Coverage for pygeodesy/lcc.py: 96%
282 statements
« prev ^ index » next coverage.py v7.2.2, created at 2024-06-01 11:43 -0400
« prev ^ index » next coverage.py v7.2.2, created at 2024-06-01 11:43 -0400
2# -*- coding: utf-8 -*-
4u'''Lambert Conformal Conic (LCC) projection.
6Lambert conformal conic projection for 1- or 2-Standard Parallels classes L{Conic}, L{Conics} registry, L{LCCError}
7and position class L{Lcc}.
9See U{LCC<https://WikiPedia.org/wiki/Lambert_conformal_conic_projection>}, U{Lambert
10Conformal Conic to Geographic Transformation Formulae
11<https://www.Linz.govt.NZ/data/geodetic-system/coordinate-conversion/projection-conversions/lambert-conformal-conic-geographic>},
12U{Lambert Conformal Conic Projection<https://MathWorld.Wolfram.com/LambertConformalConicProjection.html>}
13and John P. Snyder U{'Map Projections - A Working Manual'<https://Pubs.USGS.gov/pp/1395/report.pdf>}, 1987, pp 107-109.
15@var Conics.Be08Lb: Conic(name='Be08Lb', lat0=50.797815, lon0=4.35921583, par1=49.8333339, par2=51.1666672, E0=649328, N0=665262, k0=1, SP=2, datum=Datum(name='GRS80', ellipsoid=Ellipsoids.GRS80, transform=Transforms.WGS84),
16@var Conics.Be72Lb: Conic(name='Be72Lb', lat0=90, lon0=4.3674867, par1=49.8333339, par2=51.1666672, E0=150000.013, N0=5400088.438, k0=1, SP=2, datum=Datum(name='NAD83', ellipsoid=Ellipsoids.GRS80, transform=Transforms.NAD83),
17@var Conics.Fr93Lb: Conic(name='Fr93Lb', lat0=46.5, lon0=3, par1=49, par2=44, E0=700000, N0=6600000, k0=1, SP=2, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Transforms.WGS84),
18@var Conics.MaNLb: Conic(name='MaNLb', lat0=33.3, lon0=-5.4, par1=31.73, par2=34.87, E0=500000, N0=300000, k0=1, SP=2, datum=Datum(name='NTF', ellipsoid=Ellipsoids.Clarke1880IGN, transform=Transforms.NTF),
19@var Conics.MxLb: Conic(name='MxLb', lat0=12, lon0=-102, par1=17.5, par2=29.5, E0=2500000, N0=0, k0=1, SP=2, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Transforms.WGS84),
20@var Conics.PyT_Lb: Conic(name='PyT_Lb', lat0=46.8, lon0=2.33722917, par1=45.8989389, par2=47.6960144, E0=600000, N0=200000, k0=1, SP=2, datum=Datum(name='NTF', ellipsoid=Ellipsoids.Clarke1880IGN, transform=Transforms.NTF),
21@var Conics.USA_Lb: Conic(name='USA_Lb', lat0=23, lon0=-96, par1=33, par2=45, E0=0, N0=0, k0=1, SP=2, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Transforms.WGS84),
22@var Conics.WRF_Lb: Conic(name='WRF_Lb', lat0=40, lon0=-97, par1=33, par2=45, E0=0, N0=0, k0=1, SP=2, datum=Datum(name='WGS84', ellipsoid=Ellipsoids.WGS84, transform=Transforms.WGS84)
23'''
24# make sure int/int division yields float quotient, see .basics
25from __future__ import division as _; del _ # PYCHOK semicolon
27from pygeodesy.basics import copysign0, _xinstanceof, _xsubclassof
28from pygeodesy.constants import EPS, EPS02, PI_2, _float as _F, _0_0, _0_5, \
29 _1_0, _2_0, _90_0
30from pygeodesy.ellipsoidalBase import LatLonEllipsoidalBase as _LLEB
31from pygeodesy.datums import Datums, _ellipsoidal_datum
32from pygeodesy.errors import _IsnotError, _ValueError
33from pygeodesy.fmath import hypot, _ALL_LAZY
34from pygeodesy.interns import NN, _COMMASPACE_, _ellipsoidal_, _GRS80_, _k0_, \
35 _lat0_, _lon0_, _m_, _NAD83_, _NTF_, _SPACE_, \
36 _WGS84_, _C_ # PYCHOK used!
37# from pygeodesy.lazily import _ALL_LAZY # from .fmath
38from pygeodesy.named import _lazyNamedEnumItem as _lazy, _name2__, _NamedBase, \
39 _NamedEnum, _NamedEnumItem, _xnamed
40from pygeodesy.namedTuples import EasNor3Tuple, LatLonDatum3Tuple, \
41 LatLon2Tuple, _LL4Tuple, PhiLam2Tuple
42from pygeodesy.props import deprecated_method, Property, Property_RO, _update_all
43from pygeodesy.streprs import Fmt, _fstrENH2, _xzipairs
44from pygeodesy.units import Easting, Height, _heigHt, Lam_, Northing, Phi_, \
45 Scalar_
46from pygeodesy.utily import atan1, degrees90, degrees180, sincos2, tanPI_2_2
48from math import atan, fabs, log, radians, sin, sqrt
50__all__ = _ALL_LAZY.lcc
51__version__ = '24.05.24'
53_E0_ = 'E0'
54_N0_ = 'N0'
55_par1_ = 'par1'
56_par2_ = 'par2'
57_SP_ = 'SP'
60class Conic(_NamedEnumItem):
61 '''Lambert conformal conic projection (1- or 2-SP).
62 '''
63 _auth = NN # authorization (C{str})
64 _datum = None # datum (L{Datum})
65 _name = NN # Conic.__name__, set below
67 _e = _0_0 # ellipsoid excentricity (C{float})
68 _E0 = _0_0 # false easting (C{float})
69 _k0 = _1_0 # scale factor (C{float})
70 _N0 = _0_0 # false northing (C{float})
71 _SP = 0 # 1- or 2-SP (C{int})
73 _opt3 = _0_0 # optional, longitude (C{radians})
74 _par1 = _0_0 # 1st std parallel (C{radians})
75 _par2 = _0_0 # 2nd std parallel (C{radians})
76 _phi0 = _0_0 # origin lat (C{radians})
77 _lam0 = _0_0 # origin lon (C{radians})
79 _aF = _0_0 # precomputed F (C{float})
80 _n = _0_0 # precomputed n (C{float})
81 _1_n = _0_0 # precomputed 1 / n (C{float})
82 _r0 = _0_0 # precomputed rho0 (C{float})
84 def __init__(self, latlon0, par1, par2=None, E0=0, N0=0,
85 k0=1, opt3=0, auth=NN, **name):
86 '''New Lambert conformal conic projection.
88 @arg latlon0: Origin with (ellipsoidal) datum (C{LatLon}).
89 @arg par1: First standard parallel (C{degrees90}).
90 @kwarg par2: Optional, second standard parallel (C{degrees90}).
91 @kwarg E0: Optional, false easting (C{meter}).
92 @kwarg N0: Optional, false northing (C{meter}).
93 @kwarg k0: Optional scale factor (C{scalar}).
94 @kwarg opt3: Optional meridian (C{degrees180}).
95 @kwarg auth: Optional authentication authority (C{str}).
96 @kwarg name: Optional C{B{name}=NN} for the conic (C{str}).
98 @return: A Lambert projection (L{Conic}).
100 @raise TypeError: Non-ellipsoidal B{C{latlon0}}.
102 @raise ValueError: Invalid B{C{par1}}, B{C{par2}},
103 B{C{E0}}, B{C{N0}}, B{C{k0}}
104 or B{C{opt3}}.
105 '''
106 if latlon0 is not None:
107 _xinstanceof(_LLEB, latlon0=latlon0)
108 self._phi0, self._lam0 = latlon0.philam
110 self._par1 = Phi_(par1=par1)
111 self._par2 = self._par1 if par2 is None else Phi_(par2=par2)
113 if k0 != 1:
114 self._k0 = Scalar_(k0=k0)
115 if E0:
116 self._E0 = Northing(E0=E0, falsed=True)
117 if N0:
118 self._N0 = Easting(N0=N0, falsed=True)
119 if opt3:
120 self._opt3 = Lam_(opt3=opt3)
122 self.toDatum(latlon0.datum)._dup2(self)
123 self._register(Conics, name)
124 elif name:
125 self.name = name
126 if auth:
127 self._auth = str(auth)
129 @Property_RO
130 def auth(self):
131 '''Get the authentication authority (C{str}).
132 '''
133 return self._auth
135 @deprecated_method
136 def convertDatum(self, datum):
137 '''DEPRECATED, use method L{Conic.toDatum}.'''
138 return self.toDatum(datum)
140 @Property_RO
141 def datum(self):
142 '''Get the datum (L{Datum}).
143 '''
144 return self._datum
146 @Property_RO
147 def E0(self):
148 '''Get the false easting (C{meter}).
149 '''
150 return self._E0
152 @Property_RO
153 def k0(self):
154 '''Get scale factor (C{float}).
155 '''
156 return self._k0
158 @Property_RO
159 def lat0(self):
160 '''Get the origin latitude (C{degrees90}).
161 '''
162 return degrees90(self._phi0)
164 @Property_RO
165 def latlon0(self):
166 '''Get the central origin (L{LatLon2Tuple}C{(lat, lon)}).
167 '''
168 return LatLon2Tuple(self.lat0, self.lon0, name=self.name)
170 @Property_RO
171 def lam0(self):
172 '''Get the central meridian (C{radians}).
173 '''
174 return self._lam0
176 @Property_RO
177 def lon0(self):
178 '''Get the central meridian (C{degrees180}).
179 '''
180 return degrees180(self._lam0)
182 @Property_RO
183 def N0(self):
184 '''Get the false northing (C{meter}).
185 '''
186 return self._N0
188 @Property_RO
189 def name2(self):
190 '''Get the conic and datum names as "conic.datum" (C{str}).
191 '''
192 return self._DOT_(self.datum.name)
194 @Property_RO
195 def opt3(self):
196 '''Get the optional meridian (C{degrees180}).
197 '''
198 return degrees180(self._opt3)
200 @Property_RO
201 def par1(self):
202 '''Get the 1st standard parallel (C{degrees90}).
203 '''
204 return degrees90(self._par1)
206 @Property_RO
207 def par2(self):
208 '''Get the 2nd standard parallel (C{degrees90}).
209 '''
210 return degrees90(self._par2)
212 @Property_RO
213 def phi0(self):
214 '''Get the origin latitude (C{radians}).
215 '''
216 return self._phi0
218 @Property_RO
219 def philam0(self):
220 '''Get the central origin (L{PhiLam2Tuple}C{(phi, lam)}).
221 '''
222 return PhiLam2Tuple(self.phi0, self.lam0, name=self.name)
224 @Property_RO
225 def SP(self):
226 '''Get the number of standard parallels (C{int}).
227 '''
228 return self._SP
230 def toDatum(self, datum):
231 '''Convert this conic to the given datum.
233 @arg datum: Ellipsoidal datum to use (L{Datum}, L{Ellipsoid},
234 L{Ellipsoid2} or L{a_f2Tuple}).
236 @return: Converted conic, unregistered (L{Conic}).
238 @raise TypeError: Non-ellipsoidal B{C{datum}}.
239 '''
240 d = _ellipsoidal_datum(datum, name=self.name)
241 E = d.ellipsoid
242 if not E.isEllipsoidal:
243 raise _IsnotError(_ellipsoidal_, datum=datum)
245 c = self
246 if c._e != E.e or c._datum != d:
248 c = Conic(None, 0, name=self._name)
249 self._dup2(c)
250 c._datum = d
251 c._e = E.e
253 if fabs(c._par1 - c._par2) < EPS:
254 m1 = c._mdef(c._phi0)
255 t1 = c._tdef(c._phi0)
256 t0 = t1
257 k = 1 # _1_0
258 n = sin(c._phi0)
259 sp = 1
260 else:
261 m1 = c._mdef(c._par1)
262 m2 = c._mdef(c._par2)
263 t1 = c._tdef(c._par1)
264 t2 = c._tdef(c._par2)
265 t0 = c._tdef(c._phi0)
266 k = c._k0
267 n = (log(m1) - log(m2)) \
268 / (log(t1) - log(t2))
269 sp = 2
271 F = m1 / (n * pow(t1, n))
273 c._aF = k * E.a * F
274 c._n = n
275 c._1_n = _1_0 / n
276 c._r0 = c._rdef(t0)
277 c._SP = sp
279 return c
281 def toStr(self, prec=8, name=NN, **unused): # PYCHOK expected
282 '''Return this conic as a string.
284 @kwarg prec: Number of (decimal) digits, unstripped (C{int}).
285 @kwarg name: Overriding name (C{str}) or C{None} to exclude
286 this conic's name.
288 @return: Conic attributes (C{str}).
289 '''
290 a = [name, prec, _lat0_, _lon0_, _par1_, _par2_,
291 _E0_, _N0_, _k0_, _SP_]
292 if self._SP == 1:
293 _ = a.pop(a.index(_par2_))
294 return self._instr(datum=self.datum, *a)
296 def _dup2(self, c):
297 '''(INTERNAL) Copy this conic to C{c}.
299 @arg c: Duplicate (L{Conic}).
300 '''
301 _update_all(c)
303 c._auth = self._auth
304 c._datum = self._datum
306 c._e = self._e
307 c._E0 = self._E0
308 c._k0 = self._k0
309 c._N0 = self._N0
310 c._SP = self._SP
312 c._par1 = self._par1
313 c._par2 = self._par2
314 c._phi0 = self._phi0
315 c._lam0 = self._lam0
316 c._opt3 = self._opt3
318 c._aF = self._aF
319 c._n = self._n
320 c._1_n = self._1_n
321 c._r0 = self._r0
323 def _mdef(self, a):
324 '''(INTERNAL) Compute m(a).
325 '''
326 s, c = sincos2(a)
327 s = _1_0 - (s * self._e)**2
328 return (c / sqrt(s)) if s > EPS02 else _0_0
330 def _pdef(self, a):
331 '''(INTERNAL) Compute p(a).
332 '''
333 s = self._e * sin(a)
334 return pow((_1_0 - s) / (_1_0 + s), self._e * _0_5)
336 def _rdef(self, t):
337 '''(INTERNAL) Compute r(t).
338 '''
339 return self._aF * pow(t, self._n)
341 def _tdef(self, a):
342 '''(INTERNAL) Compute t(lat).
343 '''
344 return max(_0_0, tanPI_2_2(-a) / self._pdef(a))
346 def _xdef(self, t_x):
347 '''(INTERNAL) Compute x(t_x).
348 '''
349 return PI_2 - atan(t_x) * _2_0 # XXX + self._phi0
352Conic._name = Conic.__name__
355class Conics(_NamedEnum):
356 '''(INTERNAL) L{Conic} registry, I{must} be a sub-class
357 to accommodate the L{_LazyNamedEnumItem} properties.
358 '''
359 def _Lazy(self, lat, lon, datum_name, *args, **kwds):
360 '''(INTERNAL) Instantiate the L{Conic}.
361 '''
362 return Conic(_LLEB(lat, lon, datum=Datums.get(datum_name)), *args, **kwds)
364Conics = Conics(Conic) # PYCHOK singleton
365'''Some pre-defined L{Conic}s, all I{lazily} instantiated.'''
366Conics._assert( # <https://SpatialReference.org/ref/sr-org/...>
367# AsLb = _lazy('AsLb', _F(-14.2666667), _F(170), _NAD27_, _0_0, _0_0,
368# E0=_F(500000), N0=_0_0, auth='EPSG:2155'), # American Samoa ... SP=1 !
369 Be08Lb = _lazy('Be08Lb', _F(50.7978150), _F(4.359215833), _GRS80_, _F(49.8333339), _F(51.1666672),
370 E0=_F(649328.0), N0=_F(665262.0), auth='EPSG:9802'), # Belgium
371 Be72Lb = _lazy('Be72Lb', _90_0, _F(4.3674867), _NAD83_, _F(49.8333339), _F(51.1666672),
372 E0=_F(150000.013), N0=_F(5400088.438), auth='EPSG:31370'), # Belgium
373 Fr93Lb = _lazy('Fr93Lb', _F(46.5), _F(3), _WGS84_, _F(49), _F(44),
374 E0=_F(700000), N0=_F(6600000), auth='EPSG:2154'), # RFG93, France
375 MaNLb = _lazy('MaNLb', _F(33.3), _F(-5.4), _NTF_, _F(31.73), _F(34.87),
376 E0=_F(500000), N0=_F(300000)), # Marocco
377 MxLb = _lazy('MxLb', _F(12), _F(-102), _WGS84_, _F(17.5), _F(29.5),
378 E0=_F(2500000), N0=_0_0, auth='EPSG:2155'), # Mexico
379 PyT_Lb = _lazy('PyT_Lb', _F(46.8), _F(2.33722917), _NTF_, _F(45.89893890000052), _F(47.69601440000037),
380 E0=_F(600000), N0=_F(200000), auth='Test'), # France?
381 USA_Lb = _lazy('USA_Lb', _F(23), _F(-96), _WGS84_, _F(33), _F(45),
382 E0=_0_0, N0=_0_0), # Conterminous, contiguous USA?
383 WRF_Lb = _lazy('WRF_Lb', _F(40), _F(-97), _WGS84_, _F(33), _F(45),
384 E0=_0_0, N0=_0_0, auth='EPSG:4326') # World
385)
388class LCCError(_ValueError):
389 '''Lambert Conformal Conic C{LCC} or other L{Lcc} issue.
390 '''
391 pass
394class Lcc(_NamedBase):
395 '''Lambert conformal conic East-/Northing location.
396 '''
397 _conic = Conics.WRF_Lb # Lambert projection (L{Conic})
398 _easting = _0_0 # Easting (C{float})
399 _height = 0 # height (C{meter})
400 _northing = _0_0 # Northing (C{float})
402 def __init__(self, e, n, h=0, conic=Conics.WRF_Lb, **name):
403 '''New L{Lcc} Lamber conformal conic position.
405 @arg e: Easting (C{meter}).
406 @arg n: Northing (C{meter}).
407 @kwarg h: Optional height (C{meter}).
408 @kwarg conic: Optional, the conic projection (L{Conic}).
409 @kwarg name: Optional C{B{name}=NN} (C{str}).
411 @return: The Lambert location (L{Lcc}).
413 @raise LCCError: Invalid B{C{h}} or invalid or
414 negative B{C{e}} or B{C{n}}.
416 @raise TypeError: If B{C{conic}} is not L{Conic}.
417 '''
418 if conic not in (None, Lcc._conic):
419 self.conic = conic
420 self._easting = Easting(e, falsed=conic.E0 > 0, Error=LCCError)
421 self._northing = Northing(n, falsed=conic.N0 > 0, Error=LCCError)
422 if h:
423 self._height = Height(h=h, Error=LCCError)
424 if name:
425 self.name = name
427 @Property
428 def conic(self):
429 '''Get the conic projection (L{Conic}).
430 '''
431 return self._conic
433 @conic.setter # PYCHOK setter!
434 def conic(self, conic):
435 '''Set the conic projection (L{Conic}).
437 @raise TypeError: Invalid B{C{conic}}.
438 '''
439 _xinstanceof(Conic, conic=conic)
440 if conic != self._conic:
441 _update_all(self)
442 self._conic = conic
444# def dup(self, name=NN, **e_n_h_conic): # PYCHOK signature
445# '''Duplicate this location with some attributes modified.
446#
447# @kwarg e_n_h_conic: Use keyword argument C{B{e}=...}, C{B{n}=...},
448# C{B{h}=...} and/or C{B{conic}=...} to override
449# the current C{easting}, C{northing} C{height}
450# or C{conic} projection, respectively.
451# '''
452# def _args_kwds(e=None, n=None, **kwds):
453# return (e, n), kwds
454#
455# kwds = _xkwds(e_n_h_conic, e=self.easting, n=self.northing,
456# h=self.height, conic=self.conic,
457# name=name or self.name)
458# args, kwds = _args_kwds(**kwds)
459# return self.__class__(*args, **kwds) # .classof
461 @Property_RO
462 def easting(self):
463 '''Get the easting (C{meter}).
464 '''
465 return self._easting
467 @Property_RO
468 def height(self):
469 '''Get the height (C{meter}).
470 '''
471 return self._height
473 @Property_RO
474 def latlon(self):
475 '''Get the lat- and longitude in C{degrees} (L{LatLon2Tuple}).
476 '''
477 ll = self.toLatLon(LatLon=None, datum=None)
478 return LatLon2Tuple(ll.lat, ll.lon, name=self.name)
480 @Property_RO
481 def latlonheight(self):
482 '''Get the lat-, longitude and height (L{LatLon3Tuple}C{(lat, lon, height)}).
483 '''
484 return self.latlon.to3Tuple(self.height)
486 @Property_RO
487 def latlonheightdatum(self):
488 '''Get the lat-, longitude in C{degrees} with height and datum (L{LatLon4Tuple}C{(lat, lon, height, datum)}).
489 '''
490 return self.latlonheight.to4Tuple(self.conic.datum)
492 @Property_RO
493 def northing(self):
494 '''Get the northing (C{meter}).
495 '''
496 return self._northing
498 @Property_RO
499 def philam(self):
500 '''Get the lat- and longitude in C{radians} (L{PhiLam2Tuple}).
501 '''
502 return PhiLam2Tuple(radians(self.latlon.lat),
503 radians(self.latlon.lon), name=self.name)
505 @Property_RO
506 def philamheight(self):
507 '''Get the lat-, longitude in C{radians} and height (L{PhiLam3Tuple}C{(phi, lam, height)}).
508 '''
509 return self.philam.to3Tuple(self.height)
511 @Property_RO
512 def philamheightdatum(self):
513 '''Get the lat-, longitude in C{radians} with height and datum (L{PhiLam4Tuple}C{(phi, lam, height, datum)}).
514 '''
515 return self.philamheight.to4Tuple(self.datum)
517 @deprecated_method
518 def to3lld(self, datum=None): # PYCHOK no cover
519 '''DEPRECATED, use method C{toLatLon}.
521 @kwarg datum: Optional datum to use, otherwise use this
522 B{C{Lcc}}'s conic.datum (C{Datum}).
524 @return: A L{LatLonDatum3Tuple}C{(lat, lon, datum)}.
526 @raise TypeError: If B{C{datum}} is not ellipsoidal.
527 '''
528 if datum in (None, self.conic.datum):
529 r = LatLonDatum3Tuple(self.latlon.lat,
530 self.latlon.lon,
531 self.conic.datum, name=self.name)
532 else:
533 r = self.toLatLon(LatLon=None, datum=datum)
534 r = LatLonDatum3Tuple(r.lat, r.lon, r.datum, name=r.name)
535 return r
537 def toLatLon(self, LatLon=None, datum=None, height=None, **LatLon_kwds):
538 '''Convert this L{Lcc} to an (ellipsoidal) geodetic point.
540 @kwarg LatLon: Optional, ellipsoidal class to return the
541 geodetic point (C{LatLon}) or C{None}.
542 @kwarg datum: Optional datum to use, otherwise use this
543 B{C{Lcc}}'s conic.datum (L{Datum}, L{Ellipsoid},
544 L{Ellipsoid2} or L{a_f2Tuple}).
545 @kwarg height: Optional height for the point, overriding
546 the default height (C{meter}).
547 @kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword
548 arguments, ignored if C{B{LatLon} is None}.
550 @return: The point (B{C{LatLon}}) or a
551 L{LatLon4Tuple}C{(lat, lon, height, datum)}
552 if B{C{LatLon}} is C{None}.
554 @raise TypeError: If B{C{LatLon}} or B{C{datum}} is
555 not ellipsoidal or not valid.
556 '''
557 if LatLon:
558 _xsubclassof(_LLEB, LatLon=LatLon)
560 c = self.conic
561 if datum not in (None, self.conic.datum):
562 c = c.toDatum(datum)
564 e = self.easting - c._E0
565 n = c._r0 - self.northing + c._N0
567 r_ = copysign0(hypot(e, n), c._n)
568 t_ = pow(r_ / c._aF, c._1_n)
570 x = c._xdef(t_) # XXX c._lam0
571 for self._iteration in range(10): # max 4 trips
572 p, x = x, c._xdef(t_ * c._pdef(x))
573 if fabs(x - p) < 1e-9: # XXX EPS too small?
574 break
575 lat = degrees90(x)
576 lon = degrees180((atan1(e, n) + c._opt3) * c._1_n + c._lam0)
578 h = _heigHt(self, height)
579 return _LL4Tuple(lat, lon, h, c.datum, LatLon, LatLon_kwds,
580 inst=self, name=self.name)
582 def toRepr(self, prec=0, fmt=Fmt.SQUARE, sep=_COMMASPACE_, m=_m_, C=False, **unused): # PYCHOK expected
583 '''Return a string representation of this L{Lcc} position.
585 @kwarg prec: Number of (decimal) digits, unstripped (C{int}).
586 @kwarg fmt: Enclosing backets format (C{str}).
587 @kwarg sep: Optional separator between name:values (C{str}).
588 @kwarg m: Optional unit of the height, default meter (C{str}).
589 @kwarg C: Optionally, include name of conic and datum (C{bool}).
591 @return: This Lcc as "[E:meter, N:meter, H:m, C:Conic.Datum]"
592 (C{str}).
593 '''
594 t, T = _fstrENH2(self, prec, m)
595 if C:
596 t += self.conic.name2,
597 T += _C_,
598 return _xzipairs(T, t, sep=sep, fmt=fmt)
600 def toStr(self, prec=0, sep=_SPACE_, m=_m_): # PYCHOK expected
601 '''Return a string representation of this L{Lcc} position.
603 @kwarg prec: Number of (decimal) digits, unstripped (C{int}).
604 @kwarg sep: Optional separator to join (C{str}) or C{None}
605 to return an unjoined C{tuple} of C{str}s.
606 @kwarg m: Optional height units, default C{meter} (C{str}).
608 @return: This Lcc as I{"easting nothing"} in C{meter} plus
609 I{" height"} suffixed with B{C{m}} if height is
610 non-zero (C{str}).
611 '''
612 t, _ = _fstrENH2(self, prec, m)
613 return t if sep is None else sep.join(t)
616def toLcc(latlon, conic=Conics.WRF_Lb, height=None, Lcc=Lcc,
617 **name_Lcc_kwds):
618 '''Convert an (ellipsoidal) geodetic point to a I{Lambert} location.
620 @arg latlon: Ellipsoidal point (C{LatLon}).
621 @kwarg conic: Optional Lambert projection to use (L{Conic}).
622 @kwarg height: Optional height for the point, overriding the
623 default height (C{meter}).
624 @kwarg Lcc: Class to return the I{Lambert} location (L{Lcc}).
625 @kwarg name_Lcc_kwds: Optional C{B{name}=NN} (C{str}) for the
626 location and optional, additional B{C{Lcc}} keyword
627 arguments, ignored if B{C{Lcc}} is C{None}.
629 @return: The I{Lambert} location (L{Lcc}) or an
630 L{EasNor3Tuple}C{(easting, northing, height)} if
631 C{B{Lcc} is None}.
633 @raise TypeError: If B{C{latlon}} is not ellipsoidal.
634 '''
635 _xinstanceof(_LLEB, latlon=latlon)
636 name, Lcc_kwds = _name2__(name_Lcc_kwds)
638 a, b = latlon.philam
639 c = conic.toDatum(latlon.datum)
641 t = c._n * (b - c._lam0) - c._opt3
642 st, ct = sincos2(t)
644 r = c._rdef(c._tdef(a))
645 e = c._E0 + r * st
646 n = c._N0 + c._r0 - r * ct
648 h = _heigHt(latlon, height)
649 r = EasNor3Tuple(e, n, h) if Lcc is None else \
650 Lcc(e, n, h=h, conic=c, **Lcc_kwds)
651 return _xnamed(r, name) if name else r
654if __name__ == '__main__':
656 from pygeodesy.interns import _NL_, _NLATvar_
657 from pygeodesy.lazily import printf
659 # __doc__ of this file, force all into registery
660 t = _NL_ + Conics.toRepr(all=True, asorted=True)
661 printf(_NLATvar_.join(t.split(_NL_)))
663# **) MIT License
664#
665# Copyright (C) 2016-2024 -- mrJean1 at Gmail -- All Rights Reserved.
666#
667# Permission is hereby granted, free of charge, to any person obtaining a
668# copy of this software and associated documentation files (the "Software"),
669# to deal in the Software without restriction, including without limitation
670# the rights to use, copy, modify, merge, publish, distribute, sublicense,
671# and/or sell copies of the Software, and to permit persons to whom the
672# Software is furnished to do so, subject to the following conditions:
673#
674# The above copyright notice and this permission notice shall be included
675# in all copies or substantial portions of the Software.
676#
677# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
678# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
679# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
680# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
681# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
682# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
683# OTHER DEALINGS IN THE SOFTWARE.