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Signature score is a useful tool to study the activities of gene modules at the single-cell level. The conventional
method calculates approximate signature scores by random sampling. Users need to carefully find a trade-off
between accurate approximation (more sampling) and computational efficiency (less sampling). We instead
propose a closed-form solution to compute exact signature scores, which achives both high accuracy and high
efficiency by eliminating the requirement of the sampling step. In the following sections, we will describe the
conventional method, give our closed-form method and compare the performance of the two methods using
real data.

1 Conventional method

In this section, we describe the conventional method by following [1], which used a modified method from [2].

Assume that we have N cells and M genes. We denote the expression (e.g. log(TP100K + 1)) of gene i at
cell j as eij . Then the average expression µ of each gene across N cells can be defined as:

µi =
1

N

N∑
j=1

eij .

We bin the M genes into n bins (e.g. n = 50) based on their average expressions (i.e. µs). We additionally
assume that we have a gene signature S. S consists of K genes, with kb genes in expression bin b:

S =

n⋃
b=1

Sb, |Sb| = kb, |S| =
n∑

b=1

kb = K.

The signature score S is defined as the difference between the raw score Sraw and the control score Scontrol,
which we will define separately.

The raw score of cell j, Sjraw, is defined as follows:

Sjraw =
1

K

∑
i∈S

cij , cij = eij − µi,

where cij is the centered expression. Using centered expression in the raw score helps to prevent highly
expressed genes from dominating the score.

The control score is useful to control technical noise that depends on gene abundance. To calculate this
score, we first need to define S-compatible random signature. This is a set of K genes sampled without
replacement from all M genes, such that there are exactly kb genes in the set for each bin b. The score of
random signature Sr on cell j is

Sjr =
1

K

∑
i∈Sr

cij .

We define the control score of cell j, Sjcontrol, as the expectation of the random signature on cell j:

Sjcontrol = E[Sjr ].
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In [1], the expectation is approximated by randomly sampling L (L = 1000) S-compatible signatures:

Sjcontrol = E[Sjr ] ≈ 1

L

L∑
l=1

Sjrl.

Because the sampling process is time consuming, the S-compatible random signatures are not sampled
independently for each cell j. Instead, L random signatures are first sampled and then applied for all
N cells.

Once we have the raw and control scores, we can calculate the signature score of cell j, Sj :

Sj = Sjraw − S
j
control.

2 Our streamlined, closed-form solution
After a careful inspection, we find that there is a closed-form solution for calculating the expectation.

Let us first rewrite the random signature score Sjr so that we can see the random variables clearly:

Sjr =
1

K

∑
i∈Sr

cij =
1

K

n∑
b=1

kb∑
p=1

csbp,j ,

where sbp is a random variable denoting the pth sampled gene in bin b. Let us also define sb as a random
variable denoting one sampled gene in bin b.

Then the control score (expectation) becomes

Sjcontrol = E[Sjr ] = E[
1

K

n∑
b=1

kb∑
p=1

csbp,j ]

=
1

K

n∑
b=1

kb∑
p=1

E[csbp,j ]

=
1

K

n∑
b=1

kbE[csb,j ].

Note that in the above equations, we use the fact that E[csb,j ] = E[csb1,j ] = E[csbp,j ], which can be proved
as follows. First, E[csb,j ] = E[csb1,j ] is trivial. Thus, we only need to show that E[csb1,j ] = E[csbp,j ]. For each
random signature that sbp = v, we can map it to a signature with sb1 = v by swapping the 1st and the pth
genes. Thus we have a one-to-one mapping between random signatures with sb1 = v and random signatures
with sbp = v. Thus, we have E[csb1,j ] = E[csbp,j ].

E[csb,j ] can be easily calculated as

E[csb,j ] =
1[
M
n

] ∑
i∈bin b

cij ,

and we can precompute E[csb,j ] for all bines and all cells.

In conclusion, given a closed-form formula for computing the control score and precomputed E[csb,j ] terms,
we can calculate any signature score instantly.
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3 A statistical view of the signature score calculation

Let us consider this question: if the observed expression cij is for gene i is specific to cell j (i.e. ultra
high or ultra low)? To answer this question, we first need to have an expression distribution for non-specific
expressions (null distribution). To construct a null distribution, we partition all genes into n bins as described
above. For each bin b, the emperical distribution consisting of {cij |i ∈ bin b} captures non-specificity and
technical artifacts in cell j. The sample mean µ̂bj and sample standard deviation σ̂bj of this distribution are

µ̂bj = E[csb,j ] =
1[
M
n

] ∑
i∈bin b

cij ,

σ̂bj =

√∑
i∈bin b c

2
ij −

[
M
n

]
µ̂2
bj[

M
n

]
− 1

.

We use this distribution as our null distribution for genes i ∈ bin b and we have

cij ∼ Dist(µ̂bj , σ̂
2
bj).

We can further calculate a standard score (z-score) for gene i in cell j and the standard score follows a
transformed null distribution with 0 mean and 1 variance:

zij =
cij − µ̂bj

σ̂bj
, zij ∼ Dist∗(0, 1).

Signature score as a weighted sum of standard scores. We can rewrite the signature score Sj based
on standard scores as follows:

Sj =
1

K

n∑
b=1

∑
i∈Sb

σ̂bjzij .

The above equation means the signature score we described previously is a standard deviation weighted sum
of z scores. Since standard deviations in the null distributions might not represent any interesting biology,
we can consider an unweighted version:

Sjnew =
1

K

∑
i∈S

zij .

More importantly, by Lindeberg Central Limit Theorem (Linderberg’s condition; needs to be checked),
Sjnew ∼ N (0, 1) asymptotpically when K →∞.

Thus, we can calculate P-value for each cell independently based on Sjnew and control False Discovery Rate
for a whole dateset.

4 Experiment results

We tested our closed-form solution (implemented in Pegasus) and conventional methods (implemented in
SCANPY and Seurat respectively) using the full bone marrow dataset (274,182 cells) from the Immune
Cell Atlas project. We first benchmarked the three implementations (Pegasus, SCANPY and Seurat) for
calculating B cell signature scores on the bone marrow data. The B cell signature S = { CD19, MS4A1,
CD79A, CD79B, BANK1, BLK, RALGPS2, ARHGAP24, AFF3, BCL11A }. As an example, Figure 1 shows
the cell type annotation for the dataset and the Pegasus-calculated B cell signature scores.
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Figure 1: Cell-type annotated bone marrow dataset (A) and B cell signature score (B) in UMAP
coordinates.

For all three implementations, we set the number of bins n = 50. For SCANPY, we calculated B cell signature
scores by ranging the number of sampled randome signatures from L = 50 to L = 1000 (step size50). For
Seurat, we varied L from L = 50 to L = 500 (step size 50). Seurat crashed for any L >= 550. The versions
we used for Pegasus, SCANPY and Seurat are Pegasus v1.0.0, SCANPY v1.6.0 and Seurat v3.2.2. We then
plotted the Spearman’s rank correlation between Pegasus-calculated scores and SCANPY or Seurat scores
in Figure 2A. We can observe from the plot that 1) both SCANPY and Seurat scores approached Pegasus
scores when L increases; 2) Seurat scores have better correlations with Pegasus scores compared to SCANPY
when L is fixed.

We also benchmarked the three implementations with respect to computational efficiency. In this case, we
ask each tool to calculate 5 signature scores: B cell, Plasma cell, CD4+ T cell, CD8+ T cell and Nature
Killer cell. In addition, we ran each tool 5 times to estimate error bars. The execution time results are
shown in Figure 2B.

A B

Figure 2: Benchmarking results. We benchmarked Pegasus, SCANPY and Seurat on signature score
calculation. A. Spearman correlation between Pegasus-calculated B cell signature scores and SCANPY-
calculated / Seurat-calculated scores. X axis represents the number of sampled random signatures (L). B.
Bar plots showing the runtime in seconds for each tool to calculate 5 signature scores (B, Plasma, CD4+ T,
CD8+ T, NK cells). Error bars were calculated from 5 independent runs.
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