
Doublet detection in Pegasus

Version 3

Bo Li

July 12, 2021

1 Overview
Doublets consist of transcriptomes from two different cells. Doublets may be mistakenly considered as new
biology (e.g. rare cell types) due to their distinction from singlets. In addition, doublets introduces noise in
downstream analysis and can worsen the clustering and visualization quality. Thus, identifying and removing
doublets becomes a critical data cleaning step in single-cell and single-nucleus RNA-seq (sc/snRNA-seq) data
analysis. Based on Scrublet [6] paper’s definition, we can classify doublets into two categories: embedded
doublets and neotypic doublets. Embedded doublets are composed of highly similar cells and thus are hardly
distinguishable from singlets. Neotypic doublets are composed of cells with dissimilar transcriptomes. They
are the doublets that cause most trouble. Fortunately, they are also distinguishable from singlets.

Our goal is to identify and remove neotypic doublets. In this manuscript, we will describe a three-step
stragety used in Pegasus to identify and remove neotypic doublets. First, Pegasus calculates doublet scores
per sample using a slightly modified Scrublet [6] method. Second, Pegasus infers a doublet score cutoff
between neotypic and embedded doublets per sample automatically using a method combining Gaussian
mixture model and signed curvature scores. Lastly, Pegasus tests if any cluster consists of more neotypic
doublet than expected using Fisher’s exact test. Clustering should be performed on all samples after batch
correction. Users can determine if they want to mark any statistically significant cluster as a neotypic
cluster and all cells in a neotypic cluster would be marked as neotypic doublets. This last step is inspired
by Pijuan-Sala et al. [4].

In the following sections, we will describe each of the three steps in details.

2 Doublet score calculation

Pegasus reimplements Scrublet [6] with slightly modifications. We reimplemented Scrublet for two reasons:
1) Scrublet source code was not maintained since July 2019; 2) a re-implementation allows us to cut many
unnecessary dependencies and gives us more flexibility on future improvements.

Scrublet has three major steps: preprocessing, doublet simulation and doublet score calculation using a
KNN classifier. The preprocessing step consists of 4 sub-steps (see Default Preprocessing section of the
Scrublet paper): a) data normalization, b) highly variable gene selection, c) data standardization and d)
PCA. In our reimplementation, we replace a) and b) with Pegasus data normalization and log transformation
[log(TP100K+1)], followed by Pegasus-style highly variable gene selection [1]. It is also worth noting that
we directly work on the TP100K matrix in c), instead of log(TP100K+1) matrix.

For the doublet simulation and doublet score calculation steps, we exactly follow the Scrublet method, except
that we build kNN graphs using Pegasus’ kNN building function [1], which utilizes the Hierarchical Navigable
Small World algorithm [2]. For users’ convenience, we also provide a brief derivation of how the doublet
score is calculated below. More details can be found in the Scrublet paper [6].

Let r be the ratio between simulated doublets and observed doublets, P
′

D(x) be the approximated density
function of doublets and Pobs(x) be the density function of observed cells, which can be used as an approxi-
mation of density function of singlets (assuming doublet rate is low). The probability of a simulated doublet
appeared in the neighborhood of cell x becomes

1

q(x) =
P

′

D(x)r

P
′
D(x)r + Pobs

. (1)

Let ρ̂ be the expected doublet rate, the probability of x is a doublet becomes

L (x) ≈ P
′

D(x)ρ̂

P
′
D(x)ρ̂+ Pobs(x)(1− ρ̂)

. (2)

Reorganize equation (1), we get

Pobs(x) = P
′

D(x) · r(1− q)
q

· (1− ρ̂). (3)

Plug equation (3) into equation (2), we get

L (x) =
q(x)ρ̂/r

(1− ρ̂)− q(x)(1− ρ̂− ρ̂/r)
. (4)

Following Scrublet notations, we denote k as the average number of observed cell neighbors and kadj as the
total number of neighbors. By default, we have

k = b0.5 ·
√

number of cellse,
kadj = bk · (1 + r)e.

If we put a non-informative prior Beta(1, 1) on q(x), the expectation of q(x) becomes

〈q(x)〉 =
kd(x) + 1

kadj + 2
, (5)

where kd(x) is the number of simulated doublets in cell x’s neighborhood. Note that the neighborhood here
does not include x itself.

Plug equation (5) into equation (4), we get the formula for doublet score as

〈L (x)〉 ≈ 〈q(x)〉ρ̂/r
(1− ρ̂)− 〈q(x)〉(1− ρ̂− ρ̂/r)

. (6)

2.1 Estimate doublet rate prior automatically for 10x Genomics data

In Scrublet, users need to set a doublet rate prior parameter manually, which might be challenging. In
Pegasus, we have developed a method to automatically estimate this prior based on total number of cells.

We assume the number of cells n entering a droplet or microwell follow a Poisson distribution parameterized
by λ, i.e. n ∼ Pois(λ). Then we can estimate the doublet rate ρ as

ρ =
P (n > 1)

P (n > 0)
=

(1.0− e−λ − λe−λ)

1.0− e−λ
. (7)

λ can be interpreted as the rate of an event happening in an interval of time, where the event is a cell
entering the droplet or microwell. If we denote N as the total number of cells, it is intuitive to assume that
λ(N), the rate parameter for capturing N cell in one channel, is proportional to N , or

λ(N) = c ·N. (8)

2

Based on equations (7) and (8), we can estimate λ(N) for 10x Genomics data from the multiplet rate table
available at 10x Genomics website. Based on the table, we estimated

λ̂(N) =
0.00785

500
·N,

where 0.00785 is the estimated λ for 500 cells.

If other protocols also provide multiplet rate tables similar to 10x Genomics, we can easily estimate λ(N)
using equations (7) and (8).

In Pegasus, if users do not provide a doublet rate prior value, we automatically set ρ̂ as

ρ̂ =
(1.0− e−λ̂(N) − λ̂(N)e−λ̂(N))

1.0− e−λ̂(N)
.

Note that if the data are not 10x Genomics, users may consider to provide a prior value instead of using this
automatic feature.

3 Doublet cutoff inference
Scrublet provides a method to determine doublet score cutoff between embedded and neotypic doublets based
on simulated doublets. However, this method is far from ideal. Figure 1 showed the Scrublet histograms
generated for bone marrow donor 3, channel 1 from the Immune Cell Atlas dataset. We ran Scrublet using
default parameters except setting ˆrho = 0.0031. We can observe that the ”ideal” cutoff should be around
0.2, while Scrublet set the threshold in the middle of the ”neotypic” doublet peak.

Figure 1: Scrublet histograms for observed cells (left) and simulated doublets (right). The
vertical line indicates the cutoff.

Thus, we developed a novel method to automatically determine the cutoff in Pegasus. Our method is based
on several observations from real data, which we will describe below.

3.1 Log-transformation

We observed that log-transforming the doublet scores helps us to push neotypic doublets together and
have a clearer distinction between embedded and neotypic doublets. For example, we performed Kernel
density estimation (KDE) on both doublet scores and log-transformed doublet scores for simulated doublets
(Figure 2). We can clearly observe two peaks on the KDE plot generated from log-transformed scores. Thus,
we will work on log-transformed (log x) doublet scores for determining the cutoff.

3

https://kb.10xgenomics.com/hc/en-us/articles/360001378811-What-is-the-maximum-number-of-cells-that-can-be-profiled-
https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79

Figure 2: KDE plots on doublet scores (left) and log-transformed doublet scores for simulated
doublets.

3.2 Peaks in the KDE plot

We observed that clear two-peaks structure in the log-transformed KDE plot (e.g. Figure 2, right panel)
for many cases. For these cases, it is intuitive to set the cutoff at the position with minimal density value
between the two peaks. In order to determine the appropriate cutoff, we need to identify all peaks (local
maxima) from the log-transformed KDE plot. To do so, we first need to discretize the x axis (log doublet
score) into a series of points. We then check each point to determine if it is a local maximum (i. e. larger
than its neighbor points).

We categorize peaks into two groups (Figure 3A) based on their heights: 1) major peaks are the peaks with
heights larger than αf fraction (αf = 0.25) of the global maximum; and 2) minor peaks are any other peaks.
Major peaks are likely to represent embedded or neotypic doublet groups and minor peaks are likely to be
outliers representing only a small fraction of doublets in one doublet group. Thus, we use major peaks to
determine the cutoff.

In some cases, one major peak may be splitted into two major ”peaks” due to noise in data (Figure 3B). To

handle this issue, we merge two adjacent major peaks if
max(yi,yi+1)−ymin

i,i+1

max(yi,yi+1)
≤ αm. Here yi and yi+1 are the

peak density values at the two peaks, ymin
i,i+1 is the minimal density value between the peaks and αm is the

peak merging threshold (αm = 0.06). We describe the detailed method for finding all peaks in Algorithm 1.

A B

Figure 3: Example peaks. KDE plots estimated from a human heart sample (A) and a human peripheral
blood sample (B). A shows two major peaks and one minor peak. B indicates the “splitted” major peak
using a red rectangle.

4

Input: sim scores: doublet scores for all simulated doublets;
KDE(x): a Kernel density estimation function return densities at values in vector x;
RANGE(start, end, step): this function return a seqeunce of points in [start, end] with a
increment of step between adjacent points;
αf = 0.25, αm = 0.06

Output: merged peaks: merged major peaks;
major peaks: all major peaks before merging;
minor peaks: minor peaks;
sim scores log: log transformed simulated doublet scores;
x: discrete data points in log doublet score space;
y: density value of discrete data points

sim scores log← log sim scores // log transform doublet scores;
min score← min(sim scores log);
max score← max(sim scores log);
// generate discrete data points for evaluating local maxima

// adjacent data points only contain one unique value in sim scores log

min gap← minimum gap between adjacent scores in sim scores log;
n gap← max(d(max score−min score)/min gape, 200);
gap← (max score−min score)/n gap;
x← RANGE(min score− gap× 5,max score+ gap× 5, gap) // add a margin of gap× 5 at

both sides;
// calculate densities at data points in x
y← KDE(x);
// search for local maxima

lower bound← αf ·max(y), major peaks← ∅, minor peaks← ∅;
for i← 3 to |x| − 2 do // index starts from 1

if y[i− 1] = y[i] and y[i− 2] < y[i− 1] and y[i] > y[i+ 1]
or y[i− 2] < y[i− 1] and y[i− 1] < y[i] and y[i] > y[i+ 1] and y[i+ 1] > y[i+ 2] then

// Determine if major peak or minor peak

if y[i] > lower bound then
major peaks← major peaks ∪ {i}

else
minor peaks← minor peaks ∪ {i}

end

end

end
// merge major peaks that might be produced by noise

curr peak ← {1}, merged peaks← ∅;
for i← 2 to |major peaks| do

min value← min(y[major peaks[i] + 1 : major peaks[i+ 1]]);
max value← max(y[major peaks[i]],y[major peaks[i+ 1]]);
if (max value−min value)/max value ≤ αm then // merge peaks

curr peak ← curr peak ∪ {i}
else

merged peaks← merged peaks ∪ {argmaxj∈curr peaky[j]};
curr peak ← {i}

end

end
merged peaks← merged peaks ∪ {argmaxj∈curr peaky[j]};
Algorithm 1: Algorithm to collect all merged and unmerged major peaks and all minor peaks.

3.3 Cutoff determination when multiple major peaks exist

If we only have 2 major peaks, it is straightforward to set the cutoff at the position with minimal density
value between the two peaks. However, in many cases, we may have more than 2 major peaks. In this case,
setting cutoff between the first two major peaks (ranked by peak density value) might not be always optimal
(Figure 4). Fortunately, we can estiamte a theoritical cutoff between embedded and neotypic doublets by
clustering, which can in turn guide us to find the best cutoff.

5

Figure 4: Multi-major-peak examples. KDE plots estimated from a human cord blood sample, showing
three major peaks. Cutoff between the first and third peaks looks the best choice with the largest gap size.

Suppose there are n major cell types in ground truth and each cell type i occupies fi proportion of the overal
population and

∑n
i=1 fi = 1.0. In the simulation process, the probability of selecting either a singlet or a

embedded doublet of cell type i is

Pi = (1− ρ̂) ∗ fi + ρ̂ ∗ f2i ,

where ρ̂ is the doublet prior estimated using 10x Genomics table in the previous section. The probability of
generating an embedded doublet from any of the major cell types becomes

Pemb =

n∑
i=1

P 2
i =

n∑
i=1

((1− ρ̂) ∗ fi + ρ̂ ∗ f2i)2,

and the probability of generating a neotypic doublet becomes

Pneo = 1.0− Pemb.

Note that [3] also utilized a similar technic to estimate the proportion of homotypic doublets in real data.
However, their analysis did not take doublets into consideration.

In reality, we do not know the ground truth major cell types. Thus, we use the following approximations: we
set n = 5 and perform a KMeans clustering on the PCA coordinates computed in the previous section. The
resulting 5 clusters are used as a proxy of the ground truth cell types. With the theoritical neotypic doublet
rate Pneo estimated this way, we can compute cutoffs between the first major peak and the rest major peaks
and pick the cutoff that is closest to Pneo as the final cutoff. Please refer to Algorithm 2 for details.

In some cases, the determined cutoff results in a very small fraction (e.g. < 10%) of simulated doublets
identified as neotypic. In this case, we will marke all major peaks at the right of the cutoff as minor peaks
and apply the rules in next subsection to find an appropriate cutoff. The fraction of neotypic doublets in
simulation can be calculated as

Pprac =
|{i|sim scores log[i] > x[cutoff pos]}|

|sim scores log|
.

6

Function LocateCutoffMulti: // Locate the cutoff for the multi-major peaks case
Argument: merged peaks: all merged major peaks;

x: x-axis of the KDE plot;
y: y-axis of the KDE plot;
sim scores log: log transformed simulated doublet scores;
Pneo: estimated theoritical neotypica doublet rate;

Return: cutoff pos: the cutoff position in x

i1 ← argmaxi∈merged peaksy[i] // position of the largest peak;

posvec← ∅;
deltavec← ∅;
for i ∈ merged peaks, i 6= i1 do

pos← argmins<j<ty[j];

Pprac ← |{j|sim scores log[j]>x[pos]}|
|sim scores log| ; // | · | refers to the size of set or array

delta← |Pneo − Pprac|; // | · | refers to absolute value

posvec← posvec ∪ {pos};
deltavec← deltavec ∪ {delta};

end
cutoff pos← posvec[argmini deltavec[i]];

end

Algorithm 2: Algorithm to determine cutoff for the multiple major peaks case.

3.4 Cutoff determination when only one major peak exists

There are cases where we can only observe one major peak (Figure 5). When we only observe one major
peak, this peak might represent either embedded doublets (Figure 5A) or neotypic doublets (Figure 5B). If
the peak represents embedded doublets, we need to find the cutoff at the right side of the peak; otherwise,
we find the cutoff at the left side of the peak. Thus, in order to determine an appropriate cutoff, we need to
first decide which doublet group the major peak represents.

A B

Figure 5: Two types of single peak cases A. KDE plot estimated from a human bone marrow sample.
This plot has one major peak that is likely to represent embedded doublets. B. KDE plot estimated from a
human peripheral blood sample. This plot has one major peak that is likely to represent neotypic doublets.

In order to determine the doublet group of the major peak, we first need to calculate frac right, the fraction
of simulated doublets at the right side of the major peak. Denote the rightmost position in major peaks as
peak pos, frac right can be calculated as

frac right =
|{i|sim scores log[i] > x[peak pos]}|

|sim scores log|
,

where | · | denotes the size of a set or vector. If the major peak represents neotypic doublets, there must be

7

some embedded doublets at the leftside of the peak and thus frac right must be smaller than 0.5. To avoid
calling false positive neotypic doublets, we only consider the peak representing neotypic doublets and locate
cutoff at the leftside of the peak if

frac right < 0.41, or frac right < 0.5 and x theory + 0.05 < x[peak pos].

Otherwise, the peak presents embedded doublets and we locate cutoff at the rightside of the peak. x theory
in the above formula denotes the x coordinate of the theoritical cutoff (Pneo). The above criteria suggest if
it is apparent that there is some embedded doublet mass at the leftside (i.e. frac righ is small enough), we
consider the peak as representing neotypic doublets. Otherwise, even if frac right < 0.5, we still need to
make sure the theoritical cutoff is at the leftside of the peak (x theory + 0.05 < x[peak pos]).

3.4.1 Peak is embedded

If the major peak represents embedded doublets (Figure 6, left), we need to find the cutoff at the right side
of the major peak. To facilitate cutoff determination, we need to calculate signed curvatures [5] of the KDE
plot. The signed curvature Kf (x) can be calculated as

Kf (x) =
f

′′
(x)

(1 + f ′(x)2)1.5
,

where f
′′

and f
′

are the second and first derivaties of the function f (i.e. KDE function). We can approxi-
mate f

′
and f

′′
for data points in x using the five-point stencil method and calculate the signed curvature

using approximated f
′

and f
′′

values (Figure 6, right).

Figure 6: KDE (left) and signed Curvature (right) plots of a human bone marrow sample. The
dashed lines indicate the cutoff. The red arrows highlight important concepts, such as concave bump, major
concave bump, minor peak, convex region and largest concave bump.

Once singed curvatures are calculated, we can utilize concave bumps (Figure 6) and minor peaks to locate the
cutoff. Concave bumps are local minima with negative curvature value in the signed curvature plot (Figure 6,
right). We further define the concept of major concave bumps (Figure 6, left), which are concave bumps
with large enough absolute curvature values compared to either the major peak or the largest concave bump
(Figure 6, right). The largest concave bump is the concave bump that has the largest absolute curvature
value among concave bumps between the major peak and minor peaks. Let us denote curv peak and
curv glob as the minimal curvature value in the major peak and the largest concave bump respectively,
and define curv right = max(curv glob, curv peak). The major concave bumps are defined as any concave
bumps with the minimal curvature values smaller than γr fraction (γr = 0.45) of curv right. Note that
major concave bumps should also have their minimal curvature values smaller than γd (an upper bound on
minimal curvature values, γd = −0.25).

We additionally define a convex region (Figure 6, right) as an interval that the minimal curvature value
within the interval is larger than γp (γp = 0.05). The cutoff should locate at a convex region between the

8

https://en.wikipedia.org/wiki/Five-point_stencil#:~:text=In%20numerical%20analysis%2C%20given%20a,to%20derivatives%20at%20grid%20points.

major peak and the leftmost major concave bump or minor peak. In particular, we pick the cutoff as the
elbow point [5] (the point with maximal curvature value, see dashed vertical lines in Figure 6) among all
convex regions between the major peak and the leftmost major concave bump/minor peak. The algorithm
to find a cutoff for the one major peak case is illustrated in Algorithm 3.

Function LocateCutoffRight: // Locate the doublet cutoff at the rightside
Argument: major peaks: all major peaks;

minor peaks: all minor peaks;
x,y: x-axis and y-axis of the KDE plot;
γp = 0.05, γr = 0.45, γd = −0.25;
calc curv(x, y): this function return curvature values using the five-point stencil method;

Return: cutoff pos: the cutoff position in x

curv← calc curv(x,y) ;
// the major peak represents embedded doublets

// calculate curv peak

s← max{i|i < max(major peaks) and curv[i] ≥ 0.0};
t← min{i|i > max(major peaks) and curv[i] ≥ 0.0};
curv peak ← mins<i<t curv[i];
// calculate curv glob

s← min{i|i > max(major peaks) and curv[i] > γp};
il ← min{i|i ∈ minor peaks and i > max(major peaks)} // locate leftmost minor peak;
t← max{i|i < il and curv[i] > γp};
curv glob← mins<i<t curv[i];
if curv glob < γd then // locate leftmost major concave bump

curv right← max(curv peak, curv glob);
thre← min(curv right · γr, γd);
i← s+ 1;
while i < t and not (curv[i] < thre and curv[i− 1] > curv[i] and curv[i] < curv[i+ 1]) do

i← i+ 1
end
t← max{j|j < i and curv[j] > γp};

end
cutoff pos ← argmaxs≤i≤tcurv[i]

end

Algorithm 3: Algorithm to determine cutoff at the right side of the major peak.

3.4.2 Peak is neotypic

If the major peak consists of multiple peaks that are merged according to the criteria in the Peaks section,
we collect a set of cutoffs between any adjacent peak pairs and pick the final cutoff as the cutoff closest to
the theoritical cutoff x theory. Otherwise, we select the cutoff as the position with maximal curvature value
in the convex region between the first curvature local minima at the leftside of the theoritical cutoff x theory

9

and peak. See Algorithm 4 for details.

Function LocateCutoffLeft: // Locate the doublet cutoff at the leftside
Argument: major peaks: all major peaks;

x,y: x-axis and y-axis of the KDE plot;
γp = 0.05;
calc curv(x, y): this function return curvature values using the five-point stencil method;

Return: cutoff pos: the cutoff position in x

curv← calc curv(x,y) ;
// the major peak represents neotypic doublets

if |major peaks| > 1 then // the peak consists of multiple peaks merged

posvec← ∅;
for i← 0 to |major peaks| − 1 do

pos← argminmajor peaks[i]<j<major peaks[i+1]y[j];

posvec← posvec ∪ {pos};
end
cutoff pos← argminpos∈posvec|x[pos]− x theory|;

end
else

t← max{i|i < min(major peaks) and curv[i] ≥ γp};
s← max{i|i < t and x[i] < x theory and curv[i− 1] > curv[i] and curv[i] < curv[i+ 1]};
cutoff pos← argmaxs≤i≤tcurv[i];

end

end

Algorithm 4: Algorithm to determine cutoff at the left side of the major peak.

10

3.5 The overall cutoff determination algorithm

We summarize the overall algorithm described so far in Algorithm 5. Note that all parameters (αf , αm, γp,
γr and γd) and thresholds are determined empirically from real data.

Input: sim scores: doublet scores for all simulated doublets;
LocateCutoffMulti(merged peaks, x, y, sim scores log, Pneo): return cutoff position for
multiple peaks case;
LocateCutoffRight(major peaks, minor peaks, x, y, args): return cutoff position for one
embedded peak;
LocateCutoffLeft(major peaks, x, y, args): return cutoff position for one embedded peak;

Output: cutoff : a cutoff score applicable to observed data

Run Algorithm 1;
Calculate Pneo and x theory;
cutoff pos ← −1;
if |merged peaks| ≥ 2 then

cutoff pos ← LocateCutoffMulti(merged peaks, x, y, sim scores log, Pneo);
Calculate Pprac based on cutoff pos;
if Pprac < 0.1 then

Move all major peaks on right side of cutoff pos from major peaks to minor peaks;
cutoff pos ← −1;

end

end
if cutoff pos == −1 then

i← |major peaks| − 1;

frac right← |{j|sim scores log[j]>x[major peaks[i]]}|
|sim scores log| ;

if frac right < 0.41 or frac right < 0.5 and x theory + 0.05 < x[major peaks[i]] then
cutoff pos ← LocateCutoffLeft(major peaks, x, y, · · ·) ;

else
cutoff pos ← LocateCutoffRight(major peaks, minor peaks, x, y, · · ·) ;

end

end

Algorithm 5: Overall cutoff determination algorithm.

4 Doublet cluster identification
Once we have identified neotypic doublets, we can assess if a cluster is significantly enriched for doublets
using Fisher’s exact test by constructing the follow data table. We conduct Fisher’s exact test for all clusters
and control the False Discover Rate at α = 0.05. Among clusters that are significantly enriched for doublets,
users can determine if they want to mark some clusters in whole as doublets.

Within cluster Outside cluster Row total
Singlets a b a + b
Doublets c d c + d

Column total a + c b + d a + b + c + d

Table 1: Data table for Fisher’s exact test. c+ d is the total number of identified (neotypic) doublets.

11

References

[1] B. Li, J. Gould, Y. Yang, S. Sarkizova, M. Tabaka, O. Ashenberg, Y. Rosen, M. Slyper, M. Kowalczyk,
A.-C. Villani, T. Tickle, N. Hacohen, O. Rozenblatt-Rosen, and A. Regev. Cumulus provides cloud-based
data analysis for large-scale single-cell and single-nucleus RNA-seq. Nature Methods, 17(8):793–798, 2020.

[2] Y. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search using Hierar-
chical Navigable Small World graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,
42(4):824–836, 2020.

[3] C. S. McGinnis, L. M. Murrow, and Z. J. Gartner. Doubletfinder: Doublet detection in single-cell rna
sequencing data using artificial nearest neighbors. Cell Systems, 8(4):329–337.e4, 2019.

[4] B. Pijuan-Sala, J. A. Griffiths, C. Guibentif, T. W. Hiscock, W. Jawaid, F. J. Calero-Nieto, C. Mulas,
X. Ibarra-Soria, R. C. V. Tyser, D. L. L. Ho, W. Reik, S. Srinivas, B. D. Simons, J. Nichols, J. C.
Marioni, and B. Göttgens. A single-cell molecular map of mouse gastrulation and early organogenesis.
Nature, 566(7745):490–495, 2019.

[5] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan. Finding a ”kneedle” in a haystack: Detecting knee
points in system behavior. In 2011 31st International Conference on Distributed Computing Systems
Workshops, pages 166–171, 2011.

[6] S. L. Wolock, R. Lopez, and A. M. Klein. Scrublet: Computational identification of cell doublets in
single-cell transcriptomic data. Cell Systems, 8(4):281–291.e9, 2019.

12

	Overview
	Doublet score calculation
	Estimate doublet rate prior automatically for 10x Genomics data

	Doublet cutoff inference
	Log-transformation
	Peaks in the KDE plot
	Cutoff determination when multiple major peaks exist
	Cutoff determination when only one major peak exists
	Peak is embedded
	Peak is neotypic

	The overall cutoff determination algorithm

	Doublet cluster identification

