PyDO2 Manual

Author: Jacob Smullyan <smulloni@smullyan.org>
Revision: 1695

Date: 2005-11-17 14:43:33 -0500 (Thu, 17 Nov 2005)
Status: Draft

Table of Contents
1 Introduction
2 Acknowledgements
3 Overview
4 Defining Table Classes

4.1 Inheritance Semantics

4.2 Projections
5 Making Queries: getSome() and getUnique ()

5.1 Operators
5.2 Order, Limit and Offset
5.3 Refreshing An Instance

6 Inserts, Updates, and Deletes
6.1 Python and SQL Data Types
7 Joins

7.1 Representing Joins Between Tables
7.2 Getting Data From Multiple Tables At Once

8 Managing Database Connections

8.1 Transactions

8.2 Connection Pools
9 A Complete Example
10 Differences From PyDO 1

1 Introduction

PyDO is an ORM (Object-Relational Mapper) database access library for Python. This document
describes PyDO version 2.0 and later only.

mailto:smulloni@smullyan.org

2 Acknowledgements

PyDO was originally written by Drew Csillag in 2000, and released under the GPL license in 2001 as
part of SkunkWeb. Several developers have contributed to the codebase since then (see ACKNOWL-
EDGEMENTS in the source distribution). Jacob Smullyan is responsible for work on the 2.0 series,
but while errors and misfeatures are attributable to him, the fundamental design remains Csillag’s.

3 Overview

Note

PyDO is a Python package (finally named pydo in 2.0a3 and later; PyDO1 used the package name
PyDO, and previous alpha releases of PyDO2 used first PyDO and then PyD02), but all the public
objects within its submodules (with the exception of the drivers) are imported into its top-level
namespace. In what follows we will assume that the current namespace has been initialized by:

from pydo import *

(In particular, this means that when we want to refer to the pydo.PyDO class, we shall just write
PyDO.)

PyDQ'’s basic strategy is to let you define a PyDO subclass for every table in a database that you
wish to represent. Each PyDO instance contains the data for one row in a database table. As PyD0 is a
dict subclass, you can access this data by key, and, if the class attribute use_attributes is true (the
default) also by attribute. In either case, the key or attribute name is the name of the database column:

>>> MyPyDOInstance.title
’Fustian Wonders’

>>> MyPyDOInstance[’title’]
’Fustian Wonders’

” W

If you have column names that are Python keywords (such as “pass”, “class”, etc.) a warning will
be raised when the class is defined and an attempt at attribute access of that field will give rise to a
SyntaxError, but you'll still be able to access it dictionary-style.

Instances are normally obtained, not by directly invoking the PyDO class’s constructor, but by calling
one of various class methods, discussed below, that return single instances or lists thereof.

PyDO is not an attempt to model all of SQL or its relational model. Its focus is on modelling those
relations that tend to be both selectable and updateable, namely, tables. Since PyDO does not provide
a complete abstraction layer over SQL, it is entirely appropriate for PyDO-generated queries to be
mixed with raw SQL queries in real applications (although that may be hidden in your own abstraction
layer).

PyDO 2 requires Python 2.4 or later.

4 Defining Table Classes

To model a database table, you define a subclass of PyD0 and set some class attributes that describe
the table:

from pydo import PyDO, Sequence, Unique

class Article(PyDO0):
"""PyDO class for the Article table"""

define a connection alias so that PyDO knows how to

connect to the database
connectionAlias="my_db’

the schema name, if applicable, e.g.:
schema = ’myschema’

the table name.
table=’article’

whether we are allowed to update instances of this class;
this defaults to True anyway.
mutable=True

whether, after creating a new instance (i.e., performing
an insert) the instance should be refreshed to get any

default (or other automatic) values.

refetch=True

declare the fields

fields=(Sequence(’id’),
Unique(’title’),
’slug’,
author’,
‘created’,
’body’)

The connectionAlias attribute must correspond to an alias initialized elsewhere (with the ini-
tAlias() function) that tells PyDO how to create a database connection.

If the database supports schemas, like later versions of PostgreSQL, the schema name can be specified
by setting the schema attribute. When PyDO then generates SQL referring to this table, it will qualify it
with the schema name. By default, schema is None and there will be no such qualification. (The method
that returns the actual qualified tablename is getTable(cls, withSchema=True); the withSchema
parameter determines whether the returned value is schema qualified.)

The table attribute is simply the name of the table, view, or table-like entity (set function, for
instance). By default, you can leave this out if the name of the class is the name of the table; in this
case, cls.table will be a name made by coercing the class name to lowercase. If you don’t want to
allow this behavior, you can suppress it by setting the class attribute guess_tablename to False. (Note
that this feature is of limited utility for database systems like mysql whose table/column names may
be case-sensitive.)

Note

If you declare the table explicitly in a class, the guess_tablename attribute is set to False (unless
you simultaneously set it also) so that subclasses will inherit the declared table name.

The fields attribute should be a tuple or list of either Field instances (of which Sequence and
Unique are subclasses), or data -- strings (which should be column names), dicts, or tuples -- that can
be passed to a Field constructor (e.g., Field(*fieldTuple)). You can use your own Field subclasses
if you wish to store additional information about fields (e.g., data type, validators, etc.), and if you
want to customize how strings, tuples, or dicts are turned into Fields for you, you can shadow the
static factory method PyDO.create_field() to do so.

A Sequence field is used to represent either an auto-increment column, for databases like MySQL
that use that mechanism, or a sequence column, as used in PostgreSQL. These columns are implicitly
unique and not null. For PostgreSQL, you can explicitly declare the name of the sequence with the
sequence parameter of the Sequence constructor:

Sequence(’id’, ’chimpanzee_id_seq’)
If you do not, PyDO will infer the name of the sequence from the name of the table and field, i.e.:
$table_$field_seq

A Unique field is used to represent a column that has a single-column uniqueness constraint and is
not null. Multiple-column not-null uniqueness constraints can also be indicated, with the unique class
attribute:

from pydo import PyDO

class ArticleKeywordJunction(PyDO) :
"""PyDO class for junction table between Article and Keyword"""
connectionAlias="my_db"
table="article_keyword_junction"
fields=(’article_id’,
’keyword_id’)
unique=((’article_id’, ’keyword_id’),)

The unique attribute can be thought of as analogous to how, in SQL, you may declare uniqueness
constraints in a separate clause after you have declared the fields; it is optional to do so for single-column
uniqueness constraints, which are more conveniently declared inline with the field, but necessary for the
multi-column case.

Note

The reason that in PyDO, declaring a uniqueness constraint implies a not null constraint, is that
PyDO is only interested in unique constraints as a way of determining precisely to which row in
the database a given object corresponds. A nullable uniqueness constraint is of no use to PyDO
in this regard, and hence the library doesn't attempt to model it.

It is not necessary to declare any uniqueness constraints in a PyDO class at all, either implicitly
with the Unique field class, or via the unique class attribute. However, if you do not, instances of the
corresponding PyDO class won’t be able to identify the unique rows in the database table to which they
correspond, and hence the instances will not be mutable. (If the class is mutable, however, it will still
be possible to perform inserts and mass updates and deletes.)

The inherited fields, uniqueness constraints, and sequences of a class may be read, but not changed,
through the class methods getFields (), getUniquenessConstraints(), and getSequences (), respec-
tively.

If you omit the fields and unique declarations completely and declare the class attribute guess_columns,
PyDO will attempt to introspect into the database and build the table description itself at class creation
time. The declaration only affects the class in which it is declared; classes that inherit the attribute
will not themselves attempt to guess columns. By default, column guessing will require querying the
database when the class is initialized for every process in which the class is imported; to mitigate this
potential performance hit, the data can be cached to disk if you set PyD0.guesscache to an instance of
GuessCache or a compatible object, or to 1 or True, in which case a default GuessCache will be used.
GuessCache stores pickles associated with classes in a cache directory, by default one created with the
name $USERNAME_pydoguesscache inside tempfile.gettempdir(), where $USERNAME is the login of
the current user; if the schema of one of your objects has changed and you want to refresh the cache,
simply delete the corresponding cache object and restart your application.

Finally, if you are writing a quick script and want basic, uncustomized PyDO classes for every table
in a schema, the function autoschema will generate them for you, and return them to you in a dictionary
keyed by class name:

globals() .update(autoschema(alias="myDBAlias’,

schema=’public’,
guesscache=True,
module=someModule)

By default, it will use the default GuessCache, and specify no schema; you must give an alias (which
should be initialized first with initAlias). The module parameter has the same effect as the module
parameter to PyD0.project (): it causes the new classes to be associated with the provided module, so
they can be pickled and unpickled. While convenient for scripts, using autoschema gives you no way of
adding methods to your PyDO objects or customizing their attributes, so isn’t well suited for PyDO’s
main purpose, namely, crafting an application’s data access layer.

4.1 Inheritance Semantics

PyDO classes are normal Python classes (subclassing dict) which use a metaclass to parse the field and
unique class attribute declarations and store the derived information in private fields. Special inheri-
tance semantics obtain for field and unique, in that the privately stored parsed values corresponding
to those declarations are inherited from superclasses even if fields is redeclared in the subclass, shad-
owing any superclass’s declaration. Subclasses therefore may augment the field listing of their base
classes. This behavior is applicable not only to cases like PostgreSQL table inheritance, but to defining
base or mixin classes (which need not be PyD0O subclasses themselves) that define groups of fields that
are shared by multiple tables.

Normally, if a subclasses redeclares a field declared by a base class, the subclass’s declaration over-
rides that of the base class, but an exception is made for declarations that simply state the fieldname
as a string; in that case, any previous, more informative declaration will be inherited.

Warning

This is generally useful (in the case of projections particularly --see below) but if you wished
to override a superclass's definition, say, of Unique(’species’), just to the non-unique
Field(’species’), you would have to explicitly use the Field constructor rather than sim-
ply ’species’.

4.2 Projections

An exception is made to the default inheritance behavior -- that subclasses augment, rather than shadow,
their superclasses’ field listing -- for the case of projection subclasses, in which the local declaration of
fields overrides that of superclasses. Projections are useful when you wish to select only a few columns
from a larger table. To derive a projection from a PyDO class, simply call the class method project ()
on the class, passing in a tuple of fields as positional arguments (or as a single tuple/list) that you wish
to include in the projection:

myProjection=MyBaseClass.project(’id’, ’title’)

The project () method also accepts two keyword arguments: mutable and module, which if provided
will respectively override the mutable attribute of the base class, and cause the projection to be stored
in the namespace of the provided module, also setting the __module__ attribute of the new class so
that it can pickled and unpickled.

The return value is a subclass of myBaseClass with the fields id and title. This class is cached,
so if you call project () again with the same arguments you’ll get a reference to the same class.

Because of the special inheritance semantics for simple string field declarations, if MyBaseClass in
the above example is defined as follows:

class myBaseClass(PyDO) :
fields=(Sequenced(’id’),

Unique(’title’),
>author’

’ISBN’,
’first_chapter’)

myProjection will still know that id and title are unique, and that id is sequenced.

5 Making Queries: getSome() and getUnique()

There are two class methods provided for performing SELECTSs. getSome returns a list of rows of PyDO
instances:

>>> myFungi.getSome ()
[{’id> : 1, ’species’ : ’Agaricus lilaceps’, ’comment’ : ’nice shroom!’},
{’id> : 2, ’species’ : ’Agaricus micromegathus’, ’comment’ : ’’}]
getUnique returns a single instance. You must provide enough information to getUnique to satisfy
one declared uniqueness constraint; this is accomplished by passing in keyword parameters where the

keywords are column names corresponding to the columns of a uniqueness constraint declared for the
object, and the values are what you are asserting those columns equal for the unique row:

>>> myFungi.getUnique (id=2)

{’id’> : 2, ’species’ : ’Agaricus micromegathus’, ’comment’ : ’’}
>>> myFungi.getUnique(id=55) is None
True

getSome is similar, but admits a much wider range of query options, and returns a list of PyDO
instances. Assuming that comment is not a unique field above, you could not add selection criteria
based on comment to getUnique (), but could to getSome:

>>> myFungi.getSome (comment=None)

[{’id’ : 2, ’species’ : ’Agaricus micromegathus’, ’comment’ : ’’}]
>>> myFungi.getSome (comment=’better than asparagus’, id=55)
(]

5.1 Operators
In addition to specifying selection criteria by keyword argument, PyDO gives you three other ways:

1. If you supply a string as the first argument to getSome (), it will be placed as-is in a WHERE
clause. Remaining positional arguments will be taken to be values for bind variables in the
string:

>>> myFungi.getSome ("comment != %s", ’favorite of frogs’)

If you use bind variables, the paramstyle you use must be the same as that of the underlying
Python DBAPI driver. To support the pyformat and named paramstyles, in which variables
are passed in a dictionary, you can pass in a dictionary as the second argument. When
using this style with getSome(), you cannot use keyword arguments to express column
equivalence.

2. You can use SQLOperator instances:

>>> myFungi.getSome (OR(EQ(FIELD(’ comment’), ’has pincers’),
LT(FIELD(’id’), 40),

... LIKE(FIELD(’species’), ’Ymicromega’%’)))
[{>id’ : 2, ’species’ : ’Agaricus micromegathus’, ’comment’ : ’’}]

3. You can use tuples that are turned into SQLOperator instances for you; this is equivalent to
the above:

>>> myFungi.getSome ((°0R’,

(’=’, FIELD(’comment’), ’has pincers’),

(’<’, FIELD(’id’), 40),
(°’LIKE’, FIELD(’species’, ’Ymicromega%’))))
[{’id> : 2, ’species’ : ’Agaricus micromegathus’, ’comment’ : ’’}]

Either operator syntax can be mixed freely with each other and with keyword arguments to express
column equivalence.

The basic idea of operators is that they renotate SQL in a prefix rather than infix syntax, which
may not be to everyone’s taste; you don’t need to use them, as they are purely syntactical sugar.
One convenient thing about them is that they automatically convert values included in them to bind
variables in the style of the underlying DBAPI driver.

To represent an unquoted value, like a fieldname, a constant, or a function, use the FIELD or CONSTANT
classes (actually, they are synonyms). Another helper class is SET, for use with the IN operator:

>>> myFungi.getSome (IN(FIELD(’ comment’),
SET(’nice shroom!’, ’has pincers’)))

5.2 Order, Limit and Offset

getSome () accepts three additional keyword arguments:

order a fieldname to order by, with optional > ASC’ or * DESC’ suffix, or a tuple of such
fieldname-with-optional-suffix strings.
offset an integer

limit an integer

5.3 Refreshing An Instance

If you have reason to believe that the data you have for an object is inaccurate or out of date, you can
refresh it by calling my0Obj.refresh(), as long as the object has uniqueness constraints so it is possible
to get the unique row to which it corresponds.

6 Inserts, Updates, and Deletes

To insert a new record in the database and create the corresponding PyDO object, use the class method
new():

>>> subscription=Subscriptions.new(email=’alvin@krinst.org’,
magazine=’NYRB’)

>>> subscription

{’email’ : ’alvin@krinst.org’, ’magazine’ : ’NYRB’}

If the object has a field which will acquire a default non-null value even though you haven’t specified
a value for it, PyDO will automatically refetch it for you if you have set cls.refetch to a true value:

>>> Sonnet.refetch
True
>>> poem=Sonnet.new(title=’Anguished Parsnips’,
body=’\n’.join(’ ’.join([’oy veh!’ * 5]) * 14))
>>> poem.created
datetime.datetime (2005, 5, 9, 11, 6, 25, 221004)

This is equivalent to calling refresh() after new(), and also requires that a uniqueness constraint
be been declared for the class. You can also explicitly set the refetch behavior on a per-call basis by
using the methods newfetch() and newnofetch(), or (for backwards compatibility with PyDO1) by
using a deprecated keyword parameter, refetch, to new():

>>> dud=Failure.newfetch(name="Charlie Brown")
>>> dud2=Failure.new(refetch=1, name="Oblomov")

Usually this isn’t necessary, as whether you need to refetch is primarily determined by the charac-
teristics of the table, but sometimes it useful -- for instance, if refetch is true class-wide, but you don’t
plan on doing anything with the object you are creating, it will be more efficient to use newnofetch.

Note

The refetch parameter to new() is deprecated because it makes it awkward to have a column
named refetch. In PyDO?2, if you have a field named “refetch”, the refetch keyword argument
to new() will be interpreted as field data and won't affect refetch behavior.

If you don’t specify the value of a column when calling new(), and there is no refetch, PyDO will
assume that the default value is null and store None for that column.

If a class is declared mutable and has a uniqueness constraint, it is possible to mutate an undeleted
instance of it by calling:

>>> poem[’title’]=’Sayings of the Robo-Rabbi’
or, equivalently, if use_attributes is true for the class:

>>> poem.title=’Sayings of the Robo-Rabbi’
Multiple updates can be done together via update():

MyInstance.update(dict(fieldname=newValue,
otherFieldname=otherValue))

Each mutation will cause an UPDATE statement to be executed on the underlying database. If you
attempt to mutate an immutable PyDO instance, a PyDOError will be raised. A PyDOError will also
be raised if the number of rows affected, as returned by the database driver, is not equal to 1. If the
driver returns something other than 1 for a successful update in a particular case (for instance, for an
updateable view), set the class attribute _ignore_update_rowcount to True.

It is also possible to update potentially many rows at once with the class method updateSome ():

>>> Article.updateSome(dict(slug="nonsense"),
LT(FIELD("created"),

CONSTANT ("CURRENT_TIMESTAMP")),
.. author=’Smullyan’)
6

The first argument to updateSome() is a dictionary of values to set for affected rows; remains
positional and keyword args accept the same arguments as getSome () (with the exception of order,
limit, and offset which wouldn’t make sense in this context). The return value is the number of
affected rows.

To delete an instance, call the instance method delete():

>>> Article.getUnique(id=44) .delete()

The method returns nothing; the instance in question is marked as immutable.
To delete many rows at once, use the class method deleteSome():

>>> Article.deleteSome (LT (FIELD("created"),
CONSTANT ("CURRENT_TIMESTAMP")),
author="Grisby Holloway")

The parameters accepted are again the same as for getSome()), except for order, limit, and
offset, and the return value is the number of affected rows.

6.1 Python and SQL Data Types

The marshalling of SQL datatypes into Python is entirely left to the DBAPI drivers which underlie
PyDO. Ideally, the reverse would also be true, but PyDO drivers are able to perform some conversion
where the DBAPI drivers fail to (e.g., this is necessary to handle mx.DateTime in the psycopg driver
when using psycopgl). PyDO also includes some typewrapper classes -- DATE, TIMESTAMP, BINARY, and
INTERVAL -- which can be used for updates to coerce data to the appropriate SQL type. The main
feature of these wrapper classes is that PyDO knows how to unwrap them, so that after an update the
column in question will contain the wrapped value, not the wrapper instance itself.

7 Joins

7.1 Representing Joins Between Tables
To represent a one-to-one join between classes A and B, you might add instance methods to class A, e.g.:

def getB(self):
return B.getUnique(id=self.b_id)

def setB(self, item):
if item is None:
self.b_id=None
else:
self.b_id=item.id

B=property(getB, setB)
PyDO provides an equivalent shortcut:
B=ForeignKey(’b_id’, ’id’, B)

If the class B hasn’t been defined yet, but will be defined later in the same module, you can use its
name as a string:

B=ForeignKey(’b_id’, ’id’, ’B’)
And if it is defined in a different module, you can give its fully qualified name:
B=ForeignKey(’b_id’, ’id’, ’somePackage.someModule.B’)

When using a string, the actual class is looked up at runtime.
Similarly, to represent a one-to-many join, you could write your own accessor method, calling
B.getSome ():

def getBs(self, *args, **kwargs):
return B.getSome(a_id=self.id, *args, **kwargs)

Again, PyDO provides a terser alternative:

getBs=0neToMany(’id’, ’a_id’, B)

The result is the same -- getBs will be an instance method that takes positional and keyword
arguments like getSome (). Again, B can be either a class or a string representing that class.

To represent a many-to-many join between A and B through junction table J, you either add an
instance method that calls joinTable():

def getBs(self, *args, **kwargs):
return self.joinTable(’id’ , ’J’, ’a_id’, ’b_id’,
B, ’id’, *args, **kwargs)

or again use an equivalent shortcut, which is:
getBs=ManyToMany(’id’, ’J’, ’a_id’, ’b_id’, B, ’id’)

joinTable() takes the following arguments:
thisAttrNames attribute(s) in current object to join from
pivotTable pivot table name
thisSideColumns column(s) that correspond to the foreign key column to thisAttrNames.
thatSideColumns column(s) that correspond to the foreign key column to thatAttrNames.
thatObject the destination object (or its class name)
thatAttrNames attribute(s) in destination object to join to

In addition, joinTable() takes positional and keyword arguments, similar to getSome(); it will
accept raw SQL and bind values or SQLOperator instances as positional arguments, and understands
the keyword arguments order, 1imit, and offset as well as column name keyword arguments. Also,
if you wish to pass in additional tables to the select, you can do so with the extraTables keyword
argument, with which you can pass a single table name, or a list of names.

ManyToMany takes the same arguments as joinTable in the same order, except for the optional
positional and keyword arguments, which can be passed when the bound method that results from
using ManyToMany is called.

7.2 Getting Data From Multiple Tables At Once

The fetch function makes it possible to query multiple tables, use aggregates and obtain other non-table
data, while still returning table data coalesced into PyDO instances. Its signature is:

def fetch(resultSpec, sqlTemplate, *values, **kwargs)
resultSpec, a result set specification, is a list that may contain:
e PyDO classes;

e 2-tuples of (PyDO class, alias string), which indicate that the table represented by the PyDO class
is to be referenced in SQL by the given alias;

e strings, which represent arbitrary SQL expressions that may occur in a SQL column-list specifi-
cation.

sqlTemplate is a string that may contain interpolation variables in the style of string.Template.
In particular, two variables are supplied to this template automatically:

$COLUMNS a list of columns computed from the supplied resultSpec;
$TABLES a list of tables similarly computed.

10

Additional interpolation variables may be passed in as keyword arguments. Bind variables to the
SQL may also be passed in, through positional arguments; if there is only one positional argument,
and it is a dictionary, it will be used instead of a list of values, under the assumption that either the
pyformat or named paramstyle is being used.

For each element F in the resultSpec, the result row contains one element F. If E is a PyDO class, F
will either be an instance of E, or, if all its corresponding columns were null for that row and F has a
uniqueness constraint (which in PyDO is implicitly a not null constraint), None. If F is a string, F will
be whatever the cursor returned for that column.

For example:

>>> tmpl=’’’>SELECT $COLUMNS FROM $TABLES WHERE art.creator=auth.id

... AND art.id=%s’’’

>>> res=fetch([(Article.project(’title’), ’art’),
(Author.project(’lastname’), ’auth’),

. ’3-2°1, tmpl, 4)

(({’title’: ’My Woodchuck Smarts’}, {’lastname’ : ’Pydong’}, 1),)

8 Managing Database Connections

All that a PyDO class knows about its database connection is its connectionAlias attribute. Before
you use the class, you must call initAlias() to associate that alias with the data needed to make an
actual database connection:

initAlias(alias, driver, connectArgs, pool=False, verbose=False)

driver must be the name of a driver registered with PyDO; the built-in ones are currently “mysql”,
“psycopg”, “sqlite”, “mssql”, and “oracle”. connectArgs are arguments to pass to the underlying DBAPI
driver’s connect () function; you can pass a tuple of positional args, a dictionary of keyword args, or a
single object that will be treated like a tuple of length 1. pool is an optional connection pool; if you
want one, you can either pass a ConnectionPool instance or something with a compatible connect ()
method, or a true value, in which case a default ConnectionPool will be created. By default no pool
is used. verbose is whether or not to log the generated SQL; by default no logging is done.

The class method PyDO.getDBI() returns a database interface object (an instance of a driver-
specific pydo.dbi.DBIBase subclass), which in turn uses an underlying DBAPI database connection.
The DBAPI connection is stored in thread-local storage and created lazily when an attempt is made
to access it, so transactions in different threads will transparently use different connections. By default
the connection will live as long as the current thread. If you use a pool, every time a transaction is
completed, the connection will be released by the DBI object and returned to the pool. If you aren’t
using a pool and are using multiple threads, when the thread is finished, its connection will go out of
scope and will get closed during garbage collection.

If you want to manage connections outside of PyDO, you can, by using the DBI object’s swapCon-
nection() method:

oldConnection=myDBI.swapConnection(newConnection)
do something with PyDO

Because the connections are stored thread-locally, this is thread-safe. Using this technique, one
could juggle multiple transactions in the same process without using multiple threads.

The dbapi module that underlies a given DBI object is available as DBIobj.dbapiModule; the stan-
dard dbapi-mandated exceptions defined in that module are available in a dictionary, DBIobj .exceptions,
keyed by name.

11

8.1 Transactions

The DBI object’s autocommit property reports whether the drivers uses transactions (in which case,
its value is false). By default, most drivers use transactions (mysql being the outstanding exception).
Some drivers support mutating this property, but as a matter of policy transactions are the norm for
PyDO.

To commit a transaction, call commit () on the DBI object, or, equivalently, on any PyDO class or in-
stance with the corresponding connection alias, which is equivalent to calling obj.getDBI() .commit ().
To rollback, call rollback(), again either on the DBI object or on a PyDO object.

Note

Although you may call commit() or rollback() via a particular class or instance, that is only
for convenience and implies no particular isolation of the commit or rollback to that object. If you
create six PyDO objects with the same connectionAlias and commit or rollback one of them, all
are affected equally.

8.2 Connection Pools

If you are using transactions in multiple threads, a connection pool can reduce the cost of connecting
to the database. The constructor has this signature:

pool=ConnectionPool (max_poolsize=0,
keep_poolsize=1,
delay=0.2,
retries=10)

max_poolsize is the maximum number of connections it will permit you to have in the pool at any
one time; if 0, there is no upper limit. keep_poolsize is the maximum number of connections it will
retain in the pool. (In other words, the pool may grow up to max_poolsize, but it will keep getting
reduced to keep_poolsize when connections are released.) delay is the number of seconds it will delay
if it needs to retry getting a connection, because the pool has reached its maximum size; retries is the
number of times to retry before giving up and raising a PyDOError.

When a connection is returned to a pool, any outstanding transaction is rolled back. Committing
or rolling back also causes connections to be returned to the pool, so normally nothing special needs
to be done to return it or manage the pool. If transactions are not being used, however, you’ll need to
manually return the connection to the pool by calling dbiObj.endConnection().

9 A Complete Example

Consider the following toy sqlite database:

CREATE TABLE contact (
id integer not null primary key,
first_name text,
last_name text not null,
address_idl integer references address,
address_id2 integer references address,
emaill text,
email2 text,
work_phone text,
home_phone text,
mobile_phone text

12

CREATE TABLE address (
id integer not null primary key,
linel text,
line2 text,
town text,
state text,
country text,
postal_code text
)3

CREATE TABLE note (
id integer not null primary key,
title text,
body text not null,
created timestamp

);

CREATE TABLE contact_note (
contact_id integer references contact,
note_id integer references note,
primary key (contact_id, note_id)

)

The following Python module wraps its tables in an api:

a small example PIM application, using sqlite.

The schema is actually rather ridiculous (why are contact -> notes
many to many?) but you get the idea.

import os
from mx.DateTime import now
from pydo import *

class Note(PyDO0):
connectionAlias="pim"
if created had a default value (which
it would if the version of sqlite this was
tested on supported anything like CURRENT_TIMESTAMP)
I’d set:
refetch=True
fields=(Sequence(’id’),
‘title’,
’body’,
’created’)

class Address(PyDO0):

connectionAlias=’pim’
fields=(Sequence(’id’),

13

’linel’,
’line2’,
’town’,
’state’,
’country’,
’postal_code’)

def getContacts(self):
return Contact.getSome (OR(EQ(FIELD(’address_idl’), self.id),
EQ(FIELD(’address_id2’), self.id)))

class Contact (PyDO0):

connectionAlias=’pim’

fields=(Sequence(’id’),
’first_name’,
’last_name’,
’address_id1l’,
’address_id2’,
’emaill’,
’email2’,
’work_phone’,
’home_phone’,
’mobile_phone’)

Addressi1=ForeignKey(’address_idl’, ’id’, Address)
Address2=ForeignKey(’address_id2’, ’id’, Address)

def addNote(self, title, body):
n=Note.new(title=title, body=body, created=now())
junction=ContactNote.new(contact_id=self.id,
note_id=n.id)

getNotes=ManyToMany (’id’,
’contact_note’,
’contact_id’,
’note_id’,
Note,
’id’)

class ContactNote (PyDO) :
connectionAlias=’pim’
table is specified here, because the class name
is not the same as the table name
table="contact_note"
fields=(’contact_id’,
’note_id’)
unique=((’contact_id’,
’note_id’),)

DB=os.environ.get (’PIMDB’, ’pim.db’)
initAlias(’pim’, ’sqlite’, DB)

14

10

def initDB():
joseAddress=Address.new(linel1="43 Chestnut Place",
line2="Fourth Floor",
town="Princeton",
state="NJ",
country="USA",
postal_code="06540")
jose=Contact.new(first_name=’Jose’,
last_name=’Gutenberg’,
emaill=’jgutenberg@example.com’,
address_idl=joseAddress.id,
home_phone=’609/555-1234")
jose.addNote(’French Tutor’,
’meet every other Thursday at 7pm in the Annex’)
jose.commit ()

Differences From PyDO 1

This version of PyDO differs in several ways from PyDO version 1.x, most notably:

1.

PyDO1 defines fields as a tuple of tuples (fieldname, dbtype); type is required, as PyDO1
drivers take much of the responsibility for marshalling Python data types to database types,
and does so as a function of column type. PyDO2 does not need to know about what the
database type is of the underlying columns, because DBAPI drivers now largely take care
of this themselves.

You cannot define uniqueness constraints in the field list in PyDO1.

. Sequences and auto-increment fields are handled separately in PyDO1, and both have to be

declared in separate class attributes, which have been dropped in PyDO2.

. The SQLOperator syntax is now more flexible, and is accepted by getSome (). In PyDO1,

there are three additional methods that accept different query syntaxes: getSomeWhere(),
getTupleWhere (), and getSQLWhere(). These have been dropped. joinTable() now ac-
cepts this query syntax as well, so it is no longer necessary to override a protected method
to add additional criteria to a join query.

. PyDO1 is not thread-safe, and has no connection pool facilities for multi-threaded use. What

connection management facilities it does have are tied in with SkunkWeb. PyDO?2 is entirely
separate from SkunkWeb.

. PyDO1 uses a different package structure; the new version does not have the same sub-

modules. However, everything you would normally need is available in the top-level names-
pace for both versions.

PyDO1 does not have projections, and the inheritance semantics, while similar, are not
exactly the same.

. PyDO1 does not use new-style classes (as it predates them), so the metaclass functionality

is more elaborate, including its own implementation of class methods (which it calls “static”
methods).

15

10.

11.

12.

13.

14.

15.

16.
17.

. PyDO1 supports more databases than PyDO2 does at the time of writing.

PyDO2 does not implement PyDO1’s original scatterFetch() method, which returns mul-
tiple PyDO objects of different types in a single query, but has a new function, fetch which
has a superset of the same functionality.

PyDO1 has a variable SYSDATE that means the current datetime, regardless of the underlying
db. PYDOZ2 does not abstract this, as it seems unnecessary now; you can use something
database-dependent like CONSTANT (°’ CURRENT_TIMESTAMP’) or mx.DateTime.now().

The package name of PyDO in this version is pydo, not PyD0O. Both versions can be installed
simultaneously without any fancy footwork on case-sensitive operating systems; on case-
insensitive OSes, it is still possible to install and use both, by putting PyDO1 into a zip
file, in which paths are always case-sensitive. (Thanks to Hamish Lawson for suggesting this
workaround.)

The newfetch() and newnofetch() methods and the refetch class attribute of PyD0O ob-
jects are new in PyDO2; in PyDO1, the refetch keyword argument to new() was used
instead, but was broken for the unlikely case of a column named “refetch”.

The support of schema-qualified table names and optional guessing of table name from class
name is new in PyDO2.

The optional guessing of field information at runtime, controlled by the guess_columns
attribute, is a new feature in PyDO2.

autoschema is new in PyDO2.

ForeignKey, OneToMany and ManyToMany are new in PyDO2.

16

