ATLAS NOTE

9 October 2012

Version 2 N —/

Rucio: Conceptual Model

Vincent Garonne', Mario Lassnig', Angelos Molfetas', Martin Barisits', Thomas Beermann',

Graeme A Stewart', Armin Nairz', Luc Goossens!, Ralph Vigne', Cedric Serfon'

'PH-ADP-CO, CERN

Abstract

This document describes the conceptual model of the new version of the ATLAS Dis-
tributed Data Management (DDM) system: Rucio. Core concepts that Rucio uses to manage
accounts, files and storage systems are introduced.

The DDM system is designed to allow the ATLAS collaboration to manage the large
volumes of data, both taken by the detector as well as generated or derived, in the ATLAS
distributed computing system. Any user of the system is mapped to an account in Rucio,
which can represent an individual ATLAS user, physics group or central activity. Rucio
supports permissions, accounting and quota on accounts. Rucio allows users to upload and
register files in the system. Files may be grouped into datasets and datasets into containers.
Rucio allows the setting of selected metadata properties on files, datasets and containers.
The term data identifier set (DIS) is used to refer to any set consisting of files, datasets or
containers. Replication rules can be set on DISs that instruct the system how to organise
file replicas at sites. Rucio will trigger appropriate data replication to satisfy the current set
of rules. Files are stored at physical locations that are managed as Rucio Storage Elements
(RSEs). Rucio can group storage elements by setting RSE attributes that can be specified
as part of a replication rule. As well as moving required files to them, Rucio will delete
unnecessary files from storage elements.

1 Introduction

The new version of the ATLAS Distributed Data Management (DDM) system is called Rucio. In this
document the key concepts of Rucio are introduced.

2 Rucio account

A Rucio account can represent individual users (e.g., lgoossen, graecmes, vgaronne), a group of users
(e.g., bphys, higgs, susy) or an organised production activity for the whole ATLAS collaboration (e.g.,
prod, tzero). A Rucio account is identified by a string and is the unit of assigning privileges in Rucio.

Actions in Rucio are always conducted by a Rucio account. Each account has a namespace identifier,
called scope, that is included in every name assigned to a data identifier created by that account (see §3.1).
By default, Rucio accounts can only create identifiers in their own scope and not in any other.

A Rucio user is identified by their credentials, such as X509 certificate or Kerberos token. Credentials
can map to one or more accounts (N:M mapping). Rucio checks if the credentials used are authorized
to use the supplied Rucio account. Figure 1 gives an example of the mapping between credentials and
Rucio accounts:

Credentials Rucio Accounts
barisits

X509 —

(barisits)

vgaronne
gss /
(vgaronne)
prod

X509 .

(graeme) > higgs

Figure 1: Credential to Rucio account mapping

3 Files, Datasets and Containers

ATLAS has a large amount of data, which is physically stored in files. For the data management system
these files are the smallest operational unit of data (so sub-file operations are not possible). Physicists
need to be able to identify and operate on any arbitrary set of files.

Files can be grouped into datasets (a named set of files) and datasets can be grouped into containers
(a named set of datasets or, recursively, containers). All three types of names refer to data so the term
data identifier set (DIS) is used to mean any set of file, dataset or container identifiers. A data identifier is
just the name of a single file, dataset or container. The figure below gives an example of an aggregation
hierarchy:
An example of a data identifier set (DIS) is: {prod:Dataset1, prod:File3, prod:File5}.

prod:Container1
prod:Dataset1 prod:Dataset2 prod:Dataset3
prod:File1 prod:File2 prod:File3 prod:File4 prod:File5 prod:File6é

Figure 2: Rucio aggregation hierarchy

3.1 Data identifiers and scope

Files, datasets and containers follow an identical naming scheme which is composed of two strings: the
scope and a name. The combination of both is called a data identifier (DI). For instance a file identifier
(LFN) is composed of a scope and a file name. The scope string partitions the namespace in several sub
spaces. The primary use case for this is to have separate scopes for production and individual users.

By default accounts will have read access to all scopes and write access only to their own scope.
Privileged accounts will have write access to multiple scopes, e.g., production might use scopes such as
mcl1, datal2_8TeV, tmp.prod.!

Files, datasets and containers are uniquely identified over all time. This implies that an identifier,
once used, can never be reused to refer to anything else at all, not even if the data it referred to has been
deleted from the system.

3.2 File, dataset and container status
3.2.1 File status

The following status attributes are supported for files:

e availability: LOST, DELETED, AVAILABLE

A file is LOST if there are no known replicas of the file in Rucio, while at the same time at least
one account requested a replica; a file is DELETED if no account requested a replica; otherwise
the file is AVAILABLE. This is a derived attribute.

e suppressed: TRUE, FALSE

This is a user settable flag. It indicates that the owner of the scope no longer needs the name to
be present in the scope. Files that are suppressed (by default) do not show up in search and list
operations on the scope. The setting of this flag is subject to conditions, e.g., one can not suppress

Scopes can be marked as read-only, which will prevent the registration of new data in them.

a file while at the same time requesting it to be replicated somewhere. This flag will be ignored
when explicitly listing the contents of datasets/containers.

3.2.2 Dataset/Container status

The dataset/container status is reflected by a set of attributes:

e open: TRUE, FALSE

If a dataset/container is open, content can be added to it. Datasets/containers are created open and
once closed, they cannot be opened again.?

e monotonic: TRUE, FALSE

If the monotonic attribute is set, content cannot be removed from an open dataset/container.
Datasets/containers are, by default, created non-monotonic. Once set to monotonic, this cannot
be reversed.

e complete: TRUE, FALSE

A dataset/container where all files have replicas available is complete. Any dataset/container which
contains files without replicas is incomplete. This is a derived attribute.

e suppressed: TRUE, FALSE

This attribute has the same meaning as for files.

There is no concept of versioning. Adding content to a closed dataset/container is not possible and
instead a new dataset/container, with a new identifier, must be created.

4 Metadata attributes

Metadata associated with a data identifier is represented using attributes, which are key-value pairs. The
set of available attributes is restricted. Some metadata attributes are user settable, e.g., physics attributes
(number of events, run number, run period, POOL GUID) or production attributes (task ID, job ID).
Metadata which is not user settable includes system attributes, such as size, checksum, creation time.
For datasets and containers, it is possible that the value of a metadata attribute is a function of the
metadata of its constituents, e.g., the total size is the sum of the sizes of the constituents. In this case it is
also obviously not possible to assign a value to it.

When appropriate and requested, Rucio will check metadata values for validity, rejecting the attempt
to set invalid values. This can be used to ensure that, e.g., POOL GUID is unique and that the Job ID is
a positive integer.

The upload of data with incorrect attributes or values will be rejected. Rucio supports searching for
files, datasets and containers based on metadata attributes.

5 Rucio Storage Element

A Rucio Storage Element (RSE) is a repository for physical files. It is the smallest unit of storage space
addressable within Rucio. It has an unique identifier and a set of properties such as:

Datasets from which files have been lost can be repaired when replacement files are available, even if open=FALSE. The
replacements need not be binary identical to the lost files.

supported protocols, e.g., file, https, srm

quality of service; storage type, e.g., disk, tape

physical space properties, e.g., used, available, non-pledged

a weight value, used for data distribution (see §7.1)

a threshold for deletion (see §7.4)

A set of RSEs can be identified directly by enumeration of their names, or indirectly by a boolean
expression over their attributes. Attributes are key-value pairs, e.g., CLOUD=UK, Tier=1, T2D=True,
MoUShare=15. A key whose value is True is equivalent to a tag. RSE attributes are used to manage data
with replication rules (see §7.1).

Physical files stored on RSEs are identified by their Physical File Name (PFN). The PFN is a fully
qualified path identifying a replica of a file. PFNs may take the form of file names, URIs, or any other
identifier meaningful to a Rucio Storage Element. The mapping between the LFN and the PEN is a
deterministic function of the LFN, RSE and protocol.

Normally the upload to an RSE and the registration of a replica is a single operation. For trusted users,
like the Tier-0 and PanDA production systems, it is possible to register a replica uploaded independently.

6 Permission model

Rucio assigns permissions to accounts. Permissions are boolean flags designating whether an account
may perform a certain action. For example, the check of the permission to add an account for the rucio
administrative account will return true.

7 Replica management

7.1 Replica Rules

Replica management is based on replication rules defined on data identifier sets. Replication rules de-
fined on datasets or containers will affect all contained datasets, containers and files (either directly or
recursively), including content added to these datasets and containers in the future. A replication rule is
owned by an account and defines the minimum number of replicas to be available on a list of RSEs.

Rules may have a limited lifetime and can be added, removed or modified at any time. Rules may
specify a grouping policy that controls which files are grouped together at the same RSEs (see §7.1).

The list of RSEs can be specified with RSE attributes (see §5). RSE attributes are resolved at rule
creation time to enumerate target RSEs. Post-facto changes to RSE attributes will not affect current
replication rules.

Sample replication rules are given below (some parameters are optional, a value in [] denotes usage
of the default value):

Account Copies Data Identifier Set RSEs Weight Lifetime Grouping®

prod 2 prod:containerl Tier=1 [MoU] [No] [Dataset]
prod 1 atlas:container3 Site=CERN [MoU] [No] [Dataset]
prod 1 atlas:container3, Tier=2 AND [MoU] [No] All
atlas:dataset6 Cloud=DE
mario 1 mario:dataset], (Cloud=US [MoU] 2013-01-01 [Dataset]
mario:dataset2 AND
Tier=2) OR
Site=CERN
luc 2 graeme:filel, Cloud=UK No [No] None

graeme:container2 ~ AND T2D?

“See §7.2
bThis is interpreted as T2D=True.
As transferring a file to a site can fail, a replication rule has a state to reflect its status:

satisfied - rule is fulfilled by current replicas
replicating — not all replicas are yet made for this rule
stuck — replication attempts for at least one replica have failed and have reached an attempt limit

suspended — a manually set status, indicating that no further attempts should be made to satisfy
the rule

Rucio processes each replication rule and creates replica locks that satisfy the rule and prevent dele-
tion of the replicas. A replica lock is defined for a replica on a specific RSE. It is owned by the account
which issued the replication rule. Rucio will record the relationship between the replication rules and
replica locks so that the correct locks can be removed when a replication rule is deleted.

A replication rule can generate a data transfer prior to the replica lock being satisfied. Rucio will
only create the minimum set of necessary transfer primitives to satisfy all rules. If the weighting option
of the replication rule is used, the choice of RSEs takes their weight into account.

For example, vgaronne:Datasetl = {Filel, File2} with the replication rule ’vgaronne: 2
replicas @ Tier=2’ is resolved into two replica locks for each file of the dataset:

vgaronne: Filel @ LMU
vgaronne: Filel @ MANCHESTER
vgaronne: File2 @ LMU

vgaronne: File2 @ MANCHESTER

If Rucio encounters failures when transferring files, it will apply a configurable policy to determine
how to proceed. This policy can specify a retry strategy, whether alternative sites can be used and when
the rule will be considered stuck.

7.2 File replica grouping

If the file content of a dataset is very widely distributed across many sites this will maximise the CPU
resources that can be used to process this data. If the files are concentrated at one site this will be optimal
for processing which requires the use of many files at once (e.g., merging and archiving to tape).

Rucio uses the dataset/container hierarchy to control how files are grouped together at sites. Rucio
offers three levels of grouping, which will affect how the file replicas in a hierarchy are grouped:

all — All files will be replicated to the same RSE.

dataset — All files in the same dataset will be replicated to the same RSE; different datasets will
be spread maximally over all allowed RSEs. This is the default.

none — Files will be completely spread over all allowed RSEs without any grouping considerations
at all.

To illustrate this consider the following dataset hierarchy:

prod:HugeContainer1
prod:Container1
prod:DatasetA prod:DatasetD prod:DatasetE
prod: prod: prod: prod: prod: prod:
File_0001 | ... | File_0250 File_0751 | ... | File_1000 File_1001 | ... | File_1250

Figure 3: Rucio dataset hierarchy with grouping

There are 1250 files organised in 5 datasets:

prod:DatasetA = {prod:File 0001, ..., File_0250}
prod:DatasetB = {prod:File_ 0251, ..., File_0500}
prod:DatasetC = {prod:File 0501, ..., File 0750}
prod:DatasetD = {prod:File 0751, ..., File_1000}
prod:DatasetE = {prod:File_1001, ..., File_ 1250}

Some datasets are aggregated into a container:
prod:Containerl = {prod:DatasetA, prod:DatasetB, prod:DatasetC, prod:DatasetD}

The container prod:Containerl and dataset prod: :DatasetE are aggregated into a bigger con-
tainer:

prod:HugeContainerl = {prod:Containerl, prod:DatasetE}

If a replication rule is specified on prod:HugeContainerl, specifying that all grouping should
be used, then Rucio will replicate all files belonging to prod:HugeContainerl (prod:File 0001
...File_1250) to the same RSE.

If a replication rule with dataset grouping is specified on prod:HugeContainerl, then Rucio will
spread the datasets as much as possible over the allowed RSEs, but keep all the files in each dataset at
the same RSE.’

If a replication rule with none grouping is specified on prod:HugeContainerl, then Rucio will
replicate all files belonging to the datasets to individually random selected RSEs.

Intermediate grouping options, e.g., by specifying a replication rule on prod:HugeContainerl, but
only grouping all of the content of prod:Containerl together are not supported. To achieve this an
individual replication rule has to be specified on prod:Containerl with all grouping.

Clients should ensure that their dataset/container hierarchies, in particular the definition of the datasets,
are created in such a way as to provide suitable file groupings for further data processing.

7.3 Subscription

Subscriptions generate replication rules based on matching particular metadata at registration time. Sub-
scriptions are owned by an account and can only generate rules for that account. Subscriptions do not
have a lifetime and need to be removed when no longer required. The lifetime of the generated replication
rules can be expressed in a relative way. An example of a subscription is given below:

Attribute Value

Owner tzero

Match project=datal2_8TeV AND dataType=RAW AND stream=physics_*
AND DIType=dataset

Rule 1@Site=CERNTAPE, 1@TITAPE, 1@T1DISK until NOW+90 days;
grouping=dataset

7.4 Data deletion

In case a replica on a particular RSE has no associated replica locks anymore it can be deleted. Locks
disappear when users decrease the number of desired replicas in their replica rules, or the whole rule
altogether.

8 Accounting and quota

Accounting is the measure of how much resource, e.g., storage, an account has used as a consequence of
its actions. Quota is a policy limit which the system applies to an account for some resource.

For storage accounting, Rucio accounts will only be charged for the files on which they have set
replication rules. The accounting is based on the number of replicas an account requested, not on the
number of physical replicas in the system. Accounting and quota calculations use the replica locks
generated from replication rules. Quotas are constraints on the replica locks, based on limits set per
account.

For example, the GROUPDISK RSE tag could be translated into the following RSE list:
CERN_GROUPDISK, BNL_GROUPDISK, GLASGOW _GROUPDISK.

3 Assuming that multiple RSEs are allowed by this rule - specifying a single RSE obviously negates grouping

Account RSE list Limit (TB)

user.vgaronne CERN_USERDISK <1
group.phys-higgs GROUPDISK AND NOT GLASGOW _GROUPDISK <30
group.phys-higgs CERN_GROUPDISK <20
group.phys-higgs BNL_GROUPDISK <20
group.phys-higgs GLASGOW_GROUPDISK < 100

The account user.vgaronne has a quota of 1TB at CERN_USERDISK. The account group.phys-higgs has
an overall quota of 30TB on all GROUPDISK RSEs, excluding GLASGOW. CERN and BNL have an
additional protection that group.phys-higgs cannot use more than 20TB on each site, despite the global
quota. GLASGOW provides explicitly a quota of 100TB and is excluded from the GROUPDISK quota.

9 Notifications

External applications can require to synchronize on events relative to data availability and can subscribe
to particular events, e.g., dataset state changes. Then Rucio will publish a messages to an external
application when it detects these events.

Acknowledgments

We express our gratitude to our ATLAS colleagues for their help and patience when we explored re-
quirements and use cases, especially: Markus Elsing, Beate Heinemann, Jamie Boyd, Jonas Strandberg,
Solveig Albrand, Torre Wenaus, Rodney Walker, Tadashi Maeno, Paul Nilsson, Simone Campana, Jo-
hannes Elmsheuser, Daniel Van Der Ster, Douglas Benjamin, Junji Tojo, Ikuo Ueda, Borut Kersevan,
Stephane Jezequel and Cedric Serfon.

We also thank Philippe Charpentier, Costin Grigoras, Simon Metson, Latchezar Betev, Dirk Duell-
mann and Pablo Saiz for their input and ideas about the different distributed data management system of
each LHC experiment, and their patience when answering our questions.

Appendix A. Key concepts: Comparison matrix DQ2 vs. Rucio

Features DQ2 Rucio

File identifier GUID/LFN Scope + name (DI)
Dataset identifier DUID/DSN Scope + name (DI)
Container identifier CUID/CNT Scope + name (DI)
Versioning Yes No

Namespace Global/Flat Scoped

File aggregation Dataset Dataset

Dataset aggregation Container Container
Container aggregation No Container

Unique PEN No Yes

Overlapping dataset Yes Yes

Storage Element Groups No Yes

Storage Element Attributes No Yes

Quota support Group Account (Group/User)
Replica grouping Strict Best effort

Replica Lifetime Yes No

Metadata namespace and support

Data discovery unit

Data operation unit
Multiple replica ownership
Dynamic placement
Replication rule support
Hidden data

Reuse of dataset name

Notifications
Fine-grained accounting

System defined, Data placement

Wildcard string matching

Dataset

Yes
Partially

System defined, Physics, Pro-
duction, Analysis, Data place-
ment

Metadata, dataset/container hi-
erarchy

Dataset, File, Container (DIS)
Yes

Yes

Yes

Yes

No (but possibility to resuscitate
dataset)

Yes

Yes

Appendix B. Acronyms and Abbreviations

LFN Logical File Name.

DI Data Identifier.

DIS Data Identifier Set.
PFN Physical File Name.
RSE Rucio Storage Element.

URI Uniform Resource Identifier.

10

