|
Categor(x,
hist)
Categorical Log-likelihood
generalization of a Bernoulli process for variables with any constant
number of discrete values. |
source code
|
|
|
|
|
find_best_tau(x,
mu)
returns the value of tau which maximizes normal loglik for a fixed (x,mu) |
source code
|
|
|
|
|
Poisson(x,
mu)
Poisson Log-Likelihood function
>>> Poisson([2],2)
-1.30685281944 |
source code
|
|
|
Negbin(x,
r,
p)
Negative Binomial Log-Likelihood
>>> Negbin([2,3],6,0.3)
-9.16117424315 |
source code
|
|
|
Binomial(x,
n,
p)
Binomial Log-Likelihood
>>> Binomial([2,3],6,0.3)
-2.81280615454 |
source code
|
|
|
Weibull(x,
alpha,
beta)
Log-Like Weibull
>>> Weibull([2,1,0.3,.5,1.7],1.5,3)
-7.811955373 |
source code
|
|
|
Bernoulli(x,
p)
Log-Like Bernoulli
>>> Bernoulli([0,1,1,1,0,0,1,1],0.5)
-5.54517744448 |
source code
|
|
|
Gamma(x,
alpha,
beta)
Log-Like Gamma
>>> Gamma([2,3,7,6,4],2,2)
-11.015748357 |
source code
|
|
|
Beta(x,
a,
b)
Log-Like Beta
>>> Beta([.2,.3,.7,.6,.4],2,5)
-0.434845728904 |
source code
|
|
|
Simple(x,
w,
a,
start=0)
find out what it is. |
source code
|
|