3

max
Alias for field number 2

min
Alias for field number 1

topology
Alias for field number 0

128 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

RepliconDB

class macsypy.database.RepliconDB(cfg)
Stores information (topology, min, max, [genes]) for all replicons in the sequence_db the Replicon object must
be instantiated only for sequence_db of type ‘gembase’ or ‘ordered_replicon’

__contains__(replicon_name)

Parameters replicon_name (string) – the name of the replicon

Returns True if replicon_name is in the repliconDB, false otherwise.

Return type boolean

__getitem__(replicon_name)

Parameters replicon_name (string) – the name of the replicon to get information on

Returns the RepliconInfo for the provided replicon_name

Return type RepliconInfo object

Raise KeyError if replicon_name is not in repliconDB

__init__(cfg)

Parameters cfg (macsypy.config.Config object) – The configuration object

Note: This class can be instanciated only if the db_type is ‘gembase’ or ‘ordered_replicon’

__weakref__
list of weak references to the object (if defined)

_fill_gembase_min_max(topology, default_topology)
For each replicon_name of a gembase dataset, it fills the internal dictionary with a namedtuple Replicon-
Info

Parameters

• topology (dict) – the topologies for each replicon (parsed from the file specified with
the option –topology-file)

• default_topology (string) – the topology provided by the con-
fig.replicon_topology

_fill_ordered_min_max(default_topology=None)
For the replicon_name of the ordered_replicon sequence base, fill the internal dict with RepliconInfo

Parameters default_topology (string) – the topology provided by con-
fig.replicon_topology

_fill_topology()
Fill the internal dictionary with min and max positions for each replicon_name of the sequence_db

get(replicon_name, default=None)

Parameters

• replicon_name (string) – the name of the replicon to get informations

• default (any) – the value to return if the replicon_name is not in the RepliconDB

Returns the RepliconInfo for replicon_name if replicon_name is in the repliconDB, else default.
If default is not given, it is set to None, so that this method never raises a KeyError.

3.1. Developer Guide 129

MacSyFinder, Release 2.0

Return type RepliconInfo object

items()

Returns a copy of the RepliconDB as a list of (replicon_name, RepliconInfo) pairs

iteritems()

Returns an iterator over the RepliconDB as a list (replicon_name, RepliconInfo) pairs

replicon_infos()

Returns a copy of the RepliconDB as list of replicons info

Return type RepliconInfo instance

replicon_names()

Returns a copy of the RepliconDB as a list of replicon_names

fasta_iter

macsypy.database.fasta_iter(fasta_file)

Parameters fasta_file (file object) – the file containing all input sequences in fasta for-
mat.

Author http://biostar.stackexchange.com/users/36/brentp

Returns for a given fasta file, it returns an iterator which yields tuples (string id, string comment,
int sequence length)

Return type iterator

errors

The errors specific to macsyfinder and macsydata

error API reference

error

exception macsypy.error.MacsyDataLimitError
Raised when the maximum number of github api call is reached

exception macsypy.error.MacsydataError
Raised when error is encounter during model package handling

exception macsypy.error.MacsypyError
The base class for MacSyFinder specific exceptions.

__weakref__
list of weak references to the object (if defined)

exception macsypy.error.ModelInconsistencyError
Raised when a definition model is not consistent.

exception macsypy.error.OptionError
Raised when command line option is not set properly

130 Chapter 3. Developer Guide

http://biostar.stackexchange.com/users/36/brentp

MacSyFinder, Release 2.0

exception macsypy.error.SystemDetectionError
Raised when the detection of systems from Hits encountered a problem.

utils

Here some useful functions in the rest of macsyfinder code

utils API reference

get_def_to_detect

macsypy.utils.get_def_to_detect(models, model_registry)

Parameters

• models (list of tuple with the following structure:
[('model_fqn', ('def1, def2, ..)), ('model_2', ('def1', ..
)), ..]) – the list of models to detect as returned by config.models.

• model_registry (macsypy.registries.ModelRegistry object.) – the mod-
els registry for this run.

Returns the definitions to parse

Return type list of macsypy.registries.DefinitionLocation objects

Raises ValueError – if a model name provided in models is not in model_registry.

get_replicon_names

macsypy.utils.get_replicon_names(genome_path)
parse gembase file and the list of replicon identifiers

Parameters genome_path (str) – The path to a file containing sequence in gembase format

Returns the list of replicon identifiers

Return type list of str

package

Allow to handles model package either on localhost or from a remote location. the model packages can be stored in
github organization to be downloaded and installed locally. The classes below are used by macsydata, which is the
entry point to manipulate models package.

3.1. Developer Guide 131

MacSyFinder, Release 2.0

package API reference

AbstractModelIndex

class macsypy.package.AbstractModelIndex(*args, **kwargs)
This the base class for ModelIndex. This class cannot be implemented, it must be subclassed

__init__(cache: str = '')

static __new__(cls, *args, **kwargs)
Create and return a new object. See help(type) for accurate signature.

__weakref__
list of weak references to the object (if defined)

unarchive_package(path: str)→ str
Unarchive and uncompress a package under <remote cache>/<organization name>/<package
name>/<vers>/<package name>

Parameters path (str) –

Returns The path to the package

LocalModelIndex

class macsypy.package.LocalModelIndex(*args, **kwargs)
It allow to manage installation from a local package (tarball)

__init__(cache=None)→ None

RemoteModelIndex

class macsypy.package.RemoteModelIndex(*args, **kwargs)
This class allow to interact with ModelIndex on github

__init__(org: str = 'macsy-models', cache=None)→ None

Parameters org – The name of the organization on github where are stored the models

_url_json(url: str)→ Dict
Get the url, deserialize the data as json

Parameters url (str) – the url to download

Returns the json corresponding to the response url

download(pack_name: str, vers: str, dest: str = None)→ str
Download a package from a github repos and save it as <remote cache>/<organization name>/<package
name>/<vers>.tar.gz

Parameters

• pack_name (str) – the name of the package to download

• vers (str) – the version of the package to download

• dest (str) – The path to the directory where save the package This directory must exists
If dest is None, the macsyfinder cache will be used

Returns The package archive path.

132 Chapter 3. Developer Guide

MacSyFinder, Release 2.0

get_metadata(pack_name: str, vers: str = 'latest')→ Dict
Fetch the metadata_path from a remote package

Parameters

• pack_name (str) – The package name

• vers (str) – The package version

Returns the metadata_path corresponding to this package/version

Return type dictionary corresponding of the yaml parsing of the metadata_path file.

list_package_vers(pack_name: str)→ List[str]
List all available versions from github model repos for a given package

Parameters pack_name (str) – the name of the package

Returns the list of the versions

list_packages()→ List[str]
list all model packages available on a model repos :return: The list of package names.

remote_exists()→ bool
check if the remote exists and is an organization :return: True if the Remote url point to a github Organi-
zation, False otherwise

Package

class macsypy.package.Package(path: str)
This class Modelize a package of Models a package is a directory with the name of the models family it must
contains at least - a subdirectory definitions - a subdirectory profiles - a file metadata.yml it is also recomanded
to add a file for licensing and copyright and a README. for further explanation see TODO

__init__(path: str)→ None

Parameters path (str) – The of the package root directory

__weakref__
list of weak references to the object (if defined)

_check_metadata()→ Tuple[List[str], List[str]]
Check the QA of package metadata_path

Returns errors and warnings

Return type tuple of 2 lists ([str error_1, ..], [str warning_1, ..])

_check_model_conf()→ Tuple[List[str], List[str]]
check if a model configuration file is present in the package (model_conf.xml) if the syntax of this file is
good.

Returns

_check_model_consistency()→ Tuple[List, List]
check if each xml seems well write, each genes have an associated profile, etc

Returns

_check_structure()→ Tuple[List[str], List[str]]
Check the QA structure of the package

Returns errors and warnings

3.1. Developer Guide 133

MacSyFinder, Release 2.0

Return type tuple of 2 lists ([str error_1, ..], [str warning_1, ..])

_find_readme()→ Optional[str]
find the README file

Returns The path to the README file or None if there is no file.

_load_metadata()→ Dict
Open the metadata_path file and de-serialize it’s content :return:

check()→ Tuple[List[str], List[str]]
Check the QA of this package

help()→ str
return the content of the README file

info()→ str

Returns some information about the package

property metadata

Returns The parsed metadata as a dict

134 Chapter 3. Developer Guide

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

135

MacSyFinder, Release 2.0

136 Chapter 4. Indices and tables

PYTHON MODULE INDEX

m
macsypy.database, 128
macsypy.definition_parser, 89
macsypy.error, 130
macsypy.model_conf_parser, 83
macsypy.search_genes, 122

137

MacSyFinder, Release 2.0

138 Python Module Index

INDEX

Symbols
__call__() (macsypy.system.MetaSetOfHits method),

115
__contains__() (macsypy.cluster.Cluster method),

110
__contains__() (macsypy.database.RepliconDB

method), 129
__contains__() (macsypy.gene.GeneBank method),

96
__contains__() (macsypy.model.ModelBank

method), 92
__eq__() (macsypy.hit.CoreHit method), 103
__eq__() (macsypy.hit.ModelHit method), 104
__eq__() (macsypy.model.Model method), 93
__eq__() (macsypy.registries.DefinitionLocation

method), 87
__eq__() (macsypy.registries.ModelLocation method),

85
__eq__() (macsypy.solution.Solution method), 123
__getitem__() (macsypy.database.RepliconDB

method), 129
__getitem__() (macsypy.gene.GeneBank method),

96
__getitem__() (macsypy.model.ModelBank

method), 92
__getitem__() (macsypy.registries.ModelRegistry

method), 84
__gt__() (macsypy.hit.CoreHit method), 103
__gt__() (macsypy.hit.ModelHit method), 104
__gt__() (macsypy.model.Model method), 93
__gt__() (macsypy.registries.DefinitionLocation

method), 87
__gt__() (macsypy.registries.ModelLocation method),

85
__gt__() (macsypy.solution.Solution method), 123
__hash__() (macsypy.gene.CoreGene method), 97
__hash__() (macsypy.gene.ModelGene method), 97
__hash__() (macsypy.hit.CoreHit method), 103
__hash__() (macsypy.hit.ModelHit method), 104
__hash__() (macsypy.model.Model method), 93
__hash__() (macsypy.registries.DefinitionLocation

method), 87

__init__() (macsypy.cluster.Cluster method), 110
__init__() (macsypy.config.Config method), 76, 79
__init__() (macsypy.config.MacsyDefaults method),

75
__init__() (macsypy.database.Indexes method), 127
__init__() (macsypy.database.RepliconDB method),

129
__init__() (macsypy.definition_parser.DefinitionParser

method), 89
__init__() (macsypy.gene.CoreGene method), 97
__init__() (macsypy.gene.Exchangeable method), 99
__init__() (macsypy.gene.GeneBank method), 96
__init__() (macsypy.gene.ModelGene method), 97
__init__() (macsypy.hit.AbstractCounterpartHit

method), 106
__init__() (macsypy.hit.CoreHit method), 103
__init__() (macsypy.hit.Loner method), 106
__init__() (macsypy.hit.LonerMultiSystem method),

108
__init__() (macsypy.hit.ModelHit method), 105
__init__() (macsypy.hit.MultiSystem method), 107
__init__() (macsypy.model.Model method), 93
__init__() (macsypy.model.ModelBank method), 92
__init__() (macsypy.model_conf_parser.ModelConfParser

method), 83
__init__() (macsypy.package.AbstractModelIndex

method), 132
__init__() (macsypy.package.LocalModelIndex

method), 132
__init__() (macsypy.package.Package method), 133
__init__() (macsypy.package.RemoteModelIndex

method), 132
__init__() (macsypy.profile.Profile method), 101
__init__() (macsypy.profile.ProfileFactory method),

100
__init__() (macsypy.registries.DefinitionLocation

method), 87
__init__() (macsypy.registries.ModelLocation

method), 85
__init__() (macsypy.registries.ModelRegistry

method), 84
__init__() (macsypy.report.HMMReport method),

139

MacSyFinder, Release 2.0

119
__init__() (macsypy.serialization.TsvSolutionSerializer

method), 125
__init__() (macsypy.solution.Solution method), 123
__init__() (macsypy.system.AbstractClusterizedHits

method), 115
__init__() (macsypy.system.AbstractSetOfHits

method), 115
__init__() (macsypy.system.AbstractUnordered

method), 118
__init__() (macsypy.system.HitSystemTracker

method), 114
__init__() (macsypy.system.MatchMaker method),

113
__init__() (macsypy.system.OrderedMatchMaker

method), 113
__init__() (macsypy.system.RejectedClusters

method), 117
__init__() (macsypy.system.System method), 116
__init__() (macsypy.system.UnlikelySystem method),

119
__iter__() (macsypy.database.Indexes method), 127
__iter__() (macsypy.gene.GeneBank method), 96
__iter__() (macsypy.model.ModelBank method), 92
__iter__() (macsypy.solution.Solution method), 123
__len__() (macsypy.model.ModelBank method), 92
__len__() (macsypy.profile.Profile method), 101
__lt__() (macsypy.hit.CoreHit method), 104
__lt__() (macsypy.hit.ModelHit method), 105
__lt__() (macsypy.model.Model method), 93
__lt__() (macsypy.registries.DefinitionLocation

method), 87
__lt__() (macsypy.registries.ModelLocation method),

85
__lt__() (macsypy.solution.Solution method), 123
__new__() (macsypy.package.AbstractModelIndex

static method), 132
__str__() (macsypy.cluster.Cluster method), 110
__str__() (macsypy.gene.ModelGene method), 98
__str__() (macsypy.hit.AbstractCounterpartHit

method), 106
__str__() (macsypy.hit.CoreHit method), 104
__str__() (macsypy.hit.ModelHit method), 105
__str__() (macsypy.model.Model method), 94
__str__() (macsypy.profile.Profile method), 101
__str__() (macsypy.registries.DefinitionLocation

method), 87
__str__() (macsypy.registries.ModelLocation

method), 85
__str__() (macsypy.registries.ModelRegistry

method), 85
__str__() (macsypy.report.HMMReport method), 120
__str__() (macsypy.system.LikelySystem method),

118

__str__() (macsypy.system.RejectedClusters
method), 117

__str__() (macsypy.system.UnlikelySystem method),
119

__weakref__ (macsypy.cluster.Cluster attribute), 110
__weakref__ (macsypy.config.Config attribute), 76, 80
__weakref__ (macsypy.config.MacsyDefaults at-

tribute), 75
__weakref__ (macsypy.database.Indexes attribute),

127
__weakref__ (macsypy.database.RepliconDB at-

tribute), 129
__weakref__ (macsypy.definition_parser.DefinitionParser

attribute), 89
__weakref__ (macsypy.error.MacsypyError attribute),

130
__weakref__ (macsypy.gene.CoreGene attribute), 97
__weakref__ (macsypy.gene.GeneBank attribute), 96
__weakref__ (macsypy.gene.ModelGene attribute), 98
__weakref__ (macsypy.hit.CoreHit attribute), 104
__weakref__ (macsypy.hit.HitWeight attribute), 108
__weakref__ (macsypy.hit.ModelHit attribute), 105
__weakref__ (macsypy.model.Model attribute), 94
__weakref__ (macsypy.model.ModelBank attribute),

92
__weakref__ (macsypy.model_conf_parser.ModelConfParser

attribute), 83
__weakref__ (macsypy.package.AbstractModelIndex

attribute), 132
__weakref__ (macsypy.package.Package attribute),

133
__weakref__ (macsypy.profile.Profile attribute), 101
__weakref__ (macsypy.profile.ProfileFactory at-

tribute), 100
__weakref__ (macsypy.registries.DefinitionLocation

attribute), 87
__weakref__ (macsypy.registries.ModelLocation at-

tribute), 85
__weakref__ (macsypy.registries.ModelRegistry at-

tribute), 85
__weakref__ (macsypy.report.HMMReport attribute),

120
__weakref__ (macsypy.serialization.SystemSerializer

attribute), 125
__weakref__ (macsypy.serialization.TsvSolutionSerializer

attribute), 125
__weakref__ (macsypy.solution.Solution attribute),

123
__weakref__ (macsypy.system.AbstractSetOfHits at-

tribute), 115
__weakref__ (macsypy.system.HitSystemTracker at-

tribute), 114
__weakref__ (macsypy.system.MatchMaker at-

tribute), 113

140 Index

MacSyFinder, Release 2.0

_build_my_db() (macsypy.report.HMMReport
method), 120

_build_my_indexes() (macsypy.database.Indexes
method), 127

_check_metadata() (macsypy.package.Package
method), 133

_check_model_conf() (macsypy.package.Package
method), 133

_check_model_consistency() (mac-
sypy.package.Package method), 133

_check_replicon_consistency() (mac-
sypy.cluster.Cluster method), 110

_check_structure() (macsypy.package.Package
method), 133

_check_syntax() (mac-
sypy.definition_parser.DefinitionParser
method), 90

_config_file_2_dict() (macsypy.config.Config
method), 76, 80

_create_exchangeable_map() (mac-
sypy.system.MatchMaker method), 113

_create_model() (mac-
sypy.definition_parser.DefinitionParser
method), 90

_fill_gembase_min_max() (mac-
sypy.database.RepliconDB method), 129

_fill_gene_bank() (mac-
sypy.definition_parser.DefinitionParser
method), 90

_fill_my_db() (macsypy.report.HMMReport
method), 120

_fill_ordered_min_max() (mac-
sypy.database.RepliconDB method), 129

_fill_topology() (macsypy.database.RepliconDB
method), 129

_find_readme() (macsypy.package.Package
method), 134

_get_model_conf_node() (mac-
sypy.model_conf_parser.ModelConfParser
method), 83

_get_model_node() (mac-
sypy.definition_parser.DefinitionParser
method), 90

_get_replicon_name() (mac-
sypy.report.GembaseHMMReport method),
122

_get_replicon_name() (mac-
sypy.report.GeneralHMMReport method),
121

_get_replicon_name() (mac-
sypy.report.HMMReport method), 120

_get_replicon_name() (mac-
sypy.report.OrderedHMMReport method),
121

_hit_start() (macsypy.report.HMMReport method),
120

_index_dir() (macsypy.database.Indexes method),
128

_load_metadata() (macsypy.package.Package
method), 134

_parse_exchangeable() (mac-
sypy.definition_parser.DefinitionParser
method), 90

_parse_genes() (mac-
sypy.definition_parser.DefinitionParser
method), 90

_parse_hmm_body() (macsypy.report.HMMReport
method), 120

_parse_hmm_header() (mac-
sypy.report.HMMReport method), 121

_parse_section() (mac-
sypy.model_conf_parser.ModelConfParser
method), 83

_profile_features() (macsypy.profile.Profile
method), 101

_scan_definitions() (mac-
sypy.registries.ModelLocation method), 86

_scan_profiles() (mac-
sypy.registries.ModelLocation method), 86

_set_command_line_config() (mac-
sypy.config.Config method), 76, 80

_set_db_type() (macsypy.config.Config method),
76, 80

_set_default_config() (macsypy.config.Config
method), 76, 80

_set_inter_gene_max_space() (mac-
sypy.config.Config method), 76, 80

_set_max_nb_genes() (macsypy.config.Config
method), 76, 80

_set_min_genes_required() (mac-
sypy.config.Config method), 77, 80

_set_min_mandatory_genes_required()
(macsypy.config.Config method), 77, 81

_set_model_config() (macsypy.config.Config
method), 77, 81

_set_models() (macsypy.config.Config method), 77,
81

_set_models_dir() (macsypy.config.Config
method), 77, 81

_set_multi_loci() (macsypy.config.Config
method), 77, 81

_set_options() (macsypy.config.Config method),
77, 81

_set_previous_run_config() (mac-
sypy.config.Config method), 77, 81

_set_project_config_file() (mac-
sypy.config.Config method), 77, 81

_set_replicon_topology() (mac-

Index 141

MacSyFinder, Release 2.0

sypy.config.Config method), 77, 81
_set_sequence_db() (macsypy.config.Config

method), 78, 81
_set_system_models_dir() (mac-

sypy.config.Config method), 78, 81
_set_system_wide_config() (mac-

sypy.config.Config method), 78, 81
_set_topology_file() (macsypy.config.Config

method), 78, 82
_set_user_config_file() (mac-

sypy.config.Config method), 78, 82
_set_user_wide_config() (mac-

sypy.config.Config method), 78, 82
_sorted_systems() (macsypy.solution.Solution

method), 123
_str_2_tuple() (macsypy.config.Config method),

78, 82
_url_json() (macsypy.package.RemoteModelIndex

method), 132

A
AbstractClusterizedHits (class in mac-

sypy.system), 115
AbstractCounterpartHit (class in macsypy.hit),

106
AbstractModelIndex (class in macsypy.package),

132
AbstractSetOfHits (class in macsypy.system), 115
AbstractUnordered (class in macsypy.system), 118
accessory_hits() (mac-

sypy.system.AbstractUnordered property),
118

add() (macsypy.registries.ModelRegistry method), 85
add_exchangeable() (macsypy.gene.Exchangeable

method), 99
add_exchangeable() (macsypy.gene.ModelGene

method), 98
add_model() (macsypy.model.ModelBank method),

93
add_new_gene() (macsypy.gene.GeneBank method),

96
add_subdefinition() (mac-

sypy.registries.DefinitionLocation method),
87

allowed_hits() (mac-
sypy.system.AbstractUnordered property),
118

alternate_of() (macsypy.gene.Exchangeable
method), 99

alternate_of() (macsypy.gene.ModelGene
method), 98

average_wholeness() (macsypy.solution.Solution
property), 123

B
best_hit() (macsypy.report.HMMReport method),

121
build() (macsypy.database.Indexes method), 128
build_clusters() (in module macsypy.cluster), 111

C
check() (macsypy.package.Package method), 134
check_consistency() (mac-

sypy.definition_parser.DefinitionParser
method), 91

CITATION.yml, 71
Cluster, 71
Cluster (class in macsypy.cluster), 110
combine_clusters() (in module macsypy.solution),

124
combine_multisystems() (in module mac-

sypy.solution), 124
compute_best_MSHit() (in module macsypy.hit),

109
Config (class in macsypy.config), 76, 79
CONTRIBUTING, 72
CONTRIBUTORS, 71
COPYING, 72
COPYRIGHT, 72
CoreGene (class in macsypy.gene), 97
CoreHit (class in macsypy.hit), 103
count() (macsypy.system.AbstractSetOfHits method),

115
counterpart() (macsypy.hit.AbstractCounterpartHit

property), 106

D
DefinitionLocation (class in macsypy.registries),

87
DefinitionParser (class in mac-

sypy.definition_parser), 89
doc, 71
download() (macsypy.package.RemoteModelIndex

method), 132

E
etc, 71
Exchangeable (class in macsypy.gene), 99
exchangeables() (macsypy.gene.ModelGene prop-

erty), 98
execute() (macsypy.profile.Profile method), 101
extract() (macsypy.report.HMMReport method), 121

F
family_name() (macsypy.model.Model property), 94
fasta_iter() (in module macsypy.database), 130
filter() (macsypy.model.Model method), 94

142 Index

MacSyFinder, Release 2.0

find_best_solutions() (in module mac-
sypy.solution), 124

find_my_indexes() (macsypy.database.Indexes
method), 128

forbidden_hits() (mac-
sypy.system.AbstractUnordered property),
118

fulfilled_function() (macsypy.cluster.Cluster
method), 110

fulfilled_function() (mac-
sypy.system.AbstractClusterizedHits method),
115

G
GembaseHMMReport (class in macsypy.report), 122
GeneBank (class in macsypy.gene), 96
GeneralHMMReport (class in macsypy.report), 121
genes (macsypy.database.RepliconInfo attribute), 128
genes() (macsypy.model.Model method), 94
genes_fqn() (macsypy.gene.GeneBank method), 96
GeneStatus (class in macsypy.gene), 100
get() (macsypy.database.RepliconDB method), 129
get_all_definitions() (mac-

sypy.registries.ModelLocation method), 86
get_best_hit_4_func() (in module macsypy.hit),

109
get_best_hits() (in module macsypy.hit), 109
get_def_to_detect() (in module macsypy.utils),

131
get_definition() (mac-

sypy.registries.ModelLocation method), 86
get_definitions() (mac-

sypy.registries.ModelLocation method), 86
get_gene() (macsypy.model.Model method), 94
get_hits_encoding_multisystem() (mac-

sypy.system.System method), 116
get_loners() (macsypy.system.System method), 116
get_metadata() (mac-

sypy.package.RemoteModelIndex method),
132

get_multisystems() (macsypy.system.System
method), 116

get_position() (macsypy.hit.CoreHit method), 104
get_profile() (macsypy.profile.ProfileFactory

method), 100
get_profile() (macsypy.registries.ModelLocation

method), 86
get_profiles_names() (mac-

sypy.registries.ModelLocation method), 86
get_replicon_names() (in module macsypy.utils),

131
getter_maker() (macsypy.system.MetaSetOfHits

method), 115

H
help() (macsypy.package.Package method), 134
hit() (macsypy.hit.ModelHit property), 105
hit_weights() (macsypy.config.Config method), 78,

82
hits() (macsypy.system.AbstractUnordered property),

118
hits() (macsypy.system.RejectedClusters property),

117
hits() (macsypy.system.System property), 116
hits_number() (macsypy.solution.Solution property),

123
hits_positions() (macsypy.solution.Solution prop-

erty), 123
HitSystemTracker (class in macsypy.system), 114
HitWeight (class in macsypy.hit), 108
hmmer_dir() (macsypy.config.Config method), 78, 82
HMMReport (class in macsypy.report), 119

I
Indexes (class in macsypy.database), 127
info() (macsypy.package.Package method), 134
inter_gene_max_space() (macsypy.config.Config

method), 78, 82
inter_gene_max_space() (mac-

sypy.gene.ModelGene property), 98
inter_gene_max_space() (macsypy.model.Model

property), 94
is_accessory() (macsypy.gene.ModelGene

method), 98
is_compatible() (macsypy.system.System method),

116
is_exchangeable() (macsypy.gene.Exchangeable

property), 99
is_exchangeable() (macsypy.gene.ModelGene

property), 98
is_forbidden() (macsypy.gene.ModelGene

method), 98
is_mandatory() (macsypy.gene.ModelGene

method), 98
items() (macsypy.database.RepliconDB method), 130
iteritems() (macsypy.database.RepliconDB

method), 130

J
join_def_path() (in module macsypy.registries), 88

L
LikelySystem (class in macsypy.system), 118
list_package_vers() (mac-

sypy.package.RemoteModelIndex method),
133

Index 143

MacSyFinder, Release 2.0

list_packages() (mac-
sypy.package.RemoteModelIndex method),
133

LocalModelIndex (class in macsypy.package), 132
loci_nb() (macsypy.system.System property), 116
loci_num() (macsypy.system.System property), 117
log_level() (macsypy.config.Config method), 78, 82
Loner (class in macsypy.hit), 106
loner() (macsypy.cluster.Cluster property), 110
loner() (macsypy.gene.ModelGene property), 98
loner() (macsypy.hit.AbstractCounterpartHit prop-

erty), 106
loner() (macsypy.hit.Loner property), 107
loner() (macsypy.hit.ModelHit property), 105
LonerMultiSystem (class in macsypy.hit), 108

M
MacsydataError, 130
MacsyDataLimitError, 130
MacsyDefaults (class in macsypy.config), 75
macsypy, 71
macsypy.database

module, 128
macsypy.definition_parser

module, 89
macsypy.error

module, 130
macsypy.model_conf_parser

module, 83
macsypy.search_genes

module, 122
MacsypyError, 130
mandatory_hits() (mac-

sypy.system.AbstractUnordered property),
118

match() (macsypy.system.OrderedMatchMaker
method), 113

match() (macsypy.system.UnorderedMatchMaker
method), 114

MatchMaker (class in macsypy.system), 113
max (macsypy.database.RepliconInfo attribute), 128
max_nb_genes() (macsypy.config.Config method),

78, 82
max_nb_genes() (macsypy.model.Model property),

94
merge() (macsypy.cluster.Cluster method), 110
metadata() (macsypy.package.Package property), 134
MetaDefLoc (class in macsypy.registries), 87
MetaSetOfHits (class in macsypy.system), 114
min (macsypy.database.RepliconInfo attribute), 128
min_genes_required() (macsypy.config.Config

method), 79, 82
min_genes_required() (macsypy.model.Model

property), 94

min_mandatory_genes_required() (mac-
sypy.config.Config method), 79, 82

min_mandatory_genes_required() (mac-
sypy.model.Model property), 94

Model, 71
Model (class in macsypy.model), 93
Model family, 71
model() (macsypy.gene.ModelGene property), 99
model_family_name() (macsypy.gene.CoreGene

property), 97
ModelBank (class in macsypy.model), 92
ModelConfParser (class in mac-

sypy.model_conf_parser), 83
ModelDefinition, 71
ModelGene (class in macsypy.gene), 97
ModelHit (class in macsypy.hit), 104
ModelInconsistencyError, 130
ModelLocation (class in macsypy.registries), 85
ModelRegistry (class in macsypy.registries), 84
models() (macsypy.registries.ModelRegistry method),

85
models_dir() (macsypy.config.Config method), 79,

83
module

macsypy.database, 128
macsypy.definition_parser, 89
macsypy.error, 130
macsypy.model_conf_parser, 83
macsypy.search_genes, 122

multi_loci() (macsypy.config.Config method), 79,
83

multi_loci() (macsypy.model.Model property), 95
multi_loci() (macsypy.system.System property), 117
multi_system() (macsypy.cluster.Cluster property),

111
multi_system() (macsypy.gene.ModelGene prop-

erty), 99
multi_system() (mac-

sypy.hit.AbstractCounterpartHit property),
106

multi_system() (macsypy.hit.ModelHit property),
105

multi_system() (macsypy.hit.MultiSystem property),
107

MultiSystem (class in macsypy.hit), 107

N
name() (macsypy.gene.CoreGene property), 97
name() (macsypy.model.Model property), 95
neutral_hits() (mac-

sypy.system.AbstractUnordered property),
118

144 Index

MacSyFinder, Release 2.0

O
occurrence() (macsypy.system.System method), 117
OptionError, 130
OrderedHMMReport (class in macsypy.report), 121
OrderedMatchMaker (class in macsypy.system), 113
out_dir() (macsypy.config.Config method), 79, 83

P
Package (class in macsypy.package), 133
parse() (macsypy.definition_parser.DefinitionParser

method), 91
parse() (macsypy.model_conf_parser.ModelConfParser

method), 84
parse_filtering() (mac-

sypy.model_conf_parser.ModelConfParser
method), 84

parse_weights() (mac-
sypy.model_conf_parser.ModelConfParser
method), 84

position() (macsypy.system.AbstractSetOfHits prop-
erty), 115

present_genes() (macsypy.system.MatchMaker
method), 113

Profile (class in macsypy.profile), 101
profile() (macsypy.gene.CoreGene property), 97
ProfileFactory (class in macsypy.profile), 100

R
README.md, 72
reasons() (macsypy.system.UnlikelySystem property),

119
RejectedClusters (class in macsypy.system), 117
remote_exists() (mac-

sypy.package.RemoteModelIndex method),
133

RemoteModelIndex (class in macsypy.package), 132
replace() (macsypy.cluster.Cluster method), 111
replicon_infos() (macsypy.database.RepliconDB

method), 130
replicon_name() (mac-

sypy.system.AbstractSetOfHits property),
115

replicon_names() (macsypy.database.RepliconDB
method), 130

RepliconDB (class in macsypy.database), 129
RepliconInfo (class in macsypy.database), 128
requirements.txt, 72
requirements_dev.txt, 72

S
save() (macsypy.config.Config method), 79, 83
save_extract() (macsypy.report.HMMReport

method), 121

scan_models_dir() (in module macsypy.registries),
88

score() (macsypy.solution.Solution property), 123
score() (macsypy.system.System property), 117
search_genes() (in module macsypy.search_genes),

122
serialize() (macsypy.serialization.TsvLikelySystemSerializer

method), 126
serialize() (macsypy.serialization.TsvSolutionSerializer

method), 125
serialize() (macsypy.serialization.TsvSpecialHitSerializer

method), 126
serialize() (macsypy.serialization.TsvSystemSerializer

method), 125
serialize() (macsypy.serialization.TxtLikelySystemSerializer

method), 126
serialize() (macsypy.serialization.TxtSystemSerializer

method), 126
serialize() (macsypy.serialization.TxtUnikelySystemSerializer

method), 127
set_status() (macsypy.gene.ModelGene method),

99
setup.py, 72
Solution, 71
Solution (class in macsypy.solution), 123
sort_hits_by_status() (mac-

sypy.system.MatchMaker method), 113
sort_model_hits() (in module macsypy.hit), 109
split_def_name() (in module macsypy.registries),

87
status() (macsypy.gene.Exchangeable property), 99
status() (macsypy.gene.ModelGene property), 99
System, 71
System (class in macsypy.system), 116
SystemDetectionError, 130
systems() (macsypy.solution.Solution property), 123
SystemSerializer (class in macsypy.serialization),

125

T
tests, 71
topology (macsypy.database.RepliconInfo attribute),

128
TsvLikelySystemSerializer (class in mac-

sypy.serialization), 126
TsvSolutionSerializer (class in mac-

sypy.serialization), 125
TsvSpecialHitSerializer (class in mac-

sypy.serialization), 126
TsvSystemSerializer (class in mac-

sypy.serialization), 125
TxtLikelySystemSerializer (class in mac-

sypy.serialization), 126

Index 145

MacSyFinder, Release 2.0

TxtSystemSerializer (class in mac-
sypy.serialization), 126

TxtUnikelySystemSerializer (class in mac-
sypy.serialization), 127

U
unarchive_package() (mac-

sypy.package.AbstractModelIndex method),
132

UnlikelySystem (class in macsypy.system), 119
UnorderedMatchMaker (class in macsypy.system),

114
utils, 71

W
wholeness() (macsypy.system.AbstractSetOfHits

property), 115
working_dir() (macsypy.config.Config method), 79,

83

146 Index

	User Guide
	User Guide

	Modeller Guide
	Modeller Guide

	Developer Guide
	Developer Guide

	Indices and tables
	Python Module Index
	Index

