Open Financial Exchange

Specification 2.1.1

May 1, 2006

© 2006 Intuit Inc., Microsoft Corp., CheckFree Corp. All rights reserved

Open Financial Exchange Specification Legend

Open Financial Exchange Specification ©1996-2006 by its publishers: CheckFree Corp., Intuit Inc., and
Microsoft Corporation. All rights reserved.

A royalty-free, worldwide, and perpetual license is hereby granted to any party to use the Open Financial
Exchange Specification to make, use, and sell products and services that conform to this Specification.

THIS OPEN FINANCIAL EXCHANGE SPECIFICATION IS MADE AVAILABLE “AS IS” WITHOUT
WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
MICROSOFT, INTUIT AND CHECKFREE (“PUBLISHERS”) FURTHER DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT, ALL
OF WHICH ARE HEREBY DISCLAIMED. THE ENTIRE RISK ARISING OUT OF THE USE OF
THIS SPECIFICATION REMAINS WITH RECIPIENT. TO THE MAXIMUM EXTENT PERMITTED
BY APPLICABLE LAW, IN NO EVENT SHALL THE PUBLISHERS OF THIS SPECIFICATION BE
LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, DIRECT, INDIRECT, SPECIAL, PUNITIVE,
OR OTHER DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR
LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION,
OR OTHER PECUNIARY LOSS) ARISING OUT OF ANY USE TO WHICH THIS SPECIFICATION
IS PUT, EVEN IF THE PUBLISHERS HEREOF HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

TABLE OF CONTENTS

Chapter 1 OVerviewcciiiiiiiiii ittt naanannnnnssnsnnnnnns 17
L INtrodUCtioN.t 17
11,1 Design PrinCiples 18

1.2 Open Financial ExchangeataGlance i, 20
1.2, Data TranS PO, . ..ot 20
1.2.2 Requestand Response Model i i 22
1.2.3 HTTP Form Request and Response Model 24

L8 DefiNitioNS 25
L3 L USBr . ot 25
1.3.2 Financial Institution 25
1.3.3Service Provider 25
134 ClENt. oo 25
L3 D SO Vel o 25
138 SBIVICE. . oot 25

S T I Vo P 26
LB B EIEmMENt. .. 26
130 AQOregate . . o 26
1310 ReQUESTot 27
1.3, 0] RESPONSE. . .ottt 27
1302 MIBSSAQE . o . vttt et e 27
1313 Transaction. oot 27
1.3.14 Synchronization. 27
1.3, 05 MESSagE Sl . . oot 28

L4 OFX VEISIONS. .« ottt e e 28
L5 CONVENEIONS. . .ot 30
Chapter 2 Structurecc ittt ittt e easnnnnnnaaaaannnns 33
2L HT TP Headers. . ..o e 34
2.2 Open Financial Exchange File Format. 34
22.L0FXHEADER 36
2.2.2VERSION ... 36
2.2. 3 SECURITY i 36
2,24 OLDFILEUID and NEWFILEUID e 36

2.3 XML Details. . ..o 37
2.3.1 ComplianCe e e 37

OFX 2.1.1 Specification 5/1/06 iii

2.4 Open Financial Exchange XML Structure.o 37

2.4 1 OVEIVIBW . o ottt 37
2.4.2 Case SENSITIVILYo 37
243 Top Level ... 38
244 IMIBSSATES. .« . o vttt 38
2.4.5 Message Setsand VersionControl i i 40
2.4.6 TranSaCtioNSt 43
2.4.7 Synchronization WrapPerot e e e e 46
2.4.8 Message Set WIrapPero 46
2.5 The SIgNon Message Set.ttt e e e e 46
2.5.1Signon <SONRQ>and <SONRS> e 46
2.5.2 USERPASS Change <PINCHRQ><PINCHRS> 54
2.5.3<CHALLENGERQ><CHALLENGERS>......... i, 56
2.5.4 <MFACHALLENGERQ> <MFACHALLENGERS>. 57
2.5.5 Signon Message Set Profile Information, 61
2.5, 6 EXaMPIES. . .o 62
2.6 External Data SUPPOItot 69
2.7 Extensions to Open Financial Exchange i 71
2.8 Backward Compatibility with Pre-OFX 2.1.1Systems 71
2.8 L ENd Tag Usage. . ..ot 71
282 XML Compliant Header. i e 72
2.8.3 International Support . Supp@&@dpportrnational

5/1/06 OFX 2.1.1 Specification

3.2.7 Date Start and Date End <DTSTART><DTEND>, 86

3.2.8 CommON Data TYPeS . . oot e 88
3.2.9 Amounts, Prices,and Quantities i 91
3.2 00 LanQUAGE . . .ot 92
3.2.11 Other Basic Data TYPES oottt e

OFX 2.1.1 Specification 5/1/06 v

6.9 SImultaneous CONNECLIONSttt 121

6.10 Synchronization Alternatives i e 121
6.10.1 File-Based Error RECOVEIY it 122
6.10.2 Lite Synchronization. i 124
6.10.3 Relating Synchronization and Error Recovery 124

6.1 EXAMPIES . .o 126

Chapter 7 FIProfile.coiiiiii i i i nnnnnnnns 129

T L OVEIVIEW . .ttt e e e 129
7.1l MESSAgE SEES . .ot 129
7.1.2Version Control 130
7.1.3Batchingand Routing. 131
7.1.4 Client Signon for Profile Requests, 131
7.1.5 Profile Request <PROFRQ> s 132

7.2 Profile Response <PROFRS> o 133
7.2, L MESSAgE Set . .t 134
7.2.2SIgNoN Realmso 136
7.2.3Status COES.o 137

7.3 Profile Message Set Profile Information 137

Chapter 8 Activation & Account Information......................... 139

8.l OV IV W o oot 139

8.2 Approaches to User Sign-Up with OFX 139

8.3 Users and ACCOUNTSttt e e e e 140

8.4 Enrollment and Password Acquisition i 140
B4 L USEI IDS . .o 141
8.4.2 Enrollment Request <KENROLLRQ> 141
8.4.3 Enrollment Response <ENROLLRS> 142
844 EnrollmentStatus Codest 143
B4 D EXAMPIES. . .o 144

8.5 Account Information 145
8.5.1 Request <ACCTINFORQ>ot 146
8.5.2 Response <ACCTINFORS> e 146
8.5.3 Account Information Aggregate <ACCTINFO>. 147
8.5.4 Status COOES.ttt 147
8.5, D EXAMPIES. . . oo 148

8.6 Service ACtiVatioN. o 149

5/1/06 OFX 2.1.1 Specification

8.6.1 Activation Request <ACCTRQ> it e 149

8.6.2 Activation Response <ACCTRS> i e e 151
8.6.3 StatUS COUES. . .. ottt 152
8.6.4 Service Activation Synchronization.............. o oo 153
8.6 D EXamMPIes ... 154

8.7 Name and Address Changes i i e 155
8.7.1 Change User Information Request <CHGUSERINFORQ>. 155
8.7.2 Change User Information Response <CHGUSERINFORS>. 156
B.7.3 StatUS COES. . .. ottt 156
8.7.4 Change User Information Synchronization 157

8.8 Signup Message Set Profile Information............. 158
Chapter 9 Customer to Fl Communication 161
9.1 The E-Mail Message Set. e 161
9.2 E-Mail MBSSA0ES ottt 161
9.2.1 Regular vs. Specialized E-Mail 162
9.2.2BasiC <KMAIL> Aggregatet 162
9.2.3 E-Mail <MAILRQ><MAILRS> 164
9.2.4 E-Mail Synchronization <MAILSYNCRQ> <MAILSYNCRS> 166
925 E-Mail Example. ... e 167

0.3 Get HTML Page o 170
9.3.1 MIME Get Request and Response <GETMIMERQ> <GETMIMERS>. 170
9.32MIME EXample 171

9.4 Message Setsand Profile. 173
9.4.1 Message Set and MESSA0ES o oottt 173
9.4.2 E-Mail Message Set Profile 173
Chapter 10 Recurring Transactionscciiiiiiiiirnnnnnnns 175
10.1 Creatinga Recurring Model 175
10.2 Recurring Instructions <KRECURRINST>. o i 176
10.2.1 Values for <FREQ> o 176
10.2. 2 EXampPles ... 177
10.3 Retrieving Transactions Generated by a Recurring Model 179
10.3.1 Modelsand Sync Behavior 179
10.4 Modifying and Canceling Individual Transactions 179
10.5 Modifying and Canceling Recurring Models. 180
105 1 EXamMPIES .« o 180

OFX 2.1.1 Specification 5/1/06 vii

10.6 Expired Models. 183

Chapter 11 Bankingttt nnnnnnnnnnns 185
11.1 Consumer and Business Banking. i 185
1111 L0an Data. 185
11.2Credit Card Data.o 185
11.3 Common Banking Aggregatest 185
11.3.1 Banking Account <BANKACCTFROM> and <BANKACCTTO> 186
11.3.2 Credit Card Account <CCACCTFROM> and <CCACCTTO>............ 190
11.3.3 Bank Account Information <BANKACCTINFO>. 191
11.3.4 Credit Card Account Information <CCACCTINFO>. 192
11.3.5 Transfer Information <XFERINFO> 192
11.3.6 Transfer Processing Status <XFERPRCSTS>........................... 195
11.3.7 Loan Account <LOANACCTFROM> and <LOANACCTTO>............ 196
11.3.8 Loan Account Information <LOANACCTINFO> 197
11.3.9 Loan Transaction Amount <LOANTRNAMT> 201
11.4 Downloading Transactionsand Balances. 202
11.4.1 Bank Statement Download 203
11.4.2 Credit Card Statement Download, 205
11.4.3 Statement Transaction <STMTTRN> 209
11.4.4 Loan Statement Download i 213
11.4.5 Loan Statement Transaction <LOANSTTMTTRN> 216
11.4.6 Amortization Schedule Download. 219
11.5 Statement Closing Information. i 222
11.5.1 Statement Closing Download i 222
11.5.2 Non-Credit Card Statement <CLOSING>, 224
11.5.3 Credit Card Statement Closing Request <CCSTMTENDRQ> 225
11.5.4 Credit Card Statement Closing Response <CCSTMTENDRS> 226
11.5.5 Loan Statement End Request <LOANSTMTENDRQ> 229
11.5.6 Loan Statement End Response <LOANSTMTENDRS>. 229
11.5.7 Status CodeS. . ..ot 230
11.5.8 Loan Closing <LOANCLOSING>. i e 231
116 StOp CheCKo 234
11.6.1Stop Check Add. 235
11.6.2 Status CodesS.ottt 238
11.7 Intrabank Funds Transfer i 239
11.7.1 Intrabank Funds Transfer Addition............. 240
11.7.2 Intrabank Funds Transfer Modification............................... 243

viii 5/1/06 OFX 2.1.1 Specification

11.7.3 Intrabank Funds Transfer Cancellation. 246

11.8 Interbank Funds Transfer 248
11.8.1 Interbank Funds Transfer —US. i e 248
11.8.2 Interbank Funds Transfer — International Usage 249
11.8.3 Interbank Funds Transfer Modification 252
11.8.4 Interbank Funds Transfer Cancellation................ 255

11.9Wire Funds Transfer 257
11.9.1 Wire Funds Transfer Addition i, 258
11.9.2 Wire Funds Transfer Cancellation 262

11.10 Recurring Funds Transfer o 264
11.10.1 Recurring Intrabank Funds Transfer Addition 264
11.10.2 Recurring Intrabank Funds Transfer Modification 267
11.10.3 Recurring Intrabank Funds Transfer Cancellation 270
11.10.4 Recurring Interbank Funds Transfer Addition 271
11.10.5 Recurring Interbank Funds Transfer Modification 274
11.10.6 Recurring Interbank Funds Transfer Cancellation 277

11.11 E-Mail and Customer Notification. i, 279
11.11.1Banking E-Mail 279
11.12.2 NOtIFICAtIONS.o 282
11.11.3 Returned Check and Deposit Notification 283
11114 Loan E-Mailo 285

11.12 Data Synchronization for Banking. 287
11.12.1 Data Synchronization for StopCheck 287
11.12.2 Data Synchronization for Intrabank Funds Transfers................... 288
11.12.3 Data Synchronization for Interbank Funds Transfers................... 291
11.12.4 Data Synchronization for Wire Funds Transfers 293
11.12.5 Data Synchronization for Recurring Intrabank Funds Transfers 294
11.12.6 Data Synchronization for Recurring Interbank Funds Transfers 296
11.12.7 Data Synchronization forBank Mail 298
11.12.8 Data Synchronization for LoanMail 300

11.13 Message Setsand Profile. ... 302
11.13.1 Message Sets and MeSSages.o oo vt 303
11.13.2 Bank Message Set Profile. 310
11.13.3 Credit Card Message Set Profile. o it 312
11.13.4 Interbank Funds Transfer Message Set Profile......................... 313
11.13.5 Wire Transfer Message Set Profile 314
11.13.6 Loan Message Set Profile. 315

L1 A EXamMPIES . o 316

OFX 2.1.1 Specification 5/1/06 iX

11.14.1 Statement Download 316

11.14.2 Intrabank Funds Transfer i 318
11.14.3Stop CheCK . ..o 320
11,144 Recurring Transfers. i 323
10040 L0aANS . ettt 333
Chapter 12 Payments.iiiiiiiiiii ittt ennnannnnnnns 343
12.1 Consumer and Business Paymentsc.. i 343
122 The Payee Model. e 343
12.2.1 Payee Identifiers 343
12,22 Payee LiStS ... o 344
12.2.3 Standard Payee Lists. 345
12.2.4 Identifying Payees. 346
12.2.5 Side Effects of Payee Adds and Modifications......................... 347
12.3 Identifiers Used in Payment Transactionsccoiiiiinnnn... 347
124 The Payment Life Cycle. i e e e 349
12.4.1 Payment Creationt 349
12.4.2 Payment Modification i i 349
12.4.3 Payment Status INQUITYo 350
12.4.4 Payment Cancellation. i i 350
12.4.5 Delayed Payee MatCching e 350
12.5 Common Payments Aggregates.ot 351
12.5.1 Payments Account Information <BPACCTINFO>. 351
12.5.2 Payment Information <PMTINFO>ccvun.. 352
12.6 Payments FUNCLIONSo e 359
12.6.1 Payment Creationt 360
12.6.2 Payment Modification 363
12.6.3 Payment Cancellation. i i 367
12.6.4 Payment Status Inquiry 369
12.7 Recurring Paymentst 370
12.7.1 Creating a Recurring Payment i, 372
12.7.2 Recurring Payment Modification i, 375
12.7.3 Recurring Payment Cancellation 379
128 Payment Mail 381
12.8.1 Payment Mail Requestand Response oot 381
12.8.2 Payment Mail Synchronization........... i 384
12,9 Payee ListS . ..o e 385
12.9.1 AddingaPayeetothePayee List............ 387

5/1/06 OFX 2.1.1 Specification

12.9.2 Payee Modification.t 389

12.9.3Payee Deletion. i 393
12.9.4 Payee List Synchronizationo i 395
12.10 Data Synchronization for Payments i 397
12.10.1 Payment Synchronizationc. e 398
12.10.2 Recurring Payment Synchronization................. 400
12.10.3 DISCUSSION . . ottt et et e 402
12.11 Message Setsand Profile. 403
12.11.1 Bill Pay Message Sets and MeSSagescov i 404
12.11.2 Bill Pay Message Set Profile <BILLPAYMSGSET>. 406
12, 12 EXamMpPIES . o e e 1. . 2.8882.1800.. ..0090.. ..0@

OFX 2.1.1 Specification 5/1/06 Xi

13.7 Investment Message Setsand Profile. 434

13.7.1 Investment Statement Download i 435
13.7.2 Security Information. 438
13.8 INvestmMeNnt SECUNITIeSo e 441
13.8.1 Security Identification <SECID> i 441
13.8.2 Security LISt ReqUeSE.o 441
13.8.3 Security LISERESPONSE o 443
13.8.4 Security LiSt<SECLIST>. 444
13.8.5 Securities Information 444
13.9 Investment Statement Download. 450
13.9.1 Investment Statement Request 450
13.9.2 Investment Statement RESPONSEttt 453
13.9.3401(k) Account Information. 477
13.10 Investment Statement Closing Information 484
13.10.1 Request <INVSTMTENDRQ>ot 484
13.10.2 Response <INVSTMTENDRS> e 484
13.10.3 Investment Statement <INVCLOSING> 485
13.11 Investment E-Mail e 486
13.11.1 Investment E-Mail Requestand Response 486
13.11.2 Investment E-Mail Synchronization. 488
13.12 Complete Example oo 490
13.13 Complete 401(K) Exampleo 495
Chapter 14 BillPresentmentt 503
1AL OVEIVIBW . o .o e e 503
14. 1.1 Bill PresentmentModel i 503
14.1.2 Servers and Message Sets. 503
14.2 Biller DIreCIOrYot e 504
14.2.1 Client Signon to the Biller Directory Servercco.... 504
14.2.2 Search ArgUMENTS. oo e 504
14.2.3 Identification of Bill Publishers. L. 504
14.2.4 Find Biller Request <FINDBILLERRQ> 505
14.2.5 Find Biller Response <FINDBILLERRS> 507
14.2.6 Status Codes <FINDBILLERRS>. e 509
14.2.7 Account Number Validation. i i 510
14.2.8 Biller Payment Restrictions 511
14.3 CUSTOMEE SIQNUP .« oo ettt e e e ettt e e 512
143 1 Enrollment 513

Xii 5/1/06 OFX 2.1.1 Specification

14.3.2 ACCOUNT INQUITY . oot e e e e 513

14.3.3 Service ACtiVation o 516
14.3.4 Service Status Update for Groups of Customers 518
144 BIll DeliVery 522
14.4.1 Bill Delivery ProCess. oot 522
1442 Bill ListRetrieval. 522
1443 Bill Detail Retrieval. 536
14.4.4 Table Structure Definition 540
14.4.5 Delivery NOUIficationt e 542
14.4.6 Bill Status Modification 545
145 Bill Payment 546
14.5.1 Remittance Information. i 546
14.5.2 Payee Identification 546
14.6 Bill Presentment E-Mail. 547
14.6.1 Bill Presentment Mail Request <PRESMAILRQ>. 548
14.6.2 Bill Presentment Mail Response <PRESMAILRS>. 548
14.6.3 Status Codes <PRESMAILRS>. e 549
14.6.4 Request <PRESMAILSYNCRQ>o e 550
14.6.5 Response <PRESMAILSYNCRS>.. e 551
14.7 Message Setsand Profile. 552
14.7.1 Message Sets and MeSSagesS. . . .o oo v ittt 552
14.7.2 Biller Directory Message Set Profile. i, 556
14.7.3 Bill Delivery Message SetProfile 556
14.8 Bill Presentment Examples 558
14.8.1 Find Biller EXamples.o 558
14.8.2 Enrollment Examples. 565
14.8.3 Activation EXample ... 567
14.8.4 Bill Delivery Examples. 569
Chapter 15 Images. ...ttt iisnanaaeeeenrrnennnnnns 579
15, OVBIVIBW . . oot 579
15.2 Image Download OpLioNS. oot 579
15.2.1 Image Retrieval Method # 1. Reference Type OPAQUE. 580
15.2.2 Image Retrieval Method # 2: Reference Type URL 582
15.2.3 Image Retrieval Method # 3: Reference Type FORMURL 583
15.3 Message Setsand Profile. 584
15.3.1 Image Message Set Request Messages.o v i i 584
15.3.2 Image Message Set Response Messages, 584

OFX 2.1.1 Specification 5/1/06 Xiii

15.3.3Image Message Set Profile 584

15,4 EXAmMPIES . oo e 586
15.4.1 Transaction Image Example i 586
15.4.2 Statement Closing Image Example. 590
15.4.3 Transaction FORMURL Example....... i, 593
15.4.4 Profile Request and Response Showing Image Support................. 595
Chapter 16 Automatic 1-Way OFX. iiiiiiiinnnnnnens 599
16.1 ReqUEStOR X FOImM.o e e 599
16.1.1 User Credentials <USERID>, <USERPASS>, <CRED2>, <CRED3>,
SCLIENTUID> .o e e 600
16.1.2 Challenge QUESTION ANSWELSt it it 600
16.1.3 Date Start and Date End <DTSTART>, <DTEND>...................... 601
16.1.4 Include Flags <INCTRAN>, <INCPOS>, <INCBAL>. 601
16.1.5 Account ID <ACCTID>. i 601
16.1.6 Account Type <ACCTTYPE>. e 602
16.2 HTTP FOrm RESPONSE . ..ot e 603
16.2.1 Response to RequestOFX FOrm. i i 603
16.2.2 Status RESPONSESottt 604
16.2.3 Challenge RESPONSEt e 604
16.3 Automatic 1-Way URL. 605
16.4 Redirection and COOKIESottt 605
16,5 EXaMPIES . o 606
16.5.1 Example - Failed Multiple Statements Request 606
16.5.2 Example - MFA Challenge Response.o ... 606
16.5.3 Banking and Credit Card Statements. 607
16.5.4 Example - Banking Accounts with Multiple Accounts and Ampersand in
PaSSWOId . . . 612
16.5.5 Example - Banking, Balanceonly o 614
16.5.6 Investment Statement, Balances and Positions. 616
Appendix A StatusCodes.ccoiiiiiiiii ittt 623
Appendix B Suggested Name Values for the Banking <BALLIST> 631
B.1Usage Field Values. 631
B.2 Name and Description Table 631
Appendix C ChangeHistory............ccciiiiiiiiiiininnnnnnnnns 635
CLORX LB T0 2.0 ..ottt e e e e e 635
C.1.1 Specification Changesby Chapter.......... 635

Xiv 5/1/06 OFX 2.1.1 Specification

C.20FX 2.01t0 2.0. L. . .ot 638

C.2.1 Specification Changesby Chapter........... i .. 639
C.3ORX 2.0.110 2.0.2 . . oot 642
C.3.1 Specification Changes by Chapter. i 642
C.3.2DTD Changes . .ttt e e e e 643
CAOFRX 2.0.210 2.0, .ottt e 644
C.4.1 Specification Changes by Chapter. i 645
ChOORX 2110 2.0 0. .ot 648
C.5.1 Specification Changesby Chapter. i .. 648

OFX 2.1.1 Specification 5/1/06 XV

XVi 5/1/06 OFX 2.1.1 Specification

CHAPTER 1 OVERVIEW

1.1 Introduction

Open Financial Exchange is a broad-based framework for exchanging financial data and instructions
between customers and their financial institutions. It allows institutions to connect directly to their
customers without requiring an intermediary.

INSTITUTIONS
CUSTOMERS Financial Institulions
Consumers P> Financial Advizors
Families Govammant Agencias
Taxpayers Marchants and Businasses
Small Businazzas Imarmation Providera
Transaction Frocassors

Open Financial Exchange is an open specification that anyone can implement: any financial institution,
transaction processor, software developer, or other party. It uses widely accepted open standards for data
formatting (such as XML), connectivity (such as TCP/IP and HTTP), and security (such as SSL).

Open Financial Exchange defines the request and response messages used by each financial service as well
as the common framework and infrastructure to support the communication of those messages. This
specification does not describe any specific product implementation.

OFX 2.1.1 Specification 5/1/06 17

1.1.1 Design Principles

The following principles were used in designing Open Financial Exchange:

¢ Broad Range of Financial Activities — Open Financial Exchange provides support for a broad
range of financial activities. Open Financial Exchange 2.1.1 specifies the following services:

Bank statement download
Credit card statement download

Funds transfers including recurring transfers

2

L 4

*

¢ Loan statement download
¢ Consumer payments, including recurring payments
¢ Business payments, including recurring payments

2

Brokerage and mutual fund statement download, including transaction history, current holdings, and
balances for normal accounts and 401(k) accounts.

Bill presentment and payment
Tax form download, including 1099 and W2 (presented as a 2.0 addendum).

Image download for banking, credit cards, investments and loans

* & o o

Automatic 1-Way OFX

¢ Broad Range of Financial Institutions — Open Financial Exchange supports communication with
a broad range of financial institutions (FIs), including:

¢ Banks

Brokerage houses
Merchants
Processors

Financial advisors

* 6 6 o o

Government agencies

¢ Broad Range of Front-End Applications — Open Financial Exchange supports a broad range of
front-end applications, including Web-based applications, covering all types of financial activities
running on all types of platforms.

¢ Extensible — Open Financial Exchange has been designed to allow the easy addition of new services.
Future versions will include support for many new services.

¢ Open - This specification is publicly available. You can build client and server applications using the
Open Financial Exchange protocols independent of any specific technology, product, or company.

¢ Multiple Client Support — Open Financial Exchange allows a user to use multiple client applications
to access the same data at a financial institution. With the popularity of the World Wide Web, customers
are increasingly more likely to use multiple applications—either desktop-based or Web-based—to

18 1.1 Introduction

perform financial activities. For example, a customer can track personal finances at home with a
desktop application and occasionally pay bills while at work with a Web-based application. The use of
data synchronization to support multiple clients is a key innovation in Open Financial Exchange.

Robust — Open Financial Exchange will be used for executing important financial transactions and for
communicating important financial information. Assuring users that transactions are executed and
information is correct is crucial. Open Financial Exchange provides robust protocols for error recovery.

Secure — Open Financial Exchange provides a framework for building secure online financial
services. In Open Financial Exchange, security encompasses authentication of the parties involved, as
well as secrecy and integrity of the information being exchanged.

Batch & Interactive — The design of request and response messages in Open Financial Exchange is
for use in either batch or interactive style of communication. Open Financial Exchange provides for
applying a single authentication context to multiple requests in order to reduce the overhead of user
authentication.

International Support — Open Financial Exchange is designed to supply financial services
throughout the world. It supports multiple currencies, country-specific extensions, and different forms
of encoding such as UNICODE.

Platform Independent —Open Financial Exchange can be implemented on a wide variety of front-
end client devices, including those running on Windows, Macintosh, or UNIX. It also supports a wide
variety of Web-based environments and messaging frameworks, including those using SOAP, HTML,
Java, JavaScript, or ActiveX. Similarly on the back-end, Open Financial Exchange can be implemented
on a wide variety of server systems, including those running UNIX, Windows NT, or OS/2.

Transport Independent — Open Financial Exchange is independent of the data communication
protocol used to transport the messages between the client and server computers. Open Financial
Exchange 2.1.1 uses HTTP.

OFX 2.1.1 Specification 5/1/06 19

1.2 Open Financial Exchange at a Glance

The design of Open Financial Exchange is as a client and server system. An end-user uses a client
application to communicate with a server at a financial institution. The form of communication is requests
from the client to the server and responses from the server back to the client.

Open Financial Exchange uses the Internet Protocol (IP) suite to provide the communication channel
between a client and a server. IP protocols are the foundation of the public Internet and a private network
can also use them.

1.2.1 Data Transport

Clients use the HyperText Transport Protocol (HTTP) to communicate to an Open Financial Exchange
server. The World Wide Web throughout uses the same HTTP protocol. In principle, a financial institution
can use any off-the-shelf web server to implement its support for Open Financial Exchange.

To communicate by means of Open Financial Exchange over the Internet, the client must establish an
Internet connection. This connection can be a dial-up Point-to-Point Protocol (PPP) connection to an
Internet Service Provider (ISP) or a connection over a local area network that has a gateway to the Internet.

Clients use the HTTP POST command to send a request to the previously acquired Uniform Resource
Locator (URL) for the desired financial institution. The URL presumably identifies a Common Gateway
Interface (CGI) or other process on an FI server that can accept Open Financial Exchange requests and
produce a response.

20 1.2 Open Financial Exchange at a Glance

The POST identifies the data as being of type application/x-ofx. Use application/x-ofx as the return type as
well. Fill in other fields per the HTTP 1.0 specification. Here is a typical request:

POST http://www.fi.com/ofx.cgi HTTP/1l.0HTTP headers
User-Agent :MyApp 5.0

Content-Type: application/x-ofx

Content-Length: 1032

<! --XML declaration-->
<?xml version="1.0"?>

<!--0FX declaration-->

<?0FX OFXHEADER="200" VERSION="211" SECURITY="NONE" OLDFILEUID="NONE"
NEWFILEUID="NONE"?>

<!--0OFX request-->
<OFX>

Open Financial Exchange requests
</OFX>

A blank line defines the separation between the HTTP headers and the start of the Open Financial
Exchange headers.

The structure of a response is similar to the request, with the first line containing the standard HTTP result,
as shown next. The content length is given in bytes.

HTTP 1.0 200 OK HTTP headers

Content-Type: application/x-ofx
Content-Length: 8732

<!--XML declaration-->

<?xml version="1.0"7?>

<!--0FX declaration-->

<?0FX OFXHEADER="200" VERSION="211" SECURITY="NONE" OLDFILEUID="NONE"
NEWFILEUID="NONE" ?>

<!--0OFX response-->
Open Financial Exchange responses
</0OFX>

OFX 2.1.1 Specification 5/1/06 21

1.2.2 Request and Response Model

The basis for Open Financial Exchange is the request and response model. One or more requests can be
batched in a single file. This file typically includes a signon request and one or more service-specific
requests. An FI server will process all of the requests and return a single response file. This batch model
lends itself to Internet transport as well as other off-line transports. Both requests and responses are plain
text files, formatted using a grammar based on Extensible Markup Language (XML).

Here is a simplified example of an Open Financial Exchange request file. (This example does not show the
Open Financial Exchange headers and the indentation is only for readab

22 1.2 Open Financial Exchange at a Glance

</INCTRAN> <!-- End of include transaction -

->
</STMTRQ> <!-- End of statement request -->
</STMTTRNRQ> <!-- End of first request -->
</BANKMSGSRQV1>
</0OFX> <!-- End of request data -->

The response format follows a similar structure. Although a response, such as a statement response,
contains all of the details of each transaction, each individual detail of the statement is identified using
tags.

The key rule of Open Financial Exchange syntax is that each tag is either an element or an aggregate. Data
follows its element tag. An aggregate tag begins a compound tag sequence, which must end with a
matching tag; for example, <AGGREGATE> ... </AGGREGATE>.

The file sent by Open Financial Exchange does not require any white space between tags.

White space following a tag delimiter (>), following an element value, or preceding a tag delimiter (<)
should be ignored. White space within an element value (i.e. not preceding, not following) is significant. If
white space is desired preceding or following an element value, this is achieved using the CDATA wrapper.
If more than one white space element is needed, then multiple macros should be utilized. See
section 2.3.1.1.

OFX 2.1.1 Specification 5/1/06 23

1.2.3 HTTP Form Request and Response Model

OFX 2.1.1 also supports form requests to a website supporting an HTTP form request and response model.
This is discussed in Chapter 16, "Automatic 1-Way OFX".

Having authenticated the request, the web site responds with an OFX download, just as if the customer had
manually entered the OFX request at the site.

Here is a typical successful response:

HTTP 1.0 200 OK HTTP headers
Content-Type: application/x-ofx
Content-Length: 8732

<?0FX OFXHEADER="200" VERSION="211" SECURITY="NONE" OLDFILEUID="NONE"
NEWFILEUID="NONE" ?>

<OFX>
Open Financial Exchange response following the OFX specification...
</0FX>

24 1.2 Open Financial Exchange at a Glance

1.3 Definitions

The following sections detail definitions that hold within the context of OFX.

1.3.1 User

User refers to the person or entity interfacing with the OFX client to cause it to generate OFX requests.

1.3.2 Financial Institution

Financial Institution (FI) refers to the institution with which the user has a direct relationship. Generally
this means a bank, but in many cases it may be an institution providing non-banking financial services.

1.3.3 Service Provider

Service Provider (SP) refers to an institution with which the user does not have a direct relationship.
Generally, such an institution is subcontracted by the FI to provide specific services to the customer on
behalf of the FI.

1.3.4 Client

An OFX client is the software that generates OFX requests, receives responses and processes them. This
may be a personal finance manager, a web browser running locally interactive code (such as with a Java
applet or ActiveX control), a Web server, a proxy, or one of many other possibilities.

1.3.5 Server

An OFX server is the software that receives OFX requests, processes them, and generates OFX responses.

1.3.6 Service

A service is a collection of related transactions. For example, the BANKSVC service encompasses
banking transactions such as requesting bank statements, initiating stop checks, initiating wire transfers,
etc.

In OFX 1.x and 2.x, services are used directly only when describing or changing the general options
available to a particular customer. Other collections of transactions instead use the concept of Message
Sets as described in section 1.3.15.

OFX 2.1.1 Specification 5/1/06 25

1.3.7 Tag

Tag is the generic name for either a start tag or an end tag. A start tag consists of an element or aggregate
name surrounded by angle brackets. An end fag is the same as a start tag, with the addition of a forward
slash immediately preceding the name. For example, the start tag for the aggregate named FOO looks like
this:

<FOO>
The end tag for the same aggregate looks like this:

</FO0O>

1.3.8 Element

An OFX document contains one or more elements. An element is some data bounded by a leading start tag
and a trailing end tag. For example, an element named BAZ, containing data “bar,” looks like this:

<BAZ>bar</BAZ><!-- An element ended by its own end tag-->

An OFX element must contain data (not just white space) and may not contain other elements. This is a
refinement to the XML definition of an element which is more generic. An XML element containing other
elements is defined in OFX as an aggregate. OFX specifically disallows empty elements and elements with
mixed content.

1.3.9 Aggregate

An aggregate is a collection of elements and/or other aggregates. An aggregate may not contain any data
itself, but rather contains elements containing data, and/or recursively contains aggregates.

OFX includes very few empty aggregates and clients and servers should not send an aggregate without
content. In general, the entire aggregate should be left out of a request or response file when its (optional)
content is missing. The few exceptions to these rules (such as <SECLISTRS>, described in section
13.8.3.3) are called out in the relevant sections of this document.

26 1.3 Definitions

1.3.10 Request

A request is information sent by the client. An OFX request file is the entire XML file sent by the client,
including the OFX declaration. An individual request generally is an aggregate whose name ends in RQ.

1.3.11 Response

A response is information sent by the server. An OFX response file is the entire XML file sent by the
server, including the OFX declaration. An individual response generally is an aggregate whose name ends
in RS.

When elements and aggregates from the request also appear in the corresponding response they are
generally intended to echo the values from a request in the response (this enables client matching with the
request, for example). While the server should not modify data in individual elements when echoing,
elements not found in a particular request may be added in the response. These situations (such as adding a
<PAYEELSTID> when creating a <PMTRQ> response) are described as they arise. OFX also includes a
few specific situations requiring different information to be sent and returned in corresponding elements of
a request/response pair. Again, these exceptions (such as the <TOKEN> element in a sync request and
response) are described as they arise.

1.3.12 Message

A message is the unit of work in OFX. It refers to a request and response pair. For example, the message to
download a bank statement consists of the request <STMTRQ> and the response <STMTRS>.

1.3.13 Transaction

A transaction consists of a message and its associated transaction wrappers. The transaction request
wrapper contains a unique transaction identifier used to prevent ambiguity in matching a particular
response to its associated request, and the request aggregate. The transaction response wrapper contains a
status aggregate, the transaction identifier sent in the request, and (if the transaction was successful) the
response aggregate. For details on the use of transaction wrappers, see section 2.4.6.

1.3.14 Synchronization

For messages subject to synchronization (see Chapter 6. "Data Synchronization"), an added layer of
aggregates is also part of a message definition: a synchronization request and response. These add a token
and, in some cases, other information. Synchronization requests may encapsulate embedded transactions
that execute only when certain conditions are true at the server (either the containing synchronization
request completed without error or the request had no errors and the client was up to date).

OFX 2.1.1 Specification 5/1/06 27

1.3.15 Message Set

Message sets are collections of messages. Generally they form all or part of a service (as defined in section
1.3.6). OFX utilizes these smaller groupings when wrapping request or response transactions, profiling
server support for the wrappers and describing individual messages. The BANKSVC service, for example,
is broken into the BANKMSGSET, CREDITCARDMSGSET, INTERXFERMSGSET and
WIREXFERMSGSET message sets.

Please refer to section 2.4.5 , "Message Sets and Version Control" for additional information about
message sets.

1.4 OFX Versions

There are several distinct versions of OFX clients and servers.

Version 1.0.2 supports any or all version 1 message sets except Bill Presentment. These message sets are
defined by the OFX 1.0.2 Document Type Definition (DTD), which is used for parsing. Applications that
conform to this version are referred to as 1.0.2 clients and 1.0.2 servers.

Version 1.0.3 extends 1.0.2 by adding support for Muli-Factor Authentication.

Version 1.5.1 supports all version 2 message sets, Bill Presentment, and all version 1 message sets.
Because it supports all message sets, the OFX 1.5.1 DTD can be used to create and support OFX 1.0.2 and/
or OFX 1.5.1 clients and servers.

Version 1.6 DTD supports all message sets available in the OFX 1.5.1 DTD. It adds specific enhancements
to some of the aggregates. All of those enhancements are optional and should not be used by a client unless
the server indicates support in its FI Profile. Applications that conform to this version are referred to as 1.6
clients and 1.6 servers. The OFX 1.6 DTD fully incorporates the OFX 1.0.2 and 1.5.1 message sets, so it
can be used to support both 1.0.2 and 1.5.1 applications.

Version 2.0 supports all V1 message sets available in the OFX 1.6 DTD. It adds support for 401(k)
investment statement download. The Tax OFX addendum to OFX 2.0 adds support for 1099 and W2
download. An important change for 2.0 is that it adds the requirement of XML compliance to OFX 2.0
clients and servers. See chapter 2 for more information.

Version 2.0.1 extends 2.0 by adding support for investment transaction reversals, by adding the capability
to include an arbitrary list of balances in statement and credit card statement downloads, and by adding the
ability to specify bill publisher information in the payment message.

Version 2.0.2 adds clarification to 2.0.1 as well as fixes some minor documentation bugs.

Version 2.0.3, an extension of 2.0.2, adds Multi-Factor Authentication (MFA) to the Signon Message Set
and changes to the Profile Message Set to support MFA.

28 1.4 OFX Versions

Version 2.1 extends 2.0.2 by adding support for loans, as well as image download for banking, credit cards,
investments and loans. Automatic 1-Way OFX is also new; see in Chapter 16 for details. Appendix C.4
contains a full description of changes made for OFX 2.1.

Version 2.1.1 adds Multi-Factor Authentication (MFA) to the Signon Message Set and changes to the
Profile Message Set to support MFA. These are virtually the same MFA changes that are added to versions
1.0.3 and 2.0.3.

For an overall description of OFX message sets, see section 2.4.5.3.

OFX 2.1.1 Specification 5/1/06 29

1.5 Conventions

The conventions used in the element and aggregate descriptions include the following:

¢ Required elements and aggregates are in bold. Regular face indicates elements and aggregates that are
optional. Required means that a client must always include the element or aggregate in a request, and a
server must always include the element or aggregate in a response.

& Required elements and aggregates occur once unless noted as one or more in the description, in which
case the specification allows multiple occurrences.

¢ Optional elements and aggregates occur once if present unless noted as zero or more in the description,
in which case the specification allows multiple occurrences.

& Character fields are identified with a data type of “A-n”, where n is the maximum number of allowed
Unicode characters.

Note: n refers to the number of characters in the resultant string. Each multi-byte or encoded

character counts as a single character. UTF-8 encodes “high” Latin-1 characters (decimal 128-
255) using two bytes, and double-byte characters using three bytes. In addition, XML encodes

ampersands, less-than symbols, greater-than symbols, and spaces (where required) using multi-
character escape strings (see section 2.3.1.1). Therefore, an element of type A-40 may require

more than 40 bytes in a UTF-8-encoded XML stream.

¢ N-n identifies an element of numeric type where 7 is the maximum number of characters in the value.
Values of this type are generally whole numbers, but the data type allows negative numbers. OFX
includes a few fixed-position numeric values (such as <APPVER>, see section 2.5.1.2) called out in the
text. In all cases, elements of this type may contain only the characters 0 through 9 and - (hyphen, the
negative sign indicator). So an element of type “N-6" may take values from -99999 to 999999. The
value “0000000” would be illegal for an N-6 element. White space is not allowed within the numeric
value. Leading zeroes are allowed, but discouraged except where noted in the text. For example, a
<MIN> element containing zero might be sent as “<MIN>0", “<MIN>00", “<MIN> 0", but not
“<MIN>0 0".

¢ Common value types, such as a dollar amount, are referenced by name. Chapter 3. "Common
Aggregates, Elements, and Data Types" lists value types that are referenced by name.

30 1.5 Conventions

¢ Explanatory information is in italics

<REQUIRED> Required element or aggregate (1 or more)
<REQUIRED2> Required element or aggregate that occurs only once
<OPTIONAL> Optional element or aggregate; this element or aggregate can occur

multiple times (0 or more)

<SPECIFIC> Values are A, B, and C
<ALPHAVALUE> Takes a value up to 32 characters in length, A-32
Explanatory text Hopefully useful information.

OFX 2.1.1 Specification 5/1/06 31

32

1.5 Conventions

CHAPTER 2 STRUCTURE

This chapter describes the basic structure of an Open Financial Exchange request and response. Structure
includes headers, basic syntax, and the Signon request and response. This chapter also describes how Open
Financial Exchange encodes external data, such as bit maps.

Open Financial Exchange data consists of a declaration plus one Open Financial Exchange data block.
This block consists of a signon message and zero or more additional messages. When sent over the Internet
using HTTP, standard HTTP and (optionally) multipart MIME headers and formats surround the Open
Financial Exchange data. A simple file that contained only Open Financial Exchange data would have the
following form:

HTTP headers

MIME type application/x-ofx

XML declaration

Open Financial Exchange declaration
Open Financial Exchange XML block

A more complex file that contained additional Open Financial Exchange data would have this form:
HTTP headers

MIME type multipart/x-mixed-replace; boundary =XYZZY24x7
--XYZZY24x7

MIME type application/x-ofx

XML declaration

Open Financial Exchange declaration

Open Financial Exchange XML block

--XYZ7Y24x7
MIME type image/jpeg
FI logo
--XYZ7ZY24x7--

Version 1.0.2 of the Open Financial Exchange specification did not specify how to properly separate the
various components of an OFX request. In particular, separation of the HTTP headers, the MIME
attachments, the OFX declaration, the OFX header elements, and the OFX SGML block.

OFX 1.0.2 clients used a mix of LF and CRLF constructs and OFX 1.0.2 servers handled either linefeed
(LF) or carriage return/line feed (CRLF), but not often both. In the future, it is expected that 1.0.2 servers
will be upgraded to handle both CRLF and LF.

OFX 2.1.1 clients and servers are expected to follow standard XML 1.0 conventions regarding the use of
CR and LF. XML 1.0 is an accepted World Wide Web Consortium (W3C) recommendation.

http://www.w3.0rg (W3C home page)

http://www.w3.0rg/TR/REC-xml (XML 1.0 recommendation)

OFX 2.1.1 Specification 5/1/06 33

http://www.w3.org

The text has been included below for ease of reference:

2.1 HTTP Headers

Data delivered by way of HTTP places the standard HTTP result code on the first line. HTTP defines a
number of status codes. Servers can return any standard HTTP result. However, Fls should expect clients
to collapse these codes into the following three cases:

Meaning Action

200 OK The request was processed and a valid Open Financial Exchange result is
returned.
400s Bad request The request was invalid and was not processed. Clients will report an internal

error to the user. Invalid requests include: general HTTP transport errors, XML
formatting errors, invalid OFX syntax, and invalid data values. This error should
not appear for request files the server is able to parse.

500s Server error The server is unavailable. Clients should advise the user to retry shortly.

Note: The server must return a code in the 400s for any problem that prevents it from
processing the request file. Processing problems include failures relating to security,
communication, parsing, or the Open Financial Exchange declaration (for example, the client
requested an unsupported language). For content errors such as wrong USERPASS or invalid
account, the server must return a valid Open Financial Exchange response along with code 200.
If a communication time-out error occurs while an OFX server and a back-end server are
communicating to fill a request, then the server MUST return a code in the 500s.

Open Financial Exchange requires the following HTTP standard headers:

Value Explanation
Content- application/x- | The MIME type for Open Financial Exchange
type ofx
Content- length Length of the data after removing HTTP headers
length

When responding with multipart MIME (likely only if the request included a <GETMIMERQ> request),
the main type will be multipart/x-mixed-replace; one of the parts will use application/x-ofx.

2.2 Open Financial Exchange File Format

The contents of an Open Financial Exchange file consists of simple declarations followed by contents
defined by those declarations.

34 2.1 HTTP Headers

The standard XML declaration must come first. This Processing Instruction (PI) includes an option to
specify the version of XML being used, and may include options to show such things as the encoding
declaration, and the standalone status of the document.

The XML declaration takes the following form:

Note: White space requirements are not imposed by this specification beyond the standard
XML 1.0 conventions; therefore, the white space formatting shown in these examples is not
required.

The encoding and standalone attributes are shown below for completeness and may be omitted.
See XML 1.0 for a description of the default handling for these attributes.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

The OFX declaration must come next in the file. This PI identifies the contents as an Open Financial
Exchange file and provides the version number of the Open Financial Exchange declaration itself (not the
version number of the contents). The Open Financial Exchange Pl contains the following attributes:

OFXHEADER
VERSION
SECURITY
OLDFILEUID
NEWFILEUID

All these attributes are required. "NONE" should be returned if client or server does not make use of an
individual attribute, e.g., OLDFILEUID="NONE".

The entire declaration takes the form:

<?0FX OFXHEADER="200" VERSION="211" SECURITY="NONE" OLDFILEUID="NONE"
NEWFILEUID="NONE" ?>

OFX 2.1.1 Specification 5/1/06 35

For information about each of the OFX declaration attributes, refer to the following sections.

2.2.1 OFXHEADER

OFXHEADER specifies the version number of the Open Financial Exchange declaration.

The OFXHEADER value changes its major number only if an existing client is unable to process the new
header. This can occur because of a complete syntax change in a header, or a significant change in the
semantics of an existing header element.

Because OFX 2.1.1 uses an XML compliant header which significantly differs from the 1.x header, the
value of OFXHEADER is now 2.0 (OFXHEADER="200").

2.2.2 VERSION
VERSION specifies the version number of the following OFX data block.

The OFX 2.1.1 DTD supports the following:
¢ All message sets found in OFX 2.1 plus Multi-Factor Authentication.

For OFX 2.1.1 the accepted value for VERSION is 211.

2.2.3 SECURITY

SECURITY defines the type of application-level security, if any, that is used for the <OFX> block. The
values for SECURITY can be NONE or TYPEL.

For more information about security, refer to Chapter 4, "OFX Security."

2.2.4 OLDFILEUID and NEWFILEUID

NEWFILEUID uniquely identifies this request file. The NEWFILEUID, which clients must send with
every request file and which servers must echo in the response, serves two purposes:

& Servers can use the NEWFILEUID to quickly identify duplicate request files.

¢ Clients and servers can use NEWFILEUID in conjunction with OLDFILEUID for file-based error
recovery. For more information about using file-based error recovery or lite synchronization, see
Chapter 6, "Data Synchronization."

OLDFILEUID is used together with NEWFILEUID only when the client and server support file-based
error recovery. OLDFILEUID identifies the last request and response that was received and processed by
the client.

36 2.2 Open Financial Exchange File Format

2.3 XML Detalils

2.3.1 Compliance

XML is the basis for Open Financial Exchange 2.0 and later. To enable OFX clients and servers to use off-
the-shelf XML parsers, OFX 2.1.1 is fully XML compliant. Therefore, in contrast to the guidelines for
OFX 1.6 and below, unrecognized tags may not be present. If clients and servers wish to extend OFX with
private tags and true DTD validation is necessary, a modified OFX DTD which contains those new tags
must be passed along with the OFX document.

2.3.1.1 Special Characters

Special characters in OFX 2.1.1 are handled according to the XML standard. Characters such as ’<’, >,
&, 7, and " are predefined in XML. Other character strings with many special characters should be
enclosed in a CDATA section.

Note: The space macro () should be used if leading or trailing blanks are meant to be
preserved as part of a data element’s value. Alternatively, a CDATA block may be used to
force the handling of leading or trailing spaces. No special formatting of space characters in
the middle of an element’s text value is needed.

2.4 Open Financial Exchange XML Structure

2.4.1 Overview
Open Financial Exchange hierarchically organizes request and response blocks:

Top Level <OFX>

Message Set and Version <xxxMSGSVn>
Synchronization Wrappers <xxxSYNCRQ>, <xxxSYNCRS>
Transaction Wrappers <xxXTRNRQ>, <xxxXTRNRS>

Specific requests and responses

The following sections describe these levels.

2.4.2 Case Sensitivity

OFX requires upper case letters for tag names and enumerated values. In the example below,
<SEVERITY> is an element with an enumerated value and <MESSAGE> is an element with a value that
is not enumerated.

<STATUS>
<CODE>2000</CODE>

OFX 2.1.1 Specification 5/1/06 37

<SEVERITY>ERROR</SEVERITY>
<MESSAGE>General Error</MESSAGE>

</STATUS>

2.4.3 Top Level

An Open Financial Exchange request or response has the following top-level form:

<OFX> Opening tag
<SONRQ> or Required signon request or response. See section 2.5.1.
<SONRS>
... Open Financial 0 or more transaction requests and responses inside appropriate message set
Exchange requests or aggregates
responses ...
</OFX> Closing tag for the Open Financial Exchange record

This chapter specifies the order of requests and responses.

A single file MUST contain only one OFX block.

2.4.4 Messages

A message is the unit of work in Open Financial Exchange. It refers to a request and response pair, and the
status codes associated with that response. For example, the message to download a bank statement
consists of the request <STMTRQ> and the response <STMTRS>.

OFX uses several common message types to perform specific functions. Within OFX, the following
naming conventions are used, where the general xxx messages may be:

2

2
2
*

Basic (or Add) request <xxxRQ> and response <xxxRS>
Modify request <xxxMODRQ> and response <xxxMODRS>
Delete request <xxxDELRQ> and response <xxxDELRS>

Cancel request <xxxCANRQ> and response <xxxCANRS> (these pairs may also be named
<xXXCANCRQ> and <xxxCANCRS)

38

2.4 Open Financial Exchange XML Structure

2.4.4.1 Basic and Add Messages

The basic OFX message has a name structure of <xxxRQ>/<xxxRS>. It is used for read actions of a
specific object (such as a bank statement using <STMTENDRQ>). It is encapsulated in a transaction
wrapper <xxXxTRNRQ> or <xxxTRNRS> (therefore, <STMTENDTRNRQ> and <STMTENDTRNRS> in
the example above).

The add OFX message, like the Basic message, has a name structure of <xxxRQ>/<xxxRS>. It is used to
create a new instance of object xxx (such as creating a new payment using <PMTRQ>). It is encapsulated
in a transaction wrapper <xxxTRNRQ> or <xxxTRNRS> (therefore, <PMTTRNRQ> and <PMTTRNRS>
in the example above).

2.4.4.2 Modify Message

The modify OFX message has a name structure of <xxxMODRQ>/<xxxMODRS>. It is used to modify an
existing instance of object xxx (such as modifying an existing payment using <PMTMODRQ>). It is
encapsulated in a transaction wrapper <xxxTRNRQ> or <xxxTRNRS> (therefore, <PMTTRNRQ> and
<PMTTRNRS> in the example above).

The <xxxMODRQ> request contains the complete replacement data for an existing object xxx. Therefore,
both changed and unchanged elements must be included in the request.

2.4.4.3 Delete and Cancel Messages

The delete and cancel OFX messages have a name structure of <xxxDELRQ>/<xxxDELRS> and
<XXXCANRQ>/<xxXCANRS> or <xxxCANCRQ>/<xxxCANCRS>, respectively. They are used to delete
an existing instance of object xxx (such as deleting a payee from a payee list using <PAYEEDELRQ>), or
to cancel an existing scheduled object (such as canceling a pending payment using <PMTCANCRQ>).
They are encapsulated in a transaction wrapper <xxxTRNRQ> or <xxxTRNRS> (therefore,

OFX 2.1.1 Specification 5/1/06 39

Note: A server is not obligated to support filtering on all selection criterion elements. If a
server chooses not to support a particular element as a selection criterion, it must treat that
element as if it were not present. That is, the server must return the appropriate record set for
the elements on which it does support filtering. As a result, clients should be prepared to
receive records outside the scope of the selection criteria submitted in the request.

Note: Many inquiry messages do not presently follow the naming conventions detailed above.
They may be named <xxxINFORQ>/<xxxINFORS> (<ACCTINFORQ> and
<ACCTINFORS> for example) or without reference to an obvious convention
(<KPRESLISTRQ> and <PRESLISTRS> for example).

2.4.5 Message Sets and Version Control

Message sets are collections of messages. Generally they form all or part of what a user would consider a
service, something for which they might have signed up, such as “banking.” Message sets are the basis of
version control, routing, and security. They are also the basis for the required ordering in Open Financial
Exchange files.

Within the OFX block, OFX organizes messages by message set. Message sets follow these rules:
& A request file may include at most one message set wrapper of each type.
¢ All messages within any message set must be from the same version of that message set.

& Servers must respond using the same message sets and versions as sent in the request file. For example,
if <SIGNUPMSGSRQV1> appears in the request file, <SIGNUPMSGSRSV1> must appear in the
response file. There is one exception to this rule: servers may return the <SECLISTMSGSRSV1>
wrapper (see 13.7.2 and 13.8.4) in response to an investment statement download request that may or
may not include <SECLISTMSGSRQV1>.

2.4.5.1 Message Set Aggregates

For each message set of xxx and version n, there are two aggregates, one for requests <xxxMSGSRQVn>)
and one for responses <xxxMSGSRSVn>. All of the messages from that message set must be enclosed in
the appropriate message set aggregate. In the following example, the Open Financial Exchange block
contains a signon request inside the signon message set, and two statement requests and a transfer request
inside the bank message set.

<QOFX>
<SIGNONMSGSRQV1> <!-- Signon message set -->
<SONRQ> <!-- Signon message -->
</SONRQ>
</SIGNONMSGSRQV1>
<BANKMSGSRQV1> <!-- Banking message set -->

40 2.4 Open Financial Exchange XML Structure

<STMTTRNRQ> <!-- Statement request -->

</STMTTRNRQ>
<STMTTRNRQ> <!-- Another stmt request -->

</STMTTRNRQ>
<INTRATRNRQ> <!-- Intrabank transfer request -->

</INTRATRNRQ>
</BANKMSGSRQV1>
</0OFX>

2.4.5.2 Message Set Ordering

Message sets must appear in the following order:
Signon

Signup

Banking

Credit card statements
Loan statements
Investment statements
Interbank funds transfers
Wire funds transfers
Payments

General e-mail
Investment security list
Biller Directory

Bill Delivery

FI Profile

® & 6 6 6 6 O O O O O O O o o

Image download

Note: Image download is an exception to the above. An OFX file containing the Image
message set includes only the Signon message set. No other message sets may be present in the
file. See Chapter 15, "Image Download", for details.

The definition of each message set can further prescribe an order of its messages within that message set.

OFX 2.1.1 Specification 5/1/06 41

2.4.5.3 Message Set Version Numbers

The following table lists each message set, along with its aggregate name and the DTD/XML Schema

versions that support it.

Note: Starting with OFX 2.0, a DTD is no longer maintained. Instead, an XML Schema is

maintained.

Message Set Aggregate DTD/Schema Support

Signon

Signup

Banking

Credit Card Statements

Loan Statements

Investment Statements

Interbank Funds Transfers

Wire Funds Transfers

Payments

General e-mail

Investment security list

Biller directory

Bill delivery

FI Profile

Image download

<SIGNONMSGSETV1>

<SIGNUPMSGSETV1>

<BANKMSGSETV1>

<CREDITCARDMSGSETV1>

<LOANMSGSETV1>
<INVSTMTMSGSETV1>

<INTERXFERMSGSETV1>

<WIREXFERMSGSETV1>

<BILLPAYMSGSETV1>

<EMAILMSGSETV1>

<SECLISTMSGSETV1>

<PRESDIRMSGSETV1>

<PRESDLVMSGSETV1>

<PROFMSGSETV1>

<IMAGEMSGSETV1>

1.0.2,1.0.3,15.1, 1.6, 2.0,
2.0.1,20.2,203,21,211

1.0.2,1.0.3,1.5.1, 1.6, 2.0,
20.1,2.02,203,2.1,21.1

1.0.2,1.0.3,1.5.1, 1.6, 2.0,
2.0.1,2.02,203,2.1,21.1

1.0.2,1.0.3,15.1, 1.6, 2.0,
2.0.1,20.2,203,21,211

21,211

1.0.2,1.0.3,1.5.1, 1.6, 2.0,
2.0.1,2.02,203,2.1,211

1.0.2,1.0.3,15.1, 1.6, 2.0,
2.0.1,20.2,203,21,211

1.0.2,1.0.3,1.5.1, 1.6, 2.0,
20.1,2.02,203,2.1,21.1

1.0.2,1.0.3,1.5.1, 1.6, 2.0,
2.0.1,2.02,203,2.1,21.1

1.0.2,1.0.3,1.5.1, 1.6, 2.0,
20.1,2.02,203,2.1,21.1

1.0.2,1.0.3,1.5.1, 1.6, 2.0,
20.1,2.02,203,2.1,21.1

1.0.2,1.0.3,1.5.1, 1.6, 2.0,
2.0.1,2.02,203,2.1,2.11

1.0.2,1.0.3,1.5.1, 1.6, 2.0,
20.1,2.02,203,2.1,21.1

1.0.2,1.0.3,1.5.1, 1.6, 2.0,
20.1,2.02,203,2.1,21.1

21,211

Note: For each message set that it is supporting, a financial institution must indicate which
version numbers of that message set it supports. The financial institution includes the message

42 2.4 Open Financial Exchange XML Structure

set version number in the <MSGSETCORE> aggregate of the FI profile. For more information
about the FI profile, refer to Chapter 7, "FI Profile.” OFX 2.1.1 servers should use version
number 1.

2.4.6 Transactions

Other than the signon message, each request is made as a transaction. Transactions contain a client-
assigned globally-unique 1D, optional client-supplied pass-back data, and the request aggregate. A
transaction similarly wraps each response. The response transaction returns the client ID sent in the
request, along with a status message, the pass-back data if present, and the response aggregate. This
technique allows a client to track responses against requests. Section 3.1.2 provides more information
about the format of information exchanged by the client and server.

The <STATUS> aggregate, defined in Chapter 3, "Common Aggregates, Elements, and Data Types,"
provides feedback on the processing of the request. If the <SEVERITY> of the status is ERROR, the
server provides the transaction response without the nested response aggregate. Otherwise, the response
must be complete even though a warning might have occurred.

Clients can send additional information in <CLTCOOKIE> that servers will return in the response. This
allows clients that do not maintain state, and thus do not save <TRNUID>s, to cause some additional
descriptive information to be present in the response. For example, a client might identify a request as
relating to a user or a spouse.

<CLTCOOKIE> must only be returned by the server in the initial response to the client (and any crash
recovery from that response). The <CLTCOOKIE> should not be present in a sync response, except for
those transactions whose requests were wrapped in the sync request.

In some countries, some banks may require that a customer-supplied authorization number be included to
authenticate certain kinds of individual transactions such as payment requests. For those banks, the
<TAN> element passes this information to servers.

Note that if a <CLTCOOKIE> is given to an OFX server in a request, the OFX server is required to return
it. This return of the <CLTCOOKIE> will necessitate server-side storage of <CLTCOOKIE> data. In the

case of an OFX client getting a <CLTCOOKIE> that it didn’t send in a request, the default behavior is to

ignore it.

2.4.6.1 Transaction Wrapper

With the exception of the <SONRQ>/<SONRS> message, each message has a corresponding transaction
wrapper. For requests, the transaction wrapper adds a transaction unique ID <TRNUID>. For responses,
the transaction wrapper adds the same transaction unique ID <TRNUID> (an echo of that found in the
request), plus a <STATUS> aggregate.

The transaction wrapper has a name structure of <xxx TRNRQ>/<xxxTRNRS>. A transaction wrapper pair
encapsulates a single message (<XXXRQ>/<xxxRS>, <xxxMODRQ>/<xxxMODRS>, etc.).

OFX 2.1.1 Specification 5/1/06 43

While the same name may be used for addition, modification and deletion messages, a single transaction

44 2.4 Open Financial Exchange XML Structure

A typical request is as follows:

<xXxxTRNRQ> Transaction-request aggregate
<TRNUID> Client-assigned globally-unique 1D for this transaction, trnuid

<CLTCOOKIE> Data to be echoed in the transaction response, A-32

<TAN> Transaction authorization number; used in some countries with some types of
transactions. The FI Profile defines messages that require a <TAN>, A-80
Request Aggregate for the request
aggregate
</xxxTRNRQ>

A typical response is as follows:

<xxXTRNRS> Transaction-response aggregate
<TRNUID> Client-assigned globally-unique ID for this transaction, trnuid
<STATUS> Status aggregate
</STATUS>

<CLTCOOKIE> Client provided data, A-32

Response Aggregate for the response
aggregate

</xxxTRNRS>

List of status code values for the <CODE> element of <STATUS>:

0 Success (INFO)

2000 General error (ERROR)
2022 Invalid TAN (ERROR)

OFX 2.1.1 Specification 5/1/06 45

2.4.7 Synchronization Wrapper

The synchronization wrapper has a name structure of <xxxSYNCRQ>/<xxxSYNCRS>. It contains
synchronization parameters and optionally encapsulates one or more transaction wrappers. For details on
the use of synchronization wrappers, see Chapter 6.

When embedded transactions are not present, the synchronization request contains no transaction
wrappers. If the client is up to date when the server processes such a request, the synchronization response
also contains no transaction wrappers.

Note: If a request/response is a sync request/response only, the transaction wrapper and
request that it wraps are omitted.

2.4.8 Message Set Wrapper
The profile message set wrappers have a name structure of <xxxMSGSET> and <xxxMSGSETV1>.

The request and response message set wrappers have a name structure of <xxxMSGSRQVn> and
<XXXMSGSRSVn> respectively. For OFX 2.1.1, “n” must be “1”. This number indicates the version of the
message set used by the contained messages.

2.5 The Signon Message Set

The Signon message set includes the signon message, USERPASS change message, challenge message,
and multi-factor authentication (MFA) challenge message, which must appear in that order. The
<SIGNONMSGSRQV1> and <SIGNONMSGSRSV1> aggregates wrap the message.

2.5.1 Signon <SONRQ> and <SONRS>

The signon record identifies and authenticates a user to an FI. It also includes information about the
application making the request, because some services might be appropriate only for certain clients. Every
Open Financial Exchange block contains exactly one <SONRQ>. Every response must contain exactly one
<SONRS> record. Use of Open Financial Exchange presumes that Fls authenticate each customer and
then give the customer access to one or more accounts or services. Authentication of a <SONRQ> is
required, even when in Error Recovery. If passwords are specific to individual services or accounts, a
separate Open Financial Exchange request must be made for each user ID or password required. This will
not necessarily be in a manner visible to the user. Note that some situations, such as joint accounts or
business accounts, will have multiple user IDs and multiple passwords that can access the same account.

Fls assign user IDs for the customer. The client must not make any assumptions about the syntax of the
ID, add check-digits, or do similar processing. To ensure security and help prevent identity fraud, Financial
Institutions are discouraged from using Social Security Number for Customer ID or PIN/Password.

46 2.5 The Signon Message Set

To improve server efficiency in handling a series of Open Financial Exchange request files sent over a
short period of time, clients can request that a server return a <USERKEY> in the signon response. If the
server provides a user key, clients will send the <USERKEY> instead of the user ID and password in
subsequent sessions, until the <USERKEY> expires. This allows servers to authenticate subsequent
requests more quickly. Servers must accept a <GENUSERKEY> element in a <SONRQ>. However, a
server may decide <USERKEY> does not afford sufficient security and may optionally not return a
<USERKEY> in the <SONRS>.

The client returns <SESSCOOKIE> if the server sent one in a previous <SONRS>. Servers can use the
value of <SESSCOOKIE> to track client usage but cannot assume that all requests come from a single
client, nor can they deny service if they did not expect the returned cookie. Use of a backup file, for
example, could lead to an unexpected <SESSCOOKIE> value that nevertheless should not stop a user
from connecting.

A client may use an anonymous form of <USERID> and <USERPASS> on those rare occasions when a
server need not authenticate the <SONRQ>. The only present situations in this class are first-time
<PROFRQ>, <FINDBILLERRQ>, and all <ENROLLRQ> transactions. Any request sent by the client
after a successful <ENROLLRQ> response (or out of band enroliment) for the service must provide the

OFX 2.1.1 Specification 5/1/06 a7

2.5.1.1 Multi-Factor Authentication (MFA)

In addition to the previously existing method of authentication in OFX (username/password), OFX 2.1.1
introduces several ways for OFX to support additional authentication factors. This support is achieved
through the addition of new tags in the OFX signon request and through a new message, the
<MFACHALLENGERQ>/<MFACHALLENGERS> request/response.

The signon request includes several new fields that financial institutions can optionally require for user
authentication.

2.5.1.1.1 Client Unique ID <CLIENTUID>

OFX servers can require OFX clients to include a client ID in each signon request. This client 1D should
be unique to the installation of the client software, but the method that the 1D is generated is left up to the
client. The server can specify that this field is required using the <CLIENTUIDREQ> tag in the applicable
<SIGNONINFO> section of the profile. Servers should expect that users may connect via OFX from
multiple locations and may need to associate more than one <CLIENTUID> value with their <USERID>.

The client may make this value user discoverable, so that the user can register the client ID with financial
institutions.

2.5.1.1.2 Additional User Credentials <USERCRED1>, <USERCRED2>

The signon request contains two new user credential ID fields, <USERCRED1> and <USERCRED2>.
Servers use the applicable <SIGNONINFO> aggregate in the profile to specify if one or both of these
fields are required. The presence of <USERCRED1LABEL> and <USERCRED2LABEL> in
<SIGNONINFO> specifies that these tags are required and also gives labels for these fields. OFX clients
should use these labels to prompt the user for necessary signon information. For instance, a server may
require <USERCRED1> and would specify its label as “Mother’s maiden name.”

Servers should assume that profile requests are made very infrequently. If the user credential ID or label is
expected to change frequently, the MFACHALLENGE message is the most appropriate method to use.
Use of <USERCRED1> and <USERCRED?2> should be reserved for questions/prompts that will change
rarely, if at all.

2.5.1.1.3 One-Time Authentication Token <AUTHTOKEN>

This authentication token is intended to be used in conjunction with the client 1D functionality described in
Section 2.5.1.1.1 although this is not required. By providing the user with this one-time value out of band
and then requiring (and validating) it on either the initial (for first time setup) or next session (for existing
users) an institution may establish the client ID received in the session as a “known” client ID value that is
directly associated with the user.

The signon request contains an additional field, <AUTHTOKEN>. Servers use the Signon Realm’s
<AUTHTOKENFIRST> tag to specify that the client is required to send this credential during the initial
sighon session. A server may also indicate that this credential is required on the next session by returning
a 15512 error code in a signon response. If this credential is required by the OFX server under either of the

48 2.5 The Signon Message Set

above conditions then the server must also use the Signon Realm’s profile tags to specify a label for this
value (fKAUTHTOKENLABEL>) as well as a standard URL (<KAUTHTOKENINFOURL>) where the one
time authentication token is either directly provided to the user (e.g. they login to the institution’s standard
web banking system and request a credential) or information on how to acquire the credential is given (e.g.
they are instructed to contact customer support).

During initial client software setup (if <AUTHTOKENFIRST> is set to Y in the profile) or upon receipt of
a 15512 error code during a session the client software must inform the user that their institution requires
additional information for the next session and display the <AUTHTOKENINFOURL> to the end-user.
The client software must prompt the user for the entry of the <AUTHTOKEN> value using the
<AUTHTOKENLABEL> as a caption for the data entry field.

This authentication token mechanism is intended for use on an infrequent basis and in conjunction with
client ID functionality. If additional authentication would be required on a regular basis then the
MFACHALLENGE messages would be a more appropriate implementation.

2.5.1.1.4 Access Key <ACCESSKEY>

If the client and server support the MFACHALLENGE request/response and/or the authentication token
functionality, the signon request may include the <ACCESSKEY> tag. When provided by the server, the
client will send the last value of the <ACCESSKEY> it has received.

2.5.1.2 Signon Request <SONRQ>

Unlike other requests, the signon request <SONRQ> does not appear within a transaction wrapper.

Tag Description
<SONRQ> Signon-request aggregate
<DTCLIENT> Date and time of the request from the client computer, datetime

This value should reflect the time (according to the client machine) when the request
file is sent to the server, not the (original) creation time of the request file. While not
required for existing software, OFX 2.1.1 clients must comply with this rule. This
clarification is particularly important in error recovery situations in which the request
file may be sent to the server after its initial creation.

User identification.
Either <USERID> and
<USERPASS=> or
<USERKEY>, but not
both.

<USERID> User identification string. To ensure security and help prevent identity fraud, Financial
Institutions are discouraged from using Social Security Number for Customer ID or
PIN/Password. A-32

OFX 2.1.1 Specification 5/1/06 49

Tag

<USERPASS>

<USERKEY>

<GENUSERKEY>
<LANGUAGE>

<FI>

</FI>

<SESSCOOKIE>

<APPID>
<APPVER>
<CLIENTUID>

<USERCRED1>

<USERCRED2>

<AUTHTOKEN>

<ACCESSKEY>

<MFACHALLENG
EA>

</MFACHALLENG
EA>

</SONRQ>

Description
User password on server, A-171

Note: The maximum clear text length of USERPASS is 32 characters: a client must
not send a longer password. However, when using Type 1 security, the encrypted value
may extend to 171 characters.

Log in using previously authenticated context, A-64

Request server to return a USERKEY for future use, Boolean
Requested language for text responses, language
Financial-Institution-identification aggregate

Note: The client will determine out-of-band whether a FI aggregate should be used
and if so, the appropriate values for it. If the FI aggregate is to be used, then the client
should send it in every request, and the server should return it in every response.

Session cookie value received in previous <SONRS>, not sent if first login or if none
sent by FI, A-1000

ID of client application, A-5
Version of client application, (6.00 encoded as 0600), N-4
Unique ID identifying OFX client, A-36

Additional user credential required by server, A-171

Note: the effective size of USERCREDL is A-32. However, if Type 1 security is used,
then the actual field length is A-171.

Additional user credential required by server, A-171

Note: the effective size of USERCRED?2 is A-32. However, if Type 1 security is used,
then the actual field length is A-171.

Authentication token required for this signon session only. Credential is provided to
the user out of band, A-171

Note: the effective size of AUTHTOKEN is A-32. However, if Type 1 security is used,
then the actual field length is A-171.

Access key value received in prevous <SONRS>, not sent if first login or none sent by
FI, A-1000

MFA challenge question/answer aggregates (0 or more). See section 2.5.4.5

50

2.5 The Signon Message Set

2.5.1.3 Signon Response <SONRS>

Unlike other responses, the signon response <SONRS> does not appear within a transaction wrapper.

Note: A client should use <DTPROFUP> and <DTACCTUP> only when the service provider
that originated <SONRS> is the same provider that is specified by <SPNAME> in the profile
message set. A client can determine if the service provider is the same by comparing the value
of <SPNAME> in the appropriate message set with the value for <SPNAME> in the profile

message set.

<SONRS>
<STATUS>
</STATUS>

<DTSERVER>

<USERKEY>

<TSKEYEXPIRE>
<LANGUAGE>

<DTPROFUP>

<DTACCTUP>

<FI>

</FI>
<SESSCOOKIE>
<ACCESSKEY>

</SONRS>

Record-response aggregate

Status aggregate, see section 3.1.5. See list of possible code values in section 2.5.1.4

Date and time of the server response, datetime

This value should reflect the time (according to the server) when the response file was
originally created. While not required for existing software, OFX 2.1.1 servers must
comply with this rule. This clarification is particularly important in error recovery
situations: The server should (must for OFX 2.1.1 servers) return the time the request
was first processed. If the previous attempt failed after transactions were processed,
<DTSERVER> in the response file would reflect that processing time.

Use user key instead of USERID and USERPASS for subsequent requests.
TSKEYEXPIRE can limit lifetime. A-64

Date and time that USERKEY expires, datetime
Language used in text responses, language

Date and time of last update to profile information for any service supported by this FI
(see Chapter 7, "FI Profile"), datetime

Date and time of last update to account information (see Chapter 8, “Activation &
Account Information”), datetime

Financial-Institution-identification aggregate

Note: The client will determine out-of-band whether an FI aggregate should be used
and, if so, the appropriate values for it. If the FI aggregate is to be used, then the client
should send it in every request, and the server should return it in every response.

Session cookie that the client should return on the next <SONRQ>,A-1000

Access key that the client should send in the next <SONRQ>, A-1000

OFX 2.1.1 Specification

5/1/06 51

2.5.1.4 Status Codes

List of status code values for the <CODE> element of <STATUS>:

0 Success (INFO)

2000 General error (ERROR)

3000 User credentials are correct, but further authentication required (ERROR)
This notifies client to send <MFACHALLENGERQ>.

3001 MFACHALLENGEA contains invalid information (ERROR)

13504 <FI> Missing or Invalid in <SONRQ> (ERROR)

15000 Must change USERPASS (INFO)

15500 Signon invalid (see section 2.5.1) (ERROR)

15501 Customer account already in use (ERROR)

15502 USERPASS Lockout (ERROR)

15506 Empty signon transaction not supported (ERROR)

15507 Signon invalid without supporting pin change request (ERROR)

15510 CLIENTUID error (ERROR)

15511 User should contact financial institution (ERROR)

15512 OFX server requires AUTHTOKEN in signon during the next session
(ERROR)

15513 AUTHTOKEN invalid (ERROR)

52 2.5 The Signon Message Set

2.5.1.5 Financial Institution ID <FI>

Some service providers support multiple Fls, and assign each Fl an ID. The signon allows clients to pass
this information along, so that providers know to which FI the user is signing on.

If a server does not require an FI aggregate in a request but receives one anyway, it should echo the FlI
aggregate back. This is compliant with the general rule that the server should echo elements and aggregates
in the response if they are received and understood in the request.

If a server requires the <FI> aggregate in <SONRQ> requests and it contains incorrect information there
are several different specification compliant ways to respond. These are given in the order of preference:

& Return a 2000 error with appropriate text message — since the FI aggregate information is incorrect the
user’s information (KUSERID> and <USERPASS>) cannot be verified. Returning a 15500 might cause
clients to display messages to the user that the attempt to communicate with the server failed. A client
would probably suggest that the user verify their <USERID> and <USERPASS> values.

& Return a 15500 error — since the FI aggregate information is incorrect or unknown the server cannot
verify the <USERID>, <USERPASS>, etc.

& Return an http 400 error — this is the least desirable option since it will provide no useful feedback to
the client communicating with the server, however it is legal.

<FI> Fl-record aggregate

<ORG> Organization defining this FI name space, A-32

<FID> Financial Institution ID (unique within <ORG>), A-32
</FI>

OFX 2.1.1 Specification 5/1/06 53

2.5.2 USERPASS Change <PINCHRQ> <PINCHRS>

The client sends a request to change the customer password as a separate request from the signon.

Password changes pose a special problem for error recovery. If the client does not receive a response, it
cannot know whether or not the password change was successful. OFX recommends that servers accept
either the old password or the new password on the connection following the one containing a password
change. When file-based error recovery is in use, the server must reject the old password except when
received with NEWFILEUID/OLDFILEUID headers indicating an error recovery attempt.

Also, if the client does not receive a response that has a status code of 15000 from a server, it cannot know
that a password change is required. In this case, the server should not expect a pin change request in the
signon when the NEWFILEUID/OLDFILEUID headers indicate an error recovery attempt.

Servers that do not support file-based error recovery (or, when interacting with a client that does not utilize
file-based error recovery) must not complete a <PINCHRQ> until after the next request file arrives. If that
request file uses the new password, the new password must be permanently associated with the
<USERID>. Otherwise, the old password may authenticate the user. (For security, servers may return a
signon error if the next request file uses the old password but does not include a <PINCHRQ>.)
Conforming clients should re-send request files (unchanged beyond the <SONRQ>) after a failure whether
or not file-based error recovery is in use.

2.5.2.1 <PINCHRQ>
A <PINCHRQ> request must appear within a <PINCHTRNRQ> transaction wrapper.

A USERPASS change request changes the customer’s password for the specific realm associated with the
messages contained in the OFX block. Based on the properties of an OFX profile, defined in Chapter 7,
"FI Profile," a single OFX block contains instructions related to a single realm. The USERPASS change
request thus changes the USERPASS for all message sets associated with one realm. For more information
about signon realms, see section 7.2.2.

<PINCHRQ> USERPASS-change-request aggregate

<USERID> User identification string, A-32

Note: The maximum clear text length of USERPASS is 32 characters: a client
must not send a longer password. However, when using Type 1 security, the
encrypted value may extend to 171 characters.

<NEWUSERPASS> New user password, A-171

Note: The effective size of NEWUSERPASS is A-32. However, if Type 1 security
is used, then the actual field length is A-171.

</PINCHRQ>

54 2.5 The Signon Message Set

2.5.2.2 <PINCHRS>

A <PINCHRS> response must appear within a <PINCHTRNRS> transaction wrapper.

<PINCHRS> USERPASS-change-response aggregate
<USERID> User identification string, A-32

<DTCHANGED> Date and time the password was changed, datetime

</PINCHRS>

2.5.2.3 Status Codes

0 Success (INFO)

2000 General error (ERROR)

15503 Could not change USERPASS (ERROR)
15508

OFX 2.1.1 Specification 5/1/06 55

2.5.3 <CHALLENGERQ> <CHALLENGERS>

A challenge request is the first step in Type 1 application-level security. Essentially, it asks for some
random data from the server. The challenge response provides that server-generated random data and is the
second step in Type 1 security.

The challenge message is part of the signon message set and is not subject to data synchronization.

2.5.3.1 <CHALLENGERQ>

A <CHALLENGERQ> is part of a <CHALLENGETRNRQ> transaction, a <CHALLENGERS> part of a
<CHALLENGETRNRS>.

The client includes <FICERTID> in the request if it already has the server’s certificate. If that is included
and matches the server’s current certificate, the server may omit the actual certificate from the response.

<CHALLENGERQ> Opening tag for the challenge request.
<USERID> User identification string, A-32
<FICERTID> Optional server certificate ID. A-64

</CHALLENGERQ> | Closing tag for challenge request.

2.5.3.2 <CHALLENGERS>

Tag Description

<CHALLENGERS> Opening tag for the challenge response.

<USERID> User identification string, A-32
<NONCE> Server-generated random data. A-16
<FICERTID> ID of server certificate used to encrypt. A-64

</CHALLENGERS> | Closing tag for challenge response.

When generating the <NONCE>, make sure the data is as unpredictable as possible. See RFC 1750 for
recommendations.

The server includes <FICERTID> in the response to identify the certificate in a separate MIME part. Even
if the certificate itself is not attached, <FICERTID> is still included in the response.

56 2.5 The Signon Message Set

2.5.3.3 Status Codes

Status code values for the <CODE> element (contained within the <STATUS> aggregate):

0 Success (INFO)

2000 General error (ERROR)

15504 Could not provide random data (ERROR)
15508 Transaction not authorized (ERROR)

2.5.4 <MFACHALLENGERQ> <MFACHALLENGERS>

To support authentication mechanisms for which the additional signon information described above is not
sufficient, OFX 2.1.1 introduces a new message, the MFACHALLENGE message. If the information in
the signon request is correct, but it is not sufficient to authenticate the user, the server can reply with an
error code of 3000, which indicates that the client must perform MFACHALLENGE authentication before
proceeding with OFX requests. The server must not process any requests included as part of the message
that resulted in the 3000 error code.

Following receipt of the 3000 error code, the client should request a list of challenge questions with an
<MFACHALLEGERQ>. The server will then respond to this request with a <MFACHALLENGERS>,
which includes the list of authentication questions, specified by ID and label. If for some reason the server
cannot respond with a <MFACHALLENGERS> response, it should respond with an HTTP 400 error.

Note that some of these challenge questions may require user interaction and some may not (if the client
already has access to the necessary information). It is up to the client to determine which questions require
user interaction.

Note: If the profile response contains <MFACHALLENGEFIRST>Y, the client must send an
<MFACHALLENGERQ> request in the first connection with the server, before sending any
other requests.

Once the client has retrieved the answers to the challenge questions (either from the user or another
location), it will then include them within the signon request included as part of the next request message.
If these answers are correct, the server will process the request file. If they are incorrect, the server will
return an error code of 3001.

The client should not need to store the answers to the challenge questions. To prevent servers from needing

OFX 2.1.1 Specification 5/1/06 57

subsequent request with a 3000 error code, requiring the client to send a <MFACHALLENGERQ>. This
allows the server to determine the lifetime of the <ACCESSKEY>.

The challenge message is part of the signon message set and is not subject to data synchronization.

2.5.4.1 <MFACHALLENGERQ>

<MFACHALLENGERQ> is a request for the server to send a list of challenge questions that must be
correctly answered before the OFX client may proceed with further OFX requests. The
<MFACHALLENGERQ> request should be sent in response to an error code of 3000 or on a first request
to the server if the profile contains <MFACHALLENGEFIRST>Y.

The <MFACHALLENGERS> must appear within a <MFACHALLENGETRNRS> transaction wrapper.
The <MFACHALLENGERQ> request must appear within a <MFACHALLENGETRNRQ> transaction
wrapper.

Description

<MFACHALLENGERQ> | MFA challenge request aggregate
<DTCLIENT> Date and time of the request from the client computer, datetime

</MFACHALLENGERS>

2.5.4.2 <MFACHALLENGERS>

The <MFACHALLENGERS> response contains the list of questions that must be correctly answered in
the next OFX request. These questions may or may not require user interaction. See the table in Section
2.5.4.4 for more details.

While this specification imposes no upper limit on the number of challenge questions a server sends,
financial institutions and servers should be aware that there may be a limit to the number of questions a
client is able to collect.

The <MFACHALLENGERS> must appear within a <MFACHALLENGETRNRS> transaction wrapper
following the <SONRS> aggregate within the Signon Message set.

Tag Description
<MFACHALLENGERS> MFA challenge response aggregate
<MFACHALLENGE> Challenge question aggregate (1 or more)
<MFAPHRASEID> Identifier for the challenge question. It should be unique for this challenge

question but not unique for the user, session, etc. A-32. See section 2.5.4.4

<MFAPHRASELABEL> | The textual challenge question. This should be as appropriate as possible for
display to the user. A-64

58 2.5 The Signon Message Set

Description

</MFACHALLENGE>

</MFACHALLENGERS>

2.5.4.3 Status Codes

0 Success (INFO)

2000 General error (ERROR)

2.5.4.4 <MFAPHRASEID>

The <MFAPHRASEID> tag uniquely identifies a challenge question. In addition to providing a way to
correlate the answers to challenge questions with the questions themselves, it also provides the OFX client
additional options for collecting the answer from the user.

2.5.4.4.1 Enumerated <MFAPHRASEID> Meanings

The following table details the list of reserved values for <MFAPHRASEID>s. Servers should use these
values only when the question they are asking matches the associated question in the table below. Note that
servers are never required to use the reserved values for the phrase 1D, even when the challenge question
the servers require does match the question in the table below, but they should be aware that using the
reserved IDs when appropriate may result in a better customer experience.

MFAPHRASEID values above MFA100 are reserved for questions that the server expects the client to
answer. These do not require customer responses. All other enumerated 1Ds as well as server specific IDs
expect customer responses.

Clients may need to identify out of band which of the IDs above MFA100 they support.

Value Meaning

MFA1 City of birth

MFA2 Date of birth, formatted MM/DD/YYYY
MFA3 Debit card number

MFA4 Father’s middle name

MFA5 Favorite color

MFAG First pet’s name

MFA7 Five digit ZIP code

OFX 2.1.1 Specification 5/1/06 59

Value Meaning

MFAS8 Grandmother’s maiden name on your father’s side
MFA9 Grandmother’s maiden name on your mother’s side
MFA10 Last four digits of your cell phone number

MFA11 Last four digits of your daytime phone number
MFA12 Last four digits of your home phone number

MFA13 Last four digits of your social sescurity number
MFA14 Last four digits of your tax 1D

MFA15 Month of birth of youngest sibling, do not abbreviate
MFA16 Mother’s maiden name

MFAL17 Mother’s middle name

MFA18 Name of the company where you had your first job
MFA19 Name of the manufacturer of your first car

MFA20 Name of the street you grew up on

MFA21 Name of your high school football team, do not include high school name, e.g. "Beavers"

rather than "Central High Beavers"

MFA22 Recent deposit or recent withdrawal amount
MFA23 Year of birth, formatted YYYY

MFA24

MFA25

MFA26

MFA27

MFA28

MFAZ29

MFA30

MFA101 Datetime, formatted YYYYMMDDHHMMSS
MFA102 Host name

MFA103 IP Address

MFA104 MAC Address

MFA105 Operating System version

MFA106 Processor architecture, e.g. 1386

60 2.5 The Signon Message Set

OFX 2.1.1 Specification

61

2.5.6 Examples

User requests a password change (only pin change transaction portion is shown):

<PINCHTRNRQ>

<TRNUID>888</TRNUID>
<PINCHRQ>
<USERID>12345</USERID>
<NEWUSERPASS>5321</NEWUSERPASS>
</PINCHRQ>
</PINCHTRNRQ>

The server responds with:

<PINCHTRNRS>

<TRNUID>888</TRNUID>
<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
</STATUS>
<PINCHRS>
<USERID>12345</USERID>
</PINCHRS>
</PINCHTRNRS>

Signon in OFX 2.1.1 which includes CLIENTUID and both additional credential tags:

<OFX>

<SIGNONMSGSRQV1>
<SONRQ>

<DTCLIENT>20060321083010</DTCLIENT>
<USERID>12345</USERID>
<USERPASS>MyPassword</USERPASS>
<LANGUAGE>ENG< /LANGUAGE>
<FI>
<ORG>ABC</ORG>
<FID>000111222</FID>
</FI>
<APPID>MyApp</APPID>
<APPVER>1600</APPVER>

<CLIENTUID>22576921-8E39-4A82-9E3E-EDDB121ADDEE</CLIENTUID>

62

2.5 The Signon Message Set

<USERCRED1>MyPin</USERCRED1><!--Profile has included
<USERCRED1LABEL>PIN:</USERCRED1LABEL>-->
<USERCRED2>MyID</USERCRED2><!--Profile has included
<USERCRED2LABEL>Your ID:</USERCRED2LABEL>-->
</SONRQ>

</SIGNONMSGSRQV1>

.- <!--Other message sets-->

</OFX>

The following series shows the OFX 2.1.1 exchanges that occur when a server requires the client to

collect a one time authentication token.

Note: This could also be requested in profile, but this example is a case where user is an existing
OFX consumer.

Client sends OFX request to server.

<OFX>
<SIGNONMSGSRQV1>
<SONRQ>
<DTCLIENT>20060321083010</DTCLIENT>
<USERID>12345</USERID>
<USERPASS>MyPassword</USERPASS>
<LANGUAGE>ENG< /LANGUAGE>
<FI>
<ORG>ABC</ORG>
<FID>000111222</FID>
</FI>
<APPID>MyApp</APPID>
<APPVER>1600</APPVER>

OFX 2.1.1 Specification 5/1/06

63

<CODE>15512</CODE>
<SEVERITY>ERROR</SEVERITY>
<MESSAGE>Please provide Authentication Token</MESSAGE>
</STATUS>
<DTSERVER>20060321083015</DTSERVER>
<LANGUAGE>ENG< /LANGUAGE>
<FI>
<ORG>ABC</ORG>
<FID>000111222</FID>
</FI>
</SONRS>
</SIGNONMSGSRSV1>
--—-<!--Al11 other transaction responses return <CODE>15500</CODE>-->
</0OFX>

Client collects the answers and returns them to server along with the original request.

<OFX>
<SIGNONMSGSRQV1>
<SONRQ>
<DTCLIENT>20060321083415</DTCLIENT>
<USERID>12345</USERID>
<USERPASS>MyPassword</USERPASS>
<LANGUAGE>ENG< /LANGUAGE>
<FI>
<ORG>ABC</ORG>
<FID>000111222</FID>
</FI>
<APPID>MyApp</APPID>
<APPVER>1600</APPVER>
<CLIENTUID>22576921-8E39-4A82-9E3E-EDDB121ADDEE</CLIENTUID>
<AUTHTOKEN>1234567890</AUTHTOKEN><!—Authentication token
provided to user out of band-->
</SONRQ>
</SIGNONMSGSRQV1>
- <!--0Other message sets-->
</0OFX>
Server accepts requests and returns an ACCESSKEY.

<OFX>
<SIGNONMSGSRSV1>
<SONRS>

64 2.5 The Signon Message Set

<STATUS>
<CODE>0</CODE>
<SEVERITY>INFO</SEVERITY>
<MESSAGE>Success</MESSAGE>
</STATUS>
<DTSERVER>20060321083445</DTSERVER>
<LANGUAGE>ENG< /LANGUAGE>
<FI>
<ORG>ABC</ORG>
<FID>000111222</FID>
</FI>
<ACCESSKEY>EE225228-38E6-4E35-8266-CD69B5370675</ACCESSKEY>
</SONRS>
</SIGNONMSGSRSV1>
-——- <!--All other transaction responses-->
</OFX>

On subsequent calls, client will return ACCESSKEY in SONRQ.

The following series shows the OFX 2.1.1 exchanges that occur when a server requires the client to
collect answers to MFA Challenge questions.

Client sends OFX request to server.

<OFX>
<SIGNONMSGSRQV1>
<SONRQ>
<DTCLIENT>20060321083010</DTCLIENT>
<USERID>12345</USERID>
<USERPASS>MyPassword</USERPASS>
<LANGUAGE>ENG< /LANGUAGE>
<FI>
<ORG>ABC</ORG>
<FID>000111222</FID>
</FI>
<APPID>MyApp</APPID>
<APPVER>1600</APPVER>
<CLIENTUID>22576921-8E39-4A82-9E3E-EDDB121ADDEE</CLIENTUID>
</SONRQ>
</SIGNONMSGSRQV1>

OFX 2.1.1 Specification 5/1/06 65

- <!--0Other message sets-->
</0OFX>

Server accepts credentials but wants additional challenge data.

<QOFX>
<SIGNONMSGSRSV1>
<SONRS>
<STATUS>
<CODE>3000</CODE>
<SEVERITY>ERROR</SEVERITY>
<MESSAGE>Further information required</MESSAGE>
</STATUS>
<DTSERVER>20060321083015</DTSERVER>
<LANGUAGE>ENG</LANGUAGE>
<FI>
<ORG>ABC</ORG>
<FID>000111222</FID>
</FI>
</SONRS>
</SIGNONMSGSRSV1>
-——= <!--All other transaction responses return <CODE>15500</CODE>-->
</0OFX>

Client requests challenge questions.

<OFX>
<SIGNONMSGSRQV1>
<SONRQ>
<DTCLIENT>20060321083020</DTCLIENT>
<USERID>12345</USERID>
<USERPASS>MyPassword</USERPASS>
<LANGUAGE>ENG< /LANGUAGE>
<FI>
<ORG>ABC</ORG>
<FID>000111222</FID>
</FI>
<APPID>MyApp</APPID>
<APPVER>1600</APPVER>
<CLIENTUID>22576921-8E39-4A82-9E3E-